1
|
Croft M, Salek-Ardakani S, Ware CF. Targeting the TNF and TNFR superfamilies in autoimmune disease and cancer. Nat Rev Drug Discov 2024:10.1038/s41573-024-01053-9. [PMID: 39448880 DOI: 10.1038/s41573-024-01053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
The first anti-tumour necrosis factor (TNF) monoclonal antibody, infliximab (Remicade), celebrated its 25th anniversary of FDA approval in 2023. Inhibitors of TNF have since proved clinically efficacious at reducing inflammation associated with several autoimmune diseases, including rheumatoid arthritis, psoriasis and Crohn's disease. The success of TNF inhibitors raised unrealistic expectations for targeting other members of the TNF superfamily (TNFSF) of ligands and their receptors, with difficulties in part related to their more limited, variable expression and potential redundancy. However, there has been a resurgence of interest and investment, with many of these cytokines or their cognate receptors now under clinical investigation as targets for modulation of autoimmune and inflammatory diseases, as well as cancer. This Review assesses TNFSF-targeted biologics currently in clinical development for immune system-related diseases, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | | | - Carl F Ware
- Laboratory of Molecular Immunology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Zhu Q, Zhou H. The role of cGAS-STING signaling in rheumatoid arthritis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1466023. [PMID: 39386207 PMCID: PMC11461283 DOI: 10.3389/fimmu.2024.1466023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease primarily characterized by erosive and symmetric polyarthritis. As a pivotal axis in the regulation of type I interferon (IFN-I) and innate immunity, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has been implicated in the pathogenesis of RA. This pathway mainly functions by regulating cell survival, pyroptosis, migration, and invasion. Therefore, understanding the sources of cell-free DNA and the mechanisms underlying the activation and regulation of cGAS-STING signaling in RA offers a promising avenue for targeted therapies. Early detection and interventions targeting the cGAS-STING signaling are important for reducing the medical burden on individuals and healthcare systems. Herein, we review the existing literature pertaining to the role of cGAS-STING signaling in RA, and discuss current applications and future directions for targeting the cGAS-STING signaling in RA treatments.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| |
Collapse
|
4
|
Zou J, McNair E, DeCastro S, Lyons SP, Mordant A, Herring LE, Vetreno RP, Coleman LG. Microglia either promote or restrain TRAIL-mediated excitotoxicity caused by Aβ 1-42 oligomers. J Neuroinflammation 2024; 21:215. [PMID: 39218898 PMCID: PMC11367981 DOI: 10.1186/s12974-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) features progressive neurodegeneration and microglial activation that results in dementia and cognitive decline. The release of soluble amyloid (Aβ) oligomers into the extracellular space is an early feature of AD pathology. This can promote excitotoxicity and microglial activation. Microglia can adopt several activation states with various functional outcomes. Protective microglial activation states have been identified in response to Aβ plaque pathology in vivo. However, the role of microglia and immune mediators in neurotoxicity induced by soluble Aβ oligomers is unclear. Further, there remains a need to identify druggable molecular targets that promote protective microglial states to slow or prevent the progression of AD. METHODS Hippocampal entorhinal brain slice culture (HEBSC) was employed to study mechanisms of Aβ1-42 oligomer-induced neurotoxicity as well as the role of microglia. The roles of glutamate hyperexcitation and immune signaling in Aβ-induced neurotoxicity were assessed using MK801 and neutralizing antibodies to the TNF-related apoptosis-inducing ligand (TRAIL) respectively. Microglial activation state was manipulated using Gi-hM4di designer receptor exclusively activated by designer drugs (DREADDs), microglial depletion with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX3397, and microglial repopulation (PLX3397 withdrawal). Proteomic changes were assessed by LC-MS/MS in microglia isolated from control, repopulated, or Aβ-treated HEBSCs. RESULTS Neurotoxicity induced by soluble Aβ1-42 oligomers involves glutamatergic hyperexcitation caused by the proinflammatory mediator and death receptor ligand TRAIL. Microglia were found to have the ability to both promote and restrain Aβ-induced toxicity. Induction of microglial Gi-signaling with hM4di to prevent pro-inflammatory activation blunted Aβ neurotoxicity, while microglial depletion with CSF1R antagonism worsened neurotoxicity caused by Aβ as well as TRAIL. HEBSCs with repopulated microglia, however, showed a near complete resistance to Aβ-induced neurotoxicity. Comparison of microglial proteomes revealed that repopulated microglia have a baseline anti-inflammatory and trophic phenotype with a predicted pathway activation that is nearly opposite that of Aβ-exposed microglia. mTORC2 and IRF7 were identified as potential targets for intervention. CONCLUSION Microglia are key mediators of both protection and neurodegeneration in response to Aβ. Polarizing microglia toward a protective state could be used as a preventative strategy against Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Jian Zou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Elizabeth McNair
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sagan DeCastro
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Scott P Lyons
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Angie Mordant
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Laura E Herring
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Shi W, Zhou J, He J, Gao X, Li Z, Shao S, Chen Y. Mechanism of folium polygoni cuspidati in liver-yang-hyperactivity hypertension based on network pharmacology, molecular docking and experimental pharmacological validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118763. [PMID: 39216773 DOI: 10.1016/j.jep.2024.118763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE At present,the global form of hypertension is severe,and liver-yang-hyperactivity hypertension(GYSK hypertension)is the most common type of hypertension.Folium Polygoni Cuspidati(HZY)are mainly used in Yunnan, China,to treat dizziness, headache,and hypertension caused by GYSK,and the content of the active ingredients of HZY and its efficacy varies in different periods.However,the mechanism of action and the effect of harvesting period are not clear. AIM OF THE STUDY The purpose of this research was to investigate the effect of HZY in April and September on GYSK hypertension. MATERIALS AND METHODS The model of GYSK hypertension was established with aconite decoction and L-NAME,and the blood pressure,the symptoms of GYSK,the cardiac index and the pathological changes of aorta were observed,to study the effect of HZY in April and September on GYSK hypertension.The chemical composition of HZY was analysed by UPLC-QTOF-MS and its mechanism for the treatment of GYSK hypertension was predicted by network pharmacological studies and experimentally validated using serum metabolomics and Western blot techniques. RESULTS April HZY and September HZY can significantly improve the GYSK symptoms of rats, inhibit the RAAS system, improve oxidative stress and regulate blood lipids so as to play a blood pressure lowering efficacy and have a protective effect on the vascular endothelial cells.UPLC-QTOF-MS yielded 29 components of HZY,and network pharmacology predicted that its mechanism may be related to Lipid and atherosclerosis,PI3K/Akt signaling pathway, MAPK signaling pathway and TNF signaling pathway,etc.Western Blot validation showed that HZY activated PI3K,p-Akt protein expression and inhibited p-erk,p-p38 and TNF-α protein expression.Serum metabolomics suggested that April HZY exerts its efficacy mainly by regulating amino acid metabolism and September HZY mainly by regulating lipid metabolism. CONCLUSIONS In GYSK hypertensive rats treated for three weeks, both April HZY and September HZY could have antihypertensive effects,but the mechanisms of action were different and similar, both could regulate metabolite disorders of sugars, lipids,amino acids and peptides,and regulate blood pressure through the PI3K/Akt-eNOS and MAPK signalling pathways, with the difference that April HZY had stronger regulatory effects on the metabolism of amino acids.metabolism.
Collapse
Affiliation(s)
- Wenxin Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | | | - Jiang He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Xinyu Gao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Zhengheng Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Shijuan Shao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Yunzhong Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
6
|
Jiang J, Cao Z, Li B, Ma X, Deng X, Yang B, Liu Y, Zhai F, Cheng X. Disseminated tuberculosis is associated with impaired T cell immunity mediated by non-canonical NF-κB pathway. J Infect 2024; 89:106231. [PMID: 39032519 DOI: 10.1016/j.jinf.2024.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES The mechanism that leads to disseminated tuberculosis in HIV-negative patients is still largely unknown. T cell subsets and signaling pathways that were associated with disseminated tuberculosis were investigated. METHODS Single-cell profiling of whole T cells was performed to identify T cell subsets and enriched signaling pathways that were associated with disseminated tuberculosis. Flow cytometric analysis and blocking experiment were used to investigate the findings obtained by transcriptome sequencing. RESULTS Patients with disseminated tuberculosis had depleted Th1, Tc1 and Tc17 cell subsets, and IFNG was the most down-regulated gene in both CD4 and CD8 T cells. Gene Ontology analysis showed that non-canonical NF-κB signaling pathway, including NFKB2 and RELB genes, was significantly down-regulated and was probably associated with disseminated tuberculosis. Expression of several TNF superfamily ligands and receptors, such as LTA and TNF genes, were suppressed in patients with disseminated tuberculosis. Blocking of TNF-α and soluble LTα showed that TNF-α was involved in IFN-γ production and LTα influenced TNF-α expression in T cells. CONCLUSIONS Impaired T cell IFN-γ response mediated by suppression of TNF and non-canonical NF-κB signaling pathways might be responsible for disseminated tuberculosis.
Collapse
Affiliation(s)
- Jing Jiang
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihong Cao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Binyu Li
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xihui Ma
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xianping Deng
- Department of Laboratory Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Bingfen Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yanhua Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Zhai
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoxing Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
7
|
Xu P, Gu Y, Li C, Shen J, Cheng X, Zhang LW, Wang Y, Wang Y. Radioactive Hydroxyapatite Microspheres Empower Sustainable In Situ Tumor Vaccination. ACS NANO 2024; 18:18425-18443. [PMID: 38975713 DOI: 10.1021/acsnano.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Tumor in situ vaccination (ISV) strategies have emerged in clinical trials as promising approaches, involving the release of tumor antigens through local radiotherapy and intratumorally adjuvant injections. However, the current fabrication strategy for achieving a sustainable immune response to ISV remains a pressing challenge. In this study, we present an empowered sustainable ISV method for antitumor therapy using 177Lu-labeled manganese-doped mesoporous hydroxyapatite (177Lu/Mn-HAP) microspheres. The ISV enables the sustained utilization of tumor antigens, leading to the activation of dendritic cells and polarization of macrophages toward the M1 subtype. Consequently, it facilitates the generation of potent CD8+ T-cell responses, enhancing the antitumor effects of internal radiation in both primary and distant tumors. Importantly, this approach achieves complete remission in all tumor-bearing mice and stimulates immune memory to prevent tumor recurrence. Our study highlights a universal and safe ISV strategy capable of inducing potent tumor-specific and sustainable immune response.
Collapse
Affiliation(s)
- Pei Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chenze Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiahao Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| |
Collapse
|
8
|
Zhang C, Zhai W, Ma Y, Wu M, Cai Q, Huang J, Zhou Z, Duan F. Integrating machine learning algorithms and multiple immunohistochemistry validation to unveil novel diagnostic markers based on costimulatory molecules for predicting immune microenvironment status in triple-negative breast cancer. Front Immunol 2024; 15:1424259. [PMID: 39007147 PMCID: PMC11239375 DOI: 10.3389/fimmu.2024.1424259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Costimulatory molecules are putative novel targets or potential additions to current available immunotherapy, but their expression patterns and clinical value in triple-negative breast cancer (TNBC) are to be clarified. Methods The gene expression profiles datasets of TNBC patients were obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Diagnostic biomarkers for stratifying individualized tumor immune microenvironment (TIME) were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Additionally, we explored their associations with response to immunotherapy via the multiplex immunohistochemistry (mIHC). Results A total of 60 costimulatory molecule genes (CMGs) were obtained, and we determined two different TIME subclasses ("hot" and "cold") through the K-means clustering method. The "hot" tumors presented a higher infiltration of activated immune cells, i.e., CD4 memory-activated T cells, resting NK cells, M1 macrophages, and CD8 T cells, thereby enriched in the B cell and T cell receptor signaling pathways. LASSO and SVM-RFE algorithms identified three CMGs (CD86, TNFRSF17 and TNFRSF1B) as diagnostic biomarkers. Following, a novel diagnostic nomogram was constructed for predicting individualized TIME status and was validated with good predictive accuracy in TCGA, GSE76250 and GSE58812 databases. Further mIHC conformed that TNBC patients with high CD86, TNFRSF17 and TNFRSF1B levels tended to respond to immunotherapy. Conclusion This study supplemented evidence about the value of CMGs in TNBC. In addition, CD86, TNFRSF17 and TNFRSF1B were found as potential biomarkers, significantly promoting TNBC patient selection for immunotherapeutic guidance.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenyu Zhai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuyu Ma
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Minqing Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiaoting Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhihuan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fangfang Duan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Li S, Chao H, Li Z, Chen S, Zhang J, Hao W, Zhang S, Liu C, Liu H. Sex dimorphism of IL-17-secreting peripheral blood mononuclear cells in ankylosing spondylitis based on bioinformatics analysis and machine learning. BMC Musculoskelet Disord 2024; 25:490. [PMID: 38914997 PMCID: PMC11194900 DOI: 10.1186/s12891-024-07589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) with radiographic damage is more prevalent in men than in women. IL-17, which is mainly secreted from peripheral blood mononuclear cells (PBMCs), plays an important role in the development of AS. Its expression is different between male and female. However, it is still unclear whether sex dimorphism of IL-17 contribute to sex differences in AS. METHODS GSE221786, GSE73754, GSE25101, GSE181364 and GSE205812 datasets were collected from the Gene Expression Omnibus (GEO) database. Differential expressed genes (DEGs) were analyzed with the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods. CIBERSORTx and EcoTyper algorithms were used for immune infiltration analyses. Machine learning based on the XGBoost algorithm model was used to identify the impact of DEGs. The Connectivity Map (CMAP) database was used as a drug discovery tool for exploring potential drugs based on the DEGs. RESULTS According to immune infiltration analyses, T cells accounted for the largest proportion of IL-17-secreting PBMCs, and KEGG analyses suggested an enhanced activation of mast cells among male AS patients, whereas the expression of TNF was higher in female AS patients. Other signaling pathways, including those involving metastasis-associated 1 family member 3 (MAT3) or proteasome, were found to be more activated in male AS patients. Regarding metabolic patterns, oxidative phosphorylation pathways and lipid oxidation were significantly upregulated in male AS patients. In XGBoost algorithm model, DEGs including METRN and TMC4 played important roles in the disease process. we integrated the CMAP database for systematic analyses of polypharmacology and drug repurposing, which indicated that atorvastatin, famciclocir, ATN-161 and taselisib may be applicable to the treatment of AS. CONCLUSIONS We analyzed the sex dimorphism of IL-17-secreting PBMCs in AS. The results showed that mast cell activation was stronger in males, while the expression of TNF was higher in females. In addition, through machine learning and the CMAP database, we found that genes such as METRN and TMC4 may promote the development of AS, and drugs such as atorvastatin potentially could be used for AS treatment.
Collapse
Affiliation(s)
- Sifang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Hua Chao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Jingyu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Caijun Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510378, China.
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, No. 22, Qingzhu Street, Jiangnan West Road, Guangzhou, 510378, China.
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
10
|
Yang F, Fan J, Yang R, Cun Y. Integrative analysis of blood transcriptome profiles in small-cell lung cancer patients for identification of novel chemotherapy resistance-related biomarkers. Front Immunol 2024; 15:1338162. [PMID: 38957470 PMCID: PMC11217175 DOI: 10.3389/fimmu.2024.1338162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Chemoresistance constitutes a prevalent factor that significantly impacts thesurvival of patients undergoing treatment for smal-cell lung cancer (SCLC). Chemotherapy resistance in SCLC patients is generally classified as primary or acquired resistance, each governedby distinct mechanisms that remain inadequately researched. Methods In this study, we performed transcriptome screening of peripheral blood plasma obtainedfrom 17 patients before and after receiving combined etoposide and platinum treatment. We firs testimated pseudo-single-cell analysis using xCell and ESTIMATE and identified differentially expressed genes (DEGs), then performed network analysis to discover key hub genes involved in chemotherapy resistance. Results Our analysis showed a significant increase in class-switched memory B cell scores acrossboth chemotherapy resistance patterns, indicating their potential crucial role in mediatingresistance. Moreover, network analysis identifed PRICKLE3, TNFSFI0, ACSLl and EP300 as potential contributors to primary resistance, with SNWl, SENP2 and SMNDCl emerging assignificant factors in acquired resistance, providing valuable insights into chemotherapy resistancein SCLC. Discussion These findings offer valuable insights for understanding chemotherapy resistance and related gene signatures in SCLC, which could help further biological validation studies.
Collapse
Affiliation(s)
- Fang Yang
- Department of the Second Medical Oncology, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jinhua Fan
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Runxiang Yang
- Department of the Second Medical Oncology, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yupeng Cun
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Tsuchiya H, Ota M, Takahashi H, Hatano H, Ogawa M, Nakajima S, Yoshihara R, Okamura T, Sumitomo S, Fujio K. Epigenetic targets of Janus kinase inhibitors are linked to genetic risks of rheumatoid arthritis. Inflamm Regen 2024; 44:29. [PMID: 38831367 PMCID: PMC11149281 DOI: 10.1186/s41232-024-00337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Current strategies that target cytokines (e.g., tumor necrosis factor (TNF)-α), or signaling molecules (e.g., Janus kinase (JAK)) have advanced the management for allergies and autoimmune diseases. Nevertheless, the molecular mechanism that underpins its clinical efficacy have largely remained elusive, especially in the local tissue environment. Here, we aimed to identify the genetic, epigenetic, and immunological targets of JAK inhibitors (JAKis), focusing on their effects on synovial fibroblasts (SFs), the major local effectors associated with destructive joint inflammation in rheumatoid arthritis (RA). METHODS SFs were activated by cytokines related to inflammation in RA, and were treated with three types of JAKis or a TNF-α inhibitor (TNFi). Dynamic changes in transcriptome and chromatin accessibility were profiled across samples to identify drug targets. Furthermore, the putative targets were validated using luciferase assays and clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing. RESULTS We found that both JAKis and the TNFi targeted the inflammatory module including IL6. Conversely, specific gene signatures that were preferentially inhibited by either of the drug classes were identified. Strikingly, RA risk enhancers for CD40 and TRAF1 were distinctively regulated by JAKis and the TNFi. We performed luciferase assays and CRISPR-based genome editing, and successfully fine-mapped the single causal variants in these loci, rs6074022-CD40 and rs7021049-TRAF1. CONCLUSIONS JAKis and the TNFi had a direct impact on different RA risk enhancers, and we identified nucleotide-resolution targets for both drugs. Distinctive targets of clinically effective drugs could be useful for tailoring the application of these drugs and future design of more efficient treatment strategies.
Collapse
Affiliation(s)
- Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Haruka Takahashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Megumi Ogawa
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Sotaro Nakajima
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Risa Yoshihara
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Tomohisa Okamura
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Nitz K, Herrmann J, Lerman A, Lutgens E. Costimulatory and Coinhibitory Immune Checkpoints in Atherosclerosis: Therapeutic Targets in Atherosclerosis? JACC Basic Transl Sci 2024; 9:827-843. [PMID: 39070270 PMCID: PMC11282889 DOI: 10.1016/j.jacbts.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 07/30/2024]
Abstract
The benefits of current state-of-the-art treatments to combat atherosclerotic cardiovascular disease (ASCVD) have stagnated. Treatments are mostly based on controlling cardiovascular risk factors, especially hyperlipidemia. Although the most recent advances with PCSK-9 inhibitors support the hyperlipidemia aspect of ASCVD, several lines of experimental evidence have outlined that atherosclerosis is also driven by inflammation. In the past years, phase 1, 2, and 3 clinical trials targeting inflammation to combat ASCVD have revealed that patients do tolerate such immune therapies, show decreases in inflammatory markers, and/or have reductions in cardiovascular endpoints. However, the search for the optimal anti-inflammatory or immune-modulating strategy and the stratification of patients who would benefit from such treatments and appropriate treatment regimens to combat ASCVD is only just beginning. In this review, we focus on immune checkpoint-based therapeutics (costimulation and coinhibition), many of which are already approved by the U.S. Food and Drug Administration for the treatment of cancer or autoimmune diseases, and discuss their use as a novel immunotherapeutic strategy to treat ASCVD.
Collapse
Affiliation(s)
- Katrin Nitz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Esther Lutgens
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Cho J, Kim J, Song JS, Uh Y, Lee JH, Lee HS. Whole-Exome Sequencing and Analysis of the T Cell Receptor β and γ Repertoires in Rheumatoid Arthritis. Diagnostics (Basel) 2024; 14:529. [PMID: 38473001 DOI: 10.3390/diagnostics14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigated the potential genetic variants of rheumatoid arthritis (RA) using whole-exome sequencing (WES) and evaluated the disease course using T cell receptor (TCR) repertoire analysis. Fourteen patients with RA and five healthy controls (HCs) were enrolled. For the RA patient group, only treatment-naïve patients were recruited, and data were collected at baseline as well as at 6 and 12 months following the initiation of the disease-modifying antirheumatic drug (DMARD) treatment. Laboratory data and disease parameters were also collected. Genetic variants were detected using WES, and the diversity of the TCR repertoire was assessed using the Shannon-Wiener diversity index. While some variants were detected by WES, their clinical significance should be confirmed by further studies. The diversity of the TCR repertoire in the RA group was lower than that in the HCs; however, after DMARD treatment, it increased significantly. The diversity was negatively correlated with the laboratory findings and disease measures with statistical significance. Variants with a potential for RA pathogenesis were identified, and the clinical significance of the TCR repertoire was evaluated in Korean patients with RA. Further studies are required to confirm the findings of the present study.
Collapse
Affiliation(s)
- Jooyoung Cho
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Juwon Kim
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Ju Sun Song
- GC Genome, GC Labs, Yongin 16924, Republic of Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hyang Sun Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
14
|
Fan H, Qiao Z, Li J, Shang G, Shang C, Chen S, Leng Z, Su H, Kou H, Liu H. Recent advances in senescence-associated secretory phenotype and osteoporosis. Heliyon 2024; 10:e25538. [PMID: 38375248 PMCID: PMC10875379 DOI: 10.1016/j.heliyon.2024.e25538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
The worldwide elderly population is on the rise, and aging is a major osteoporosis risk factor. Senescent cells accumulation can have a detrimental effect the body as we age. The senescence-associated secretory phenotype (SASP), an essential cellular senescence hallmark, is an important mechanism connecting cellular senescence to osteoporosis. This review describes in detail the characteristics of SASPs and their regulatory agencies, and shed fresh light on how SASPs from different senescent cells contribute to osteoporosis development. Furthermore, we summarized various innovative therapy techniques that target SASPs to lower the burden of osteoporosis in the elderly and discussed the potential challenges of SASPs-based therapy for osteoporosis as a new clinical trial.
Collapse
Affiliation(s)
- Haonan Fan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhi Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang 471000, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Chunfeng Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huifang Su
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
15
|
Li L, He Y, Liu K, Liu L, Shan S, Liu H, Ren J, Sun S, Wang M, Jia J, Wang P. GITRL impairs hepatocyte repopulation by liver progenitor cells to aggravate inflammation and fibrosis by GITR +CD8 + T lymphocytes in CDE Mice. Cell Death Dis 2024; 15:114. [PMID: 38321001 PMCID: PMC10847460 DOI: 10.1038/s41419-024-06506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
As an alternative pathway for liver regeneration, liver progenitor cells and their derived ductular reaction cells increase during the progression of many chronic liver diseases. However, the mechanism underlying their hepatocyte repopulation after liver injury remains unknown. Here, we conducted progenitor cell lineage tracing in mice and found that fewer than 2% of hepatocytes were derived from liver progenitor cells after 9 weeks of injury with a choline-deficient diet supplemented with ethionine (CDE), and this percentage increased approximately three-fold after 3 weeks of recovery. We also found that the proportion of liver progenitor cells double positive for the ligand of glucocorticoid-induced tumour necrosis factor receptor (GITRL, also called Tnfsf18) and SRY-related HMG box transcription 9 (Sox9) among nonparenchymal cells increased time-dependently upon CDE injury and reduced after recovery. When GITRL was conditionally knocked out from hepatic progenitor cells, its expression in nonparenchymal cells was downregulated by approximately fifty percent, and hepatocyte repopulation increased by approximately three folds. Simultaneously, conditional knockout of GITRL reduced the proportion of liver-infiltrating CD8+ T lymphocytes and glucocorticoid-induced tumour necrosis factor receptor (GITR)-positive CD8+ T lymphocytes. Mechanistically, GITRL stimulated cell proliferation but suppressed the differentiation of liver progenitor organoids into hepatocytes, and CD8+ T cells further reduced their hepatocyte differentiation by downregulating the Wnt/β-catenin pathway. Therefore, GITRL expressed by liver progenitor cells impairs hepatocyte differentiation, thus hindering progenitor cell-mediated liver regeneration.
Collapse
Affiliation(s)
- Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Kai Liu
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Shan Shan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Helin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Jiangbo Ren
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Shujie Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Min Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China.
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China.
| |
Collapse
|
16
|
Niu W, Liu Q, Huo X, Luo Y, Zhang X. TL1A promotes metastasis and EMT process of colorectal cancer. Heliyon 2024; 10:e24392. [PMID: 38312710 PMCID: PMC10835226 DOI: 10.1016/j.heliyon.2024.e24392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Background Metastasis is the major problem of colorectal cancer (CRC) and is correlated with the high mortality. Tumor necrosis factor-like cytokine 1A (TL1A) is a novel regulatory factor for inflammatory diseases. This work aimed to investigate the role of TL1A in CRC metastasis. Method AOM/DSS-induced mouse model, xenograft tumor model and metastasis murine model were established to mimic the colitis-associated CRC and investigate CRC growth and metastasis in vivo. Colon tissues were assessed by hematoxylin/eosin (HE) staining and immunohistochemistry (IHC). CRC cell metastasis in vivo was observed using in vivo imaging system (IVIS). Cell viability and proliferation were examined using cell counting kit 8 (CCK-8) and EdU experiments. The expression of tumor growth factor β (TGFβ) and metastatic biomarkers were detected using western blotting experiment. The in vitro cell metastasis was measured by Transwell. Results Knockdown of TL1A notably suppressed the generation of colonic tumors in azoxymethane/dextran sodium sulfate (AOM/DSS) model, suppressed in vivo CRC cell growth, as well as lung and liver metastasis. The inflammation response and inflammatory cell infiltration in tumor sites were decreased by TL1A depletion. The in vitro CRC cell growth and metastasis was also suppressed by shTL1A, along with altered expression of epithelial mesenchymal transition (EMT) biomarkers. TL1A depletion suppressed the level of the TGF-β1 receptor (TβRI) and phosphorylation of Smad3 in CRC cells. Stimulation with TGF-β recovered the CRC cell migration and invasion that suppressed by shTL1A. Conclusion Our work implicated TL1A as a promoter of CRC generation and metastasis and defines TGF-β/Smad3 signaling as mediator of TL1A-regualated CRC cell metastasis.
Collapse
Affiliation(s)
- Weiwei Niu
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Qian Liu
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Xiaoxia Huo
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Yuxin Luo
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Xiaolan Zhang
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| |
Collapse
|
17
|
Pan S, Wu S, Wei Y, Liu J, Zhou C, Chen T, Zhu J, Tan W, Huang C, Feng S, Zhang B, Wei W, Zhan X, Liu C. Exploring the causal relationship between inflammatory cytokines and inflammatory arthritis: A Mendelian randomization study. Cytokine 2024; 173:156446. [PMID: 37979213 DOI: 10.1016/j.cyto.2023.156446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES Previous studies have reported an association between inflammatory cytokines and inflammatory arthritis, including Ankylosing spondylitis (AS), rheumatoid arthritis (RA), and psoriatic arthritis (PsA). This study aims to explore the causal relationship between inflammatory cytokines and AS, RA, and PsA using Mendelian randomization (MR). METHODS We conducted a bidirectional two-sample MR analysis using genetic summary data from a publicly available genome-wide association study (GWAS) that included 41 genetic variations of inflammatory cytokines, as well as genetic variant data for AS, RA, and PsA from the FinnGen consortium. The main analysis method used was Inverse variance weighted (IVW) to investigate the causal relationship between exposure and outcome. Additionally, other methods such as MR Egger, weighted median (WM), simple mode, and weighted mode were employed to strengthen the final results. Sensitivity analysis was also performed to ensure the reliability of the findings. RESULTS The results showed that macrophage colony-stimulating factor (MCSF) was associated with an increased risk of AS (OR = 1.163, 95 % CI = 1.016-1.33, p = 0.028). Conversely, high levels of TRAIL and beta nerve growth factor (β-NGF) were associated with a decreased risk of AS (OR = 0.892, 95 % CI = 0.81-0.982, p = 0.002; OR = 0.829, 95 % CI = 0.696-0.988, p = 0.036). Four inflammatory cytokines were found to be associated with an increased risk of PsA: vascular endothelial growth factor (VEGF) (OR = 1.161, 95 % CI = 1.057-1.275, p = 0.002); Interleukin 12p70 (IL12p70) (OR = 1.189, 95 % CI = 1.049-1.346, p = 0.007); IL10 (OR = 1.216, 95 % CI = 1.024-1.444, p = 0.026); IL13 (OR = 1.159, 95 % CI = 1.05-1.28, p = 0.004). Interleukin 1 receptor antagonist (IL-1rα) was associated with an increased risk of seropositive RA (OR = 1.181, 95 % CI = 1.044-1.336, p = 0.008). Similarly, genetic susceptibility to inflammatory arthritis was found to be causally associated with multiple inflammatory cytokines. Lastly, the sensitivity analysis supported the robustness of these findings. CONCLUSIONS This study provides additional insights into the relationship between inflammatory cytokines and inflammatory arthritis, and may offer new clues for the etiology, diagnosis, and treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Shixin Pan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaofeng Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yating Wei
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingjing Liu
- Department of Spinal Surgery, Southern Central Hospital of Yunnan Province (First People's Hospital of Honghe State), Yunnan, China
| | - Chenxing Zhou
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiming Tan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengqian Huang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sitan Feng
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bin Zhang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wendi Wei
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
18
|
Ma C, Gu Z, Ding W, Li F, Yang Y. Crosstalk between copper homeostasis and cuproptosis reveals a lncRNA signature to prognosis prediction, immunotherapy personalization, and agent selection for patients with lung adenocarcinoma. Aging (Albany NY) 2023; 15:13504-13541. [PMID: 38011277 DOI: 10.18632/aging.205281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/26/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Copper homeostasis and cuproptosis play critical roles in various biological processes of cancer; however, whether they can impact the prognosis of lung adenocarcinoma (LUAD) remain to be fully elucidated. We aimed to adopt these concepts to create and validate a lncRNA signature for LUAD prognostic prediction. METHODS For this study, the TCGA-LUAD dataset was used as the training cohort, and multiple datasets from the GEO database were pooled as the validation cohort. Copper homeostasis and cuproptosis regulated genes were obtained from published studies, and various statistical methods, including Kaplan-Meier (KM), Cox, and LASSO, were used to train our gene signature CoCuLncSig. We utilized KM analysis, COX analysis, receiver operating characteristic analysis, time-dependent AUC analysis, principal component analysis, and nomogram predictor analysis in our validation process. We also compared CoCuLncSig with previous studies. We performed analyses using R software to evaluate CoCuLncSig's immunotherapeutic ability, focusing on eight immune algorithms, TMB, and TIDE. Additionally, we investigated potential drugs that could be effective in treating patients with high-risk scores. Additionally qRT-PCR examined the expression patterns of CoCuLncSig lncRNAs, and the ability of CoCuLncSig in pan-cancer was also assessed. RESULTS CoCuLncSig containing eight lncRNAs was trained and showed strong predictive ability in the validation cohort. Compared with previous similar studies, CoCuLncSig had more prognostic ability advantages. CoCuLncSig was closely related to the immune status of LUAD, and its tight relationship with checkpoints IL10, IL2, CD40LG, SELP, BTLA, and CD28 may be the key to its potential immunotherapeutic ability. For the high CoCuLncSig score population, we found 16 drug candidates, among which epothilone-b and gemcitabine may have the most potential. The pan-cancer analysis found that CoCuLncSig was a risk factor in multiple cancers. Additionally, we discovered that some of the CoCuLncSig lncRNAs could play crucial roles in specific cancer types. CONCLUSION The current study established a powerful prognostic CoCuLncSig signature for LUAD that was also valid for most pan-cancers. This signature could serve as a potential target for immunotherapy and might help the more efficient application of drugs to specific populations.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weizheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Fang P, Liu X, Qiu Y, Wang Y, Wang D, Zhao J, Ding H, Bao N. Exploring causal correlations between inflammatory cytokines and ankylosing spondylitis: a bidirectional mendelian-randomization study. Front Immunol 2023; 14:1285106. [PMID: 38054001 PMCID: PMC10694192 DOI: 10.3389/fimmu.2023.1285106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Background The impact of inflammatory factors on the development of Ankylosing Spondylitis (AS) is widely recognized, but the exact causal relationship remains unclear. Methods The bidirectional mendelian-randomization study utilized genetic data from a genome-wide association study (GWAS) of 186 AS cases and 456,162 controls of European ancestry. Inflammatory cytokines were obtained from a GWAS summary of 8,293 healthy participants. Causal associations were primarily investigated using the inverse variance-weighted method, supplemented by MR Egger, weighted median and weighted mode analyses. Heterogeneity in the results was assessed using the Cochrane Q test. Horizontal pleiotropy was evaluated through the MR-Egger intercept test and the MR pleiotropy residual sum and outliers (MR-PRESSO) test. Sensitivity analysis was conducted through leave-one-out analysis. Results The results suggest a genetically predicted potential association between beta-nerve growth factor (βNGF), Interleukin-1-beta (IL-1β), and TNF-related apoptosis inducing ligand (TRAIL) with the risk of AS (OR: 2.17, 95% CI: 1.13-4.16; OR: 0.41, 95% CI: 0.18-0.95,; OR: 1.47, 95% CI: 1.02-2.13).Additionally, Interleukin-12p70 (IL-12p70), Interleukin-17 (IL-17), Interleukin-6 (IL-6), Interleukin-4 (IL-4), Stromal-cell-derived factor 1 alpha (SDF-1α), Macrophage inflammatory protein 1β (MIP1β), Monocyte chemoattractant protein-3 (MCP-3), Platelet-derived growth factor bb (PDGFbb), Granulocyte-colony stimulating factor (GCSF), Fibroblast growth factor basic (bFGF), TNF-related apoptosis inducing ligand (TRAIL), and Interferon-gamma (IFN -γ) are suggested as consequences of AS in genetically prediction.No evidence of horizontal pleiotropy or heterogeneity between the genetic variants was found (P>0.05), and a leave-one-out test confirmed the stability and robustness of this association. Conclusion These findings suggest that βNGF, IL-1β, and TRAIL may play a crucial role in the pathogenesis of AS. Additionally, AS may impact the expression of cytokines such as IL-12p70, IL-17, IL-6, IL-4, SDF-1α, MIP1β, MCP-3, PDGFbb,GCSF, bFGF,TRAIL,and IFN-γ. Further investigations are warranted to determine whether these biomarkers can be utilized for the prevention or treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hao Ding
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nirong Bao
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Ferreira MB, Kobayashi M, Costa RQ, Fonseca T, Brandão M, Oliveira JC, Marinho A, Cyrne Carvalho H, Rodrigues P, Zannad F, Rossignol P, Barros AS, Ferreira JP. Unsupervised clustering to differentiate rheumatoid arthritis patients based on proteomic signatures. Scand J Rheumatol 2023; 52:619-626. [PMID: 37083270 DOI: 10.1080/03009742.2023.2196781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) have different presentations and prognoses. Cluster analysis based on proteomic signatures creates independent phenogroups of patients with different pathophysiological backgrounds. We aimed to identify distinct pathophysiological clusters of RA patients based on circulating proteomic biomarkers. METHOD This was a cohort study including 399 RA patients. Clustering was performed on 94 circulating proteins (92 CVDII Olink®, high-sensitivity troponin T, and C-reactive protein). Unsupervised clustering was performed using a partitioning cluster algorithm. RESULTS The clustering algorithm identified two distinct clusters: cluster 1 (n = 223) and cluster 2 (n = 176). Compared with cluster 1, cluster 2 included older patients with a higher burden of comorbidities (cardiovascular and RA related), more erosive and longer RA duration, more dyspnoea and fatigue, walking a shorter distance in the Six-Minute Walk Test, with more severe diastolic dysfunction, and a 4.5-fold higher risk of death or hospitalization for cardiovascular reasons. Tumour necrosis factor (TNF) receptor superfamily-related pathways were mainly responsible for the model's discriminative ability. CONCLUSION Using unsupervised cluster analysis based on proteomic phenotypes, we identified two clusters of RA patients with distinct biomarkers profiles, clinical characteristics, and different outcomes that could reflect different pathophysiological backgrounds. TNF receptor superfamily-related proteins may be used to distinguish subgroups.
Collapse
Affiliation(s)
- M B Ferreira
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Internal Medicine Department, Hospital da Luz Arrábida, Porto, Portugal
| | - M Kobayashi
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - R Q Costa
- Internal Medicine Department, Centro Hospitalar de Entre o Douro e Vouga, Aveiro, Portugal
| | - T Fonseca
- Internal Medicine Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Unidade de Imunologia Clínica, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - M Brandão
- Unidade de Imunologia Clínica, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - J C Oliveira
- Clinical Chemistry Service, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - A Marinho
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Unidade de Imunologia Clínica, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - H Cyrne Carvalho
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Cardiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - P Rodrigues
- Cardiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - F Zannad
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - P Rossignol
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - A S Barros
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Heart Failure Clinic, Centro Hospitalar de Vila Nova de Gaia/Espinho, Portugal
| | - J P Ferreira
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Heart Failure Clinic, Centro Hospitalar de Vila Nova de Gaia/Espinho, Portugal
| |
Collapse
|
21
|
Chen Y, Ye Z, Zhen W, Zhang L, Min X, Wang Y, Liu F, Su M. Design and synthesis of broad-spectrum antimicrobial amphiphilic peptidomimetics to combat drug-resistance. Bioorg Chem 2023; 140:106766. [PMID: 37572534 DOI: 10.1016/j.bioorg.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The gradual depletion of antibiotic discovery pipeline makes the antibiotic resistance a difficult clinical problem and a global health emergency. The membrane-active antimicrobial peptides (AMPs) attracted much attention due to a lower tendency to bacterial resistance than traditional antibiotics. However, some immanent drawbacks of AMPs may hamper their application in combating antibiotic resistance in the long run, such as susceptible to enzymatic degradation and low cell permeability. Herein, we report the design and synthesis of a novel series of amphiphilic peptidomimetics, from which we identified compounds that exhibited potent antimicrobial activity against a panel of clinically relevant Gram-positive and Gram-negative bacteria strains. The most potent compound 20 (SD-110-12) is able to kill intracellular bacterial pathogens and prevent the development of bacterial resistance under the tested conditions by targeting cell membranes. Additionally, compound 20 (SD-110-12) obtains good in vivo efficacy that is comparative to vancomycin by eradicating MRSA and suppressing inflammation in a mice infected skin wound model, demonstrating its promising therapeutic potential.
Collapse
Affiliation(s)
- Yating Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenteng Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xiangyang Min
- Department of Clinical Laboratory Medicine, Yangpu Hospital of Tongji University, Shanghai 200000, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
22
|
Cedeno-Veloz BA, Lozano-Vicario L, Zambom-Ferraresi F, Fernández-Irigoyen J, Santamaría E, Rodríguez-García A, Romero-Ortuno R, Mondragon-Rubio J, Ruiz-Ruiz J, Ramírez-Vélez R, Izquierdo M, Martínez-Velilla N. Effect of immunology biomarkers associated with hip fracture and fracture risk in older adults. Immun Ageing 2023; 20:55. [PMID: 37853468 PMCID: PMC10583364 DOI: 10.1186/s12979-023-00379-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Osteoporosis is a skeletal disease that can increase the risk of fractures, leading to adverse health and socioeconomic consequences. However, current clinical methods have limitations in accurately estimating fracture risk, particularly in older adults. Thus, new technologies are necessary to improve the accuracy of fracture risk estimation. In this observational study, we aimed to explore the association between serum cytokines and hip fracture status in older adults, and their associations with fracture risk using the FRAX reference tool. We investigated the use of a proximity extension assay (PEA) with Olink. We compared the characteristics of the population, functional status and detailed body composition (determined using densitometry) between groups. We enrolled 40 participants, including 20 with hip fracture and 20 without fracture, and studied 46 cytokines in their serum. After conducting a score plot and two unpaired t-tests using the Benjamini-Hochberg method, we found that Interleukin 6 (IL-6), Lymphotoxin-alpha (LT-α), Fms-related tyrosine kinase 3 ligand (FLT3LG), Colony stimulating factor 1 (CSF1), and Chemokine (C-C motif) ligand 7 (CCL7) were significantly different between fracture and non-fracture patients (p < 0.05). IL-6 had a moderate correlation with FRAX (R2 = 0.409, p < 0.001), while CSF1 and CCL7 had weak correlations with FRAX. LT-α and FLT3LG exhibited a negative correlation with the risk of fracture. Our results suggest that targeted proteomic tools have the capability to identify differentially regulated proteins and may serve as potential markers for estimating fracture risk. However, longitudinal studies will be necessary to validate these results and determine the temporal patterns of changes in cytokine profiles.
Collapse
Affiliation(s)
- Bernardo Abel Cedeno-Veloz
- Geriatric Department, Hospital Universitario de Navarra (HUN), 2 Navarrabiomed, Pamplona, Navarra, IdiSNA, 31008, Spain.
- Navarrabiomed, Navarra Medical Research Institute, Pamplona, Navarra, 31008, Spain.
- Department of Health Sciences, Public University of Navarra, Pamplona, Navarra, 31008, Spain.
| | - Lucía Lozano-Vicario
- Geriatric Department, Hospital Universitario de Navarra (HUN), 2 Navarrabiomed, Pamplona, Navarra, IdiSNA, 31008, Spain
- Navarrabiomed, Navarra Medical Research Institute, Pamplona, Navarra, 31008, Spain
| | - Fabricio Zambom-Ferraresi
- Navarrabiomed, Navarra Medical Research Institute, Pamplona, Navarra, 31008, Spain
- Department of Health Sciences, Public University of Navarra, Pamplona, Navarra, 31008, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Joaquín Fernández-Irigoyen
- Navarrabiomed, Navarra Medical Research Institute, Pamplona, Navarra, 31008, Spain
- Clinical Neuroproteomics Unit, Navarrabiomed, Pamplona, 31008, Spain
| | - Enrique Santamaría
- Navarrabiomed, Navarra Medical Research Institute, Pamplona, Navarra, 31008, Spain
- Clinical Neuroproteomics Unit, Navarrabiomed, Pamplona, 31008, Spain
| | - Alba Rodríguez-García
- Geriatric Department, Hospital Universitario de Navarra (HUN), 2 Navarrabiomed, Pamplona, Navarra, IdiSNA, 31008, Spain
| | - Roman Romero-Ortuno
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jaime Mondragon-Rubio
- Department of Orthopaedics Clinics and Traumatology, University Hospital of Navarre (HUN), Pamplona, Navarra, 31008, Spain
| | - Javier Ruiz-Ruiz
- Department of Orthopaedics Clinics and Traumatology, University Hospital of Navarre (HUN), Pamplona, Navarra, 31008, Spain
| | - Robinson Ramírez-Vélez
- Navarrabiomed, Navarra Medical Research Institute, Pamplona, Navarra, 31008, Spain
- Department of Health Sciences, Public University of Navarra, Pamplona, Navarra, 31008, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Navarra Medical Research Institute, Pamplona, Navarra, 31008, Spain
- Department of Health Sciences, Public University of Navarra, Pamplona, Navarra, 31008, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Nicolás Martínez-Velilla
- Geriatric Department, Hospital Universitario de Navarra (HUN), 2 Navarrabiomed, Pamplona, Navarra, IdiSNA, 31008, Spain
- Navarrabiomed, Navarra Medical Research Institute, Pamplona, Navarra, 31008, Spain
- Department of Health Sciences, Public University of Navarra, Pamplona, Navarra, 31008, Spain
| |
Collapse
|
23
|
Bachstetter AD, Lutshumba J, Winford E, Abner EL, Martin BJ, Harp JP, Van Eldik LJ, Schmitt FA, Wilcock DM, Stowe AM, Jicha GA, Nikolajczyk BS. A blunted T H17 cytokine signature in women with mild cognitive impairment: insights from inflammatory profiling of a community-based cohort of older adults. Brain Commun 2023; 5:fcad259. [PMID: 37901041 PMCID: PMC10612408 DOI: 10.1093/braincomms/fcad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
People with dementia have an increase in brain inflammation, caused in part by innate and adaptive immune cells. However, it remains unknown whether dementia-associated diseases alter neuro-immune reflex arcs to impact the systemic immune system. We examined peripheral immune cells from a community-based cohort of older adults to test if systemic inflammatory cytokine signatures associated with early stages of cognitive impairment. Human peripheral blood mononuclear cells were cultured with monocyte or T-cell-targeted stimuli, and multiplex assays quantitated cytokines in the conditioned media. Following T-cell-targeted stimulation, cells from women with cognitive impairment produced lower amounts of TH17 cytokines compared with cells from cognitively healthy women, while myeloid-targeted stimuli elicited similar amounts of cytokines from cells of both groups. This TH17 signature correlated with the proportion of circulating CD4+ and CD8+ T cells and plasma glial fibrillary acidic protein and neurofilament light concentrations. These results suggest that decreases in TH17 cytokines could be an early systemic change in women at risk for developing dementia. Amelioration of TH17s cytokines in early cognitive impairment could, in part, explain the compromised ability of older adults to respond to vaccines or defend against infection.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jenny Lutshumba
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Edric Winford
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY 40536, USA
| | - Barbra J Martin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jordan P Harp
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Linda J Van Eldik
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick A Schmitt
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
- Department of Behavioral Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Donna M Wilcock
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ann M Stowe
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Science, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
24
|
Angerfors A, Brännmark C, Lagging C, Tai K, Månsby Svedberg R, Andersson B, Jern C, Stanne TM. Proteomic profiling identifies novel inflammation-related plasma proteins associated with ischemic stroke outcome. J Neuroinflammation 2023; 20:224. [PMID: 37794467 PMCID: PMC10548608 DOI: 10.1186/s12974-023-02912-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The inflammatory response to cerebral ischemia is complex; however, most clinical studies of stroke outcome focus on a few selected proteins. We, therefore, aimed to profile a broad range of inflammation-related proteins to: identify proteins associated with ischemic stroke outcome that are independent of established clinical predictors; identify proteins subsets for outcome prediction; and perform sex and etiological subtype stratified analyses. METHODS Acute-phase plasma levels of 65 inflammation-related proteins were measured in 534 ischemic stroke cases. Logistic regression was used to estimate associations to unfavorable 3-month functional outcome (modified Rankin Scale score > 2) and LASSO regressions to identify proteins with independent effects. RESULTS Twenty proteins were associated with outcome in univariable models after correction for multiple testing (FDR < 0.05), and for 5 the association was independent of clinical variables, including stroke severity (TNFSF14 [LIGHT], OSM, SIRT2, STAMBP, and 4E-BP1). LASSO identified 9 proteins that could best separate favorable and unfavorable outcome with a predicted diagnostic accuracy (AUC) of 0.81; three associated with favorable (CCL25, TRAIL [TNFSF10], and Flt3L) and 6 with unfavorable outcome (CSF-1, EN-RAGE [S100A12], HGF, IL-6, OSM, and TNFSF14). Finally, we identified sex- and etiologic subtype-specific associations with the best discriminative ability achieved for cardioembolic, followed by cryptogenic stroke. CONCLUSIONS We identified candidate blood-based protein biomarkers for post-stroke functional outcome involved in, e.g., NLRP3 inflammasome regulation and signaling pathways, such as TNF, JAK/STAT, MAPK, and NF-κB. These proteins warrant further study for stroke outcome prediction as well as investigations into the putative causal role for stroke outcome.
Collapse
Affiliation(s)
- Annelie Angerfors
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Brännmark
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Research, Development, Education and Innovation, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cecilia Lagging
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kara Tai
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Månsby Svedberg
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics and Data Center, Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tara M Stanne
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
25
|
Zheng W, Zhou T, Zhang Y, Ding J, Xie J, Wang S, Wang Z, Wang K, Shen L, Zhu Y, Gao C. Simplified α 2-macroglobulin as a TNF-α inhibitor for inflammation alleviation in osteoarthritis and myocardial infarction therapy. Biomaterials 2023; 301:122247. [PMID: 37487780 DOI: 10.1016/j.biomaterials.2023.122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/25/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Tumor necrosis factor α (TNF-α) is a leading proinflammatory cytokine as the master regulator of inflammation in chronic inflammation diseases. Although TNF-α antagonists such as small molecules and peptides are in development, comparable effectiveness in TNF-α neutralization is hardly achieved only with TNF-α capture. In this study, simplified α2-macroglobulin (SM) as a novel TNF-α inhibitor was fabricated to relieve inflammation response by TNF-α capture and internalization with lysosomal degradation. SM was prepared by conjugating a TNF-α-targeting peptide with a receptor binding domain (RBD) derived from α2-macroglobulin through a synthetic biology strategy. SM exhibited effective capture and bioactivity inhibition of TNF-α. Improved endocytosis of TNF-α into lysosomes was observed with SM in macrophages. Even challenged with LPS/IFNγ, the macrophages showed relieved inflammation response with SM treatment. When administrated in chronic inflammation injury in vivo, SM achieved comparable therapeutic efficacy with Infliximab, showing ameliorated cartilage degeneration with relieved inflammation in osteoarthritis (OA) and preserved cardiac function with mitigated myocardium injury in myocardial infarction (MI). These results suggest that SM functioning in TNF-α capture-internalization mechanism might be promising therapeutic alternatives of TNF-α antibodies.
Collapse
Affiliation(s)
- Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China; Dr. Li Dak Sum Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Dr. Li Dak Sum Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China.
| |
Collapse
|
26
|
Gui L, Luo X, Zhou L, Wei Q, Gu J. Peripheral CD4 + /CD8 + T cell composition distinct from healthy individuals is shared by ankylosing spondylitis and rheumatoid arthritis. Int J Rheum Dis 2023; 26:2014-2023. [PMID: 37635355 DOI: 10.1111/1756-185x.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) and rheumatoid arthritis (RA) are chronic inflammatory joint diseases, linking to the alterations of immune cells. We attempted to assess whether the alterations in the composition of CD4+ /CD8+ T cells are different between AS and RA and identify the characteristic cells between male and female patients. METHODS The proportions of CD3+ or double positive T cells, 6 CD4+ T subsets and 9 CD8+ T cell subsets were detected by flow cytometry and compared in 30 healthy individuals, 42 AS patients and 45 RA patients. The differentially altered cells were individually analyzed for associations with disease activity parameters. In addition, their proportions were compared between different genders in the 3 groups. RESULTS The proportions of CD4+ T cells, naive CD4+ T cells and central memory CD4+ T cells were lower in AS patients (P = 0.001, P = 0.002 and P = 0.007, respectively) and RA patients (P = 0.032, P < 0.001 and P = 0.016, respectively), but the proportion of effector memory ones was higher when compared with healthy populations (both P < 0.001), as were the decrease of naive/central memory CD8+ T cells in AS (P = 0.003 and P = 0.016, respectively) and RA (P < 0.001 and P = 0.006, respectively), and the increased tendency of terminally differentiated CD8+ T cells. However, these above-mentioned cells, regulatory T (Treg) cells and CD8+ T cells with different CD127 expressions between AS and RA were similar in proportion. Furthermore, naive CD4+ T cells were positively associated with C-reactive protein (CRP) in AS, whereas CD4+ T cells and terminally differentiated CD8+ T of RA patients were associated with CRP in RA. The gender-related alterations predominantly displayed the overexpressions of Treg cells and naive CD8+ T cells in female patients with AS and RA, respectively. CONCLUSIONS AS patients and RA patients have some similar peripheral CD4+ /CD8+ T cell subsets but are distinct from healthy individuals, which may contribute to disease severity. Females are respectively characterized by the up-regulation of Treg cells and naive CD8+ T cells in AS patients and RA patients. The study offers an in-depth understanding of the role of T cell subsets in the similarities of the disorders and helps us to monitor disease changes and may offer a theoretical basis of developing novel therapies against common targets.
Collapse
Affiliation(s)
- Lian Gui
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiqing Luo
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liuzhong Zhou
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Zhao JH, Stacey D, Eriksson N, Macdonald-Dunlop E, Hedman ÅK, Kalnapenkis A, Enroth S, Cozzetto D, Digby-Bell J, Marten J, Folkersen L, Herder C, Jonsson L, Bergen SE, Gieger C, Needham EJ, Surendran P, Paul DS, Polasek O, Thorand B, Grallert H, Roden M, Võsa U, Esko T, Hayward C, Johansson Å, Gyllensten U, Powell N, Hansson O, Mattsson-Carlgren N, Joshi PK, Danesh J, Padyukov L, Klareskog L, Landén M, Wilson JF, Siegbahn A, Wallentin L, Mälarstig A, Butterworth AS, Peters JE. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat Immunol 2023; 24:1540-1551. [PMID: 37563310 PMCID: PMC10457199 DOI: 10.1038/s41590-023-01588-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.
Collapse
Affiliation(s)
- Jing Hua Zhao
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - David Stacey
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Niclas Eriksson
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Erin Macdonald-Dunlop
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Åsa K Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Development and Medical, Pfizer Worldwide Research, Stockholm, Sweden
| | - Anette Kalnapenkis
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala, Sweden
| | - Domenico Cozzetto
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jonathan Digby-Bell
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jonathan Marten
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Lina Jonsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Sarah E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Elise J Needham
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Barbara Thorand
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Harald Grallert
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Urmo Võsa
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tonu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Åsa Johansson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala, Sweden
| | - Nick Powell
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine (Solna), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine (Solna), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Agneta Siegbahn
- Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Lars Wallentin
- Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Development and Medical, Pfizer Worldwide Research, Stockholm, Sweden
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK.
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK.
| | - James E Peters
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK.
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
28
|
Wei Q, Zhu X, Wang L, Zhang W, Yang X, Wei W. Extracellular matrix in synovium development, homeostasis and arthritis disease. Int Immunopharmacol 2023; 121:110453. [PMID: 37331300 DOI: 10.1016/j.intimp.2023.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Extracellular matrix (ECM) is a three-dimensional network entity composed of extracellular macromolecules. ECM in synovium not only supports the structural integrity of synovium, but also plays a crucial role in regulating homeostasis and damage repair response in synovium. Obvious disorders in the composition, behavior and function of synovial ECM will lead to the occurrence and development of arthritis diseases such as rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis (PsA). Based on the importance of synovial ECM, targeted regulation of the composition and structure of ECM is considered to be an effective measure for the treatment of arthritis disease. This paper reviews the current research status of synovial ECM biology, discusses the role and mechanism of synovial ECM in physiological status and arthritis disease, and summarizes the current strategies for targeting synovial ECM to provide information for the pathogenesis, diagnosis and treatment of arthritis disease.
Collapse
Affiliation(s)
- Qi Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuemin Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
29
|
Fan X, Yan Y, Zhao L, Xu X, Dong Y, Sun W. Establishment of the multi-component bone-on-a-chip: to explore therapeutic potential of DNA aptamers on endothelial cells. Front Cell Dev Biol 2023; 11:1183163. [PMID: 37377731 PMCID: PMC10291622 DOI: 10.3389/fcell.2023.1183163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Despite great efforts to develop microvascular bone chips in previous studies, current bone chips still lacked multi-component of human-derived cells close to human bone tissue. Bone microvascular endothelial cells (BMECs) were demonstrated to be closely related to the glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). Tumor necrosis factor-alpha (TNF-α) aptamer has been proved to bind to its receptor and block cascade activities. Objective: There are two main objectives in this study: 1) to establish a multi-component bone-on-a-chip within the microfluidic system in vitro, 2) to explore the therapeutic potential of TNF-α aptamer on BMECs in the GC-induced ONFH model. Methods: Histological features of clinical samples were analyzed before BMECs isolation. The functional bone-on-a-chip consists of the vascular channel, stromal channel and structure channel. GC-induced ONFH model was established based on the multi-component of human-derived cells. Truncation and dimerization were performed on a previously reported DNA aptamer (VR11). BMECs apoptosis, cytoskeleton and angiogenesis status in the ONFH model were observed by the TUNEL staining and confocal microscope. Results: The multi-component of BMECs, human embryonic lung fibroblasts and hydroxyapatite were cultured within the microfluidic bone-on-a-chip. TNF-α was found up-regulated in the necrotic regions of femoral heads in clinical samples and similar results were re-confirmed in the ONFH model established in the microfluidic platform by detecting cell metabolites. Molecular docking simulations indicated that the truncated TNF-α aptamer could improve the aptamer-protein interactions. Further results from the TUNEL staining and confocal microscopy showed that the truncated aptamer could protect BMECs from apoptosis and alleviate GC-induced damages to cytoskeleton and vascularization. Conclusion: In summary, a microfluidic multi-component bone-on-a-chip was established with 'off-chip' analysis of cell metabolism. GC-induced ONFH model was achieved based on the platform. Our findings provided initial evidence on the possible potentials of TNF-α aptamer as a new type of TNF-α inhibitor for patients with ONFH.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Peking University Health Science Center, China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yuhan Yan
- Department of Pharmacy, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lianhui Zhao
- Department of Pharmacy, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xin Xu
- Peking Union Medical College, China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yiyang Dong
- Department of Pharmacy, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei Sun
- Peking University Health Science Center, China-Japan Friendship School of Clinical Medicine, Beijing, China
- Orthopedics Department, China-Japan Friendship Hospital, Beijing, China
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
31
|
Pizano-Martinez O, Mendieta-Condado E, Vázquez-Del Mercado M, Martínez-García EA, Chavarria-Avila E, Ortuño-Sahagún D, Márquez-Aguirre AL. Anti-Drug Antibodies in the Biological Therapy of Autoimmune Rheumatic Diseases. J Clin Med 2023; 12:jcm12093271. [PMID: 37176711 PMCID: PMC10179320 DOI: 10.3390/jcm12093271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Autoimmune rheumatic diseases are a cluster of heterogeneous disorders that share some clinical symptoms such as pain, tissue damage, immune deregulation, and the presence of inflammatory mediators. Biologic disease-modifying antirheumatic drugs are some of the most effective treatments for rheumatic diseases. However, their molecular and pharmacological complexity makes them potentially immunogenic and capable of inducing the development of anti-drug antibodies. TNF inhibitors appear to be the main contributors to immunogenicity because they are widely used, especially in rheumatoid arthritis. Immunogenicity response on these treatments is crucial since the appearance of ADAs has consequences in terms of safety and efficacy. Therefore, this review proposes an overview of the immunogenicity of biological agents used in autoimmune rheumatic diseases highlighting the prevalence of anti-drug antibodies.
Collapse
Affiliation(s)
- Oscar Pizano-Martinez
- Instituto de Investigación en Reumatología y del Sistema Músculo-Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Cuerpo Académico UDG-CA-703, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Edgar Mendieta-Condado
- Laboratorio Estatal de Salud Pública (LESP), Secretaría de Salud Jalisco, Zapopan 46170, JAL, Mexico
| | - Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo-Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Cuerpo Académico UDG-CA-703, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo-Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Cuerpo Académico UDG-CA-703, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo-Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Daniel Ortuño-Sahagún
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Ana Laura Márquez-Aguirre
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara 44270, JAL, Mexico
| |
Collapse
|
32
|
Huang H, Dong X, Mao K, Pan W, Nie B, Jiang L. Identification of key candidate genes and pathways in rheumatoid arthritis and osteoarthritis by integrated bioinformatical analysis. Front Genet 2023; 14:1083615. [PMID: 36861127 PMCID: PMC9968929 DOI: 10.3389/fgene.2023.1083615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are the most common joint disorders. Although they have shown analogous clinical manifestations, the pathogenesis of RA and OA are different. In this study, we used the online Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE153015 to identify gene signatures between RA and OA joints. The relevant data on 8 subjects obtained from large joints of RA patients (RA-LJ), 8 subjects obtained from small joints of RA patients (RA-SJ), and 4 subjects with OA were investigated. Differentially expressed genes (DEGs) were screened. Functional enrichment analysis of DEGs including the Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified, which were mainly associated with T cell activation or chemokine activity. Besides, protein-protein interaction (PPI) network analysis was performed, and key modules were identified. Hub genes of RA-LJ and OA groups were screened, they were CD8A, GZMB, CCL5, CD2, and CXCL9, whereas CD8A, CD2, IL7R, CD27, and GZMB were hub genes of RA-SJ and OA group. The novel DEGs and functional pathways between RA and OA identified in this study may provide new insight into the underlying molecular mechanisms and therapeutic strategies of RA and OA.
Collapse
Affiliation(s)
- Huijing Huang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Dong
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaimin Mao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wanwan Pan
- Yankuang New Journey General Hospital, Jingning, Shandong, China
| | - Bin’en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Lindi Jiang,
| |
Collapse
|
33
|
Wang J, Yin X, Yu L, Cheng W, Wang L, Zhao B, Li Z, Jing X. Delayed cutaneous hypersensitivity reactions following the use of infliximab or adalimumab in patients with coronavirus disease 2019. J Med Virol 2023; 95:e28518. [PMID: 36700393 PMCID: PMC10107992 DOI: 10.1002/jmv.28518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
Recent evidence has emerged concerning delayed cutaneous hypersensitivity reactions after infliximab or adalimumab applications in patients with coronavirus disease 2019 (COVID-19). A few real-world studies compared the events, clinical features, and prognosis of infliximab- or adalimumab-related delayed cutaneous hypersensitivity reactions in COVID-19 patients. Disproportionality analysis and Bayesian analysis were utilized to determine the suspected adverse events of delayed cutaneous hypersensitivity reactions after infliximab or adalimumab use based on the Food and Drug Administration's Adverse Event Reporting Systems (FAERS) from May 2020 to December 2021. Additionally, the times to onset and fatality rates of delayed cutaneous hypersensitivity reactions following infliximab or adalimumab were compared. In total, 475 reports of delayed cutaneous hypersensitivity reactions were associated with infliximab or adalimumab. Females were affected almost twice more than males. Among the two therapies, infliximab had the highest association with delayed cutaneous hypersensitivity reactions based on the highest reporting odds ratio (2.14, 95% two-sided confidence interval [CI] = 1.2-3.81), proportional reporting ratio (1.95, χ2 = 7.03), and empirical Bayesian geometric mean (1.94, 95% one-sided CI = 1.2). Infliximab-related delayed cutaneous hypersensitivity reactions had earlier onset (0 [interquartile range (IQR): 0-0] days vs. 166.5 (IQR: 18-889.5) days, p < 0.05), while adalimumab-related delayed cutaneous hypersensitivity reactions have higher fatality rate (0.44% vs. 0.00%). Based on the FAERS database, we profiled delayed cutaneous hypersensitivity reactions related to infliximab or adalimumab application in patients with COVID-19 with more points of occurrences, clinical characteristics, and prognosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuedong Yin
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Yu
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Cheng
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Wang
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Zhao
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Jing
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Soluble and EV-Associated Diagnostic and Prognostic Biomarkers in Knee Osteoarthritis Pathology and Detection. Life (Basel) 2023; 13:life13020342. [PMID: 36836699 PMCID: PMC9961153 DOI: 10.3390/life13020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the connective tissue of the human musculoskeletal system. Despite its widespread prevalence, there are many limitations in its diagnosis and treatment. OA diagnosis currently relies on the presence of clinical symptoms, sometimes accompanied by changes in joint X-rays or MRIs. Biomarkers help not only to diagnose early disease progression but also to understand the process of OA in many ways. In this article, we briefly summarize information on articular joints and joint tissues, the pathogenesis of OA and review the literature about biomarkers in the field of OA, specifically inflammatory cytokines/chemokines, proteins, miRNA, and metabolic biomarkers found in the blood, synovial fluid and in extracellular vesicles.
Collapse
|
35
|
Geng Z, Ye C, Zhu X. Malignancies in systemic rheumatic diseases: A mini review. Front Immunol 2023; 14:1095526. [PMID: 36926334 PMCID: PMC10011115 DOI: 10.3389/fimmu.2023.1095526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
There is an increased risk of malignancies in patients with many systemic rheumatic diseases, which negatively impact on their quality of life. The risk and types of malignancies can differ by the type of rheumatic diseases. Possible mechanisms linking them are dynamic and complicated, including chronic inflammation and damage in rheumatic disease, inability to clear oncogenic infections, shared etiology and some anti-rheumatic therapies. Although certain disease-modifying anti-rheumatic drugs (DMARDs) have been proved to be potentially carcinogenic, the majority of them were not associated with increased risk of most malignancies in patients with systemic rheumatic diseases.
Collapse
Affiliation(s)
- Zhe Geng
- Department of Hematology, Central Hospital of Wuhan, Wuhan, China
| | - Cong Ye
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
37
|
O'Shea JJ, Gadina M, Sciumè, G, Meylan F. Cytokines and Cytokine Receptors. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
38
|
Pan M, Zhao H, Jin R, Leung PSC, Shuai Z. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future. Front Immunol 2023; 14:1156212. [PMID: 37090741 PMCID: PMC10115969 DOI: 10.3389/fimmu.2023.1156212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCA) associated vasculitis (AAV) is a necrotizing vasculitis mainly involving small blood vessels. It is demonstrated that T cells are important in the pathogenesis of AAV, including regulatory T cells (Treg) and helper T cells (Th), especially Th2, Th17, and follicular Th cells (Tfh). In addition, the exhaustion of T cells predicted the favorable prognosis of AAV. The immune checkpoints (ICs) consist of a group of co-stimulatory and co-inhibitory molecules expressed on the surface of T cells, which maintains a balance between the activation and exhaustion of T cells. CD28, inducible T-cell co-stimulator (ICOS), OX40, CD40L, glucocorticoid induced tumor necrosis factor receptor (GITR), and CD137 are the common co-stimulatory molecules, while the programmed cell death 1 (PD-1), cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), T cell immunoglobulin (Ig) and mucin domain-containing protein 3 (TIM-3), B and T lymphocyte attenuator (BTLA), V-domain Ig suppressor of T cell activation (VISTA), T-cell Ig and ITIM domain (TIGIT), CD200, and lymphocyte activation gene 3 (LAG-3) belong to co-inhibitory molecules. If this balance was disrupted and the activation of T cells was increased, autoimmune diseases (AIDs) might be induced. Even in the treatment of malignant tumors, activation of T cells by immune checkpoint inhibitors (ICIs) may result in AIDs known as rheumatic immune-related adverse events (Rh-irAEs), suggesting the importance of ICs in AIDs. In this review, we summarized the features of AAV induced by immunotherapy using ICIs in patients with malignant tumors, and then reviewed the biological characteristics of different ICs. Our aim was to explore potential targets in ICs for future treatment of AAV.
Collapse
Affiliation(s)
- Menglu Pan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruimin Jin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Patrick S. C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| |
Collapse
|
39
|
Chen YM, Liu PY, Tang KT, Liu HJ, Liao TL. TWEAK-Fn14 Axis Induces Calcium-Associated Autophagy and Cell Death To Control Mycobacterial Survival in Macrophages. Microbiol Spectr 2022; 10:e0317222. [PMID: 36321903 PMCID: PMC9769850 DOI: 10.1128/spectrum.03172-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Autophagy is a natural defense mechanism that protects the host against pathogens. We previously demonstrated that mycobacterial infection upregulated tumor necrosis factor-like weak inducer of apoptosis (TWEAK) to promote autophagy and mycobacterial autophagosome maturation through activation of AMP-activated protein kinase (AMPK). Fibroblast growth factor-inducible 14 (Fn14) is the receptor of TWEAK. But the role of Fn14 in mycobacterial infection remains elusive. Herein, we observed increased expression of Fn14 in peripheral blood mononuclear cells of active tuberculosis (TB) patients. Downregulation of cellular Fn14 enhanced mycobacterial survival in macrophages. Conversely, Fn14 overexpression inhibited mycobacterial growth, suggesting that Fn14 can inhibit mycobacterial infection. The in vitro results revealed that TWEAK-promoted mycobacterial phagosome maturation is Fn14-dependent. We demonstrated that TWEAK-Fn14 signaling promotes oxidative stress to enhance the expression of stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. Elevated calcium influx stimulated the activation of CaMCCK2 (calcium/calmodulin-dependent protein kinase kinase 2) and its downstream effector AMPK, thus inducing autophagy in early infection. Persistently TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. Genetic Fn14 deficiency or TWEAK blockers decreased oxidative stress-induced calcium influx, thus suppressing autophagy and cell death in mycobacteria-infected macrophages, and resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. Our results offer a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection. IMPORTANCE Tuberculosis remains a major cause of morbidity and mortality worldwide. We previously demonstrated a relationship between TWEAK and activation of the autophagic machinery, which promotes anti-mycobacterial immunity. The TWEAK-Fn14 axis is multi-functional and involved in the pathogenesis of many diseases, thus blockade of TWEAK-Fn14 axis has been considered as a potential therapeutic target. Here, we demonstrated that the TWEAK-Fn14 axis plays a novel role in anti-mycobacterial infection by regulating calcium-associated autophagy. Persistently, TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. TWEAK blocker or Fn14 deficiency could suppress oxidative stress and calcium-associated autophagy, resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. This study offers a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Po-Yu Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Hung-Jen Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, Republic of China
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
40
|
Dutta A, Hung CY, Chen TC, Chang CS, Hsiao SH, Lin YC, Lin CY, Huang CT. The origin of regulatory from the effector cells in LAG-3-marked Th1 immunity against severe influenza virus infection. Immunol Suppl 2022; 169:167-184. [PMID: 36522294 DOI: 10.1111/imm.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
In severe respiratory virus infections, including influenza, an exaggerated host immune response has been linked to the severe disease and death. Control of the overwhelming immune response is thus essential. Efforts with broad-spectrum immunosuppressive agents such as steroids are disappointing. A better understanding of host immune response using animal experimental system is required to avoid undesired outcome of experimental manipulation. Following severe influenza virus infection in influenza hemagglutinin antigen-specific transgenic mouse experimental model, step-wise evolving cells from a pool of naïve hemagglutinin-specific CD4+ T cells were studied for phenotypic, genomic, and functional characterization in vivo. Naïve CD4+ T cells respond with Th1 commitment in the absolute majority. They first develop into LAG-3Med IFN-γ-secreting Th1 effectors and then evolve into LAG-3High IFN-γ-not-secreting regulators with increasing LAG-3 expression upon continuous activation and cell division. The LAG-3Med IFN-γ-secreting effectors contribute to inflammation, boost inflammatory response of cognate antigen-specific CD8+ T cells, and aggravate the disease despite facilitated virus clearance. In contrast, LAG-3High regulators do not contribute to inflammation, suppress CD8+ T cell inflammatory response, alleviate lung pathology, and ameliorate the disease with preserved virus clearance. Moderated CD8+ T cells retain proliferative capacity, and persist beyond virus clearance. Such moderation is distinct from Foxp-3+ regulator-mediated suppression, which suppresses proliferative and inflammatory responses of the CD8+ T cells and impairs virus clearance with inflammation alleviation. Origin of regulatory from the effector cells of LAG-3-marked Th1 immunity alleviates lung inflammation without impairment of virus eradication.
Collapse
Affiliation(s)
- Avijit Dutta
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chen-Yiu Hung
- Division of Thoracic Medicine, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| | - Chia-Shiang Chang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Sung-Han Hsiao
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Yung-Chang Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hepatogastroenterology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Ching-Tai Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| |
Collapse
|
41
|
Tsunoda SI. Functional Study of TNFR2 Signaling and Drug Discovery Using a Protein Engineering Approach. YAKUGAKU ZASSHI 2022; 142:1297-1305. [DOI: 10.1248/yakushi.22-00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Chen C, Wang P, Zhang RD, Fang Y, Jiang LQ, Fang X, Zhao Y, Wang DG, Ni J, Pan HF. Mendelian randomization as a tool to gain insights into the mosaic causes of autoimmune diseases. Clin Exp Rheumatol 2022; 21:103210. [PMID: 36273526 DOI: 10.1016/j.autrev.2022.103210] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases (ADs) are a broad range of disorders which are characterized by long-term inflammation and tissue damage arising from an immune response against one's own tissues. It is now widely accepted that the causes of ADs include environmental factors, genetic susceptibility and immune dysregulation. However, the exact etiology of ADs has not been fully elucidated to date. Because observational studies are plagued by confounding factors and reverse causality, no firm conclusions can be drawn about the etiology of ADs. Over the years, Mendelian randomization (MR) analysis has come into focus, offering unique perspectives and insights into the etiology of ADs and promising the discovery of potential therapeutic interventions. In MR analysis, genetic variation (alleles are randomly dispensed during meiosis, usually irrespective of environmental or lifestyle factors) is used instead of modifiable exposure to explore the link between exposure factors and disease or other outcomes. Therefore, MR analysis can provide a valuable method for exploring the causal relationship between different risk factors and ADs when its inherent assumptions and limitations are fully considered. This review summarized the recent findings of MR in major ADs, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), and type 1 diabetes mellitus (T1DM), focused on the effects of different risk factors on ADs risks. In addition, we also discussed the opportunities and challenges of MR methods in ADs research.
Collapse
Affiliation(s)
- Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Peng Wang
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China; Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Yan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - De-Guang Wang
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China; Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China.
| |
Collapse
|
43
|
Sunzini F, D'Antonio A, Fatica M, Triggianese P, Conigliaro P, Greco E, Bergamini A, Chimenti MS. What's new and what's next for biological and targeted synthetic treatments in psoriatic arthritis? Expert Opin Biol Ther 2022; 22:1545-1559. [PMID: 36453200 DOI: 10.1080/14712598.2022.2152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a chronic arthritis typically associated with cutaneous psoriasis (PsO). Its pathogenesis is connected to an innate and acquired immune response, as well as genetic risk alleles. The extent of immunopathogenic mechanisms and the heterogenicity of clinical manifestation make the identification of patient-targeted therapies a critical issue, and the treatment decision challenging in patients' management. AREAS COVERED This review includes a brief overview of biological and small-molecule therapies, focusing on evidence from clinical trials and real-world data that support their use in PsA. We summarize novel and future possible therapeutic strategies, the importance that comorbidities have on selection of therapy and discuss the adverse event of each drug. Relevant papers for up to 1 August 2022 (trials, real-life studies, and reviews) regarding biologics and/or small molecules were summarized. EXPERT OPINION In recent years, the treatment of PsA has been revolutionized by new targeted therapies, which offer the opportunity to perform a tailored-tail management, considering risk factors, comorbidities, and the different PsA phenotypes. Growing experience with these new agents allows novel treatment approaches that may improve clinical outcomes for PsA patients, in terms of remission/low disease activity and quality of life.
Collapse
Affiliation(s)
- Flavia Sunzini
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kindom
| | - Arianna D'Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Fatica
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
44
|
Tao SS, Cao F, Sam NB, Li HM, Feng YT, Ni J, Wang P, Li XM, Pan HF. Dickkopf-1 as a promising therapeutic target for autoimmune diseases. Clin Immunol 2022; 245:109156. [DOI: 10.1016/j.clim.2022.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/03/2022]
|
45
|
Abstract
Tumour necrosis factor (TNF) is a central cytokine in inflammatory reactions, and biologics that neutralize TNF are among the most successful drugs for the treatment of chronic inflammatory and autoimmune pathologies. In recent years, it became clear that TNF drives inflammatory responses not only directly by inducing inflammatory gene expression but also indirectly by inducing cell death, instigating inflammatory immune reactions and disease development. Hence, inhibitors of cell death are being considered as a new therapy for TNF-dependent inflammatory diseases.
Collapse
|
46
|
Anti-RAGE (Receptor Advanced Glycation End products) Antibody Improves Diabetic Retinopathy in Rats via Hypoglycemic and Anti-inflammatory Mechanism. Rep Biochem Mol Biol 2022; 11:394-399. [PMID: 36718309 PMCID: PMC9883039 DOI: 10.52547/rbmb.11.3.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/18/2023]
Abstract
Background Receptor advanced glycation end products (RAGE) activation plays an essential role in diabetic retinopathy (DR) progression. This study was aimed to explore the role of anti-RAGE antibodies (RAGE antagonists) in inhibiting DR progression through their hypoglycemic and anti-inflammatory mechanism in diabetic retinopathy induced rats. Methods A total of 30 male Wistar rats were randomly divided into five group. The group was consisted of normal control group, DR group without treatment, DR group with anti-RAGE 1 ηg/kg BW, 10 ηg/kg BW, and 100 ηg/kg BW. To assess the diabetic retinopathy, fundus photographs were taken every week using a camera with 16x magnification placed in front of the rat's eyes. Blood glucose was checked by the glucose oxidase-peroxidase method. Retinal TNF-α levels and VEGF were examined using an enzyme-linked immunosorbent assay (ELISA) kit. Results The finding of this study showed that anti-RAGE treatment at dose of 10 and 100 ηg/kg BW, HbA1c levels were significantly higher (p< 0.05) compared to the normal control group but significantly lower (p< 0.05) than in the diabetes group. The mean blood vessel diameter in the DR+anti-RAGE 10 and 100 ηg/kg BW groups was significantly lower than in the diabetic retinopathy group (p< 0.05). The administration of anti-RAGE 10 and 100 ηg/kg BW showed the ability to significantly reduce VEGF levels compared to the DR group (p< 0.05). Discussion This study revealed at doses of 10 and 100 ηg/kg BW, anti-RAGE antibodies improved diabetic retinopathy in Wistar rats through hypoglycemic effects and anti-inflammatory mechanisms.
Collapse
|
47
|
Zhai WY, Duan FF, Wang YZ, Wang JY, Zhao ZR, Lin YB, Rao BY, Chen S, Zheng L, Long H. Integrative Analysis of Bioinformatics and Machine Learning Algorithms Identifies a Novel Diagnostic Model Based on Costimulatory Molecule for Predicting Immune Microenvironment Status in Lung Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1433-1447. [PMID: 35948079 DOI: 10.1016/j.ajpath.2022.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Costimulatory molecules are an indispensable signal for activating immune cells. However, the features of many costimulatory molecule genes (CMGs) in lung adenocarcinoma (LUAD) are poorly understood. This study systematically explored expression patterns of CMGs in the tumor immune microenvironment (TIME) status of patients with LUAD. Their expression profiles were downloaded from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Two robust TIME subtypes ("hot" and "cold") were classified by K-means clustering and estimation of stromal and immune cells in malignant tumor tissues using expression data. The "hot" subtype presented higher infiltration in activated immune cells and enrichments in the immune cell receptor signaling pathway and adaptive immune response. Three CMGs (CD80, LTB, and TNFSF8) were screened as final diagnostic markers by means of Least Absolute Shrinkage Selection Operator and Support Vector Machine-Recursive Feature Elimination algorithms. Accordingly, the diagnostic nomogram for predicting individualized TIME status showed satisfactory diagnostic accuracy in The Cancer Genome Atlas training cohort as well as GSE31210 and GSE180347 validation cohorts. Immunohistochemistry staining of 16 specimens revealed an apparently positive correlation between the expression of CMG biomarkers and pathologic response to immunotherapy. Thus, this diagnostic nomogram provided individualized predictions in TIME status of LUAD patients with good predictive accuracy, which could serve as a potential tool for identifying ideal candidates for immunotherapy.
Collapse
Affiliation(s)
- Wen-Yu Zhai
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Fang Duan
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi-Zhi Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ye Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Ze-Rui Zhao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Bin Lin
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Yu Rao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Si Chen
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Lie Zheng
- Medical Imaging Division, Department of Medical Imaging and Interventional Radiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hao Long
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
48
|
Huang D, Zhao C, Li R, Chen B, Zhang Y, Sun Z, Wei J, Zhou H, Gu Q, Xu J. Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble RANK-RANKL interactions and treat osteoporosis. Nat Commun 2022; 13:5338. [PMID: 36097003 PMCID: PMC9468151 DOI: 10.1038/s41467-022-33006-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major challenges for discovering protein-protein interaction inhibitors is identifying selective and druggable binding sites at the protein surface. Here, we report an approach to identify a small molecular binding site to selectively inhibit the interaction of soluble RANKL and RANK for designing anti-osteoporosis drugs without undesirable immunosuppressive effects. Through molecular dynamic simulations, we discovered a binding site that allows a small molecule to selectively interrupt soluble RANKL-RANK interaction and without interfering with the membrane RANKL-RANK interaction. We describe a highly potent inhibitor, S3-15, and demonstrate its specificity to inhibit the soluble RANKL-RANK interaction with in vitro and in vivo studies. S3-15 exhibits anti-osteoporotic effects without causing immunosuppression. Through in silico and in vitro experiments we further confirm the binding model of S3-15 and soluble RANKL. This work might inspire structure-based drug discovery for targeting protein-protein interactions.
Collapse
Affiliation(s)
- Dane Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China ,grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Chao Zhao
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Ruyue Li
- grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Bingyi Chen
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuting Zhang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhejun Sun
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Junkang Wei
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
49
|
Tackling Inflammatory Bowel Diseases: Targeting Proinflammatory Cytokines and Lymphocyte Homing. Pharmaceuticals (Basel) 2022; 15:ph15091080. [PMID: 36145301 PMCID: PMC9502105 DOI: 10.3390/ph15091080] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic inflammatory disorders that are a result of an abnormal immune response mediated by a cytokine storm and immune cell infiltration. Proinflammatory cytokine therapeutic agents, represented by TNF inhibitors, have developed rapidly over recent years and are promising options for treating IBD. Antagonizing interleukins, interferons, and Janus kinases have demonstrated their respective advantages in clinical trials and are candidates for anti-TNF therapeutic failure. Furthermore, the blockade of lymphocyte homing contributes to the excessive immune response in colitis and ameliorates inflammation and tissue damage. Factors such as integrins, selectins, and chemokines jointly coordinate the accumulation of immune cells in inflammatory regions. This review assembles the major targets and agents currently targeting proinflammatory cytokines and lymphatic trafficking to facilitate subsequent drug development.
Collapse
|
50
|
Wang T, Huang S, He C. Senescent cells: A therapeutic target for osteoporosis. Cell Prolif 2022; 55:e13323. [DOI: 10.1111/cpr.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Chengqi He
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|