1
|
MMP-9 as Prognostic Marker for Brain Tumours: A Comparative Study on Serum-Derived Small Extracellular Vesicles. Cancers (Basel) 2023; 15:cancers15030712. [PMID: 36765669 PMCID: PMC9913777 DOI: 10.3390/cancers15030712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy; however, the blood-brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)-which can cross the BBB and are stable in body fluids-to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired t-test, Welch's test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours.
Collapse
|
2
|
Liu Z, Ji H, Fu W, Ma S, Zhao H, Wang F, Dong J, Yan X, Zhang J, Wang N, Wu J, Hu S. IGFBPs were associated with stemness, inflammation, extracellular matrix remodeling and poor prognosis of low-grade glioma. Front Endocrinol (Lausanne) 2022; 13:943300. [PMID: 35992105 PMCID: PMC9381844 DOI: 10.3389/fendo.2022.943300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The IGFBP family of insulin-like growth factor binding proteins has important biological functions in the organism. However, the role of the IGFBP family in low-grade glioma (LGG) has not been fully explored. METHODS We validated the clinical value of the IGFBP family using RNA-seq and clinical data of LGG in the TCGA and constructed an IGFBPScore using LASSO-regression analysis for prognosis prediction, subtype determination, and treatment sensitivity determination. Subsequently, we explored the role of the IGFBP family in the development of LGG using PanCanAtlas data. RESULTS Our results suggest that most IGFBP family members were aberrantly expressed and were strongly associated with poor prognosis in LGG. By constructing an IGFBPScore representing the IGFBP family, we found that tumor samples with a high IGFBPScore had a glioblastoma-like mutation pattern characterized by IDH1wt, EGFRmut, PTENmut, and NF1mut with hypo-methylation and glioma stem cell (GSC) diversity. In contrast, the low IGFBPScore group was characterized by IDH1mut accompanied by TP53mut, CICmut, and ATRXmut, and had hyper-methylation status as well as the GSC restriction. Additionally, the high-IGFBPScore group had a high inflammation phenotype with increased immune antigenicity and increased infiltration of immune molecules and cells, as well as a high extracellular matrix phenotype and enhanced multiple metabolic pathways compared with the immune-quiet phenotype of the low-IGFBPScore group, which was strongly associated with poor prognosis. CONCLUSION Our study provides a summary analysis and a theoretical basis for the biological role and clinical value of the IGFBP family in LGG, providing an important therapeutic target for LGG.
Collapse
Affiliation(s)
- Zhihui Liu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Hang Ji
- Department of Neurosurgery, West China Hospital, Sichuan University, Sichuan, China
- *Correspondence: Hang Ji, ; Jiasheng Wu, ; Shaoshan Hu,
| | - Wenchao Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Zhao
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Fang Wang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Dong
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuwei Yan
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiheng Zhang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiasheng Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Hang Ji, ; Jiasheng Wu, ; Shaoshan Hu,
| | - Shaoshan Hu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Hang Ji, ; Jiasheng Wu, ; Shaoshan Hu,
| |
Collapse
|
3
|
Nishizawa S, Kanazawa S, Fujihara Y, Asawa Y, Nagata S, Harai M, Hikita A, Takato T, Hoshi K. Glial Fibrillary Acidic Protein as Biomarker Indicates Purity and Property of Auricular Chondrocytes. Biores Open Access 2020; 9:51-63. [PMID: 32140296 PMCID: PMC7057647 DOI: 10.1089/biores.2019.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Instead of the silicone implants previously used for repair and reconstruction of the auricle and nose lost due to accidents and disease, a new treatment method using tissue-engineered cartilage has been attracting attention. The quality of cultured cells is important in this method because it affects treatment outcomes. However, a marker of chondrocytes, particularly auricular chondrocytes, has not yet been established. The objective of this study was to establish an optimal marker to evaluate the quality of cultured auricular chondrocytes as a cell source of regenerative cartilage tissue. Gene expression levels were comprehensively compared using the microarray method between human undifferentiated and dedifferentiated auricular chondrocytes to investigate a candidate quality control index with an expression level that is high in differentiated cells, but markedly decreases in dedifferentiated cells. We identified glial fibrillary acidic protein (GFAP) as a marker that decreased with serial passages in auricular chondrocytes. GFAP was not detected in articular chondrocytes, costal chondrocytes, or fibroblasts, which need to be distinguished from auricular chondrocytes in cell cultures. GFAP mRNA expression was observed in cultured auricular chondrocytes, and GFAP protein levels were also measured in the cell lysates and culture supernatants of these cells. However, GFAP levels detected from mRNA and protein in cell lysates were significantly decreased by increases in the incubation period. In contrast, the amount of protein in the cell supernatant was not affected by the incubation period. Furthermore, the protein level of GFAP in the supernatants of cultured cells correlated with the in vitro and in vivo production of the cartilage matrix by these cells. The productivity of the cartilage matrix in cultured auricular chondrocytes may be predicted by measuring GFAP protein levels in the culture supernatants of these cells. Thus, GFAP is regarded as a marker of the purity and properties of cultured auricular chondrocytes.
Collapse
Affiliation(s)
- Satoru Nishizawa
- Translational Research Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Sanshiro Kanazawa
- Department of Cell and Tissue Engineering (Fujisoft) and Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Fujihara
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiyo Asawa
- Department of Cell and Tissue Engineering (Fujisoft) and Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagata
- NAGATA Microtia and Reconstructive Plastic Surgery Clinic, Toda City, Japan
| | - Motohiro Harai
- FUJISOFT Tissue Engineering Co., Ltd., Yokohama-shi, Japan
| | - Atsuhiko Hikita
- Department of Cell and Tissue Engineering (Fujisoft) and Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Erhart F, Buchroithner J, Reitermaier R, Fischhuber K, Klingenbrunner S, Sloma I, Hibsh D, Kozol R, Efroni S, Ricken G, Wöhrer A, Haberler C, Hainfellner J, Krumpl G, Felzmann T, Dohnal AM, Marosi C, Visus C. Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. Acta Neuropathol Commun 2018; 6:135. [PMID: 30518425 PMCID: PMC6280511 DOI: 10.1186/s40478-018-0621-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/16/2018] [Indexed: 01/19/2023] Open
Abstract
Audencel is a dendritic cell (DC)-based cellular cancer immunotherapy against glioblastoma multiforme (GBM). It is characterized by loading of DCs with autologous whole tumor lysate and in vitro maturation via “danger signals”. The recent phase II “GBM-Vax” trial showed no clinical efficacy for Audencel as assessed with progression-free and overall survival in all patients. Here we present immunological research accompanying the trial with a focus on immune system factors related to outcome and Audencel’s effect on the immune system. Methodologically, peripheral blood samples (from apheresis before Audencel or venipuncture during Audencel) were subjected to functional characterization via enzyme-linked immunospot (ELISPOT) assays connected with cytokine bead assays (CBAs) as well as phenotypical characterization via flow cytometry and mRNA quantification. GBM tissue samples (from surgery) were subjected to T cell receptor sequencing and immunohistochemistry. As results we found: Patients with favorable pre-existing anti-tumor characteristics lived longer under Audencel than Audencel patients without them. Pre-vaccination blood CD8+ T cell count and ELISPOT Granzyme B production capacity in vitro upon tumor antigen exposure were significantly correlated with overall survival. Despite Audencel’s general failure to induce a significant clinical response, it nevertheless seemed to have an effect on the immune system. For instance, Audencel led to a significant up-regulation of the Th1-related immunovariables ELISPOT IFNγ, the transcription factor T-bet in the blood and ELISPOT IL-2 in a dose-dependent manner upon vaccination. Post-vaccination levels of ELISPOT IFNγ and CD8+ cells in the blood were indicative of a significantly better survival. In summary, Audencel failed to reach an improvement of survival in the recent phase II clinical trial. No clinical efficacy was registered. Our concomitant immunological work presented here indicates that outcome under Audencel was influenced by the state of the immune system. On the other hand, Audencel also seemed to have stimulated the immune system. Overall, these immunological considerations suggest that DC immunotherapy against glioblastoma should be studied further – with the goal of translating an apparent immunological response into a clinical response. Future research should concentrate on investigating augmentation of immune reactions through combination therapies or on developing meaningful biomarkers.
Collapse
|
5
|
Perdomo-Pantoja A, Mejía-Pérez SI, Reynoso-Noverón N, Gómez-Flores-Ramos L, Soto-Reyes E, Sánchez-Correa TE, Guerra-Calderas L, Castro-Hernandez C, Vidal-Millán S, Sánchez-Corona J, Taja-Chayeb L, Gutiérrez O, Cacho-Diaz B, Alvarez-Gomez RM, Gómez-Amador JL, Ostrosky-Wegman P, Corona T, Herrera-Montalvo LA, Wegman-Ostrosky T. Angiotensinogen rs5050 germline genetic variant as potential biomarker of poor prognosis in astrocytoma. PLoS One 2018; 13:e0206590. [PMID: 30383794 PMCID: PMC6211735 DOI: 10.1371/journal.pone.0206590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/16/2018] [Indexed: 01/11/2023] Open
Abstract
Introduction Renin-angiotensin system (RAS) in brain cancer represents a scarcely explored field in neuro-oncology. Recently, some pre- and clinical studies have reported that RAS components play a relevant role in the development and behavior of gliomas. The angiotensinogen (AGT) rs5050 genetic variant has been identified as a crucial regulator of the transcription of AGT mRNA, which makes it a logical and promising target of research. The aim of this study was to determine the relationship between the AGT rs5050 genetic variant in blood with prognosis in astrocytoma. Methods A prospective pilot study was performed on forty-eight astrocytoma patients, who received the standard-of-care treatment. Blood samples were taken prior to surgery and DNA was sequenced using Ion Torrent next-generation sequencing and analyzed by Ion Reporter software. Descriptive, bivariate, multivariate, and survival analyses were performed using SPSS v21, STATA 12 and GraphPad Prism 7. Results Median follow-up was 41 months (range 1–48). Survival analysis showed a significant difference between the rs5050 genotypes (p = .05). We found lower survival rates in individuals with the GG-genotype of rs5050 AGT compared to patients with the TT- and TG-genotype (2 months vs. 11.5 months, respectively [p = .01]). In bivariate and multivariate analyses, GG-genotype was negatively associated with survival. Conclusions In patients with astrocytoma, AGT rs5050 GG-genotype was associated with poor prognosis. We propose this germline genetic variant as a complementary biomarker, which can be detected practically and safely in blood samples or saliva.
Collapse
Affiliation(s)
- Alexander Perdomo-Pantoja
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, United States of America
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez", Mexico City, Mexico
| | - Sonia Iliana Mejía-Pérez
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez", Mexico City, Mexico
| | | | | | - Ernesto Soto-Reyes
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | - Clementina Castro-Hernandez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, Mexico City, Mexico
| | - Silvia Vidal-Millán
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Lucia Taja-Chayeb
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Olga Gutiérrez
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Bernardo Cacho-Diaz
- Unidad de Neuro-oncologia, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Juan Luis Gómez-Amador
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez", Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurologia y Neurocirugia, "Manuel Velasco Suarez", Mexico City, Mexico
| | - Luis Alonso Herrera-Montalvo
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, Mexico City, Mexico
| | - Talia Wegman-Ostrosky
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
6
|
Renin angiotensin system and its role in biomarkers and treatment in gliomas. J Neurooncol 2018; 138:1-15. [PMID: 29450812 DOI: 10.1007/s11060-018-2789-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Gliomas are the most common primary intrinsic tumor in the brain and are classified as low- or high-grade according to the World Health Organization (WHO). Patients with high-grade gliomas (HGG) who undergo surgical resection with adjuvant therapy have a mean overall survival of 15 months and 100% recurrence. The renin-angiotensin system (RAS), the primary regulator of cardiovascular circulation, exhibits local action and works as a paracrine system. In the context of this local regulation, the expression of RAS peptides and receptors has been detected in different kinds of tumors, including gliomas. The dysregulation of RAS components plays a significant role in the proliferation, angiogenesis, and invasion of these tumors, and therefore in their outcomes. The study and potential application of RAS peptides and receptors as biomarkers in gliomas could bring advantages against the limitations of current tumoral markers and should be considered in the future. The targeting of RAS components by RAS blockers has shown potential of being protective against cancer and improving immunotherapy. In gliomas, RAS blockers have shown a broad spectrum for beneficial effects and are being considered for use in treatment protocols. This review aims to summarize the background behind how RAS plays a role in gliomagenesis and explore the evidence that could lead to their use as biomarkers and treatment adjuvants.
Collapse
|
7
|
Allergy is associated with reduced risk of glioma: A meta-analysis. Allergol Immunopathol (Madr) 2017; 45:553-559. [PMID: 28262389 DOI: 10.1016/j.aller.2016.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/03/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Increasing evidences suggest that allergy may reduce the risk of glioma, so it is necessary to perform an up-to-data literature search and investigate this relationship by meta-analysis. METHODS We identified the included studies by searching PubMed and Web of Science and excluding irrelevant or ineligible articles. Nineteen studies from 15 articles, including 8435 cases and 118,719 controls, were selected for data extraction and synthesis. RESULTS Pooled outcomes showed that there was an inverse association between allergy and risk of glioma (OR=0.64, 95% CI=0.52-0.78, P<0.001). Meanwhile, asthma and eczema would reduce the risk of glioma by 33% and 23% (OR=0.67, 95% CI=0.59-0.75, P<0.001; OR=0.77, 95% CI=0.68-0.86, P<0.001), respectively. Sensitivity analyses confirmed the stability of these findings. Besides, no publication biases were detected regarding all the investigations. CONCLUSIONS Overall or specific allergy is protective against glioma. More prospective cohort studies or molecular laboratory experiments are warranted to elucidate the causation and key mechanism.
Collapse
|
8
|
Kwatra MM. A Rational Approach to Target the Epidermal Growth Factor Receptor in Glioblastoma. Curr Cancer Drug Targets 2017; 17:290-296. [PMID: 28029074 DOI: 10.2174/1568009616666161227091522] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023]
Abstract
Glioblastoma (GBM) is a deadly brain cancer, and all attempts to control it have failed so far. However, the future looks bright, as we now know the molecular landscape of GBM through the work of The Cancer Genome Atlas (TCGA) program. GBMs exhibit significant inter- and intratumoral heterogeneity, and to control this type of tumor, a personalized approach is required. One target, whose gene is amplified and mutated in a large number of GBMs, is the epidermal growth factor receptor (EGFR). But all attempts to target it have been unsuccessful. We attribute the reason for this failure to the molecular heterogeneity of EGFR in GBM, as well as to the poor brain penetration of previously tested EGFR-Tyrosine Kinase Inhibitors (EGFR-TKIs). In this review, we discuss the molecular heterogeneity of EGFR and provide rational preclinical and clinical guidelines for testing AZD9291, a third generation, irreversible EGFR-TKI with both a high affinity for EGFRvIII and excellent brain penetration.
Collapse
Affiliation(s)
- Madan M Kwatra
- Duke University Medical Center, Durham, P.O. Box 3094, NC 27710, United States
| |
Collapse
|
9
|
Chimeric antigen receptor T-cell therapy for glioblastoma. Transl Res 2017; 187:93-102. [PMID: 28755873 DOI: 10.1016/j.trsl.2017.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/25/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has shown great promise in the treatment of hematological disease, and its utility for treatment of solid tumors is beginning to unfold. Glioblastoma continues to portend a grim prognosis and immunotherapeutic approaches are being explored as a potential treatment strategy. Identification of appropriate glioma-associated antigens, barriers to cell delivery, and presence of an immunosuppressive microenvironment are factors that make CAR T-cell therapy for glioblastoma particularly challenging. However, insights gained from preclinical studies and ongoing clinical trials indicate that CAR T-cell therapy will continue to evolve and likely become integrated with current therapeutic strategies for malignant glioma.
Collapse
|
10
|
Ellis HP, Greenslade M, Powell B, Spiteri I, Sottoriva A, Kurian KM. Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence. Front Oncol 2015; 5:251. [PMID: 26636033 PMCID: PMC4644939 DOI: 10.3389/fonc.2015.00251] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GB) is the most common primary malignant brain tumor, and despite the availability of chemotherapy and radiotherapy to combat the disease, overall survival remains low with a high incidence of tumor recurrence. Technological advances are continually improving our understanding of the disease, and in particular, our knowledge of clonal evolution, intratumor heterogeneity, and possible reservoirs of residual disease. These may inform how we approach clinical treatment and recurrence in GB. Mathematical modeling (including neural networks) and strategies such as multiple sampling during tumor resection and genetic analysis of circulating cancer cells, may be of great future benefit to help predict the nature of residual disease and resistance to standard and molecular therapies in GB.
Collapse
Affiliation(s)
- Hayley P Ellis
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| | - Mark Greenslade
- Bristol Genetics Laboratory, North Bristol NHS Trust , Bristol , UK
| | - Ben Powell
- School of Mathematics, University of Bristol , Bristol , UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research , London , UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research , London , UK
| | - Kathreena M Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| |
Collapse
|
11
|
McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015; 75:38-50. [PMID: 26187331 PMCID: PMC4546937 DOI: 10.1016/j.cyto.2015.05.023] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Interleukin (IL)-4 and IL-13 were discovered approximately 30years ago and were immediately linked to allergy and atopic diseases. Since then, new roles for IL-4 and IL-13 and their receptors in normal gestation, fetal development and neurological function and in the pathogenesis of cancer and fibrosis have been appreciated. Studying IL-4/-13 and their receptors has revealed important clues about cytokine biology and led to the development of numerous experimental therapeutics. Here we aim to highlight new discoveries and consolidate concepts in the field of IL-4 and IL-13 structure, receptor regulation, signaling and experimental therapeutics.
Collapse
Affiliation(s)
- Sarah M McCormick
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
12
|
Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 2015; 11:504-14. [PMID: 26260659 DOI: 10.1038/nrneurol.2015.139] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glioblastoma is the most common primary brain tumour in adults. Prognosis is poor: even with the current gold-standard first-line treatment—maximal safe resection and combination of radiotherapy with temozolomide chemotherapy—the median overall survival time is only approximately 15-17 months, because the tumour recurs in virtually all patients, and no commonly accepted standard treatment for recurrent disease exists. Several targeted agents have failed to improve patient outcomes in glioblastoma. Immunotherapy with immune checkpoint inhibitors such as ipilimumab, nivolumab, and pembrolizumab has provided relevant clinical improvements in other advanced tumours for which conventional therapies have had limited success, making immunotherapy an appealing strategy in glioblastoma. This Review summarizes current knowledge on immune checkpoint modulators and evaluates their potential role in glioblastoma on the basis of preclinical studies and emerging clinical data. Furthermore, we discuss challenges that need to be considered in the clinical development of drugs that target immune checkpoint pathways in glioblastoma, such as specific properties of the immune system in the CNS, issues with radiological response assessment, and potential interactions with established and emerging treatment strategies.
Collapse
Affiliation(s)
- Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Centre CNS Tumours Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Michael Lim
- Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, Yale New Haven Hospital, 15 York Street, PO Box 208018, New Haven, CT 06520, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 2134, Boston, MA 02215, USA
| | - John H Sampson
- Division of Neurosurgery, 220 Sands Building, Research Drive, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
13
|
Liquid biopsies in patients with diffuse glioma. Acta Neuropathol 2015; 129:849-65. [PMID: 25720744 PMCID: PMC4436687 DOI: 10.1007/s00401-015-1399-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Diffuse gliomas are the most common malignant primary tumors of the central nervous system. Like other neoplasms, these gliomas release molecular information into the circulation. Tumor-derived biomarkers include proteins, nucleic acids, and tumor-derived extracellular vesicles that accumulate in plasma, serum, blood platelets, urine and/or cerebrospinal fluid. Recently, also circulating tumor cells have been identified in the blood of glioma patients. Circulating molecules, vesicles, platelets, and cells may be useful as easily accessible diagnostic, prognostic and/or predictive biomarkers to guide patient management. Thereby, this approach may help to circumvent problems related to tumor heterogeneity and sampling error at the time of diagnosis. Also, liquid biopsies may allow for serial monitoring of treatment responses and of changes in the molecular characteristics of gliomas over time. In this review, we summarize the literature on blood-based biomarkers and their potential value for improving the management of patients with a diffuse glioma. Incorporation of the study of circulating molecular biomarkers in clinical trials is essential for further assessment of the potential of liquid biopsies in this context.
Collapse
|