1
|
Abstract
PURPOSE OF THE REVIEW Angiogenesis plays a key role in bladder cancer (BC) pathogenesis. In the last two decades, an increasing number of publications depicting a multitude of novel angiogenic molecules and pathways have emerged. The growing complexity necessitates an evaluation of the breadth of current knowledge to highlight key findings and guide future research. RECENT FINDINGS Angiogenesis is a dynamic biologic process that is inherently difficult to assess. Clinical assessment of angiogenesis in BCs is advancing with the integration of image analysis systems and dynamic contrast-enhanced and magnetic resonance imaging (DCE-MRI). Tumour-associated macrophages (TAMs) significantly influence the angiogenic process, and further research is needed to assess their potential as therapeutic targets. A rapidly growing list of non-coding RNAs affect angiogenesis in BCs, partly through modulation of vascular endothelial growth factor (VEGF) activity. Vascular mimicry (VM) has been repeatedly associated with increased tumour aggressiveness in BCs. Standardised assays are needed for appropriate identification and quantification of VM channels. This article demonstrates the dynamic and complex nature of the angiogenic process and asserts the need for further studies to deepen our understanding.
Collapse
Affiliation(s)
- Ghada Elayat
- Department of Natural Science, Middlesex University, London, UK
- Department of Histopathology, Tanta University, Tanta, Egypt
| | - Ivan Punev
- Department of Natural Science, Middlesex University, London, UK
| | - Abdel Selim
- Histopathology Department, King’s Health Partners, King’s College Hospital, London, UK
| |
Collapse
|
2
|
Saha G, Roy S, Basu M, Ghosh MK. USP7 - a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188903. [PMID: 37127084 DOI: 10.1016/j.bbcan.2023.188903] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Over the course of three decades of study, the deubiquitinase Herpesvirus associated Ubiquitin-Specific Protease/Ubiquitin-Specific Protease 7 (HAUSP/USP7) has gradually come to be recognized as a crucially important molecule in cellular physiology. The fact that USP7 is overexpressed in a number of cancers, including breast, prostate, colorectal, and lung cancers, supports the idea that USP7 is also an important regulator of tumorigenesis. In this review, we discuss USP7's function in relation to the cancer hallmarks described by Hanahan and Weinberg. This post-translational modifier can support increased proliferation, block unfavorable growth signals, stop cell death, and support an unstable cellular genome by manipulating key players in the pertinent signalling circuit. It is interesting to note that USP7 also aids in the stabilization of molecules that support angiogenesis and metastasis. Targeting USP7 has now emerged as a crucial component of USP7 research because pharmacological inhibition of USP7 supports p53-mediated cell cycle arrest and apoptosis. Efficacious USP7 inhibition is currently being investigated in both synthetic and natural compounds, but issues with selectivity and a lack of co-crystal structure have hindered USP7 inhibition from being tested in clinical settings. Moreover, the development of new, more effective USP7 inhibitors and their encouraging implications by numerous groups give us a glimmer of hope for USP7-targeting medications as effective substitutes for hazardous cancer chemotherapeutics.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Srija Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Kolkata, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India.
| |
Collapse
|
3
|
Lu P, Ma Y, Wei S, Liang X. The dual role of complement in cancers, from destroying tumors to promoting tumor development. Cytokine 2021; 143:155522. [PMID: 33849765 DOI: 10.1016/j.cyto.2021.155522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Complement is an important branch of innate immunity; however, its biological significance goes far beyond the scope of simple nonspecific defense and involves a variety of physiological functions, including the adaptive immune response. In this review, to unravel the complex relationship between complement and tumors, we reviewed the high diversity of complement components in cancer and the heterogeneity of their production and activation pathways. In the tumor microenvironment, complement plays a dual regulatory role in the occurrence and development of tumors, affecting the outcomes of the immune response. We explored the differential expression levels of various complement components in human cancers via the Oncomine database. The gene expression profiling interactive analysis (GEPIA) tool and Kaplan-Meier plotter (K-M plotter) confirmed the correlation between differentially expressed complement genes and tumor prognosis. The tumor immune estimation resource (TIMER) database was used to statistically analyze the effect of complement on tumor immune infiltration. Finally, with a view to the role of complement in regulating T cell metabolism, complement could be a potential target for immunotherapies. Targeting complement to regulate the antitumor immune response seems to have potential for future treatment strategies. However, there are still many complex problems, such as who will benefit from this therapy and how to select the right therapeutic target and determine the appropriate drug concentration. The solutions to these problems depend on a deeper understanding of complement generation, activation, and regulatory and control mechanisms.
Collapse
Affiliation(s)
- Ping Lu
- Department of Medical Oncology, Hubei Cancer Hospital, the Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China
| | - Yifei Ma
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, the Seventh Clinical School Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China
| | - Shaozhong Wei
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, the Seventh Clinical School Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China.
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, the Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China.
| |
Collapse
|
4
|
Lau C, Rivas M, Dinalo J, King K, Duddalwar V. Scoping Review of Targeted Ultrasound Contrast Agents in the Detection of Angiogenesis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:19-28. [PMID: 31237009 DOI: 10.1002/jum.15072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
A systematic search was conducted to categorize targeted ultrasound contrast agents (UCAs) used in cancer-related angiogenesis detection. We identified 15 unique contrast agents from 2008 to March 2018. Most primary research articles studied UCAs targeted to vascular endothelial growth factor receptor or αv β3 -integrin. Breast cancer and colon cancer are the most common neoplastic processes in which these agents were studied. BR55 (Bracco Research SA, Geneva, Switzerland), a vascular endothelial growth factor receptor-targeting UCA, is the first targeted UCA that has completed phase 0 trials. Our review identifies a gap in the literature regarding the application of targeted UCAs in cancer models beyond breast and colon cancers and identifies other promising UCAs.
Collapse
Affiliation(s)
- Christopher Lau
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Marielena Rivas
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Jennifer Dinalo
- Norris Medical Library, Keck School of Medicine, California, Los Angeles, USA
| | - Kevin King
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Vinay Duddalwar
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| |
Collapse
|
5
|
Ultrasmall bimodal nanomolecules enhanced tumor angiogenesis contrast with endothelial cell targeting and molecular pharmacokinetics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 15:252-263. [DOI: 10.1016/j.nano.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022]
|
6
|
Zhang X, Liu L, Liu J, Cheng Z, Wang Z, Shi C, Ding F, Chen S, Chen P. Endothelial cells co-cultured with renal carcinoma cells significantly reduce RECK expression under chemical hypoxia. Cell Biol Int 2017; 41:922-927. [PMID: 28561419 DOI: 10.1002/cbin.10801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/29/2017] [Indexed: 11/07/2022]
Abstract
Renal cell carcinoma (RCC) is characterized by excessive angiogenesis, while chronic kidney disease (CKD) suffers from the opposite problem-failure of reparative angiogenesis. It can be due to their different responses to hypoxic environment. But the specific molecular regulators are still unclear. This study is aimed to explore the influence of human renal cell cancer cells (786-0) and human renal tubular epithelial cells (HK-2) on RECK expression, proliferation, and angiogenesis of adjacent microvascular endothelial cells (HMEC-1) under chemical hypoxia. Cobalt chloride (CoCl2 ) treatment was used to simulate the hypoxia environment in RCC and CKD. Co-culture, cell proliferation assay, and tube formation assay were used to evaluate the influence of 786-0 or HK-2 cells on proliferation and angiogenesis of adjacent HMEC-1 cells. Effects of different environments on RECK expressions in 786-0, HK2, or HMEC-1 cells were determined by Western blot. We found that both 786-0 cells and HK2 cells can upregulate RECK expression of adjacent HMEC-1 cells in normoxic conditions. However, under hypoxia, the HMEC-1 cells co-cultured with 786-0 significantly reduced RECK expression and there was no significant change in HMEC-1 cells co-cultured with HK2 cells. We also found that 786-0 significantly enhanced the proliferation and angiogenesis of adjacent HMEC-1 cells. Our results suggested that some paracrine substances produced by 786-0 cells may reduce RECK expression of adjacent HMEC-1 cells and enhance their proliferation and in vitro angiogenic capacity.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Lei Liu
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Jing Liu
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Zhengyuan Cheng
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Zhi Wang
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Chuanbing Shi
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Fengan Ding
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Sijie Chen
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Pingsheng Chen
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| |
Collapse
|
7
|
Wu Y, Kwon YS, Labib M, Foran DJ, Singer EA. Magnetic Resonance Imaging as a Biomarker for Renal Cell Carcinoma. DISEASE MARKERS 2015; 2015:648495. [PMID: 26609190 PMCID: PMC4644550 DOI: 10.1155/2015/648495] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/27/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
As the most common neoplasm arising from the kidney, renal cell carcinoma (RCC) continues to have a significant impact on global health. Conventional cross-sectional imaging has always served an important role in the staging of RCC. However, with recent advances in imaging techniques and postprocessing analysis, magnetic resonance imaging (MRI) now has the capability to function as a diagnostic, therapeutic, and prognostic biomarker for RCC. For this narrative literature review, a PubMed search was conducted to collect the most relevant and impactful studies from our perspectives as urologic oncologists, radiologists, and computational imaging specialists. We seek to cover advanced MR imaging and image analysis techniques that may improve the management of patients with small renal mass or metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Yan Wu
- Center for Biomedical Imaging & Informatics, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Department of Radiology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Young Suk Kwon
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Mina Labib
- Department of Radiology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - David J. Foran
- Department of Radiology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Eric A. Singer
- Center for Biomedical Imaging & Informatics, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| |
Collapse
|
8
|
Liu J, Fan W, Liu M, Lin X, Wang Y, Wang F, Chen X, Cao F, Liang J. Spatial vascular volume fraction imaging for quantitative assessment of angiogenesis. Mol Imaging Biol 2015; 16:362-71. [PMID: 24158404 DOI: 10.1007/s11307-013-0694-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this study is to set up a quantitative imaging strategy for therapeutic angiogenesis and monitoring the spatial distribution and survival of the transplanted mesenchymal stem cells (MSCs) in vivo simultaneously. PROCEDURES Mouse adipose-derived MSCs (AD-MSCs) were isolated from firefly luciferase and enhanced green fluorescent protein positive transgenic mice, and implanted intramuscularly into hindlimbs of C57BL/6 mice. Serial spatial vascular volume fraction (SVVF) imaging was performed to quantitatively assess angiogenesis by calculating the spatially explicit vascular volume. The hybrid microcomputed tomography angiography/bioluminescence tomography (micro-CTA/BLT) was used to track the fate of AD-MSCs in vivo. Laser Doppler perfusion imaging (LDPI) was used to evaluate blood perfusion. Ex vivo conventional methods were performed to cross-validate the therapeutic angiogenesis. RESULTS There was a linear correlation relation between the cell number and Fluc/Fluc protein signal intensity in AD-MSCs via BLT. LDPI showed improved perfusion rate in mice treated with cytotherapy, compared to control mice. Furthermore, angiogenesis assessed by SVVF was 10.67 ± 0.41 %, 13.99 ± 0.28 %, and 23.50 ± 1.23 % on days 7, 14, and 28 post-transplantation of AD-MSCs, respectively. Vascular densities of the longitudinally monitored ischemic hindlimbs were significantly higher than those at early time points and controls, which was also confirmed by vascular corrosion casting, scanning electron microscopic imaging, and histological analysis. CONCLUSIONS Hybrid high-resolution micro-CTA/BLT enabled monitoring and quantitative assessment of cytotherapeutically induced angiogenesis in vivo.
Collapse
Affiliation(s)
- Junting Liu
- School of Life Science and Technology, Xidian University, P.O. Box 97, , No. 2 South Taibai Rd, Xi'an, 710071, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Brufau BP, Cerqueda CS, Villalba LB, Izquierdo RS, González BM, Molina CN. Metastatic renal cell carcinoma: radiologic findings and assessment of response to targeted antiangiogenic therapy by using multidetector CT. Radiographics 2014; 33:1691-716. [PMID: 24108558 DOI: 10.1148/rg.336125110] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in treatment of metastatic renal cell carcinoma (RCC), such as new molecular therapies that use novel antiangiogenic agents, have led to revision of the most frequently used guideline to evaluate tumor response to therapy: Response Evaluation Criteria in Solid Tumors (RECIST 1.1). Assessment of the response of metastatic RCC to therapy has traditionally been based on changes in target lesion size. However, the mechanism of action of newer antiangiogenic therapies is more cytostatic than cytotoxic, which leads to disease stabilization rather than to tumor regression. This change in tumor response makes RECIST 1.1--a system whose criteria are based exclusively on tumor size--inadequate to discriminate patients with early tumor progression from those with more progression-free disease and prolonged survival. New criteria such as changes in attenuation, morphology, and structure, as seen at contrast-enhanced multidetector computed tomography (CT), are being incorporated into new classifications used to assess response of metastatic RCC to antiangiogenic therapies. The new classifications provide better assessments of tumor response to the new therapies, but they have some limitations. The authors provide a practical review of these systems--the Choi, modified Choi, and Morphology, Attenuation, Size, and Structure (MASS) criteria--by explaining their differences and limitations that may influence the feasibility and reproducibility of these classifications. The authors review the use of multidetector CT in the detection of metastatic RCC and the different appearances and locations of these lesions. They also provide an overview of the new antiangiogenic therapies and their mechanisms of action and a brief introduction to functional imaging techniques. Functional imaging techniques, especially dynamic contrast-enhanced CT, seem promising for assessing response of metastatic RCC to treatment. Nonetheless, further studies are needed before functional imaging can be used in routine clinical practice.
Collapse
Affiliation(s)
- Blanca Paño Brufau
- CDIC and ICMHO, Hospital Clínic de Barcelona, C/Villarroel n° 170, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Battista G, Sassi C, Corcioni B, Bazzocchi A, Golfieri R, Canini R. Latest developments in imaging of bladder cancer. Expert Rev Anticancer Ther 2014; 10:881-94. [DOI: 10.1586/era.10.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Chen SL, Xie Z, Ling T, Guo LJ, Wei X, Wang X. Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning. OPTICS LETTERS 2012; 37:4263-5. [PMID: 23073431 PMCID: PMC3641585 DOI: 10.1364/ol.37.004263] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Achieving photoacoustic microscopic imaging through a miniaturized scanning head is a crucial step toward high-resolution photoacoustic endoscopy. In this work, we have developed a miniaturized probe head using a microelectromechanical systems (MEMS) based mirror for raster scan of the laser beam and our newly developed super broad bandwidth microring resonator based ultrasound detector for photoacoustic signal detection. Through this all-optical design, which offers unique advantages for endoscopic applications, this system is capable of three-dimensional (3D) imaging with high resolution of 17.5 μm in lateral direction and 20 μm in axial direction at a distance of 3.7 mm. After the performance of this system was validated through the experiments on printed grids and a resolution test target, microscopic imaging of the 3D microvasculatures in canine bladders was also conducted successfully, demonstrating the potential of novel photoacoustic endoscopic in future clinical management of bladder cancer.
Collapse
Affiliation(s)
- Sung-Liang Chen
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zhixing Xie
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tao Ling
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - L. Jay Guo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xunbin Wei
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
12
|
Kauppinen RA, Peet AC. Using magnetic resonance imaging and spectroscopy in cancer diagnostics and monitoring: preclinical and clinical approaches. Cancer Biol Ther 2012; 12:665-79. [PMID: 22004946 DOI: 10.4161/cbt.12.8.18137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nuclear Magnetic Resonance (MR) based imaging has become an integrated domain in today's oncology research and clinical management of cancer patients. MR is a unique imaging modality among numerous other imaging modalities by providing access to anatomical, physiological, biochemical and molecular details of tumour with excellent spatial and temporal resolutions. In this review we will cover established and investigational MR imaging (MRI) and MR spectroscopy (MRS) techniques used for cancer imaging and demonstrate wealth of information on tumour biology and clinical applications MR techniques offer for oncology research both in preclinical and clinical settings. Emphasis is given not only to the variety of information which may be obtained but also the complementary nature of the techniques. This ability to determine tumour type, grade, invasiveness, degree of hypoxia, microvacular characteristics, and metabolite phenotype, has already profoundly transformed oncology research and patient management. It is evident from the data reviewed that MR techniques will play a key role in uncovering molecular fingerprints of cancer, developing targeted treatment strategies and assessing responsiveness to treatment for personalized patient management, thereby allowing rapid translation of imaging research conclusions into the benefit of clinical oncology.
Collapse
|
13
|
Xie Z, Roberts W, Carson P, Liu X, Tao C, Wang X. Evaluation of bladder microvasculature with high-resolution photoacoustic imaging. OPTICS LETTERS 2011; 36:4815-7. [PMID: 22179893 PMCID: PMC3660853 DOI: 10.1364/ol.36.004815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We explored the potential of an emerging laser-based technology, photoacoustic imaging (PAI), for bladder cancer diagnosis through high-resolution imaging of microvasculature in the bladder tissues. Imaging results from ex vivo canine bladders demonstrated the excellent ability of PAI in mapping three-dimensional microvasculature in optically scattering bladder tissues. By comparing the results from human bladder specimens affected by cancer to those from the normal control, the feasibility of PAI to differentiate malignant from benign bladder tissues was also explored. The distinctive morphometric characteristics of tumor microvasculature can be seen in the images from cancer samples, suggesting that PAI may allow in vivo assessment of neoangiogenesis that is closely associated with bladder cancer generation and progression. By presenting subsurface morphological and physiological information in bladder tissues, PAI, when performed in a similar way as in conventional endoscopy, provides an opportunity for improved diagnosis, staging, and treatment guidance of bladder cancer.
Collapse
Affiliation(s)
- Zhixing Xie
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - William Roberts
- Department of Urology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Paul Carson
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Xiaojun Liu
- Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Chao Tao
- Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Xueding Wang
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109
- Corresponding author:
| |
Collapse
|
14
|
Afaq A, Akin O. Imaging assessment of tumor response: past, present and future. Future Oncol 2011; 7:669-77. [PMID: 21568682 DOI: 10.2217/fon.11.38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Anatomical response assessment criteria have been in use for decades, with the WHO guidelines being replaced by Response Evaluation Criteria in Solid Tumors (RECIST), updated in 2009 to RECIST 1.1. These methods rely on a change in size of a tumor as the main response criteria, but newer cytostatic agents tend to target tumor function at a molecular level before changing the size of a lesion. Recent modifications, such as the Choi criteria, have improved assessment by taking into account density of tumor, but all of these criteria fail to utilize functional imaging parameters, which are becoming increasingly available, including perfusion CT, perfusion MRI, diffusion-weighted imaging, magnetic resonance spectroscopy, dynamic contrast-enhanced ultrasound and combined PET/computed tomography. Developments in these modalities and standardization of imaging acquisition will help to optimize the next set of response criteria, with inclusion of multiparametric, functional modalities, evaluating tumors at the same molecular level at which they are being targeted by therapeutic agents.
Collapse
Affiliation(s)
- Asim Afaq
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
15
|
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646-74. [PMID: 21376230 DOI: 10.1016/j.cell.2011.02.013] [Citation(s) in RCA: 45637] [Impact Index Per Article: 3259.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/06/2011] [Accepted: 02/07/2011] [Indexed: 11/26/2022]
Abstract
The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.
Collapse
Affiliation(s)
- Douglas Hanahan
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne CH-1015, Switzerland.
| | | |
Collapse
|
16
|
Current world literature. Curr Opin Urol 2011; 21:166-72. [PMID: 21285721 DOI: 10.1097/mou.0b013e328344100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Michalski MH, Chen X. Molecular imaging in cancer treatment. Eur J Nucl Med Mol Imaging 2010; 38:358-77. [PMID: 20661557 DOI: 10.1007/s00259-010-1569-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/12/2010] [Indexed: 12/19/2022]
Abstract
The success of cancer therapy can be difficult to predict, as its efficacy is often predicated upon characteristics of the cancer, treatment, and individual that are not fully understood or are difficult to ascertain. Monitoring the response of disease to treatment is therefore essential and has traditionally been characterized by changes in tumor volume. However, in many instances, this singular measure is insufficient for predicting treatment effects on patient survival. Molecular imaging allows repeated in vivo measurement of many critical molecular features of neoplasm, such as metabolism, proliferation, angiogenesis, hypoxia, and apoptosis, which can be employed for monitoring therapeutic response. In this review, we examine the current methods for evaluating response to treatment and provide an overview of emerging PET molecular imaging methods that will help guide future cancer therapies.
Collapse
|