1
|
Xiang S, Long X, Tu Q, Feng J, Zhang X, Feng G, Lei L. Self-assembled, hemin-functionalized peptide nanotubes: an innovative strategy for detecting glutathione and glucose molecules with peroxidase-like activity. NANO CONVERGENCE 2023; 10:7. [PMID: 36738341 PMCID: PMC9899300 DOI: 10.1186/s40580-023-00356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Accurately detecting dynamic changes in bioactive small molecules in real-time is very challenging. In this study, a hemin-based peptide assembly was rationally designed for the colorimetric detection of active small molecules. Hemin-functionalized peptide nanotubes were obtained through the direct incubation of hemin (hemin@PNTs) and peptide nanotubes (PNTs) or were coassembled with the heptapeptide Ac-KLVFFAL-NH2 via electrostatic, π-π stacking, and hydrophobic interactions (hemin-PNTs). This new substance is significant because it exhibits the benefits of both hemin and PNTs as well as some special qualities. First, hemin-PNTs exhibited higher intrinsic peroxidase-like activity, which, in the presence of H2O2, could catalyze the oxidation of the substrate 3,3',5,5'-tetramethylbenzidine (TMB) to yield a typical blue solution after 10 min at 25 ℃. Second, hemin-PNTs showed significantly higher activity than that of hemin, PNTs alone, or hemin@PNTs. Hemin-PNTs with a 20.0% hemin content may cooperate to improve catalytic activity. The catalytic activity was dependent on the reaction temperature, pH, reaction time, and H2O2 concentration. The nature of the TMB-catalyzed reaction may arise from the production of hydroxyl radicals. Fluorescence analysis was used to demonstrate the catalytic mechanism. According to this investigation, a new highly selective and sensitive colorimetric technique for detecting glutathione (GSH), L-cysteine, and glucose was established. The strategy demonstrated excellent sensitivity for GSH in the range of 1 to 30 μM with a 0.51 μM detection limit. Importantly, this glucose detection technique, which employs glucose oxidase and hemin-PNTs, is simple and inexpensive, with a 0.1 μM to 1.0 mM linear range and a 15.2 μM detection limit. Because of their low cost and high catalytic activity, hemin-PNTs are an excellent choice for biocatalysts in a diverse range of potential applications, including applications in clinical diagnostics, environmental chemistry, and biotechnology.
Collapse
Affiliation(s)
- Song Xiang
- Key Laboratory of Microbiology and Parasitology of Education, Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Xincheng Long
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550025, China
| | - Qiuxia Tu
- Department of Chemistry, Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Jian Feng
- Department of Chemistry, Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaohe Zhang
- School of Pediatrics, Guizhou Medical University, Guiyang, 550025, China
| | - Guangwei Feng
- Department of Chemistry, Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Li Lei
- Department of Chemistry, Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Zhang H, Mao Z, Kang Y, Zhang W, Mei L, Ji X. Redox regulation and its emerging roles in cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Li R, Hou X, Li L, Guo J, Jiang W, Shang W. Application of Metal-Based Nanozymes in Inflammatory Disease: A Review. Front Bioeng Biotechnol 2022; 10:920213. [PMID: 35782497 PMCID: PMC9243658 DOI: 10.3389/fbioe.2022.920213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are metabolites of normal cells in organisms, and normal levels of ROS in cells are essential for maintaining cell signaling and other intracellular functions. However, excessive inflammation and ischemia-reperfusion can cause an imbalance of tissue redox balance, and oxidative stress occurs in a tissue, resulting in a large amount of ROS, causing direct tissue damage. The production of many diseases is associated with excess ROS, such as stroke, sepsis, Alzheimer’s disease, and Parkinson’s disease. With the rapid development of nanomedicine, nanomaterials have been widely used to effectively treat various inflammatory diseases due to their superior physical and chemical properties. In this review, we summarize the application of some representative metal-based nanozymes in inflammatory diseases. In addition, we discuss the application of various novel nanomaterials for different therapies and the prospects of using nanoparticles (NPs) as biomedical materials.
Collapse
Affiliation(s)
- Ruifeng Li
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinyue Hou
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lingrui Li
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiancheng Guo
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiancheng Guo, ; Wei Jiang, ; Wenjun Shang,
| | - Wei Jiang
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiancheng Guo, ; Wei Jiang, ; Wenjun Shang,
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiancheng Guo, ; Wei Jiang, ; Wenjun Shang,
| |
Collapse
|
4
|
The DeltaN p63 Promotes EMT and Metastasis in Bladder Cancer by the PTEN/AKT Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9566055. [PMID: 35463095 PMCID: PMC9019423 DOI: 10.1155/2022/9566055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Bladder cancer is a common tumour of the urinary system, and more than 90% is urothelial carcinoma. Therefore, it is important for discovering the key target genes and molecules of bladder tumour cell metastasis and invasion. Our research initially explored the regulation of deltaN p63 on the progression and metastasis of bladder cancer and found that deltaN p63 can influence the occurrence of EMT through PTEN and ultimately regulate the growth and metastasis of bladder cancer. In summary, this study identified a new EMT regulator, deltaN p63, further revealed the mechanism of the invasion and metastasis of bladder cancer cells, and provided a theoretical basis for finding new target molecules and drugs to treat bladder cancer. In conclusion, this study will further reveal the mechanism of tumour cell invasion and metastasis and provide a theoretical basis for cancer treatment to find new target molecules and drugs.
Collapse
|
5
|
Jolkinolide B sensitizes bladder cancer to mTOR inhibitors via dual inhibition of Akt signaling and autophagy. Cancer Lett 2021; 526:352-362. [PMID: 34798195 DOI: 10.1016/j.canlet.2021.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022]
Abstract
The monotherapy of mTOR inhibitors (mTORi) in cancer clinical practice has achieved limited success due to the concomitant activation of compensatory pathways, such as Akt signaling and cytoprotective autophagy. Thus, the combination of mTORi and the inhibitors of these pro-survival pathways has been considered a promising therapeutic strategy. Herein, we report the synergistic effects of a natural anti-cancer agent Jolkinolide B (JB) and mTORi (temsirolimus, rapamycin, and everolimus) for the effective treatment of bladder cancer. A mechanistic study revealed that JB induced a dual inhibition of Akt feedback activation and cytoprotective autophagy, potentiating the anti-proliferative efficacy of mTORi in both PTEN-deficient and cisplatin-resistant bladder cancer cells. Meanwhile, mTORi augmented the pro-apoptotic and pro-paraptotic effects of JB by reinforcing JB-activated endoplasmic reticulum stress and MAPK pathways. These synergistic mechanisms were related to cellular reactive oxygen species accumulation. Our study suggests that dual inhibition of Akt feedback activation and cytoprotective autophagy is an effective strategy in mTORi-based therapy, and JB + mTORi combination associated with multiple anti-cancer mechanisms and good tolerance in mouse models may serve as a promising treatment for bladder cancer.
Collapse
|
6
|
Adhikari M, Adhikari B, Adhikari A, Yan D, Soni V, Sherman J, Keidar M. Cold Atmospheric Plasma as a Novel Therapeutic Tool for the Treatment of Brain Cancer. Curr Pharm Des 2020; 26:2195-2206. [PMID: 32116185 DOI: 10.2174/1381612826666200302105715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies from the past few years revealed the importance of Cold Atmospheric Plasma (CAP) on various kinds of diseases, including brain cancers or glioblastoma (GBM), and hence coined a new term 'Plasma Medicine' in the modern world for promising therapeutic approaches. Here, we focus on the efficacy of CAP and its liquid derivatives on direct interactions or with specific nanoparticles to show pivotal roles in brain cancer treatment. METHOD In the present review study, the authors studied several articles over the past decades published on the types of CAP and its effects on different brain cancers and therapy. RESULTS A growing body of evidence indicates that CAP and its derivatives like Plasma Activated Media/ Water (PAM/PAW) are introduced in different kinds of GBM. Recent studies proposed that CAP plays a remarkable role in GBM treatment. To increase the efficacy of CAP, various nanoparticles of different origins got specific attention in recent times. In this review, different strategies to treat brain cancers, including nanoparticles, are discussed as enhancers of CAP induced targeted nanotherapeutic approach. CONCLUSION CAP treatment and its synergistic effects with different nanoparticles hold great promise for clinical applications in early diagnosis and treatment of GBM treatment. However, results obtained from previous studies were still in the preliminary phase, and there must be a concern over the use of optimal methods for a dosage of CAP and nanoparticles for complete cure of GBM.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Bhawana Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Vikas Soni
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Jonathan Sherman
- Neurological Surgery, The George Washington University, Foggy Bottom South Pavilion, 22nd Street, NW, 7th Floor, Washington, DC, 20037, United States
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| |
Collapse
|
7
|
Wang Y, Wang D, Sun LH, Zhang LC, Lu ZS, Xue P, Wang F, Xia QY, Bao SJ. BC@DNA-Mn3(PO4)2 Nanozyme for Real-Time Detection of Superoxide from Living Cells. Anal Chem 2020; 92:15927-15935. [DOI: 10.1021/acs.analchem.0c03322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ying Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Deng Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Li-Hong Sun
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Long-Cheng Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Zhi-Song Lu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, P. R. China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, P. R. China
| | - Shu-Juan Bao
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
8
|
Mutant Kras as a Biomarker Plays a Favorable Role in FL118-Induced Apoptosis, Reactive Oxygen Species (ROS) Production and Modulation of Survivin, Mcl-1 and XIAP in Human Bladder Cancer. Cancers (Basel) 2020; 12:cancers12113413. [PMID: 33217967 PMCID: PMC7698790 DOI: 10.3390/cancers12113413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary FL118 is a novel orally available small molecule anticancer drug. We found that bladder cancer cells with a mutant Kras is highly sensitive to FL118-induced cell growth inhibition and cell death induction through inhibiting the anti-cancer cell death and drug resistance factors (survivin, Mcl-1, XIAP). In the Kras-mutation bladder cancer cells, FL118 can stimulate the reactive oxygen species (ROS) over-production for killing bladder cancer cells and inhibiting bladder cancer cell-established tumor growth. Elimination of mutant Kras by Kras-specific shRNA technology in mutant Kras-containing bladder cancer cell-established tumor decreased FL118 effectiveness to inhibit bladder cancer tumor growth. In this regard, mutant Kras is a potential favorable biomarker for FL118. This finding is significant because mutant Kras is known to be a formidable challenge treatment resistant factor in various types of cancer. Thus, FL118 could use mutant Kras as favorable biomarker for patient selection to carry out precision medicine. Abstract Tumor heterogeneity in key gene mutations in bladder cancer (BC) is a major hurdle for the development of effective treatments. Using molecular, cellular, proteomics and animal models, we demonstrated that FL118, an innovative small molecule, is highly effective at killing T24 and UMUC3 high-grade BC cells, which have Hras and Kras mutations, respectively. In contrast, HT1376 BC cells with wild-type Ras are insensitive to FL118. This concept was further demonstrated in additional BC and colorectal cancer cells with mutant Kras versus those with wild-type Kras. FL118 strongly induced PARP cleavage (apoptosis hallmark) and inhibited survivin, XIAP and/or Mcl-1 in both T24 and UMUC3 cells, but not in the HT1376 cells. Silencing mutant Kras reduced both FL118-induced PARP cleavage and downregulation of survivin, XIAP and Mcl-1 in UMUC3 cells, suggesting mutant Kras is required for FL118 to exhibit higher anticancer efficacy. FL118 increased reactive oxygen species (ROS) production in T24 and UMUC3 cells, but not in HT1376 cells. Silencing mutant Kras in UMUC3 cells reduced FL118-mediated ROS generation. Proteomics analysis revealed that a profound and opposing Kras-relevant signaling protein is changed in UMUC3 cells and not in HT1376 cells. Consistently, in vivo studies indicated that UMUC3 tumors are highly sensitive to FL118 treatment, while HT1376 tumors are highly resistant to this agent. Silencing mutant Kras in UMUC3 cell-derived tumors decreases UMUC3 tumor sensitivity to FL118 treatment. Together, our studies revealed that mutant Kras is a favorable biomarker for FL118 targeted treatment.
Collapse
|
9
|
Shi C, Li Y, Gu N. Iron-Based Nanozymes in Disease Diagnosis and Treatment. Chembiochem 2020; 21:2722-2732. [PMID: 32315111 DOI: 10.1002/cbic.202000094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/21/2020] [Indexed: 12/15/2022]
Abstract
Iron-based nanozymes are currently one of the few clinical inorganic nanoparticles for disease diagnosis and treatment. Overcoming the shortcomings of natural enzymes, such as easy inactivation and low yield, combined with their special nanometer properties and magnetic functions, iron-based nanozymes have broad prospects in biomedicine. This minireview summarizes their preparation, biological activity, catalytic mechanism, and applications in diagnosis and treatment of diseases. Finally, challenges to their future development and the trends of iron-based nanozymes are discussed. The purpose of this minireview is to better understand and reasonably speculate on the rational design of iron-based nanozymes as an increasingly important new paradigm for diagnostics.
Collapse
Affiliation(s)
- Chu Shi
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yan Li
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
10
|
Pattarawat P, Hong T, Wallace S, Hu Y, Donnell R, Wang TH, Tsai CL, Wang J, Wang HCR. Compensatory combination of romidepsin with gemcitabine and cisplatin to effectively and safely control urothelial carcinoma. Br J Cancer 2020; 123:226-239. [PMID: 32390005 PMCID: PMC7374627 DOI: 10.1038/s41416-020-0877-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human urothelial carcinoma (UC) has a high tendency to recur and progress to life-threatening advanced diseases. Advanced therapeutic regimens are needed to control UC development and recurrence. METHODS We pursued in vitro and in vivo studies to understand the ability of a triple combination of gemcitabine, romidepsin, and cisplatin (Gem+Rom+Cis) to modulate signalling pathways, cell death, drug resistance, and tumour development. RESULTS Our studies verified the ability of Gem+Rom+Cis to synergistically induce apoptotic cell death and reduce drug resistance in various UC cells. The ERK pathway and reactive oxygen species (ROS) played essential roles in mediating Gem+Rom+Cis-induced caspase activation, DNA oxidation and damage, glutathione reduction, and unfolded protein response. Gem+Rom+Cis preferentially induced death and reduced drug resistance in oncogenic H-Ras-expressing UC vs. counterpart cells that was associated with transcriptomic profiles related to ROS, cell death, and drug resistance. Our studies also verified the efficacy and safety of the Gem plus Rom+Cis regimen in controlling UC cell-derived xenograft tumour development and resistance. CONCLUSIONS More than 80% of UCs are associated with aberrant Ras-ERK pathway. Thus the compensatory combination of Rom with Gem and Cis should be seriously considered as an advanced regimen for treating advanced UCs, especially Ras-ERK-activated UCs.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Shelby Wallace
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Yanchun Hu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Robert Donnell
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Jinquan Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA. .,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
11
|
Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02503-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Dai J, Duan C, Huang Y, Lou X, Xia F, Wang S. Aggregation-induced emission luminogens for RONS sensing. J Mater Chem B 2020; 8:3357-3370. [DOI: 10.1039/c9tb02310k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of AIE bioprobes for RONS sensing in living systems is now summarized. We discuss some representative examples of AIEgen based bioprobes in terms of their molecular design, sensing mechanism and sensitive sensing in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Chong Duan
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| |
Collapse
|
13
|
Lian M, Xue Z, Qiao X, Liu C, Zhang S, Li X, Huang C, Song Q, Yang W, Chen X, Wang T. Movable Hollow Nanoparticles as Reactive Oxygen Scavengers. Chem 2019. [DOI: 10.1016/j.chempr.2019.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Cold Atmospheric Plasma as an Adjunct to Immunotherapy for Glioblastoma Multiforme. World Neurosurg 2019; 130:369-376. [PMID: 31284051 DOI: 10.1016/j.wneu.2019.06.209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer in adults. GBM carries a dismal prognosis because of its proliferative, invasive, and angiogenic capabilities and because of its ability to downregulate the immune system. Immune-based therapies under investigation for GBM have been unsuccessful in vivo because of this downregulation. Cold atmospheric plasma (CAP) is a high-energy state of matter that can be applied directly or indirectly to tumor tissue to serve as an adjunct to immunotherapy in the treatment of GBM because it upregulates the immune system by the induction of reactive oxygen species. CAP has the potential to improve the efficacy of existing and investigative immunotherapies for GBM.
Collapse
|
15
|
Dunnill CJ, Ibraheem K, Mohamed A, Southgate J, Georgopoulos NT. A redox state-dictated signalling pathway deciphers the malignant cell specificity of CD40-mediated apoptosis. Oncogene 2016; 36:2515-2528. [PMID: 27869172 PMCID: PMC5422712 DOI: 10.1038/onc.2016.401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
Abstract
CD40, a member of the tumour necrosis factor receptor (TNFR) superfamily, has the capacity to cause extensive apoptosis in carcinoma cells, while sparing normal epithelial cells. Yet, apoptosis is only achieved by membrane-presented CD40 ligand (mCD40L), as soluble receptor agonists are but weakly pro-apoptotic. Here, for the first time we have identified the precise signalling cascade underpinning mCD40L-mediated death as involving sequential TRAF3 stabilisation, ASK1 phosphorylation, MKK4 (but not MKK7) activation and JNK/AP-1 induction, leading to a Bak- and Bax-dependent mitochondrial apoptosis pathway. TRAF3 is central in the activation of the NADPH oxidase (Nox)-2 component p40phox and the elevation of reactive oxygen species (ROS) is essential in apoptosis. Strikingly, CD40 activation resulted in down-regulation of Thioredoxin (Trx)-1 to permit ASK1 activation and apoptosis. Although soluble receptor agonist alone could not induce death, combinatorial treatment incorporating soluble CD40 agonist and pharmacological inhibition of Trx-1 was functionally equivalent to the signal triggered by mCD40L. Finally, we demonstrate using normal, ‘para-malignant' and tumour-derived cells that progression to malignant transformation is associated with increase in oxidative stress in epithelial cells, which coincides with increased susceptibility to CD40 killing, while in normal cells CD40 signalling is cytoprotective. Our studies have revealed the molecular nature of the tumour specificity of CD40 signalling and explained the differences in pro-apoptotic potential between soluble and membrane-bound CD40 agonists. Equally importantly, by exploiting a unique epithelial culture system that allowed us to monitor alterations in the redox-state of epithelial cells at different stages of malignant transformation, our study reveals how pro-apoptotic signals can elevate ROS past a previously hypothesised ‘lethal pro-apoptotic threshold' to induce death; an observation that is both of fundamental importance and carries implications for cancer therapy.
Collapse
Affiliation(s)
- C J Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - K Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - A Mohamed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - J Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - N T Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
16
|
Apolo AB, Vogelzang NJ, Theodorescu D. New and promising strategies in the management of bladder cancer. Am Soc Clin Oncol Educ Book 2016:105-12. [PMID: 25993148 DOI: 10.14694/edbook_am.2015.35.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bladder cancer is a complex and aggressive disease for which treatment strategies have had limited success. Improvements in detection, treatment, and outcomes in bladder cancer will require the integration of multiple new approaches, including genomic profiling, immunotherapeutics, and large randomized clinical trials. New and promising strategies are being tested in all disease states, including nonmuscle-invasive bladder cancer (NMIBC), muscle-invasive bladder cancer (MIBC), and metastatic urothelial carcinoma (UC). Efforts are underway to develop better noninvasive urine biomarkers for use in primary or secondary detection of NMIBC, exploiting our genomic knowledge of mutations in genes such as RAS, FGFR3, PIK3CA, and TP53 and methylation pathways alone or in combination. Recent data from a large, randomized phase III trial of adjuvant cisplatin-based chemotherapy add to our knowledge of the value of perioperative chemotherapy in patients with MIBC. Finally, bladder cancer is one of a growing list of tumor types that respond to immune checkpoint inhibition, opening the potential for new therapeutic strategies for treatment of this complex and aggressive disease.
Collapse
Affiliation(s)
- Andrea B Apolo
- From the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute at the National Institutes of Health, Bethesda, MD; US Oncology Research, Houston, TX and Comprehensive Cancer Centers of Nevada, Las Vegas, NV; University of Colorado Cancer Center, Denver, CO
| | - Nicholas J Vogelzang
- From the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute at the National Institutes of Health, Bethesda, MD; US Oncology Research, Houston, TX and Comprehensive Cancer Centers of Nevada, Las Vegas, NV; University of Colorado Cancer Center, Denver, CO
| | - Dan Theodorescu
- From the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute at the National Institutes of Health, Bethesda, MD; US Oncology Research, Houston, TX and Comprehensive Cancer Centers of Nevada, Las Vegas, NV; University of Colorado Cancer Center, Denver, CO
| |
Collapse
|
17
|
Zhao P, Chen L, Li LH, Wei ZF, Tong B, Jia YG, Kong LY, Xia YF, Dai Y. SC-III3, a novel scopoletin derivative, induces cytotoxicity in hepatocellular cancer cells through oxidative DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. BMC Cancer 2014; 14:987. [PMID: 25527123 PMCID: PMC4320555 DOI: 10.1186/1471-2407-14-987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
Background Natural products from plants have been proven to be important resources of antitumor agents. In this study, we exploited the antitumor activity of (E)-3-(4-chlorophenyl)-N-(7-hydroxy-6-methoxy-2-oxo-2H-chromen-3-yl) acrylamide (SC-III3), a newly synthesized derivative of scopoletin, by in vitro and in vivo experiments. Methods Human hepatocellular carcinoma cell line HepG2 cells and xenograft of HepG2 cells in BALB/c nude mice were used to investigate the effects of SC-III3 on hepatocellular cancers. Cell cycle arrest and apoptosis were analyzed by flow cytometry. Cell cycle arrest, apoptosis and ATM-Chk pathway-related proteins were characterized by western blot. Results SC-III3 selectively inhibited the viability of HepG2 cells without significant cytotoxicity against human normal liver cells LO2. In mouse xenograft model of HepG2 cells, SC-III3 showed a marked inhibition of tumor growth in a dose-dependent manner. Cell cycle analysis revealed that SC-III3 induced cells to accumulate in S phase, which was accompanied by a marked decrease of the expressions of cyclin A, cyclin B, cyclin E and Cdk2 proteins, the crucial regulators of S phase cell cycle. SC-III3 treatment resulted in DNA breaks in HepG2 cells, which might contribute to its S phase arrest. The S arrest and the activation of ATM-Chk1/Chk2-Cdc25A-Cdk2 pathways induced by SC-III3 in HepG2 cells could be efficiently abrogated by pretreatments of either Ku55933 (an inhibitor of ATM) or UCN-01 (an inhibitor of Chk1/Chk2). The activation of p53-p21 pathway by SC-III3 was also reversed by Ku55933 treatment. SC-III3 led to significant accumulation of intracellular reactive oxygen species (ROS), a breaker of DNA strand, in HepG2 cells but not LO2 cells. Pretreatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, could reverse SC-III3-caused ROS accumulation, DNA damage, activation of signal pathways relevant to DNA damage, S phase arrest and cell viability decrease in HepG2 cells. Conclusion SC-III3 is able to efficiently inhibit the growth of hepatocellular carcinoma through inducing the generation of intracellular ROS, DNA damage and consequent S phase arrest, but lack of significant cytotoxicity against normal liver cells. This compound deserves further studies as a candidate of anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu-Feng Xia
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | | |
Collapse
|
18
|
Ishaq M, Khan MA, Sharma K, Sharma G, Dutta RK, Majumdar S. Gambogic acid induced oxidative stress dependent caspase activation regulates both apoptosis and autophagy by targeting various key molecules (NF-κB, Beclin-1, p62 and NBR1) in human bladder cancer cells. Biochim Biophys Acta Gen Subj 2014; 1840:3374-84. [PMID: 25218692 DOI: 10.1016/j.bbagen.2014.08.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Gambogic acid is a potent anticancer agent and has been found effective against various types of cancer cells. The present study was addressed to explore the cytotoxic potential of Gambogic acid and the modulation of autophagy and apoptosis in bladder cancer cells T24 and UMUC3. METHODS Bladder cancer cell lines T24 and UMUC3 were treated with Gambogic acid, apoptosis was checked by flow-cytometry and expression of various autophagy and apoptosis related proteins was monitored by Western blotting. Confocal microscope was used for colocalization of p62 and Beclin-1. RESULTS Gambogic acid induces reactive oxygen species, and elicits a strong autophagic response by activating JNK at earlier time points, which is inhibited at later time points with the activation of caspases. Reactive oxygen species mediated caspase activation causes degradation of autophagic proteins, cleavage of molecular chaperones (Hsp90 and GRP-78) and adaptor proteins (p62 and NBR1). Gambogic acid treatment results in mitochondrial hyperpolarization and cytochrome c release and activates caspases involved in both extrinsic and intrinsic apoptotic pathways. Gambogic acid abrogates NF-κB activation by ROS mediated inhibition of IκB-α phosphorylation. Functionally Gambogic acid induced autophagy acts as a strong cell survival response and delays caspase activation. CONCLUSION Our study provides the new insights about the mechanism of Gambogic acid induced modulation of autophagy and apoptosis in bladder cancer cells. All the molecular events responsible for Gambogic acid induced autophagy and apoptosis are mediated by reactive oxygen species. GENERAL SIGNIFICANCE Since Gambogic acid targets various cell survival molecules therefore, it may be considered as a potential anticancer agent against bladder cancer.
Collapse
Affiliation(s)
- Mohammad Ishaq
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Mohammad Aslam Khan
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Kapil Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Gaurav Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Rajesh Kumar Dutta
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Sekhar Majumdar
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India.
| |
Collapse
|
19
|
Duan D, Zhang B, Yao J, Liu Y, Fang J. Shikonin targets cytosolic thioredoxin reductase to induce ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Free Radic Biol Med 2014; 70:182-93. [PMID: 24583460 DOI: 10.1016/j.freeradbiomed.2014.02.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 11/24/2022]
Abstract
Shikonin, a major active component of the Chinese herbal plant Lithospermum erythrorhizon, has been applied for centuries in traditional Chinese medicine. Although shikonin demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of shikonin have not been fully defined. We report here that shikonin may interact with the cytosolic thioredoxin reductase (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme with a C-terminal -Gly-Cys-Sec-Gly active site, to induce reactive oxygen species (ROS)-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Shikonin primarily targets the Sec residue in TrxR1 to inhibit its physiological function, but further shifts the enzyme to an NADPH oxidase to generate superoxide anions, which leads to accumulation of ROS and collapse of the intracellular redox balance. Importantly, overexpression of functional TrxR1 attenuates the cytotoxicity of shikonin, whereas knockdown of TrxR1 sensitizes cells to shikonin treatment. Targeting TrxR1 with shikonin thus discloses a previously unrecognized mechanism underlying the biological activity of shikonin and provides an in-depth insight into the action of shikonin in the treatment of cancer.
Collapse
Affiliation(s)
- Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yaping Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
20
|
Association study of mitochondrial genetic polymorphisms in asthmatic children. Mitochondrion 2013; 14:49-53. [PMID: 24270090 DOI: 10.1016/j.mito.2013.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/03/2013] [Accepted: 11/13/2013] [Indexed: 11/21/2022]
Abstract
It has been suggested that mitochondrial dysfunction plays a role in the pathogenesis of asthma. To test whether mitochondrial variants influence the risk of asthma, we analyzed 16,158 mtSNPs in a sample of 372 asthmatic children and 395 healthy children using the DNA pooling technique and genome wide association analysis. Stratified analysis by sex was performed to explain the differences observed between sexes in the etiology of asthma. Different variants were detected to be significant in the sample of girls and boys with the smallest adjusted p values being 1.4 × 10(-09) (mt5295) and 3.6 × 10(-12) (mt16158), respectively. Most of the significant locations found in boys are within the CYB gene and the non-coding region. For girls, most of the significant mtSNPs lie within NADH-dehydrogenase-subunits. The variants reported here have not previously been described in connection with asthma. Although further studies in other cohorts are needed to confirm these findings our study highlights the importance of the mitochondria among the factors that contribute to the risk of asthma.
Collapse
|
21
|
Choudhary S, Sood S, Wang HCR. Synergistic induction of cancer cell death and reduction of clonogenic resistance by cisplatin and FK228. Biochem Biophys Res Commun 2013; 436:325-30. [PMID: 23743194 DOI: 10.1016/j.bbrc.2013.05.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 01/29/2023]
Abstract
Human urinary bladder cancer is the fifth most common cancer in the United States, and the long-term disease-free survival in patients is still suboptimal with current chemotherapeutic regimens. Development of effective chemotherapeutic regimens is crucial to decrease the morbidity and mortality of this cancer. The goal of this study was to investigate the effectiveness of FK228 in increasing cisplatin's ability to induce bladder cancer cell death and reduce drug resistance. Our study revealed that FK228 combined with cisplatin synergistically induced cell death and reduced clonogenic survival of human urinary bladder cancer cells. The Erk-Nox pathway played an important role in mediating signals highly increased by this combined treatment to induce significantly-elevated levels of reactive oxygen species, leading to substantially-induced caspase activation and synergistically-increased death in cancer cells. Cisplatin was able to enhance the ability of FK228 to significantly reduce glutathione, indicating a novel activity of combined FK228 and cisplatin in reducing drug resistance. The ability of combined FK228 and cisplatin to synergistically induce cell death and reduce clonogenic survival was also applicable to colon cancer cells. Hence, combined use of FK228 with cisplatin should be considered in development of therapeutic strategies to control urinary bladder cancer and other cancer development and recurrence.
Collapse
Affiliation(s)
- Shambhunath Choudhary
- Anticancer Molecular Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, United States
| | | | | |
Collapse
|
22
|
Wang X, Zhang Y, Li T, Tian W, Zhang Q, Cheng Y. Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5262-70. [PMID: 23544351 DOI: 10.1021/la3046077] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Poly(amidoamine) (PAMAM) encapsulated platinum nanoparticles were synthesized and used as catalase mimics. Acetylated generation 9 (Ac-G9) PAMAM dendrimer with a molecular size around 10 nm was used as a template to synthesize platinum nanoparticles. The feeding molar ratio of Pt(4+) and Ac-G9 is 2048, and the synthesized platinum nanoparticle (Ac-G9/Pt NP) has an average size of 3.3 nm. Ac-G9/Pt NP has a similar molecular size and globular shape with catalase (~11 nm). The catalytic activity of Ac-G9/Pt NP on the decomposition of H2O2 is approaching that of catalase at 37 °C. Ac-G9/Pt NP shows differential response to the changes of pH and temperature compared with catalase, which can be explained by different catalytic mechanisms of Ac-G9/Pt NP and catalase. Ac-G9/Pt NP also shows horseradish peroxidase activity and is able to scavenge free radicals such as di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH). Furthermore, Ac-G9/Pt NP shows excellent biocompatibility on different cell lines and can down-regulate H2O2-induced intracellular reactive oxygen species (ROS) in these cells. These results suggest that dendrimers are promising mimics of proteins with different sizes and Ac-G9/Pt NP can be used as an alternative candidate of catalase to decrease oxidation stress in cells.
Collapse
Affiliation(s)
- Xinyu Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
quốc Lu’o’ng KV, Nguyễn LTH. The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms. Cancer Manag Res 2012; 4:431-45. [PMID: 23293538 PMCID: PMC3534394 DOI: 10.2147/cmar.s39153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer is the leading cause of death in the USA, and the incidence of cancer increases dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in cancer patients. In this paper, we review the evidence of an association between β-adrenergic blockade and cancer. Genetic studies have provided the opportunity to determine which proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the major histocompatibility complex class II molecules, the renin-angiotensin system, transcription factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose) polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional investigations that examine β-adrenergic blockers as cancer therapeutics are required to further elucidate this role.
Collapse
|
24
|
Huang HS, Liu ZM, Chen PC, Tseng HY, Yeh BW. TG-interacting factor-induced superoxide production from NADPH oxidase contributes to the migration/invasion of urothelial carcinoma. Free Radic Biol Med 2012; 53:769-78. [PMID: 22728270 DOI: 10.1016/j.freeradbiomed.2012.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/07/2012] [Accepted: 06/12/2012] [Indexed: 01/11/2023]
Abstract
Urothelial carcinoma (UC) of the bladder is the fourth most common cancer and the ninth leading cause of death from cancer among men in the United States. However, higher recurrence, resistance to therapy, and poor diagnostic/prognostic biomarkers of UC prompt us to identify novel targets to improve the clinical applications. TG-interacting factor (TGIF), a transcriptional corepressor to modulate the TGF-β signaling, is associated with various types of human cancer. In the present study, we found that cellular migration activity, reactive oxygen species production, AKT(S473) phosphorylation, TGIF, and p67(phox) expression were higher in invasive T24 cells than in noninvasive RT4 cells. In addition, overexpression of TGIF in RT4 cells enhanced cellular migration/invasion ability; it involved NADPH oxidase 2 (Nox2)/p67(phox) complex activation, reactive oxygen species production, and AKT(S473) phosphorylation. In contrast, the migration/invasion ability of T24 cells was suppressed by the knockdown of TGIF or p67(phox), respectively. Overexpression of AKT1 could increase cellular superoxide production and invasion. Moreover, by using the PI3K/AKT inhibitor wortmannin or shRNA of AKT1, the TGIF-induced Nox activation and superoxide production were significantly inhibited. Accordingly, we suggest that PI3K/AKT signaling mediates TGIF-induced Nox2/p67(phox) complex activation and the resultant superoxide production which reinforces the PI3K/AKT signaling to promote the cellular migration/invasion ability of UC.
Collapse
Affiliation(s)
- Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | | | | | | | | |
Collapse
|