1
|
Xiang Z, Wu F, He Z, Tan F, Hu H, Zou C, Yi P, Liu W, Yang M. D1-like dopamine receptors promote B-cell differentiation in systemic lupus erythematosus. Cell Commun Signal 2024; 22:502. [PMID: 39420360 PMCID: PMC11484144 DOI: 10.1186/s12964-024-01885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease that currently cannot be completely cured with a great health burden. Since the production of autoantibodies plays a key role in the pathogenesis of SLE, discovering the underlying immunoregulation mechanism of B cells will be helpful for developing promising immunotherapy for SLE. In recent studies, dopamine receptors (DRDs), G protein-coupled receptors that include D1-like and D2-like subtypes, are expressed on B cells and participate in various physiological processes, involving immune responses. However, the regulatory effect of DRDs on B cells has not been determined. METHODS This study explored the expression of DRDs on B-cell subsets from SLE patients and healthy individuals. The effects of D1-like receptor on B-cell activation and differentiation were further explored using D1-like receptor agonists or antagonists. RNA-seq and bioinformatics analyses were used to identify specific molecular mechanisms involved. RESULTS The D1-like DRDs on B cells of SLE patients were highly expressed compared with those of healthy controls (HCs). D1-like receptor agonist treatment exacerbated lupus-like symptoms in pristane-induced lupus-like mice, while D1-like receptor antagonists alleviated the lupus-like phenotypes. Inhibition of D1-like receptor signals impeded B-cell differentiation, while activation of D1-like receptor signals could promote B cell differentiation. Further RNA-seq confirmed that PTGS2, a gene related to B-cell differentiation, was up-regulated once the D1-like receptor signals were activated, while BMP6 and IL-24 were up-regulated once the D1-like receptor signals were inhibited. CONCLUSION D1-like receptors probably promote B-cell differentiation through the PTGS2/PRDM1 pathway.
Collapse
Affiliation(s)
- Zhongyuan Xiang
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengxi Wu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya, Central South University, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Zhenghao He
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Fen Tan
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Haoran Hu
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Chun Zou
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Ping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenen Liu
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Jang A, Sharp R, Wang JM, Feng Y, Wang J, Chen M. Dependence on Autophagy for Autoreactive Memory B Cells in the Development of Pristane-Induced Lupus. Front Immunol 2021; 12:701066. [PMID: 34335611 PMCID: PMC8322733 DOI: 10.3389/fimmu.2021.701066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/30/2021] [Indexed: 02/02/2023] Open
Abstract
The production of autoantibodies by autoreactive B cells plays a major role in the pathogenesis of lupus. Increases in memory B cells have been observed in human lupus patients and autoimmune lpr mice. Autophagy is required for the maintenance of memory B cells against viral infections; however, whether autophagy regulates the persistence of autoantigen-specific memory B cells and the development of lupus remains to be determined. Here we show that memory B cells specific for autoantigens can be detected in autoimmune lpr mice and a pristane-induced lupus mouse model. Interestingly, B cell-specific deletion of Atg7 led to significant loss of autoreactive memory B cells and reduced autoantibody production in pristane-treated mice. Autophagy deficiency also attenuated the development of autoimmune glomerulonephritis and pulmonary inflammation after pristane treatment. Adoptive transfer of wild type autoreactive memory B cells restored autoantibody production in Atg7-deficient recipients. These data suggest that autophagy is important for the persistence of autoreactive memory B cells in mediating autoantibody responses. Our results suggest that autophagy could be targeted to suppress autoreactive memory B cells and ameliorate humoral autoimmunity.
Collapse
Affiliation(s)
- Albert Jang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Robert Sharp
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey M. Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Yin Feng
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States,Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, United States,*Correspondence: Jin Wang, ; Min Chen,
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Jin Wang, ; Min Chen,
| |
Collapse
|
3
|
Choi SC, Xu Z, Li W, Yang H, Roopenian DC, Morse HC, Morel L. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4 + T Cell Polarization. THE JOURNAL OF IMMUNOLOGY 2018; 200:3087-3099. [PMID: 29563177 DOI: 10.4049/jimmunol.1701179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
Abstract
Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4+ T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4+ T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4+ T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4+ T cells were introduced into Rag1-/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4+ T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4+ T cells in a nonredundant manner with myeloid/stromal cells.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Hong Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | | | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|
4
|
Piga M, Floris A, Mathieu A, Cauli A. Comment on: Auto-antibodies to double-stranded DNA as biomarker in systemic lupus erythematosus: comparison of different assays during quiescent and active disease. Rheumatology (Oxford) 2017; 56:2038-2039. [DOI: 10.1093/rheumatology/kex313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
|
5
|
Giles JR, Neves AT, Marshak-Rothstein A, Shlomchik MJ. Autoreactive helper T cells alleviate the need for intrinsic TLR signaling in autoreactive B cell activation. JCI Insight 2017; 2:e90870. [PMID: 28239656 PMCID: PMC5313065 DOI: 10.1172/jci.insight.90870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
T cells play a significant role in the pathogenesis of systemic autoimmune diseases, including systemic lupus erythematosus; however, there is relatively little information on the nature and specificity of autoreactive T cells. Identifying such cells has been technically difficult because they are likely to be rare and low affinity. Here, we report a method for identifying autoreactive T cell clones that recognize proteins contained in autoantibody immune complexes, providing direct evidence that functional autoreactive helper T cells exist in the periphery of normal mice. These T cells significantly enhanced autoreactive B cell proliferation and altered B cell differentiation in vivo. Most importantly, these autoreactive T cells were able to rescue many aspects of the TLR-deficient AM14 (anti-IgG2a rheumatoid factor) B cell response, suggesting that TLR requirements can be bypassed. This result has implications for the efficacy of TLR-targeted therapy in the treatment of ongoing disease.
Collapse
Affiliation(s)
- Josephine R. Giles
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adriana Turqueti Neves
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Mark J. Shlomchik
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Jordan N, Lutalo PM, D'Cruz DP. Progress with the use of monoclonal antibodies for the treatment of systemic lupus erythematosus. Immunotherapy 2016; 7:255-70. [PMID: 25804478 DOI: 10.2217/imt.14.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In recent years, significant progress has been made in the use of monoclonal antibodies in the treatment of systemic lupus erythematosus (SLE). Advances in our understanding of the complexity of SLE immunopathogenesis have led to the testing of several biologic agents in clinical trials. Monoclonal therapies currently emerging or under development include B-cell depletion therapies, agents targeting B-cell survival factors, blockade of T-cell co-stimulation and anticytokine therapies. Issues remain, however, regarding clinical trial design and outcome measures in SLE which need to be addressed to optimize translation of these promising therapies into clinical practice.
Collapse
Affiliation(s)
- Natasha Jordan
- Louise Coote Lupus Unit St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | | | | |
Collapse
|
7
|
Abstract
Antibodies that recognize and bind to DNA (anti-DNA antibodies) are serological hallmarks of systemic lupus erythematosus (SLE) and key markers for diagnosis and disease activity. In addition to common use in the clinic, anti-DNA antibody testing now also determines eligibility for clinical trials, raising important questions about the nature of the antibody-antigen interaction. At present, no 'gold standard' for serological assessment exists, and anti-DNA antibody binding can be measured with a variety of assay formats, which differ in the nature of the DNA substrates and in the conditions for binding and detection of antibodies. A mechanism called monogamous bivalency--in which high avidity results from simultaneous interaction of IgG Fab sites with a single polynucleotide chain--determines anti-DNA antibody binding; this mechanism might affect antibody detection in different assay formats. Although anti-DNA antibodies can promote pathogenesis by depositing in the kidney or driving cytokine production, they are not all alike, pathologically, and anti-DNA antibody expression does not necessarily correlate with active disease. Levels of anti-DNA antibodies in patients with SLE can vary over time, distinguishing anti-DNA antibodies from other pathogenic antinuclear antibodies. Elucidation of the binding specificities and the pathogenic roles of anti-DNA antibodies in SLE should enable improvements in the design of informative assays for both clinical and research purposes.
Collapse
Affiliation(s)
- David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Box 151G, 508 Fulton Street, Durham, North Carolina 27705, USA
| |
Collapse
|
8
|
The glucocorticoid receptor 1A3 promoter correlates with high sensitivity to glucocorticoid‐induced apoptosis in human lymphocytes. Immunol Cell Biol 2014; 92:825-36. [DOI: 10.1038/icb.2014.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022]
|
9
|
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by the production of antinuclear antibodies (ANA) in association with protean clinic manifestations. ANA can bind to nuclear molecules, most prominently DNA and histones in nucleosomes, to form complexes to promote pathogenesis. Because of the intrinsic immunological activity of the nuclear components, these complexes can amplify responses by interacting with diverse pattern recognition receptors and internal sensing systems. Among molecules associated with nucleosomal components, HMGB1, a non-histone protein, can emanate from activated and dying cells; HMGB1's immune activity is determined by post-translational modifications, redox state, and binding to other immune mediators. Although ANAs form complexes that deposit in the kidney or induce type 1 interferon, ANAs may also block immune activity. Together, these studies highlight the importance of complexes in the pathogenesis of lupus and their role as antigens, immunogens, and adjuvants.
Collapse
Affiliation(s)
- David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center , Durham, NC , USA and
| |
Collapse
|
10
|
Paula FS, Alves JD. Non-tumor necrosis factor-based biologic therapies for rheumatoid arthritis: present, future, and insights into pathogenesis. Biologics 2013; 8:1-12. [PMID: 24353404 PMCID: PMC3861294 DOI: 10.2147/btt.s35475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The way rheumatoid arthritis is treated has changed dramatically with the introduction of anti-tumor necrosis factor (anti-TNF) biologics. Nevertheless, many patients still have less than adequate control of their disease activity even with these therapeutic regimens, and current knowledge fails to explain all the data already gathered. There is now a wide range of drugs from different classes of biologic disease-modifying anti-rheumatic drugs available (and soon this number will increase significantly), that provides the opportunity to address each patient as a particular case and thereby optimize medical intervention. Currently available biologics for the treatment of rheumatoid arthritis apart from anti-TNF-based therapies are reviewed, along with an analysis of the new insights they provide into the pathogenesis of the disease and a discussion of future prospects in the area.
Collapse
Affiliation(s)
- Filipe Seguro Paula
- Immunomediated Systemic Diseases Unit, Department of Medicine 4, Fernando Fonseca Hospital, Amadora, Portugal
| | - José Delgado Alves
- Immunomediated Systemic Diseases Unit, Department of Medicine 4, Fernando Fonseca Hospital, Amadora, Portugal ; Center for the Study of Chronic Diseases, Department of Pharmacology, Faculty of Medical Sciences, Lisbon, Portugal
| |
Collapse
|
11
|
Di Domizio J, Cao W. Fueling autoimmunity: type I interferon in autoimmune diseases. Expert Rev Clin Immunol 2013; 9:201-10. [PMID: 23445195 DOI: 10.1586/eci.12.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, active research using genomic, cellular and animal modeling approaches has revealed the fundamental forces driving the development of autoimmune diseases. Type I interferon imprints unique molecular signatures in a list of autoimmune diseases. Interferon is induced by diverse nucleic acid-containing complexes, which trigger innate immune activation of plasmacytoid dendritic cells. Interferon primes, activates or differentiates various leukocyte populations to promote autoimmunity. Accordingly, interferon signaling is essential for the initiation and/or progression of lupus in several experimental models. However, the heterogeneous nature of systemic lupus erythematosus requires better characterization on how interferon pathways are activated and subsequently promote the advancement of autoimmune diseases. Given the central role of type I interferon, various strategies are devised to target these cytokines or related pathways to curtail the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Jeremy Di Domizio
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | |
Collapse
|
12
|
Novel therapeutic agents in clinical development for systemic lupus erythematosus. BMC Med 2013; 11:120. [PMID: 23642011 PMCID: PMC3667088 DOI: 10.1186/1741-7015-11-120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/09/2013] [Indexed: 01/01/2023] Open
Abstract
Conventional immunosuppressive therapies have radically transformed patient survival in systemic lupus erythematosus (SLE), but their use is associated with considerable toxicity and a substantial proportion of patients remain refractory to treatment. A more comprehensive understanding of the complexity of SLE immunopathogenesis has evolved over the past decade and has led to the testing of several biologic agents in clinical trials. There is a clear need for new therapeutic agents that overcome these issues, and biologic agents offer exciting prospects as future SLE therapies.An array of promising new therapies are currently emerging or are under development including B-cell depletion therapies, agents targeting B-cell survival factors, blockade of T-cell co-stimulation and anti-cytokine therapies, such as monoclonal antibodies against interleukin-6 and interferon-α.
Collapse
|
13
|
Expression of CXCL12 receptors in B cells from Mexican Mestizos patients with systemic Lupus erythematosus. J Transl Med 2012; 10:251. [PMID: 23244336 PMCID: PMC3571925 DOI: 10.1186/1479-5876-10-251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease characterized by B-cell hyper-reactivity and the production of pathogenic anti-nuclear-directed auto-antibodies (Abs). B-cell ontogeny is partly dependent on the CXCL12/CXCR4 axis for which the contribution to SLE pathogenesis remains unclear. CXCR7, the novel receptor for CXCL12, is differentially expressed among memory B-cell subsets. However, its biological role in SLE remains to be explored. METHODS Relative CXCR4 and CXCR7 expression levels were compared by quantitative PCR in leukocytes from blood samples of 41 Mexican Mestizos patients with SLE and 45 ethnicity-matched healthy subjects. Intracellular and membrane expression of both receptors was analyzed by flow cytometry in naive and Ab-secreting B cells. B-cell responsiveness to CXCL12 was investigated using Transwell-based chemotaxis assays. Data were analyzed using the Kruskal-Wallis test for comparisons of values amongst healthy controls and patients with inactive or active SLE, and non-parametrically using the Mann-Whitney U-test for multiple comparisons and unpaired samples. Correlations were determined by Spearman's ranking. RESULT SLE leukocytes displayed reduced levels of CXCR4 and CXCR7 transcripts. In SLE patients, a significant defect in CXCR4 expression was detected at the surface of naive and Ab-secreting B cells, associated with an abnormal intracellular localization of the receptor. CXCR7 predominantly localized in cytosolic compartments of B cells from healthy and SLE individuals. Disease activity did not impact on these expression patterns. Altered receptor compartmentalization correlated with an impaired CXCL12-promoted migration of SLE B cells. CONCLUSIONS Our data highlight a down-regulation of CXCL12 receptors on circulating B cells from SLE patients that likely influences their migratory behavior and distribution.
Collapse
|
14
|
Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res Ther 2012; 14 Suppl 5:S1. [PMID: 23281743 PMCID: PMC3535716 DOI: 10.1186/ar3909] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anti-CD20 therapy using rituximab directly targeting B cells has been approved for treatment of non-Hodgkin lymphoma, rheumatoid arthritis and anti-neutrophil cytoplasmic antibody-associated vasculitides and has led to reappreciation of B-lineage cells for anti-rheumatic treatment strategies. Moreover, blocking B-cell activating factor with belimumab, a drug that is licensed for treatment of active, seropositive systemic lupus erythematosus (SLE), represents an alternative, indirect anti-B-cell approach interfering with proper B-cell development. While these approaches apparently have no substantial impact on antibody-secreting plasma cells, challenges to improve the treatment of difficult-to-treat patients with SLE remain. In this context, anti-CD19 antibodies have the promise to directly target autoantibody-secreting plasmablasts and plasma cells as well as early B-cell differentiation stages not covered by anti-CD20 therapy. Currently known distinct expression profiles of CD19 by human plasma cell subsets, experiences with anti-CD19 therapies in malignant conditions as well as the rationale of targeting autoreactive plasma cells in patients with SLE are discussed in this review.
Collapse
|
15
|
Pisetsky DS. Antinuclear antibodies in rheumatic disease: a proposal for a function-based classification. Scand J Immunol 2012; 76:223-8. [PMID: 22670594 DOI: 10.1111/j.1365-3083.2012.02728.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antinuclear antibodies (ANAs) are a diverse group of autoantibodies that bind macromolecular components of the cell nucleus. While some ANAs occur in normal individuals, others are expressed almost exclusively in patients with rheumatic disease and serve as markers for diagnosis and prognosis. Despite the clinical associations of ANAs, the relationship of these antibodies to specific disease manifestations is often unknown because the target antigens are intracellular molecules that are ubiquitously expressed. In systemic lupus erythematosus, the role of ANAs in disease manifestations is better understood, especially for antibodies to DNA and related nucleosomal antigens. These antibodies can promote nephritis by the formation of immune complexes that are deposited in the kidney. In addition, anti-DNA, along with antibodies to RNA-binding proteins such as anti-Sm, can induce non-specific immune abnormalities based on the induction of type interferon 1 by plasmacytoid dendritic cells. Despite ANA expression in rheumatic disease, studies in animal models of inflammation and tissue injury indicate that antibodies to certain nuclear molecules such as HMGB1 have protective effects. Together, these considerations suggest a function-based classification of ANAs based on their expression in normal and autoimmune individuals as well as their capacity to induce or attenuate immunological disturbances. This classification provides a framework to elucidate the serological features of rheumatic disease and the often uncertain relationship between ANA expression and disease manifestations.
Collapse
Affiliation(s)
- D S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
16
|
Yamamura T, Miyake S. B-cell-directed therapy: which B cells should be targeted and how? Immunotherapy 2012; 4:455-7. [PMID: 22642324 DOI: 10.2217/imt.12.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Wen Z, Xu L, Xu W, Xiong S. Production of anti-double-stranded DNA antibodies in activated lymphocyte derived DNA induced lupus model was dependent on CD4+ T cells. Lupus 2012; 21:508-16. [DOI: 10.1177/0961203311434940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our previous study demonstrated that activated lymphocyte derived DNA (ALD-DNA) could function as an autoantigen to induce production of anti-double-stranded DNA (anti-dsDNA) antibodies in syngeneic BALB/c mice. Here we carefully evaluated the potential role of T cells in the induction of anti-dsDNA antibody. We demonstrated that ALD-DNA could effectively induce production of anti-dsDNA antibodies in vivo and in vitro. In contrast, ALD-DNA could not induce the generation of anti-dsDNA antibodies in nude mice. We further showed that in vivo depletion of CD3+ T cells blocked the induction of anti-dsDNA antibodies in BALB/c mice. Notably, we demonstrated that CD4+ but not CD8+ T cells conferred ALD-DNA to induce anti-dsDNA antibodies. Finally, we demonstrated that adoptive transfer of CD4+ T cells could rescue ALD-DNA induced anti-dsDNA antibodies in nude mice. Our results suggested that T helper cells were required for ALD-DNA to induce anti-dsDNA antibodies. These findings could further our understanding about the immunogenic properties of DNA and throw new light on SLE pathogenesis.
Collapse
Affiliation(s)
- Z Wen
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College of Fudan University, Shanghai, China
| | - L Xu
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College of Fudan University, Shanghai, China
| | - W Xu
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College of Fudan University, Shanghai, China
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - S Xiong
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College of Fudan University, Shanghai, China
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Jiangsu, China
| |
Collapse
|
18
|
Abstract
Aicardi-Goutières syndrome (AGS) is a hereditary neurodegenerative disorder characterized mainly by early onset progressive encephalopathy, concomitant with an increase in interferon-α levels in the cerebrospinal fluid. Although it was initially mistaken for intrauterine viral infections, AGS has now been genetically attributed to a lack of adequate processing of cellular nucleic acid debris, which culminates in the perpetual trigger of the innate and acquired immune responses. Although the exact mechanisms governing AGS are not fully understood, significant strides have been recently achieved in better characterizing the disorder and the molecular functions of the five known proteins found mutated in AGS. Studies have now uncovered that AGS is tightly linked with the predisposition to other autoimmune disorders such as familial chilblain lupus and systemic lupus erythematosus. Moreover, at least two of the proteins mutated in AGS, namely TREX1 and SAMHD1, also seem to have antagonistic roles in safeguarding humans from human immunodeficiency virus (HIV) infections. We hereby synthesize the current developments into the greater framework of AGS and suggest that a better understanding of AGS might help usher a better treatment not only for some autoimmune disorders but also possibly for patients suffering from HIV infections, too.
Collapse
Affiliation(s)
- C Chahwan
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
19
|
Connective tissue diseases: Autoreactive B cells evade BAFF blockade in a mouse model of SLE. Nat Rev Rheumatol 2011; 8:1. [PMID: 22193848 DOI: 10.1038/nrrheum.2011.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|