1
|
Poonsiri T, Stransky J, Demitri N, Haas H, Cianci M, Benini S. SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in Aspergillus fumigatus siderophore biosynthesis. J Struct Biol X 2025; 11:100119. [PMID: 39845173 PMCID: PMC11751504 DOI: 10.1016/j.yjsbx.2024.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/24/2025] Open
Abstract
Siderophore-mediated iron acquisition is essential for the virulence of Aspergillus fumigatus, a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in A. fumigatus. A. fumigatus has a yet unidentified transacetylase that complements SidL during iron deficiency in SidL-lacking mutants. We present the first X-ray structure of SidF, revealing a two-domain architecture with tetrameric assembly. The N-terminal domain contributes to protein solubility and oligomerization, while the C-terminal domain containing the GCN5-related N-acetyltransferase (GNAT) motif is crucial for the enzymatic activity and mediates oligomer formation. Notably, AlphaFold modelling demonstrates structural similarity between SidF and SidL. Enzymatic assays showed that SidF can utilize acetyl-CoA as a donor, previously thought to be a substrate of SidL but not SidF, and selectively uses N5-hydroxy-L-ornithine as an acceptor. This study elucidates the structure of SidF and reveals its role in siderophore biosynthesis. We propose SidF as the unknown transacetylase complementing SidL activity, highlighting its central role in A. fumigatus siderophore biosynthesis. Investigation of this uncharacterized GNAT protein enhances our understanding of fungal virulence and holds promise for its potential application in developing antifungal therapies.
Collapse
Affiliation(s)
- Thanalai Poonsiri
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy
| | - Jan Stransky
- Institute of Biotechnology, AS CR, Centre of Molecular Structure, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Nicola Demitri
- Elettra –Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste I-34149, Italy
| | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy
| |
Collapse
|
2
|
Chao W, Qiu L, Gao L, Feng J, Liu Y, Yan L, Jiang Y, Lv Q. Antifungal Tetrahydrocarbazole Compound CAR-8 Induces Endoplasmic Reticulum Stress in Candida albicans. ACS Infect Dis 2024; 10:2705-2716. [PMID: 38989983 DOI: 10.1021/acsinfecdis.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The development of new effective antifungal agents is essential to combat fungal infections. Tetrahydrocarbazole has been exploited as a promising skeleton against various pathogenic microorganisms and is used to search for novel active antifungal compounds. In this study, a library composed of small tetrahydrocarbazole compounds was screened, and a potent antifungal agent, CAR-8, was identified with a minimum inhibitory concentration of 2-4 μg/mL against Candida albicans. CAR-8 showed strong fungicidal activities and killed almost all C. albicans within 3 h at a concentration of 16 μg/mL. At concentrations of 2 and 8 μg/mL, CAR-8 significantly inhibited the formation of hyphae and biofilms. Moreover, CAR-8 at 10 and 20 mg/kg reduced the fungal load and improved the survival in the C. albicans infection model in the invertebrate Galleria mellonella. Transcriptome analysis revealed significant changes in the expression of genes associated with protein processing in the endoplasmic reticulum (ER), ER-associated degradation, and unfolded protein response (UPR), which suggested that CAR-8 treatment induced ER stress. Moreover, CAR-8 treatment resulted in various phenotypes similar to tunicamycin, a classical ER stress inducer. These included nonconventional splicing of HAC1 mRNA, the fragmented morphology of ER, the distribution changes of GFP-Snc1 in Saccharomyces cerevisiae, and cell apoptosis probably caused by ER stress. More importantly, the disruption of IRE1 or HAC1 increased the sensitivity of C. albicans to CAR-8, confirming that the UPR signaling pathway was critical for CAR-8 resistance. Overall, our study identifies a potent ER stress-induced antifungal compound that will help the discovery of new antifungal drugs.
Collapse
Affiliation(s)
- Wen Chao
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Lijuan Qiu
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Lu Gao
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia Feng
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Liu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
4
|
Meinnel T. Comment on “Binding Affinity Determines Substrate Specificity and Enables Discovery of Substrates for N-Myristoyltransferases”. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thierry Meinnel
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
5
|
Madeo G, Savojardo C, Luigi Martelli P, Casadio R. SVMyr: a web server detecting co- and post-translational myristoylation in proteins. J Mol Biol 2022; 434:167605. [DOI: 10.1016/j.jmb.2022.167605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/31/2022]
|
6
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Kosciuk T, Lin H. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chem Biol 2020; 15:1747-1758. [PMID: 32453941 DOI: 10.1021/acschembio.0c00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein myristoylation, the addition of a 14-carbon saturated acyl group, is an abundant modification implicated in biological events as diverse as development, immunity, oncogenesis, and infections. N-Myristoyltransferase (NMT) is the enzyme that catalyzes this modification. Many elegant studies have established the rules guiding the catalysis including substrate amino acid sequence requirements with the indispensable N-terminal glycine, and a co-translational mode of action. Recent advances in technology such as the development of fatty acid analogs, small molecule inhibitors, and new proteomic strategies, allowed a deeper insight into the NMT activity and function. Here we focus on discussing recent work demonstrating that NMT is also a lysine myristoyltransferase, the enzyme's regulation by a previously unnoticed solvent channel, and the mechanism of NMT regulation by protein-protein interactions. We also summarize recent findings on NMT's role in cancer, immunity, and infections and the advances in pharmacological targeting of myristoylation. Our analyses highlight opportunities for further understanding and discoveries.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Fedoryshchak RO, Ocasio CA, Strutton B, Mattocks J, Corran AJ, Tate EW. Wheat pathogen Zymoseptoria tritici N-myristoyltransferase inhibitors: on-target antifungal activity and an unusual metabolic defense mechanism. RSC Chem Biol 2020; 1:68-78. [PMID: 34458749 PMCID: PMC8341946 DOI: 10.1039/d0cb00020e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Zymoseptoria tritici is the causative agent of Septoria tritici blotch (STB), which costs billions of dollars annually to major wheat-producing countries in terms of both fungicide use and crop loss. Agricultural pathogenic fungi have acquired resistance to most commercially available fungicide classes, and the rate of discovery and development of new fungicides has stalled, demanding new approaches and insights. Here we investigate a potential mechanism of targeting an important wheat pathogen Z. tritici via inhibition of N-myristoyltransferase (NMT). We characterize Z. tritici NMT biochemically for the first time, profile the in vivo Z. tritici myristoylated proteome and identify and validate the first Z. tritici NMT inhibitors. Proteomic investigation of the downstream effects of NMT inhibition identified an unusual and novel mechanism of defense against chemical toxicity in Z. tritici through the application of comparative bioinformatics to deconvolute function from the previously largely unannotated Z. tritici proteome. Research into novel fungicidal modes-of-action is essential to satisfy an urgent unmet need for novel fungicide targets, and we anticipate that this study will serve as a useful proteomics and bioinformatics resource for researchers studying Z. tritici.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
- The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| | - Cory A Ocasio
- The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| | | | - Jo Mattocks
- Syngenta AG, Jealott's Hill Research Centre Bracknell UK
| | | | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
- The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| |
Collapse
|
9
|
Dian C, Pérez-Dorado I, Rivière F, Asensio T, Legrand P, Ritzefeld M, Shen M, Cota E, Meinnel T, Tate EW, Giglione C. High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation. Nat Commun 2020; 11:1132. [PMID: 32111831 PMCID: PMC7048800 DOI: 10.1038/s41467-020-14847-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 01/09/2023] Open
Abstract
The promising drug target N-myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-resolution snapshots of the entire catalytic mechanism from the initial to final reaction states. Structural comparisons, together with biochemical analysis, provide unforeseen details about how NMT1 reaches a catalytically competent conformation in which the reactive groups are brought into close proximity to enable catalysis. We demonstrate that this mechanism further supports efficient and unprecedented myristoylation of an N-terminal lysine side chain, providing evidence that NMT acts both as N-terminal-lysine and glycine myristoyltransferase.
Collapse
Affiliation(s)
- Cyril Dian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Inmaculada Pérez-Dorado
- Department of Chemistry, Imperial College, Molecular Sciences Research Hub, Wood Lane, London, W12 0BZ, UK
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, UK
- Evotec Ltd, 114 Innovation Dr, Milton Park, Milton, Abingdon, OX14 4RZ, UK
| | - Frédéric Rivière
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Thomas Asensio
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Pierre Legrand
- Synchrotron SOLEIL, Gif-sur-Yvette, Cedex, 91192, France
| | - Markus Ritzefeld
- Department of Chemistry, Imperial College, Molecular Sciences Research Hub, Wood Lane, London, W12 0BZ, UK
- Evotec SE, Essener Bogen 7, Hamburg, 22419, Germany
| | - Mengjie Shen
- Department of Chemistry, Imperial College, Molecular Sciences Research Hub, Wood Lane, London, W12 0BZ, UK
- Oakland Innovation, Mill Rd, Harston, Cambridge, CB22 7GG, UK
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, UK
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France.
| | - Edward W Tate
- Department of Chemistry, Imperial College, Molecular Sciences Research Hub, Wood Lane, London, W12 0BZ, UK.
- The Francis Crick Institute, 1 Midland Rd, London, NW 1AT, UK.
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France.
| |
Collapse
|
10
|
Kosciuk T, Price IR, Zhang X, Zhu C, Johnson KN, Zhang S, Halaby SL, Komaniecki GP, Yang M, DeHart CJ, Thomas PM, Kelleher NL, Fromme JC, Lin H. NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle. Nat Commun 2020; 11:1067. [PMID: 32103017 PMCID: PMC7044312 DOI: 10.1038/s41467-020-14893-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Lysine fatty acylation in mammalian cells was discovered nearly three decades ago, yet the enzymes catalyzing it remain unknown. Unexpectedly, we find that human N-terminal glycine myristoyltransferases (NMT) 1 and 2 can efficiently myristoylate specific lysine residues. They modify ADP-ribosylation factor 6 (ARF6) on lysine 3 allowing it to remain on membranes during the GTPase cycle. We demonstrate that the NAD+-dependent deacylase SIRT2 removes the myristoyl group, and our evidence suggests that NMT prefers the GTP-bound while SIRT2 prefers the GDP-bound ARF6. This allows the lysine myrisotylation-demyristoylation cycle to couple to and promote the GTPase cycle of ARF6. Our study provides an explanation for the puzzling dissimilarity of ARF6 to other ARFs and suggests the existence of other substrates regulated by this previously unknown function of NMT. Furthermore, we identified a NMT/SIRT2-ARF6 regulatory axis, which may offer new ways to treat human diseases.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ian R Price
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chengliang Zhu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Kayla N Johnson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shuai Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steve L Halaby
- Department of Molecular Biology and Genetics; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Garrison P Komaniecki
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Caroline J DeHart
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
Sharma S, Ahmed M, Akhter Y. Fungal acetyltransferases structures, mechanisms and inhibitors: A review. Int J Biol Macromol 2019; 157:626-640. [PMID: 31786301 DOI: 10.1016/j.ijbiomac.2019.11.214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Acetylation of proteins is vital and mediate many processes within the cells like protein interactions, intercellular localization, protein stability, transcriptional regulation, enzyme activity and many more. Acetylation, an evolutionarily conserved process, attracted more attention due to its key regulatory role in many cellular processes and its effect on proteome and metabolome. In eukaryotes, protein acetylation also contribute to the epigenetic regulation of gene expression. Acetylation involves the transfer of acetyl group from donor acetyl coenzyme A to a suitable acceptor molecule and the reaction is catalyzed by acetyltransferase enzymes. The review focuses on current understanding of different acetyltransferase families: their discovery, structure and catalytic mechanism in fungal species. Fungal acetyltransferases use divergent catalytic mechanisms and carry out catalysis in a substrate-specific manner. The studies have explored different fungal acetyltransferases in relation to secondary metabolite production and the fungal pathogenesis. Although, the functions and catalytic mechanism of acetyltransferases are well known, however further enhanced knowledge may improve their utilization in various applications of biotechnology.
Collapse
Affiliation(s)
- Shikha Sharma
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh 176206, India
| | - Mushtaq Ahmed
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh 176206, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
12
|
Alonso AM, Turowski VR, Ruiz DM, Orelo BD, Moresco JJ, Yates JR, Corvi MM. Exploring protein myristoylation in Toxoplasma gondii. Exp Parasitol 2019; 203:8-18. [PMID: 31150653 DOI: 10.1016/j.exppara.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is an important human and veterinary pathogen and the causative agent of toxoplasmosis, a potentially severe disease especially in immunocompromised or congenitally infected humans. Current therapeutic compounds are not well-tolerated, present increasing resistance, limited efficacy and require long periods of treatment. On this context, searching for new therapeutic targets is crucial to drug discovery. In this sense, recent works suggest that N-myristoyltransferase (NMT), the enzyme responsible for protein myristoylation that is essential in some parasites, could be the target of new anti-parasitic compounds. However, up to date there is no information on NMT and the extent of this modification in T. gondii. In this work, we decided to explore T. gondii genome in search of elements related with the N-myristoylation process. By a bioinformatics approach it was possible to identify a putative T. gondii NMT (TgNMT). This enzyme that is homologous to other parasitic NMTs, presents activity in vitro, is expressed in both intra- and extracellular parasites and interacts with predicted TgNMT substrates. Additionally, NMT activity seems to be important for the lytic cycle of Toxoplasma gondii. In parallel, an in silico myristoylome predicts 157 proteins to be affected by this modification. Myristoylated proteins would be affecting several metabolic functions with some of them being critical for the life cycle of this parasite. Together, these data indicate that TgNMT could be an interesting target of intervention for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Andrés M Alonso
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina
| | - Valeria R Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina
| | - Diego M Ruiz
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina
| | - Barbara D Orelo
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James J Moresco
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John R Yates
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - María M Corvi
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Xu Y, Quan H, Wang Y, Zhong H, Sun J, Xu J, Jia N, Jiang Y. Requirement for Ergosterol in Berberine Tolerance Underlies Synergism of Fluconazole and Berberine against Fluconazole-Resistant Candida albicans Isolates. Front Cell Infect Microbiol 2017; 7:491. [PMID: 29238700 PMCID: PMC5712545 DOI: 10.3389/fcimb.2017.00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Candida albicans is one of the most common fungal pathogens. Our previous study demonstrated that concomitant use of berberine (BBR) and fluconazole (FLC) showed a synergistic action against FLC-resistant C. albicans in vitro and BBR had a major antifungal effect in the synergism, while FLC played a role of increasing the intracellular BBR concentration. Since the antifungal activity of BBR alone is very weak (MIC > 128 μg/mL), it was assumed that FLC-resistant C. albicans was naturally tolerant to BBR, and this tolerance could be reversed by FLC. The present study aimed to elucidate the mechanism underlying BBR tolerance in FLC-resistant C. albicans and its disruption by FLC. The ergosterol quantitative analysis showed that the BBR monotreatment could increase the content of cellular ergosterol. Real-time RT-PCR revealed a global upregulation of ergosterol synthesis genes in response to BBR exposure. In addition, exogenous ergosterol could decrease intracellular BBR concentration and increase the expression of drug efflux pump genes, further reducing the susceptibility of C. albicans to BBR. Similar to FLC, other antifungal agents acting on ergosterol were able to synergize with BBR against FLC-resistant C. albicans. However, the antifungal agents not acting on ergosterol were not synergistic with BBR. These results suggested that ergosterol was required for BBR tolerance, and FLC could enhance the susceptibility of FLC-resistant C. albicans to BBR by inhibiting ergosterol synthesis.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Hua Quan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Pudong Institute for Food and Drug Control, Shanghai, China
| | - Yan Wang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hua Zhong
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Sun
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Jianjiang Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Nuan Jia
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Yuanying Jiang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Dopkins BJ, Tipton PA, Thoden JB, Holden HM. Structural Studies on a Glucosamine/Glucosaminide N-Acetyltransferase. Biochemistry 2016; 55:4495-508. [PMID: 27348258 DOI: 10.1021/acs.biochem.6b00536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucosamine/glucosaminide N-acetyltransferase or GlmA catalyzes the transfer of an acetyl group from acetyl CoA to the primary amino group of glucosamine. The enzyme from Clostridium acetobutylicum is thought to be involved in cell wall rescue. In addition to glucosamine, GlmA has been shown to function on di- and trisaccharides of glucosamine as well. Here we present a structural and kinetic analysis of the enzyme. For this investigation, eight structures were determined to resolutions of 2.0 Å or better. The overall three-dimensional fold of GlmA places it into the tandem GNAT superfamily. Each subunit of the dimer folds into two distinct domains which exhibit high three-dimensional structural similarity. Whereas both domains bind acetyl CoA, it is the C-terminal domain that is catalytically competent. On the basis of the various structures determined in this investigation, two amino acid residues were targeted for further study: Asp 287 and Tyr 297. Although their positions in the active site suggested that they may play key roles in catalysis by functioning as active site bases and acids, respectively, this was not borne out by characterization of the D287N and Y297F variants. The kinetic properties revealed that both residues were important for substrate binding but had no critical roles as acid/base catalysts. Kinetic analyses also indicated that GlmA follows an ordered mechanism with acetyl CoA binding first followed by glucosamine. The product N-acetylglucosamine is then released prior to CoA. The investigation described herein provides significantly new information on enzymes belonging to the tandem GNAT superfamily.
Collapse
Affiliation(s)
- Brandon J Dopkins
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Peter A Tipton
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Salah Ud-Din AIM, Tikhomirova A, Roujeinikova A. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT). Int J Mol Sci 2016; 17:E1018. [PMID: 27367672 PMCID: PMC4964394 DOI: 10.3390/ijms17071018] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Alexandra Tikhomirova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
17
|
Herrera LJ, Brand S, Santos A, Nohara LL, Harrison J, Norcross NR, Thompson S, Smith V, Lema C, Varela-Ramirez A, Gilbert IH, Almeida IC, Maldonado RA. Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi. PLoS Negl Trop Dis 2016; 10:e0004540. [PMID: 27128971 PMCID: PMC4851402 DOI: 10.1371/journal.pntd.0004540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. METHODOLOGY/PRINCIPAL FINDINGS Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. CONCLUSIONS/SIGNIFICANCE Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy.
Collapse
Affiliation(s)
- Linda J. Herrera
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Stephen Brand
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Andres Santos
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Lilian L. Nohara
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Justin Harrison
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Neil R. Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Victoria Smith
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Carolina Lema
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Armando Varela-Ramirez
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Igor C. Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Rosa A. Maldonado
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
18
|
Abuhammad A, Taha M. Innovative computer-aided methods for the discovery of new kinase ligands. Future Med Chem 2016; 8:509-526. [PMID: 27105126 DOI: 10.4155/fmc-2015-0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/02/2016] [Indexed: 07/10/2024] Open
Abstract
Recent evidence points to significant roles played by protein kinases in cell signaling and cellular proliferation. Faulty protein kinases are involved in cancer, diabetes and chronic inflammation. Efforts are continuously carried out to discover new inhibitors for selected protein kinases. In this review, we discuss two new computer-aided methodologies we developed to mine virtual databases for new bioactive compounds. One method is ligand-based exploration of the pharmacophoric space of inhibitors of any particular biotarget followed by quantitative structure-activity relationship-based selection of the best pharmacophore(s). The second approach is structure-based assuming that potent ligands come into contact with binding site spots distinct from those contacted by weakly potent ligands. Both approaches yield pharmacophores useful as 3D search queries for the discovery of new bioactive (kinase) inhibitors.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, 11942, Amman, Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, 11942, Amman, Jordan
| |
Collapse
|
19
|
Qin Z, Xiao Y, Yang X, Mesters JR, Yang S, Jiang Z. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase. Sci Rep 2015; 5:18292. [PMID: 26669854 PMCID: PMC4680927 DOI: 10.1038/srep18292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022] Open
Abstract
Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions — a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Yibei Xiao
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Xinbin Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Jeroen R Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
20
|
Giglione C, Fieulaine S, Meinnel T. N-terminal protein modifications: Bringing back into play the ribosome. Biochimie 2015; 114:134-46. [PMID: 25450248 DOI: 10.1016/j.biochi.2014.11.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
N-terminal protein modifications correspond to the first modifications which in principle any protein may undergo, before translation is completed by the ribosome. This class of essential modifications can have different nature or function and be catalyzed by a variety of dedicated enzymes. Here, we review the current state of the major N-terminal co-translational modifications, with a particular emphasis to their catalysts, which belong to metalloprotease and acyltransferase clans. The earliest of these modifications corresponds to the N-terminal methionine excision, an ubiquitous and essential process leading to the removal of the first methionine. N-alpha acetylation occurs also in all Kingdoms although its extent appears to be significantly increased in higher eukaryotes. Finally, N-myristoylation is a crucial pathway existing only in eukaryotes. Recent studies dealing on how some of these co-translational modifiers might work in close vicinity of the ribosome is starting to provide new information on when these modifications exactly take place on the elongating nascent chain and the interplay with other ribosome biogenesis factors taking in charge the nascent chains. Here a comprehensive overview of the recent advances in the field of N-terminal protein modifications is given.
Collapse
Affiliation(s)
- Carmela Giglione
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | - Sonia Fieulaine
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
21
|
Shimada T, Suzuki M, Katakura SI. Structure of N-myristoyltransferase from Aspergillus fumigatus. ACTA ACUST UNITED AC 2015; 71:754-61. [PMID: 25849386 DOI: 10.1107/s1399004715000401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/09/2015] [Indexed: 11/10/2022]
Abstract
N-Myristoyltransferase (NMT) is an enzyme which translocates the 14-carbon saturated fatty acid myristate from myristoyl-CoA to the N-terminal glycine of substrate peptides. This myristoylation process is involved in protein modification in various eukaryotes, including animals and fungi. Furthermore, this enzyme has been shown to be essential to the growth of various species, such as Saccharomyces cerevisiae, which indicates that NMT is an attractive target for the development of a novel antifungal drug. In this study, the crystal structure of a ternary complex of NMT from Aspergillus fumigatus with S-(2-oxo)pentadecyl-CoA, a myristoyl-CoA analogue cofactor, and a synthetic inhibitor is reported at a resolution of 2.1 Å. The results advance the understanding of the specificity of NMT inhibitors and provide valuable information for structure-based drug design.
Collapse
Affiliation(s)
- Takashi Shimada
- Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co. Ltd, 1-16-13 Kita-kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Makoto Suzuki
- Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co. Ltd, 1-16-13 Kita-kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Shin-ichi Katakura
- Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co. Ltd, 1-16-13 Kita-kasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
22
|
Brannigan JA, Roberts SM, Bell AS, Hutton JA, Hodgkinson MR, Tate EW, Leatherbarrow RJ, Smith DF, Wilkinson AJ. Diverse modes of binding in structures of Leishmania major N-myristoyltransferase with selective inhibitors. IUCRJ 2014; 1:250-60. [PMID: 25075346 PMCID: PMC4107925 DOI: 10.1107/s2052252514013001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/04/2014] [Indexed: 05/08/2023]
Abstract
The leishmaniases are a spectrum of global diseases of poverty associated with immune dysfunction and are the cause of high morbidity. Despite the long history of these diseases, no effective vaccine is available and the currently used drugs are variously compromised by moderate efficacy, complex side effects and the emergence of resistance. It is therefore widely accepted that new therapies are needed. N-Myristoyltransferase (NMT) has been validated pre-clinically as a target for the treatment of fungal and parasitic infections. In a previously reported high-throughput screening program, a number of hit compounds with activity against NMT from Leishmania donovani have been identified. Here, high-resolution crystal structures of representative compounds from four hit series in ternary complexes with myristoyl-CoA and NMT from the closely related L. major are reported. The structures reveal that the inhibitors associate with the peptide-binding groove at a site adjacent to the bound myristoyl-CoA and the catalytic α-carboxylate of Leu421. Each inhibitor makes extensive apolar contacts as well as a small number of polar contacts with the protein. Remarkably, the compounds exploit different features of the peptide-binding groove and collectively occupy a substantial volume of this pocket, suggesting that there is potential for the design of chimaeric inhibitors with significantly enhanced binding. Despite the high conservation of the active sites of the parasite and human NMTs, the inhibitors act selectively over the host enzyme. The role of conformational flexibility in the side chain of Tyr217 in conferring selectivity is discussed.
Collapse
Affiliation(s)
- James A. Brannigan
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Shirley M. Roberts
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Andrew S. Bell
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| | - Jennie A. Hutton
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| | - Michael R. Hodgkinson
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, England
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| | - Robin J. Leatherbarrow
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, England
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| |
Collapse
|
23
|
Huete-Pérez JA, Flores-Obando RE, Ghedin E, Caffrey CR. Genomic and proteomic approaches for Chagas’ disease: critical analysis of diagnostic methods. Expert Rev Mol Diagn 2014; 5:521-30. [PMID: 16013970 DOI: 10.1586/14737159.5.4.521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease, a chronic inflammatory condition that results in heart and digestive complications. The first draft of the parasite genome is now complete and it is expected that, along with the published genomic and proteomic analyses discussed herein, it will lead to the identification of crucial genes and proteins directly associated with disease. This article reviews the current research trends addressing host-parasite interaction, parasite genetic variability and diagnosis. These advances will certainly bring about major developments not only in our understanding of Trypanosoma cruzi biology, but also in the application of new technologies to disease prevention and control.
Collapse
Affiliation(s)
- Jorge A Huete-Pérez
- Sandler Center for Basic Research in Parasitic Diseases, University of California, QB3 Building, Box 2550, 1700 4 Street, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
24
|
Tate EW, Bell AS, Rackham MD, Wright MH. N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology 2014; 141:37-49. [PMID: 23611109 DOI: 10.1017/s0031182013000450] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infections caused by protozoan parasites are among the most widespread and intractable transmissible diseases affecting the developing world, with malaria and leishmaniasis being the most costly in terms of morbidity and mortality. Although new drugs are urgently required against both diseases in the face of ever-rising resistance to frontline therapies, very few candidates passing through development pipelines possess a known and novel mode of action. Set in the context of drugs currently in use and under development, we present the evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases. We discuss the limitations of current knowledge regarding the downstream targets of this enzyme in protozoa, and our recent progress towards potent cell-active NMT inhibitors against the most clinically-relevant species of parasite. Finally, we outline the next steps required in terms of both tools to understand N-myristoylation in protozoan parasites, and the generation of potential development candidates based on the output of our recently-reported high-throughput screens.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Andrew S Bell
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Mark D Rackham
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Megan H Wright
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
25
|
Wang W, Dong G, Gu J, Zhang Y, Wang S, Zhu S, Liu Y, Miao Z, Yao J, Zhang W, Sheng C. Structure–activity relationships of tetrahydrocarbazole derivatives as antifungal lead compounds. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20211e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Acylation-dependent and-independent membrane targeting and distinct functions of small myristoylated proteins (SMPs) in Leishmania major. Int J Parasitol 2012; 42:239-47. [DOI: 10.1016/j.ijpara.2011.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/20/2022]
|
27
|
Taha MO, Qandil AM, Al-Haraznah T, Khalaf RA, Zalloum H, Al-Bakri AG. Discovery of new antifungal leads via pharmacophore modeling and QSAR analysis of fungal N-myristoyl transferase inhibitors followed by in silico screening. Chem Biol Drug Des 2011; 78:391-407. [PMID: 21679375 DOI: 10.1111/j.1747-0285.2011.01160.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
N-Myristoyl transferase is an essential enzyme for fungal growth and survival. The continuous interest in the development of new antifungal agents prompted recent interest in developing new potent inhibitors of fungal N-myristoyl transferase. In this context, we combined pharmacophore and QSAR modeling to explore the structural requirements for potent N-myristoyl transferase inhibitors employing 55 known N-myristoyl transferase ligands. Four binding pharmacophore models emerged in the optimal QSAR equations (R(2)(44) = 0.81-0.83, F-statistic = 47.89-58.83, r(2)(L00)= 0.77-0.80, against 11 external test inhibitors = 0.61-0.71). The successful pharmacophores were complemented with exclusion spheres to optimize their receiver operating characteristic curve profiles. The QSAR equations and their associated pharmacophore models were validated by the identification and experimental evaluation of new promising antifungal leads retrieved from the NCI database and our in-house-built database of established drugs and agrochemicals.
Collapse
Affiliation(s)
- Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The HIV-1 accessory protein Nef is N-terminally myristoylated, and this post-translational modification is essential for Nef function in AIDS progression. Transfer of a myristate group from myristoyl coenzyme A to Nef occurs cotranslationally and is catalyzed by human N-myristoyltransferase 1 (NMT). To investigate the conformational effects of myristoylation on Nef structure as well as to probe the nature of the Nef:NMT complex, we investigated various forms of Nef with hydrogen exchange mass spectrometry. Conformational changes in Nef were not detected as a result of myristoylation, and NMT had no effect on deuterium uptake by Nef in a myrNef:NMT complex. However, myrNef binding did have an effect on NMT deuterium uptake. Major HX differences in NMT were primarily located around the active site, with more subtle differences, at the longer time points, across the structure. At the shortest time point, significant differences between the two states were observed in two regions which interact strongly with the phosphate groups of coenzyme A. On the basis of our results, we propose a model of the Nef:NMT complex in which only the myristoyl moiety holds the two proteins together in complex and speculate that perhaps NMT chaperones Nef to the membrane and thereby protects the myristic acid group from the cytosol rather than Nef operating through a myristoyl switch mechanism.
Collapse
Affiliation(s)
- Christopher R. Morgan
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Brian V. Miglionico
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - John R. Engen
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
29
|
Taha MO, Habash M, Al-Hadidi Z, Al-Bakri A, Younis K, Sisan S. Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. J Chem Inf Model 2011; 51:647-669. [PMID: 21370899 DOI: 10.1021/ci100368t] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The significant role played by docking algorithms in drug discovery combined with their serious pitfalls prompted us to envisage a novel concept for validating docking solutions, namely, docking-based comparative intermolecular contacts analysis (dbCICA). This novel approach is based on the number and quality of contacts between docked ligands and amino acid residues within the binding pocket. It assesses a particular docking configuration on the basis of its ability to align a set of ligands within a corresponding binding pocket in such a way that potent ligands come into contact with binding site spots distinct from those approached by low-affinity ligands and vice versa. In other words, dbCICA evaluates the consistency of docking by assessing the correlation between ligands' affinities and their contacts with binding site spots. Optimal dbCICA models can be translated into valid pharmacophore models that can be used as 3-D search queries to mine structural databases for new bioactive compounds. dbCICA was implemented to search for new inhibitors of candida N-myristoyl transferase as potential antifungal agents and glycogen phosphorylase (GP) inhibitors as potential antidiabetic agents. The process culminated in five selective micromolar antifungal leads and nine GP inhibitory leads.
Collapse
Affiliation(s)
- Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| | | | | | | | | | | |
Collapse
|
30
|
Brannigan JA, Smith BA, Yu Z, Brzozowski AM, Hodgkinson MR, Maroof A, Price HP, Meier F, Leatherbarrow RJ, Tate EW, Smith DF, Wilkinson AJ. N-myristoyltransferase from Leishmania donovani: structural and functional characterisation of a potential drug target for visceral leishmaniasis. J Mol Biol 2010; 396:985-99. [PMID: 20036251 PMCID: PMC2829124 DOI: 10.1016/j.jmb.2009.12.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 12/30/2022]
Abstract
N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovani NMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 A resolution. The structure has as its defining feature a 14-stranded twisted beta-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.
Collapse
Key Words
- arf, adp-ribosylation factor
- dig, digoxigenin
- hasp, hydrophilic acylated surface protein
- hyg, hygromycin
- neo, neomycin
- nhm, non-hydrolysable myristoyl-coa analogue
- nmt, n-myristoyltransferase
- orf, open reading frame
- pac, puromycin
- spa, scintillation proximity assay
- vl, visceral leishmaniasis
- canmt, hsnmt, ldnmt and scnmt, n-myristoyltransferase from candida albicans, homo sapiens, leishmania donovani and saccharomyces cerevisiae, respectively
- n-myristoyltransferase
- leishmania
- visceral leishmaniasis
- crystal structure
- drug target
Collapse
Affiliation(s)
- James A. Brannigan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
| | - Barbara A. Smith
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Zhiyong Yu
- Department of Chemistry, Imperial College, London SW7 2AZ, UK
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
| | - Michael R. Hodgkinson
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Asher Maroof
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Helen P. Price
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Franziska Meier
- Department of Chemistry, Imperial College, London SW7 2AZ, UK
| | | | - Edward W. Tate
- Department of Chemistry, Imperial College, London SW7 2AZ, UK
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5YW, UK
| | - Anthony J. Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
- Corresponding author.
| |
Collapse
|
31
|
Wright MH, Heal WP, Mann DJ, Tate EW. Protein myristoylation in health and disease. J Chem Biol 2010; 3:19-35. [PMID: 19898886 PMCID: PMC2816741 DOI: 10.1007/s12154-009-0032-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/05/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023] Open
Abstract
N-myristoylation is the attachment of a 14-carbon fatty acid, myristate, onto the N-terminal glycine residue of target proteins, catalysed by N-myristoyltransferase (NMT), a ubiquitous and essential enzyme in eukaryotes. Many of the target proteins of NMT are crucial components of signalling pathways, and myristoylation typically promotes membrane binding that is essential for proper protein localisation or biological function. NMT is a validated therapeutic target in opportunistic infections of humans by fungi or parasitic protozoa. Additionally, NMT is implicated in carcinogenesis, particularly colon cancer, where there is evidence for its upregulation in the early stages of tumour formation. However, the study of myristoylation in all organisms has until recently been hindered by a lack of techniques for detection and identification of myristoylated proteins. Here we introduce the chemistry and biology of N-myristoylation and NMT, and discuss new developments in chemical proteomic technologies that are meeting the challenge of studying this important co-translational modification in living systems.
Collapse
Affiliation(s)
- Megan H. Wright
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - William P. Heal
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - David J. Mann
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - Edward W. Tate
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
| |
Collapse
|
32
|
Sheng C, Ji H, Miao Z, Che X, Yao J, Wang W, Dong G, Guo W, Lü J, Zhang W. Homology modeling and molecular dynamics simulation of N-myristoyltransferase from protozoan parasites: active site characterization and insights into rational inhibitor design. J Comput Aided Mol Des 2009; 23:375-89. [PMID: 19370313 DOI: 10.1007/s10822-009-9267-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/26/2009] [Indexed: 11/25/2022]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is a cytosolic monomeric enzyme that catalyzes the transfer of the myristoyl group from myristoyl-CoA to the N-terminal glycine of a number of eukaryotic cellular and viral proteins. Recent experimental data suggest NMT from parasites could be a promising new target for the design of novel antiparasitic agents with new mode of action. However, the active site topology and inhibitor specificity of these enzymes remain unclear. In this study, three-dimensional models of NMT from Plasmodium falciparum (PfNMT), Leishmania major (LmNMT) and Trypanosoma brucei (TbNMT) were constructed on the basis of the crystal structures of fungal NMTs using homology modeling method. The models were further refined by energy minimization and molecular dynamics simulations. The active sites of PfNMT, LmNMT and TbNMT were characterized by multiple copy simultaneous search (MCSS). MCSS functional maps reveal that PfNMT, LmNMT and TbNMT share a similar active site topology, which is defined by two hydrophobic pockets, a hydrogen-bonding (HB) pocket, a negatively-charged HB pocket and a positively-charged HB pocket. Flexible docking approaches were then employed to dock known inhibitors into the active site of PfNMT. The binding mode, structure-activity relationships and selectivity of inhibitors were investigated in detail. From the results of molecular modeling, the active site architecture and certain key residues responsible for inhibitor binding were identified, which provided insights for the design of novel inhibitors of parasitic NMTs.
Collapse
Affiliation(s)
- Chunquan Sheng
- School of Pharmacy, Military Key Laboratory of Medicinal Chemistry, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu J, Tao Y, Zhang M, Howard MH, Gutteridge S, Ding J. Crystal structures of Saccharomyces cerevisiae N-myristoyltransferase with bound myristoyl-CoA and inhibitors reveal the functional roles of the N-terminal region. J Biol Chem 2007; 282:22185-94. [PMID: 17513302 DOI: 10.1074/jbc.m702696200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein N-myristoylation catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT) plays an important role in a variety of critical cellular processes and thus is an attractive target for development of antifungal drugs. We report here three crystal structures of Saccharomyces cerevisiae NMT: in binary complex with myristoyl-CoA (MYA) alone and in two ternary complexes involving MYA and two different non-peptidic inhibitors. In all three structures, the majority of the N-terminal region, absent in all previously reported structures, forms a well defined motif that is located in the vicinity of the peptide substrate-binding site and is involved in the binding of MYA. The Ab loop, which might be involved in substrate recognition, adopts an open conformation, whereas a loop of the N-terminal region (residues 22-24) that covers the top of the substrate-binding site is in the position occupied by the Ab loop when in the closed conformation. Structural comparisons with other NMTs, together with mutagenesis data, suggest that the N-terminal region of NMT plays an important role in the binding of both MYA and peptide substrate, but not in subsequent steps of the catalytic mechanism. The two inhibitors occupy the peptide substrate-binding site and interact with the protein through primarily hydrophobic contacts. Analyses of the inhibitorenzyme interactions provide valuable information for further improvement of antifungal inhibitors targeting NMT.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
Hung MN, Rangarajan E, Munger C, Nadeau G, Sulea T, Matte A. Crystal structure of TDP-fucosamine acetyltransferase (WecD) from Escherichia coli, an enzyme required for enterobacterial common antigen synthesis. J Bacteriol 2006; 188:5606-17. [PMID: 16855251 PMCID: PMC1540030 DOI: 10.1128/jb.00306-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 05/22/2006] [Indexed: 11/20/2022] Open
Abstract
Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-d-glucosamine, N-acetyl-d-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-d-galactose, organized into trisaccharide repeating units having the sequence -->3)-alpha-d-Fuc4NAc-(1-->4)-beta-d-ManNAcA-(1-->4)-alpha-d-GlcNAc-(1-->. While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-d-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstrom resolution and bound to acetyl-CoA at a 1.66-Angstrom resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.
Collapse
Affiliation(s)
- Ming-Ni Hung
- Biotechnology Research Institute, 6100 Royalmount Ave., Montreal QC, Canada H4P 2R2
| | | | | | | | | | | |
Collapse
|
35
|
Panethymitaki C, Bowyer P, Price H, Leatherbarrow R, Brown K, Smith D. Characterization and selective inhibition of myristoyl-CoA:protein N-myristoyltransferase from Trypanosoma brucei and Leishmania major. Biochem J 2006; 396:277-85. [PMID: 16480339 PMCID: PMC1462705 DOI: 10.1042/bj20051886] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/10/2006] [Accepted: 02/15/2006] [Indexed: 11/17/2022]
Abstract
The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 microM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16-66 microM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.
Collapse
Key Words
- drug target
- enzyme kinetics
- leishmania major
- myristoyl-coa:protein n-myristoyltransferase
- n-myristoylation
- trypanosoma brucei
- arl1, adp-ribosylation factor related protein 1
- bip, immunoglobulin heavy-chain binding protein
- bsf, bloodstream form
- cap5.5, cytoskeleton-associated protein 5.5
- dapi, 4′,6-diamidino-2-phenylindole
- dtt, dithiothreitol
- ed50, the effective dose that allows 50% cell growth
- gst, glutathione s-transferase
- haspa, hydrophilic acylated surface protein a
- iptg, isopropyl β-d-thiogalactoside
- nmt, myristoyl-coa:protein n-myristoyltransferase
- lmnmt, leishmania major nmt
- pcf, procyclic form
- rnai, rna interference
- si, selectivity index
- spa, scintillation proximity assay
- tbnmt, trypanosoma brucei nmt
- vsg, variant surface glycoprotein
Collapse
Affiliation(s)
- Chrysoula Panethymitaki
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
| | - Paul W. Bowyer
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
- ‡Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Helen P. Price
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
- §Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, U.K
| | | | - Katherine A. Brown
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
| | - Deborah F. Smith
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
- §Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, U.K
| |
Collapse
|
36
|
Rioux V, Beauchamp E, Pedrono F, Daval S, Molle D, Catheline D, Legrand P. Identification and characterization of recombinant and native rat myristoyl-CoA: protein N-myristoyltransferases. Mol Cell Biochem 2006; 286:161-70. [PMID: 16538398 DOI: 10.1007/s11010-005-9108-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 12/08/2005] [Indexed: 01/19/2023]
Abstract
Compared to other species that possess a single functional myristoyl-CoA: protein N-myristoyltransferase gene copy, human, mouse and cow possess 2 NMT genes, and more than 2 protein isoforms. In mammals, the contribution of each gene transcript to multiple protein isoform expression and enzyme activity remains unclear. In order to get new insight on their respective physiological role, we have cloned and characterized the two rat NMT cDNAs. Rat NMT1 and NMT2 cDNAs contain 1491 and 1590 nucleotides, respectively, with high identity with their mouse homologues. Polypeptide sequences exhibited 68.1% identity between NMT1 and 2. Recombinant rat NMT1 and 2 showed major immunoreactive forms at 66 and 50 kDa, although NMT2 is 33-amino acid longer than NMT1. Both proteins exhibited functional myristoyltransferase activity but NMT2 appeared to be 4-time less active than NMT1. Studies of native protein expression revealed that the level and sizes of NMT proteins greatly vary among rat tissues although NMT1 and 2 did not display tissue specific expression at the mRNA level. Altogether, these results suggest that NMT2 may contribute little to total NMT activity levels in vivo.
Collapse
Affiliation(s)
- Vincent Rioux
- Laboratoire de Biochimie, INRA-Agrocampus, 35042 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Kim JK, Yang IS, Shin HJ, Cho KJ, Ryu EK, Kim SH, Park SS, Kim KH. Insight into autoproteolytic activation from the structure of cephalosporin acylase: a protein with two proteolytic chemistries. Proc Natl Acad Sci U S A 2006; 103:1732-7. [PMID: 16446446 PMCID: PMC1413634 DOI: 10.1073/pnas.0507862103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
Cephalosporin acylase (CA), a member of the N-terminal nucleophile hydrolase family, is activated through sequential primary and secondary autoproteolytic reactions with the release of a pro segment. We have determined crystal structures of four CA mutants. Two mutants are trapped after the primary cleavage, and the other two undergo secondary cleavage slowly. These structures provide a look at pro-segment conformation during activation in N-terminal nucleophile hydrolases. The highly strained helical pro segment of precursor is transformed into a relaxed loop in the intermediates, suggesting that the relaxation of structural constraints drives the primary cleavage reaction. The secondary autoproteolytic step has been proposed to be intermolecular. However, our analysis provides evidence that CA is processed in two sequential steps of intramolecular autoproteolysis involving two distinct residues in the active site, the first a serine and the second a glutamate.
Collapse
Affiliation(s)
- Jin Kwang Kim
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - In Seok Yang
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Hye Jeong Shin
- Department of Bio-Microsystem Technology, Korea University, Seoul 136-701, Korea; and
| | - Ki Joon Cho
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Eui Kyung Ryu
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Sun Hwa Kim
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Sung Soo Park
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Kyung Hyun Kim
- Department of Bio-Microsystem Technology, Korea University, Seoul 136-701, Korea; and
- Department of Biotechnology, College of Science and Technology, Korea University, Jochiwon 339-700, Korea
| |
Collapse
|
38
|
Abstract
Comparative analyses of fungal genomes and molecular research on genes associated with fungal viability and virulence has led to the identification of many putative targets for novel antifungal agents. So far the rational approach to antifungal discovery, in which compounds are optimized against an individual target then progressed to efficacy against intact fungi and ultimately to infected humans has delivered no new agents. However, the approach continues to hold promise for the future. This review critically assesses the molecular target-based approach to antifungal discovery, outlines problems and pitfalls inherent in the genomics and target discovery strategies and describes the status of heavily investigated examples of target-based research.
Collapse
Affiliation(s)
- Frank C Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, Department of Molecular and Cell Biology, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
39
|
Ruge E, Korting HC, Borelli C. Current state of three-dimensional characterisation of antifungal targets and its use for molecular modelling in drug design. Int J Antimicrob Agents 2005; 26:427-41. [PMID: 16289513 DOI: 10.1016/j.ijantimicag.2005.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The alarming rise in life-threatening systemic fungal infections due to the emergence of drug-resistant fungal strains had produced an increased demand for new antimycotics, especially those targeting novel antifungal structures. Drug discovery has developed from screening natural products and chemical synthesis to a modern approach, namely structure-based drug design. Whilst many antifungal agents currently in use were discovered more than 30 years ago, characterisation of various drug targets has only been achieved recently, contributing immensely to understanding the structure-activity relationships of antifungals and their targets. Three-dimensional characterisation has become a well established tool for modern antifungal drug research and should play an important role in investigations for new antifungal agents.
Collapse
Affiliation(s)
- E Ruge
- Department of Dermatology, University of Munich, Frauenlobstr. 9-11, 80337 Munich, Germany.
| | | | | |
Collapse
|
40
|
Wills EA, Redinbo MR, Perfect JR, Poeta MD. New potential targets for antifungal development. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.3.265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Biarrotte-Sorin S, Mayer C. Cloning, purification, crystallization and preliminary crystallographic analysis of a hypothetical acetyltransferase from Pyrococcus furiosus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:269-70. [PMID: 16511014 PMCID: PMC1952278 DOI: 10.1107/s174430910500223x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 01/20/2005] [Indexed: 11/11/2022]
Abstract
The GCN5-related N-acetyltransferase (GNAT) superfamily has a primordial role in cellular processes such as transcription initiation and regulation by histone acetylation, aminoglycoside resistance and melatonin metabolism. To date, no acetyltransferase from the archaeal domain of life has been studied. This paper describes the cloning, expression, purification and crystallization of a Pyrococcus furiosus hypothetical acetyltransferase PfGNAT (MW = 22 007 Da). The crystals belong to space group P622, with one molecule in the asymmetric unit and unit-cell parameters a = b = 82.6, c = 105.92 A, alpha = beta = 90, gamma = 120 degrees. Crystals diffract X-rays to 3.0 A resolution on a synchrotron-radiation source. Determination of this structure will provide new insights into the substrate-specificity of this acetyltransferase and the thermal stability of the N-acetyltransferase domain.
Collapse
Affiliation(s)
- Sabrina Biarrotte-Sorin
- Laboratoire de Minéralogie-Cristallographie de Paris, Paris, France
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, CHU Pitié-Salpêtrière, Paris, France
| | - Claudine Mayer
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, CHU Pitié-Salpêtrière, Paris, France
- Correspondence e-mail:
| |
Collapse
|
42
|
Abstract
The discovery of new antimicrobial and anticancer drugs, and overcoming the problem of resistance to current anti-infective and anticancer drug therapies require innovation in the pharmaceutical and scientific research community. A further challenge of drug design is to make the therapeutic agent specific, long lasting, of minimal toxicity, and affordable. Microbial and cancer cell surfaces present molecular features that can differentially prefocus drugs within the human host. This property can localize drugs near cell-surface targets, thereby reducing opportunities for adverse effects, or the emergence of drug resistance caused by intracellular drug and target modification and by the induction of drug efflux pumps. The solubility demands on cell-surface targeting drugs should also be less stringent than for those drugs requiring transmembrane transport or internalization in order to reach intracellular targets. Cationic peptides have provided an increasingly important research focus in this regard. Although the cationic antimicrobial peptides are distributed widely in nature and provide localized primary defenses against microbial attack, the susceptibility of L-peptides to proteolysis and the known properties of successful antimicrobials have led to a focus on circularized peptides, D,L-peptides, and peptides containing unusual amino acids. New on the scene as lead antifungal agents are D-octapeptides and their derivatives that were developed from a combinatorial library produced through solid-phase peptide synthesis protocols. These peptides contain an amidated C-terminal tri-arginine motif, which confers membrane impermeability and focuses the peptides near the fungal cell surface. To date, the octapeptides and their derivatives also require some aromaticity, preferably the indole ring of tryptophan. In some cases, a single 4-methoxy-2,3,6-trimethylbenzenesulfonyl moiety remaining on the peptide after incomplete cleavage of the peptide from the solid phase produces a peptide with activity, whereas the parent shows little or no activity in the screen. Recent research advances that support the polycationic cell surface approach include the RGD (Arg-Gly-Asp) tripeptide and its mimetics, as well as aminoglycoside arginine drugs (e.g. neomycin coupled to small arginine polymers) and prodrugs. In the case of polycationic peptides, D-peptides could be used for intravenous injection and direct-surface drug applications, but mimetics will probably be needed for oral delivery.
Collapse
Affiliation(s)
- Brian C Monk
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
43
|
Vetting MW, S de Carvalho LP, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 2005; 433:212-26. [PMID: 15581578 DOI: 10.1016/j.abb.2004.09.003] [Citation(s) in RCA: 482] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/02/2004] [Indexed: 11/15/2022]
Abstract
The Gcn5-related N-acetyltransferases are an enormous superfamily of enzymes that are universally distributed in nature and that use acyl-CoAs to acylate their cognate substrates. In this review, we will examine those members of this superfamily that have been both structurally and mechanistically characterized. These include aminoglycoside N-acetyltransferases, serotonin N-acetyltransferase, glucosamine-6-phosphate N-acetyltransferase, the histone acetyltransferases, mycothiol synthase, protein N-myristoyltransferase, and the Fem family of amino acyl transferases.
Collapse
Affiliation(s)
- Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Biarrotte-Sorin S, Maillard AP, Delettré J, Sougakoff W, Arthur M, Mayer C. Crystal structures of Weissella viridescens FemX and its complex with UDP-MurNAc-pentapeptide: insights into FemABX family substrates recognition. Structure 2004; 12:257-67. [PMID: 14962386 DOI: 10.1016/j.str.2004.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 10/28/2003] [Accepted: 10/28/2003] [Indexed: 11/16/2022]
Abstract
Members of the FemABX protein family are novel therapeutic targets, as they are involved in the synthesis of the bacterial cell wall. They catalyze the addition of amino acid(s) on the peptidoglycan precursor using aminoacylated tRNA as a substrate. We report here the high-resolution structure of Weissella viridescens L-alanine transferase FemX and its complex with the UDP-MurNAc-pentapeptide. This is the first structure example of a FemABX family member that does not possess a coiled-coil domain. FemX consists of two structurally equivalent domains, separated by a cleft containing the binding site of the UDP-MurNAc-pentapeptide and a long channel that traverses one of the two domains. Our structural studies bring new insights into the evolution of the FemABX and the related GNAT superfamilies, shed light on the recognition site of the aminoacylated tRNA in Fem proteins, and allowed manual docking of the acceptor end of the alanyl-tRNAAla.
Collapse
Affiliation(s)
- Sabrina Biarrotte-Sorin
- Laboratoire de Minéralogie-Cristallographie de Paris, Université Paris 6, 4 place Jussieu, Paris Cedex 05, 75252, France
| | | | | | | | | | | |
Collapse
|
45
|
Vetting MW, Roderick SL, Yu M, Blanchard JS. Crystal structure of mycothiol synthase (Rv0819) from Mycobacterium tuberculosis shows structural homology to the GNAT family of N-acetyltransferases. Protein Sci 2003; 12:1954-9. [PMID: 12930994 PMCID: PMC2323992 DOI: 10.1110/ps.03153703] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mycothiol is the predominant low-molecular weight thiol produced by actinomycetes, including Mycobacterium tuberculosis. The last reaction in the biosynthetic pathway for mycothiol is catalyzed by mycothiol synthase (MshD), which acetylates the cysteinyl amine of cysteine-glucosamine-inositol (Cys-GlcN-Ins). The crystal structure of MshD was determined in the presence of coenzyme A and acetyl-CoA. MshD consists of two tandem-repeated domains, each exhibiting the Gcn5-related N-acetyltransferase (GNAT) fold. These two domains superimpose with a root-mean-square deviation of 1.7 A over 88 residues, and each was found to bind one molecule of coenzyme, although the binding sites are quite different. The C-terminal domain has a similar active site to many GNAT members in which the acetyl group of the coenzyme is presented to an open active site slot. However, acetyl-CoA bound to the N-terminal domain is buried, and is apparently not positioned to promote acetyl transfer. A modeled substrate complex indicates that Cys-GlcN-Ins would only fill a portion of a negatively charged channel located between the two domains. This is the first structure determined for an enzyme involved in the biosynthesis of mycothiol.
Collapse
Affiliation(s)
- Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
46
|
Burk DL, Ghuman N, Wybenga-Groot LE, Berghuis AM. X-ray structure of the AAC(6')-Ii antibiotic resistance enzyme at 1.8 A resolution; examination of oligomeric arrangements in GNAT superfamily members. Protein Sci 2003; 12:426-37. [PMID: 12592013 PMCID: PMC2312454 DOI: 10.1110/ps.0233503] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The rise of antibiotic resistance as a public health concern has led to increased interest in studying the ways in which bacteria avoid the effects of antibiotics. Enzymatic inactivation by several families of enzymes has been observed to be the predominant mechanism of resistance to aminoglycoside antibiotics such as kanamycin and gentamicin. Despite the importance of acetyltransferases in bacterial resistance to aminoglycoside antibiotics, relatively little is known about their structure and mechanism. Here we report the three-dimensional atomic structure of the aminoglycoside acetyltransferase AAC(6')-Ii in complex with coenzyme A (CoA). This structure unambiguously identifies the physiologically relevant AAC(6')-Ii dimer species, and reveals that the enzyme structure is similar in the AcCoA and CoA bound forms. AAC(6')-Ii is a member of the GCN5-related N-acetyltransferase (GNAT) superfamily of acetyltransferases, a diverse group of enzymes that possess a conserved structural motif, despite low sequence homology. AAC(6')-Ii is also a member of a subset of enzymes in the GNAT superfamily that form multimeric complexes. The dimer arrangements within the multimeric GNAT superfamily members are compared, revealing that AAC(6')-Ii forms a dimer assembly that is different from that observed in the other multimeric GNAT superfamily members. This different assembly may provide insight into the evolutionary processes governing dimer formation.
Collapse
Affiliation(s)
- David L Burk
- Departments of Biochemistry and Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
47
|
Price HP, Menon MR, Panethymitaki C, Goulding D, McKean PG, Smith DF. Myristoyl-CoA:protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem 2003; 278:7206-14. [PMID: 12488459 DOI: 10.1074/jbc.m211391200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Co-translational modification of eukaryotic proteins by N-myristoylation aids subcellular targeting and protein-protein interactions. The enzyme that catalyzes this process, N-myristoyltransferase (NMT), has been characterized in the kinetoplastid protozoan parasites, Leishmania and Trypanosoma brucei. In Leishmania major, the single copy NMT gene is constitutively expressed in all parasite stages as a 48.5-kDa protein that localizes to both membrane and cytoplasmic fractions. Leishmania NMT myristoylates the target acylated Leishmania protein, HASPA, when both are co-expressed in Escherichia coli. Gene targeting experiments have shown that NMT activity is essential for viability in Leishmania. In addition, overexpression of NMT causes gross changes in parasite morphology, including the subcellular accumulation of lipids, leading to cell death. This phenotype is more extreme than that observed in Saccharomyces cerevisiae, in which overexpression of NMT activity has no obvious effects on growth kinetics or cell morphology. RNA interference assays in T. brucei have confirmed that NMT is also an essential protein in both life cycle stages of this second kinetoplastid species, suggesting that this enzyme may be an appropriate target for the development of anti-parasitic agents.
Collapse
Affiliation(s)
- Helen P Price
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Gelb MH, Van Voorhis WC, Buckner FS, Yokoyama K, Eastman R, Carpenter EP, Panethymitaki C, Brown KA, Smith DF. Protein farnesyl and N-myristoyl transferases: piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics. Mol Biochem Parasitol 2003; 126:155-63. [PMID: 12615314 DOI: 10.1016/s0166-6851(02)00282-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To accelerate progress in the development of therapeutics for protozoan parasitic diseases, we are studying enzymes active in co- and post-translational protein modification that are already the focus of drug development in other eukaryotic systems. Inhibitors of the protein farnesyltransferases (PFT) are well-established antitumour agents of low cytotoxicity and known pharmokinetic properties, while inhibitors of N-myristoyl transferase show both selectivity and specificity in the treatment of fungal infections. Here, we summarise the current evidence that supports the targeting of these ubiquitous eukaryotic enzymes for drug development against trypanosomatid infections and malaria.
Collapse
Affiliation(s)
- Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schiltz M, Fourme R, Prangé T. Use of noble gases xenon and krypton as heavy atoms in protein structure determination. Methods Enzymol 2003; 374:83-119. [PMID: 14696369 DOI: 10.1016/s0076-6879(03)74004-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Marc Schiltz
- LURE (CNRS-CEAMEN), Batiment 209d, Universite Paris XI, 91898 Orsay, France
| | | | | |
Collapse
|
50
|
Sogabe S, Masubuchi M, Sakata K, Fukami TA, Morikami K, Shiratori Y, Ebiike H, Kawasaki K, Aoki Y, Shimma N, D'Arcy A, Winkler FK, Banner DW, Ohtsuka T. Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors. CHEMISTRY & BIOLOGY 2002; 9:1119-28. [PMID: 12401496 DOI: 10.1016/s1074-5521(02)00240-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (Nmt) is a monomeric enzyme that catalyzes the transfer of the fatty acid myristate from myristoyl-CoA to the N-terminal glycine residue of a variety of eukaryotic and viral proteins. Genetic and biochemical studies have established that Nmt is an attractive target for antifungal drugs. We present here crystal structures of C. albicans Nmt complexed with two classes of inhibitor competitive for peptide substrates. One is a peptidic inhibitor designed from the peptide substrate; the other is a nonpeptidic inhibitor having a benzofuran core. Both inhibitors are bound into the same binding groove, generated by some structural rearrangements of the enzyme, with the peptidic inhibitor showing a substrate-like binding mode and the nonpeptidic inhibitor binding differently. Further, site-directed mutagenesis for C. albicans Nmt has been utilized in order to define explicitly which amino acids are critical for inhibitor binding. The results suggest that the enzyme has some degree of flexibility for substrate binding and provide valuable information for inhibitor design.
Collapse
Affiliation(s)
- Satoshi Sogabe
- Nippon Roche Research Center, 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|