1
|
Gardner AM, Gardner PR. Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase. J Inorg Biochem 2023; 245:112257. [PMID: 37229820 DOI: 10.1016/j.jinorgbio.2023.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Kinetic and structural investigations of the flavohemoglobin-type NO dioxygenase have suggested critical roles for transient Fe(III)O2 complex formation and O2-forced movements affecting hydride transfer to the FAD cofactor and electron-transfer to the Fe(III)O2 complex. Stark-effect theory together with structural models and dipole and internal electrostatic field determinations provided a semi-quantitative spectroscopic method for investigating the proposed Fe(III)O2 complex and O2-forced movements. Deoxygenation of the enzyme causes Stark effects on the ferric heme Soret and charge-transfer bands revealing the Fe(III)O2 complex. Deoxygenation also elicits Stark effects on the FAD that expose forces and motions that create a more restricted NADH access to FAD for hydride transfer and switch electron-transfer off. Glucose also forces the enzyme toward an off state. Amino acid substitutions at the B10, E7, E11, G8, D5, and F7 positions influence the Stark effects of O2 on resting heme spin states and FAD consistent with the proposed roles of the side chains in the enzyme mechanism. Deoxygenation of ferric myoglobin and hemoglobin A also induces Stark effects on the hemes suggesting a common 'oxy-met' state. The ferric myoglobin and hemoglobin heme spectra are also glucose-responsive. A conserved glucose or glucose-6-phosphate binding site is found bridging the BC-corner and G-helix in flavohemoglobin and myoglobin suggesting novel allosteric effector roles for glucose or glucose-6-phosphate in the NO dioxygenase and O2 storage functions. The results support the proposed roles of a ferric O2 intermediate and protein motions in regulating electron-transfer during NO dioxygenase turnover.
Collapse
Affiliation(s)
- Anne M Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Paul R Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Chemistry and Biochemistry Department, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
2
|
Olson JS. Kinetic mechanisms for O 2 binding to myoglobins and hemoglobins. Mol Aspects Med 2021; 84:101024. [PMID: 34544605 DOI: 10.1016/j.mam.2021.101024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
Antonini and Brunori's 1971 book "Hemoglobin and Myoglobin in Their Reactions with Ligands" was a truly remarkable publication that summarized almost 100 years of research on O2 binding to these globins. Over the ensuing 50 years, ultra-fast laser photolysis techniques, high-resolution and time resolved X-ray crystallography, molecular dynamics simulations, and libraries of recombinant myoglobin (Mb) and hemoglobin (Hb) variants have provided structural interpretations of O2 binding to these proteins. The resultant mechanisms provide quantitative descriptions of the stereochemical factors that govern overall affinity, including proximal and distal steric restrictions that affect iron reactivity and favorable positive electrostatic interactions that preferentially stabilize bound O2. The pathway for O2 uptake and release by Mb and subunits of Hb has been mapped by screening libraries of site-directed mutants in laser photolysis experiments. O2 enters mammalian Mb and the α and β subunits of human HbA through a channel created by upward and outward rotation of the distal His at the E7 helical position, is non-covalently captured in the interior of the distal cavity, and then internally forms a bond with the heme Fe(II) atom. O2 dissociation is governed by disruption of hydrogen bonding interactions with His (E7), breakage of the Fe(II)-O2 bond, and then competition between rebinding and escape through the E7-gate. The structural features that govern the rates of both the individual steps and overall reactions have been determined and provide the framework for: (1) defining the physiological functions of specific globins and their evolution; (2) understanding the clinical features of hemoglobinopathies; and (3) designing safer and more efficient acellular hemoglobin-based oxygen carriers (HBOCs) for transfusion therapy, organ preservation, and other commercially relevant O2 transport and storage processes.
Collapse
Affiliation(s)
- John S Olson
- Department of Biosciences, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
3
|
Olson JS. Lessons Learned from 50 Years of Hemoglobin Research: Unstirred and Cell-Free Layers, Electrostatics, Baseball Gloves, and Molten Globules. Antioxid Redox Signal 2020; 32:228-246. [PMID: 31530172 PMCID: PMC6948003 DOI: 10.1089/ars.2019.7876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Over the past 50 years, the mechanisms for O2 storage and transport have been determined quantitatively on distance scales from millimeters to tenths of nanometers and timescales from seconds to picoseconds. Recent Advances: In this review, I have described four key conclusions from work done by my group and our close colleagues. (i) O2 uptake by mammalian red cells is limited by diffusion through unstirred water layers adjacent to the cell surface and across cell-free layers adjacent to vessel walls. (ii) In most vertebrates, hemoglobins (Hbs) and myoglobins (Mbs), the distal histidine at the E7 helical position donates a strong hydrogen bond to bound O2, which selectively enhances O2 affinity, prevents carbon monoxide poisoning, and markedly slows autoxidation. (iii) O2 binding to mammalian Hbs and Mbs occurs by migration of the ligand through a channel created by upward rotation of the His(E7) side chain, capture in the empty space of the distal pocket, and then coordination with the ferroprotoporphyrin IX (heme) iron atom. (iv) The assembly of Mbs and Hbs occurs by formation of molten globule intermediates, in which the N- and C-terminal helices have almost fully formed secondary structures, but the heme pockets are disordered and followed by high-affinity binding of heme. Critical Issues: These conclusions indicate that there are often compromises between O2 transport function, holoprotein stability, and the efficiency of assembly. Future Directions: However, the biochemical mechanisms underlying these conclusions provide the framework for understanding globin evolution in greater detail and for engineering more efficient and stable globins.
Collapse
Affiliation(s)
- John S Olson
- BioSciences Department, Rice University, Houston, Texas
| |
Collapse
|
4
|
Begun A, Molochkov A, Niemi AJ. Protein tertiary structure and the myoglobin phase diagram. Sci Rep 2019; 9:10819. [PMID: 31346242 PMCID: PMC6658483 DOI: 10.1038/s41598-019-47317-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
We develop an effective theory approach to investigate the phase properties of globular proteins. Instead of interactions between individual atoms or localized interaction centers, the approach builds directly on the tertiary structure of a protein. As an example we construct the phase diagram of (apo)myoglobin with temperature (T) and acidity (pH) as the thermodynamical variables. We describe how myoglobin unfolds from the native folded state to a random coil when temperature and acidity increase. We confirm the presence of two molten globule folding intermediates, and we predict an abrupt transition between the two when acidity changes. When temperature further increases we find that the abrupt transition line between the two molten globule states terminates at a tricritical point, where the helical structures fade away. Our results also suggest that the ligand entry and exit is driven by large scale collective motions that destabilize the myoglobin F-helix.
Collapse
Affiliation(s)
- Alexander Begun
- Laboratory of Physics of Living Matter, Far Eastern Federal University, 690950, Sukhanova 8, Vladivostok, Russia
| | - Alexander Molochkov
- Laboratory of Physics of Living Matter, Far Eastern Federal University, 690950, Sukhanova 8, Vladivostok, Russia
| | - Antti J Niemi
- Laboratory of Physics of Living Matter, Far Eastern Federal University, 690950, Sukhanova 8, Vladivostok, Russia.
- Nordita, Stockholm University, Roslagstullsbacken 23, SE-106 91, Stockholm, Sweden.
- Institut Denis Poisson, CNRS UMR 7013, Parc de Grandmont, F37200, Tours, France.
- Department of Physics, Beijing Institute of Technology, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
5
|
Chintapalli SV, Anishkin A, Adams SH. Exploring the entry route of palmitic acid and palmitoylcarnitine into myoglobin. Arch Biochem Biophys 2018; 655:56-66. [PMID: 30092229 DOI: 10.1016/j.abb.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Myoglobin, besides its role in oxygen turnover, has gained recognition as a potential regulator of lipid metabolism. Previously, we confirmed the interaction of fatty acids and acylcarnitines with Oxy-Myoglobin, using both molecular dynamic simulations and Isothermal Titration Calorimetry studies. However, those studies were limited to testing only the binding sites derived from homology to fatty acid binding proteins and predictions using automated docking. To explore the entry mechanisms of the lipid ligands into myoglobin, we conducted molecular dynamic simulations of murine Oxy- and Deoxy-Mb structures with palmitate or palmitoylcarnitine starting at different positions near the protein surface. The simulations indicated that both ligands readily (under ∼10-20 ns) enter the Oxy-Mb structure through a dynamic area ("portal region") near heme, known to be the entry point for small molecule gaseous ligands like O2, CO and NO. The entry is not observed with Deoxy-Mb where lipid ligands move away from protein surface, due to a compaction of the entry portal and the heme-containing crevice in the Mb protein upon O2 removal. The results suggest quick spontaneous binding of lipids to Mb driven by hydrophobic interactions, strongly enhanced by oxygenation, and consistent with the emergent role of Mb in lipid metabolism.
Collapse
Affiliation(s)
- Sree V Chintapalli
- Arkansas Children's Nutrition Center -and- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA.
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, USA
| | - Sean H Adams
- Arkansas Children's Nutrition Center -and- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
6
|
Qi D, Chao Y, Zhao Y, Xia M, Wu R. Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:557-571. [PMID: 29230594 DOI: 10.1007/s10695-017-0453-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Myoglobin (Mb) is an oxygen-binding hemoprotein that was once thought to be exclusively expressed in oxidative myocytes of skeletal and cardiac muscle where it serves in oxygen storage and facilitates intracellular oxygen diffusion. In this study, we cloned the coding sequence of the Mb gene from four species, representing three groups, of the schizothoracine fish endemic to the Qinghai-Tibetan Plateau (QTP), then conducted molecular evolution analyses. We also investigated tissue expression patterns of Mb and the expression response to moderate and severe hypoxia at the mRNA and protein levels in a representative of the highly specialized schizothoracine fish species, Schizopygopsis pylzovi. Molecular evolution analyses showed that Mb from the highly specialized schizothoracine fish have undergone positive selection and one positively selected residue (81L) was identified, which is located in the F helix, close to or in contact with the heme. We present tentative evidence that the Mb duplication event occurred in the ancestor of the schizothoracine and Cyprininae fish (common carp and goldfish), and that the Mb2 paralog was subsequently lost in the schizothoracine fish. In S. pylzovi, Mb mRNA is expressed in various tissues with the exception of the intestine and gill, but all such tissues, including the liver, muscle, kidney, brain, eye, and skin, expressed very low levels of Mb mRNA (< 8.0%) relative to that of the heart. The trace levels of Mb expression in non-muscle tissues are perhaps the major reason why non-muscle Mb remained undiscovered for so long. The expression response of the Mb gene to hypoxia at the mRNA and protein levels was strikingly different in S. pylzovi compared to that found in the common carp, medaka, zebrafish, and goldfish, suggesting that the hypoxia response of Mb in fish may be species and tissue-specific. Notably, severe hypoxia induced significant expression of Mb at the mRNA and protein levels in the S. pylzovi heart, which suggests Mb has a major role in the supply of oxygen to the heart of Tibetan Plateau fish.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| | - Yan Chao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Yongli Zhao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Rongrong Wu
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| |
Collapse
|
7
|
Lábas A, Menyhárd DK, Harvey JN, Oláh J. First Principles Calculation of the Reaction Rates for Ligand Binding to Myoglobin: The Cases of NO and CO. Chemistry 2018; 24:5350-5358. [PMID: 29285802 DOI: 10.1002/chem.201704867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Ligand binding by proteins is among the most fundamental processes in nature. Among these processes the binding of small gas molecules, such as O2 , CO and NO to heme proteins has traditionally received vivid interest, which was further boosted by their recently recognized significant role in gas sensing in the body. At the heart of the binding of these ligands to the heme group is the spinforbidden reaction between high-spin iron(II) and the ligand yielding a low-spin adduct. We use computational means to address the complete mechanism of CO and NO binding by myoglobin. Considering that it involves several steps occurring on different time scales, molecular dynamics simulations were performed to address the diffusion of the ligand through the enzyme, and DFT calculations in combination with statistical rate calculation to investigate the spin-forbidden reaction. The calculations yielded rate constants in qualitative agreement with experiments and revealed that the bottleneck of NO and CO binding is different; for NO, diffusion was found to be rate-limiting, whereas for CO, the spin-forbidden step is the slowest.
Collapse
Affiliation(s)
- Anikó Lábas
- Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1111, Budapest, Szent Gellért tér 4., Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modelling Research Group, H-1117, Budapest, Pázmány Péter st. 1/A, Hungary
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, B-3001, Leuven Celestijnenlaan 200F- box 2404, Belgium
| | - Julianna Oláh
- Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1111, Budapest, Szent Gellért tér 4., Hungary
| |
Collapse
|
8
|
El Hage K, Mondal P, Meuwly M. Free energy simulations for protein ligand binding and stability. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2017.1416115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Padmabati Mondal
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Basel, Switzerland
| |
Collapse
|
9
|
Andrew CR, Petrova ON, Lamarre I, Lambry JC, Rappaport F, Negrerie M. The Dynamics Behind the Affinity: Controlling Heme-Gas Affinity via Geminate Recombination and Heme Propionate Conformation in the NO Carrier Cytochrome c'. ACS Chem Biol 2016; 11:3191-3201. [PMID: 27709886 DOI: 10.1021/acschembio.6b00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) sensors are heme proteins which may also bind CO and O2. Control of heme-gas affinity and their discrimination are achieved by the structural properties and reactivity of the heme and its distal and proximal environments, leading to several energy barriers. In the bacterial NO sensor cytochrome c' from Alcaligenes xylosoxidans (AXCP), the single Leu16Ala distal mutation boosts the affinity for gas ligands by a remarkable 106-108-fold, transforming AXCP from one of the lowest affinity gas binding proteins to one of the highest. Here, we report the dynamics of diatomics after photodissociation from wild type and L16A-AXCP over 12 orders of magnitude in time. For the L16A variant, the picosecond geminate rebinding of both CO and NO appears with an unprecedented 100% yield, and no exit of these ligands from protein to solvent could be observed. Molecular dynamic simulations saliently demonstrate that dissociated CO stays within 4 Å from Fe2+, in contrast to wild-type AXCP. The L16A mutation confers a heme propionate conformation and docking site which traps the diatomics, maximizing the probability of recombination and directly explaining the ultrahigh affinities for CO, NO, and O2. Overall, our results point to a novel mechanism for modulating heme-gas affinities in proteins.
Collapse
Affiliation(s)
- Colin R. Andrew
- Department
of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Olga N. Petrova
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Isabelle Lamarre
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Fabrice Rappaport
- Laboratoire
de Physiologie Membranaire et Moléculaire du Chloroplaste, CNRS, Université Pierre et Marie Curie, 75005 Paris, France
| | - Michel Negrerie
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
10
|
Shadrina MS, English AM, Peslherbe GH. Benchmarking Rapid TLES Simulations of Gas Diffusion in Proteins: Mapping O2 Migration and Escape in Myoglobin as a Case Study. J Chem Theory Comput 2016; 12:2038-46. [PMID: 26938707 DOI: 10.1021/acs.jctc.5b01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Standard molecular dynamics (MD) simulations of gas diffusion consume considerable computational time and resources even for small proteins. To combat this, temperature-controlled locally enhanced sampling (TLES) examines multiple diffusion trajectories per simulation by accommodating multiple noninteracting copies of a gas molecule that diffuse independently, while the protein and water molecules experience an average interaction from all copies. Furthermore, gas migration within a protein matrix can be accelerated without altering protein dynamics by increasing the effective temperature of the TLES copies. These features of TLES enable rapid simulations of gas diffusion within a protein matrix at significantly reduced (∼98%) computational cost. However, the results of TLES and standard MD simulations have not been systematically compared, which limits the adoption of the TLES approach. We address this drawback here by benchmarking TLES against standard MD in the simulation of O2 diffusion in myoglobin (Mb) as a case study since this model system has been extensively characterized. We find that 2 ns TLES and 108 ns standard simulations map the same network of diffusion tunnels in Mb and uncover the same docking sites, barriers, and escape portals. We further discuss the influence of simulation time as well as the number of independent simulations on the O2 population density within the diffusion tunnels and on the sampling of Mb's conformational space as revealed by principal component analysis. Overall, our comprehensive benchmarking reveals that TLES is an appropriate and robust tool for the rapid mapping of gas diffusion in proteins when the kinetic data provided by standard MD are not required. Furthermore, TLES provides explicit ligand diffusion pathways, unlike most rapid methods.
Collapse
Affiliation(s)
- Maria S Shadrina
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - Ann M English
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - Gilles H Peslherbe
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
11
|
Zhao Z, Wang D, Wang M, Sun X, Wang L, Huang X, Ma L, Li Z. Proximal environment controlling the reactivity between inorganic sulfide and heme-peptide model. RSC Adv 2016. [DOI: 10.1039/c6ra14100e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesized deuterohemin-peptide, which is lack of the distal protein structure, is used as a heme model to investigate the effects of the proximal environment on the reactivity of inorganic sulfide to heme center.
Collapse
Affiliation(s)
- Zijian Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- PR China
| | - Dandan Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- PR China
| | - Mingyang Wang
- National Engineering Laboratory for AIDS Vaccine
- Jilin University
- Changchun 130012
- PR China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- PR China
| | - Liping Wang
- National Engineering Laboratory for AIDS Vaccine
- Jilin University
- Changchun 130012
- PR China
| | - Xuri Huang
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- PR China
| | - Li Ma
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- PR China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- PR China
| |
Collapse
|
12
|
Cazade PA, Zheng W, Prada-Gracia D, Berezovska G, Rao F, Clementi C, Meuwly M. A comparative analysis of clustering algorithms: O2 migration in truncated hemoglobin I from transition networks. J Chem Phys 2015; 142:025103. [PMID: 25591387 DOI: 10.1063/1.4904431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ligand migration network for O2-diffusion in truncated Hemoglobin N is analyzed based on three different clustering schemes. For coordinate-based clustering, the conventional k-means and the kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion map (LSDMap) method is a collective-variable-based approach. It is found that all three methods agree well in their geometrical definition of the most important docking site, and all experimentally known docking sites are recovered by all three methods. Also, for most of the states, their population coincides quite favourably, whereas the kinetics of and between the states differs. One of the major differences between k-means and MCL clustering on the one hand and LSDMap on the other is that the latter finds one large primary cluster containing the Xe1a, IS1, and ENT states. This is related to the fact that the motion within the state occurs on similar time scales, whereas structurally the state is found to be quite diverse. In agreement with previous explicit atomistic simulations, the Xe3 pocket is found to be a highly dynamical site which points to its potential role as a hub in the network. This is also highlighted in the fact that LSDMap cannot identify this state. First passage time distributions from MCL clusterings using a one- (ligand-position) and two-dimensional (ligand-position and protein-structure) descriptor suggest that ligand- and protein-motions are coupled. The benefits and drawbacks of the three methods are discussed in a comparative fashion and highlight that depending on the questions at hand the best-performing method for a particular data set may differ.
Collapse
Affiliation(s)
- Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wenwei Zheng
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA
| | - Diego Prada-Gracia
- School of Soft Matter Research, Freiburg Institute for Advanced Studies, Albertstrasse 19, 79104 Freiburg im Breisgau, Germany
| | - Ganna Berezovska
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Francesco Rao
- School of Soft Matter Research, Freiburg Institute for Advanced Studies, Albertstrasse 19, 79104 Freiburg im Breisgau, Germany
| | - Cecilia Clementi
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
13
|
Shadrina MS, Peslherbe GH, English AM. Quaternary-Linked Changes in Structure and Dynamics That Modulate O2 Migration within Hemoglobin’s Gas Diffusion Tunnels. Biochemistry 2015; 54:5268-78. [DOI: 10.1021/acs.biochem.5b00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria S. Shadrina
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Gilles H. Peslherbe
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Ann M. English
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
14
|
De Sancho D, Kubas A, Wang PH, Blumberger J, Best RB. Identification of Mutational Hot Spots for Substrate Diffusion: Application to Myoglobin. J Chem Theory Comput 2015; 11:1919-27. [PMID: 26574395 PMCID: PMC6132223 DOI: 10.1021/ct5011455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pathways by which small molecules (substrates or inhibitors) access active sites are a key aspect of the function of enzymes and other proteins. A key problem in designing or altering such proteins is to identify sites for mutation that will have the desired effect on the substrate transport properties. While specific access channels have been invoked in the past, molecular simulations suggest that multiple routes are possible, complicating the analysis. This complexity, however, can be captured by a Markov State Model (MSM) of the ligand diffusion process. We have developed a sensitivity analysis of the resulting rate matrix, which identifies the locations where mutations should have the largest effect on the diffusive on rate. We apply this method to myoglobin, which is the best characterized example both from experiment and simulation. We validate the approach by translating the sensitivity parameter obtained from this method into the CO binding rates in myoglobin upon mutation, resulting in a semi-quantitative correlation with experiments. The model is further validated against an explicit simulation for one of the experimental mutants.
Collapse
Affiliation(s)
- David De Sancho
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
- CIC nanoGUNE , Tolosa Hiribidea 76, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science , Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Adam Kubas
- Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, United Kingdom
| | - Po-Hung Wang
- Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, United Kingdom
- Theoretical Molecular Science Laboratory , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, United Kingdom
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
15
|
Ligand-induced protein responses and mechanical signal propagation described by linear response theories. Biophys J 2015; 107:1415-25. [PMID: 25229149 DOI: 10.1016/j.bpj.2014.07.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/18/2014] [Accepted: 07/15/2014] [Indexed: 02/04/2023] Open
Abstract
In this study, a general linear response theory (LRT) is formulated to describe time-dependent and -independent protein conformational changes upon CO binding with myoglobin. Using the theory, we are able to monitor protein relaxation in two stages. The slower relaxation is found to occur from 4.4 to 81.2 picoseconds and the time constants characterized for a couple of aromatic residues agree with those observed by UV Resonance Raman (UVRR) spectrometry and time resolved x-ray crystallography. The faster "early responses", triggered as early as 400 femtoseconds, can be best described by the theory when impulse forces are used. The newly formulated theory describes the mechanical propagation following ligand-binding as a function of time, space and types of the perturbation forces. The "disseminators", defined as the residues that propagate signals throughout the molecule the fastest among all the residues in protein when perturbed, are found evolutionarily conserved and the mutations of which have been shown to largely change the CO rebinding kinetics in myoglobin.
Collapse
|
16
|
Na H, Song G. Quantitative delineation of how breathing motions open ligand migration channels in myoglobin and its mutants. Proteins 2015; 83:757-70. [PMID: 25645487 DOI: 10.1002/prot.24770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/01/2015] [Accepted: 01/14/2015] [Indexed: 11/09/2022]
Abstract
Ligand migration and binding are central to the biological functions of many proteins such as myoglobin (Mb) and it is widely thought that protein breathing motions open up ligand channels dynamically. However, how a protein exerts its control over the opening and closing of these channels through its intrinsic dynamics is not fully understood. Specifically, a quantitative delineation of the breathing motions that are needed to open ligand channels is lacking. In this work, we present and apply a novel normal mode-based method to quantitatively delineate what and how breathing motions open ligand migration channels in Mb and its mutants. The motivation behind this work springs from the observation that normal mode motions are closely linked to the breathing motions that are thought to open ligand migration channels. In addition, the method provides a direct and detailed depiction of the motions of each and every residue that lines a channel and can identify key residues that play a dominating role in regulating the channel. The all-atom model and the full force-field employed in the method provide a realistic energetics on the work cost required to open a channel, and as a result, the method can be used to efficiently study the effects of mutations on ligand migration channels and on ligand entry rates. Our results on Mb and its mutants are in excellent agreement with MD simulation results and experimentally determined ligand entry rates.
Collapse
Affiliation(s)
- Hyuntae Na
- Department of Computer Science, Iowa State University, Ames, Iowa, 50011
| | | |
Collapse
|
17
|
Carbon monoxide binding properties of domain-swapped dimeric myoglobin. J Biol Inorg Chem 2015; 20:523-30. [DOI: 10.1007/s00775-014-1236-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
|
18
|
Di Giuseppe AMA, Caso JV, Severino V, Ragucci S, Chambery A, Russo R, Fattorusso R, Ferreras JM, Russo L, Di Maro A. Insight into the structural and functional features of myoglobin from Hystrix cristata L. and Rangifer tarandus L. RSC Adv 2015. [DOI: 10.1039/c5ra01316j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myoglobins (Mbs) from Hystrix cristata L. and Rangifer tarandus L. have been isolated and characterised.
Collapse
Affiliation(s)
- Antonella M. A. Di Giuseppe
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF)
- Second University of Naples
- 81100-Caserta
- Italy
| | - Jolanda V. Caso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF)
- Second University of Naples
- 81100-Caserta
- Italy
| | - Valeria Severino
- Department of Internal Medicine Specialties
- Geneva University
- 1211-Genève
- Switzerland
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF)
- Second University of Naples
- 81100-Caserta
- Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF)
- Second University of Naples
- 81100-Caserta
- Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF)
- Second University of Naples
- 81100-Caserta
- Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF)
- Second University of Naples
- 81100-Caserta
- Italy
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology
- University of Valladolid
- Campus Miguel Delibes
- 47011-Valladolid
- Spain
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF)
- Second University of Naples
- 81100-Caserta
- Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF)
- Second University of Naples
- 81100-Caserta
- Italy
| |
Collapse
|
19
|
Woods KN. Using THz time-scale infrared spectroscopy to examine the role of collective, thermal fluctuations in the formation of myoglobin allosteric communication pathways and ligand specificity. SOFT MATTER 2014; 10:4387-4402. [PMID: 24801988 DOI: 10.1039/c3sm53229a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this investigation we use THz time-scale spectroscopy to conduct an initial set of studies on myoglobin with the aim of providing further insight into the global, collective thermal fluctuations in the protein that have been hypothesized to play a prominent role in the dynamic formation of transient ligand channels as well as in shaping the molecular level basis for ligand discrimination. Using the two ligands O2 and CO, we have determined that the perturbation from the heme-ligand complex has a strong influence on the characteristics of the myoglobin collective dynamics that are excited upon binding. Further, the differences detected in the collective protein motions in Mb-O2 compared with those in Mb-CO appear to be intimately tied with the pathways of long-range allosteric communication in the protein, which ultimately determine the trajectories selected by the respective ligands on the path to and from the heme-binding cavity.
Collapse
Affiliation(s)
- K N Woods
- Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Dynamic void distribution in myoglobin and five mutants. Sci Rep 2014; 4:4011. [PMID: 24500195 PMCID: PMC3915302 DOI: 10.1038/srep04011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/16/2014] [Indexed: 11/09/2022] Open
Abstract
Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins.
Collapse
|
21
|
Ramos-Alvarez C, Yoo BK, Pietri R, Lamarre I, Martin JL, Lopez-Garriga J, Negrerie M. Reactivity and dynamics of H2S, NO, and O2 interacting with hemoglobins from Lucina pectinata. Biochemistry 2013; 52:7007-21. [PMID: 24040745 DOI: 10.1021/bi400745a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hemoglobin HbI from the clam Lucina pectinata is involved in H2S transport, whereas homologous heme protein HbII/III is involved in O2 metabolism. Despite similar tertiary structures, HbI and HbII/III exhibit very different reactivity toward heme ligands H2S, O2, and NO. To investigate this reactivity at the heme level, we measured the dynamics of ligand interaction by time-resolved absorption spectroscopy in the picosecond to nanosecond time range. We demonstrated that H2S can be photodissociated from both ferric and ferrous HbI. H2S geminately rebinds to ferric and ferrous out-of-plane iron with time constants (τgem) of 12 and 165 ps, respectively, with very different proportions of photodissociated H2S exiting the protein (24% in ferric and 80% in ferrous HbI). The Gln(E7)His mutation considerably changes H2S dynamics in ferric HbI, indicating the role of Gln(E7) in controling H2S reactivity. In ferric HbI, the rate of diffusion of H2S from the solvent into the heme pocket (kentry) is 0.30 μM(-1) s(-1). For the HbII/III-O2 complex, we observed mainly a six-coordinate vibrationally excited heme-O2 complex with O2 still bound to the iron. This explains the low yield of O2 photodissociation and low koff from HbII/III, compared with those of HbI and Mb. Both isoforms behave very differently with regard to NO and O2 dynamics. Whereas the amplitude of geminate rebinding of O2 to HbI (38.5%) is similar to that of myoglobin (34.5%) in spite of different distal heme sites, it appears to be much larger for HbII/III (77%). The distal Tyr(B10) side chain present in HbII/III increases the energy barrier for ligand escape and participates in the stabilization of bound O2 and NO.
Collapse
Affiliation(s)
- Cacimar Ramos-Alvarez
- Department of Chemistry, University of Puerto Rico , Mayagüez Campus, Mayagüez 00680, Puerto Rico
| | | | | | | | | | | | | |
Collapse
|
22
|
Nery MF, Arroyo JI, Opazo JC. Accelerated Evolutionary Rate of the Myoglobin Gene in Long-Diving Whales. J Mol Evol 2013; 76:380-7. [DOI: 10.1007/s00239-013-9572-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
|
23
|
Krokhotin A, Niemi AJ, Peng X. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics. J Chem Phys 2013; 138:175101. [PMID: 23656161 DOI: 10.1063/1.4801330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.
Collapse
Affiliation(s)
- Andrey Krokhotin
- Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala, Sweden.
| | | | | |
Collapse
|
24
|
Newhouse EI, Newhouse JS, Alam M. Molecular dynamics study of hell's gate globin I (HGbI) from a methanotrophic extremophile: oxygen migration through a large cavity. J Mol Model 2013; 19:2265-71. [PMID: 23377896 DOI: 10.1007/s00894-012-1739-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022]
Abstract
Hell's gate globin I (HGbI), a heme-containing protein from the extremophile Methylacidiphilum infernorum, has fast oxygen-binding/slow release characteristics due to its distal residues Gln and Tyr. The combination of Gln/Tyr distal iron coordination, adaptation to extreme environmental conditions, and lack of a D helix suggests that ligand migration in HGbI differs from other previously studied globins. Locally enhanced molecular dynamics trajectories of oxygen migration indicate a large internal cavity. This may increase the tendency of oxygen to exit from portals other than the most direct exit from the space near the heme. Oxygen may reside transiently in shallow surface depressions around the exits. Such surface trapping may enhance both oxygen uptake by increasing contact time between molecules, and decrease release by increasing the probability of oxygen reentry from the vicinity of the portal.
Collapse
|
25
|
Lange KM, Golnak R, Bonhommeau S, Aziz EF. Ligand discrimination of myoglobin in solution: an iron L-edge X-ray absorption study of the active centre. Chem Commun (Camb) 2013; 49:4163-5. [DOI: 10.1039/c3cc37973f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron L-edge X-ray absorption spectra of the active centre of myoglobin in the met-form, in the reduced form and upon ligation to O2, CO, NO and CN are presented.
Collapse
Affiliation(s)
| | - Ronny Golnak
- Joint Ultrafast Dynamics Lab in Solutions and at Interfaces (JULiq)
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
| | | | - Emad F. Aziz
- Joint Ultrafast Dynamics Lab in Solutions and at Interfaces (JULiq)
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
- Freie Universität Berlin
| |
Collapse
|
26
|
Cazade PA, Meuwly M. Oxygen migration pathways in NO-bound truncated hemoglobin. Chemphyschem 2012; 13:4276-86. [PMID: 23161831 DOI: 10.1002/cphc.201200608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/28/2012] [Indexed: 11/10/2022]
Abstract
Atomistic simulations of dioxygen (O(2)) dynamics and migration in nitric oxide-bound truncated Hemoglobin N (trHbN) of Mycobacterium tuberculosis are reported. From more than 100 ns of simulations the connectivity network involving the metastable states for localization of the O(2) ligand is built and analyzed. It is found that channel I is the primary entrance point for O(2) whereas channel II is predominantly an exit path although access to the protein active site is also possible. For O(2) a new site compared to nitric oxide, from which reaction with the heme group can occur, was found. As this site is close to the heme iron, it could play an important role in the dioxygenation mechanism as O(2) can remain there for hundreds of picoseconds after which it can eventually leave the protein, while NO is localized in Xe2. The present study supports recent experimental work which proposed that O(2) docks in alternative pockets than Xe close to the reactive site. Similar to other proteins, a phenylalanine residue (Phe62) plays the role of a gate along the access route in channel I. The most highly connected site is the Xe3 pocket which is a "hub" and free energy barriers between the different metastable states are ≈1.5 kcal mol(-1) which allows facile O(2) migration within the protein.
Collapse
Affiliation(s)
- Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland
| | | |
Collapse
|
27
|
Tsuduki T, Tomita A, Koshihara SY, Adachi SI, Yamato T. Ligand migration in myoglobin: a combined study of computer simulation and x-ray crystallography. J Chem Phys 2012; 136:165101. [PMID: 22559505 DOI: 10.1063/1.4704586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A ligand-migration mechanism of myoglobin was studied by a multidisciplinary approach that used x-ray crystallography and molecular dynamics simulation. The former revealed the structural changes of the protein along with the ligand migration, and the latter provided the statistical ensemble of protein conformations around the thermal average. We developed a novel computational method, homogeneous ensemble displacement, and generated the conformational ensemble of ligand-detached species from that of ligand-bound species. The thermally averaged ligand-protein interaction was illustrated in terms of the potential of mean force. Although the structural changes were small, the presence of the ligand molecule in the protein matrix significantly affected the 3D scalar field of the potential of mean force, in accordance with the self-opening model proposed in the previous x-ray study.
Collapse
Affiliation(s)
- Takayuki Tsuduki
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
28
|
Salter MD, Blouin GC, Soman J, Singleton EW, Dewilde S, Moens L, Pesce A, Nardini M, Bolognesi M, Olson JS. Determination of ligand pathways in globins: apolar tunnels versus polar gates. J Biol Chem 2012; 287:33163-78. [PMID: 22859299 DOI: 10.1074/jbc.m112.392258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although molecular dynamics simulations suggest multiple interior pathways for O(2) entry into and exit from globins, most experiments indicate well defined single pathways. In 2001, we highlighted the effects of large-to-small amino acid replacements on rates for ligand entry and exit onto the three-dimensional structure of sperm whale myoglobin. The resultant map argued strongly for ligand movement through a short channel from the heme iron to solvent that is gated by the distal histidine (His-64(E7)) near the solvent edge of the porphyrin ring. In this work, we have applied the same mutagenesis mapping strategy to the neuronal mini-hemoglobin from Cerebratulus lacteus (CerHb), which has a large internal tunnel from the heme iron to the C-terminal ends of the E and H helices, a direction that is 180° opposite to the E7 channel. Detailed comparisons of the new CerHb map with expanded results for Mb show unambiguously that the dominant (>90%) ligand pathway in CerHb is through the internal tunnel, and the major (>75%) ligand pathway in Mb is through the E7 gate. These results demonstrate that: 1) mutagenesis mapping can identify internal pathways when they exist; 2) molecular dynamics simulations need to be refined to address discrepancies with experimental observations; and 3) alternative pathways have evolved in globins to meet specific physiological demands.
Collapse
Affiliation(s)
- Mallory D Salter
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoo BK, Lamarre I, Martin JL, Negrerie M. Quaternary structure controls ligand dynamics in soluble guanylate cyclase. J Biol Chem 2012; 287:6851-9. [PMID: 22223482 PMCID: PMC3307277 DOI: 10.1074/jbc.m111.299297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/03/2012] [Indexed: 11/06/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain β(1)(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In β(1)(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to β(1)(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates k(on) = 0.075 ± 0.01 × 10(6) M(-1) · S(-1) for sGC and 0.83 ± 0.1 × 10(6) M(-1) · S(-1) for β(1)(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the β(1)(191-619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe(2+)-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| | - Isabelle Lamarre
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| | - Jean-Louis Martin
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| | - Michel Negrerie
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
30
|
Lucas MF, Guallar V. An atomistic view on human hemoglobin carbon monoxide migration processes. Biophys J 2012; 102:887-96. [PMID: 22385860 DOI: 10.1016/j.bpj.2012.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/02/2012] [Accepted: 01/11/2012] [Indexed: 10/28/2022] Open
Abstract
A significant amount of work has been devoted to obtaining a detailed atomistic knowledge of the human hemoglobin mechanism. Despite this impressive research, to date, the ligand diffusion processes remain unclear and controversial. Using recently developed computational techniques, PELE, we are capable of addressing the ligand migration processes. First, the methodology was tested on myoglobin's CO migration, and the results were compared with the wealth of theoretical and experimental studies. Then, we explored both hemoglobin tense and relaxed states and identified the differences between the α-and β-subunits. Our results indicate that the proximal site, equivalent to the Xe1 cavity in myoglobin, is never visited. Furthermore, strategically positioned residues alter the diffusion processes within hemoglobin's subunits and suggest that multiple pathways exist, especially diversified in the α-globins. A significant dependency of the ligand dynamics on the tertiary structure is also observed.
Collapse
Affiliation(s)
- M Fátima Lucas
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | | |
Collapse
|
31
|
Scorciapino MA, Wallon C, Ceccarelli M. MD simulations of plant hemoglobins: the hexa- to penta-coordinate structural transition. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1041-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
|
33
|
Lin TL, Song G. Efficient mapping of ligand migration channel networks in dynamic proteins. Proteins 2011; 79:2475-90. [DOI: 10.1002/prot.23071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/01/2011] [Accepted: 04/19/2011] [Indexed: 11/07/2022]
|
34
|
Kiyota Y, Yoshida N, Hirata F. Affinity of small ligands to myoglobin studied by the 3D-RISM theory. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2010.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Birukou I, Soman J, Olson JS. Blocking the gate to ligand entry in human hemoglobin. J Biol Chem 2010; 286:10515-29. [PMID: 21193395 DOI: 10.1074/jbc.m110.176271] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
His(E7) to Trp replacements in HbA lead to markedly biphasic bimolecular CO rebinding after laser photolysis. For isolated mutant subunits, the fraction of fast phase increases with increasing [CO], suggesting a competition between binding to an open conformation with an empty E7 channel and relaxation to blocked or closed, slowly reacting states. The rate of conformational relaxation of the open state is ∼18,000 s(-1) in α subunits and ∼10-fold faster in β subunits, ∼175,000 s(-1). Crystal structures were determined for tetrameric α(WT)β(Trp-63) HbCO, α(Trp-58)β(WT) deoxyHb, and Trp-64 deoxy- and CO-Mb as controls. In Trp-63(E7) βCO, the indole side chain is located in the solvent interface, blocking entry into the E7 channel. Similar blocked Trp-64(E7) conformations are observed in the mutant Mb crystal structures. In Trp-58(E7) deoxy-α subunits, the indole side chain fills both the channel and the distal pocket, forming a completely closed state. The bimolecular rate constant for CO binding, k'(CO), to the open conformations of both mutant Hb subunits is ∼80-90 μm(-1) s(-1), whereas k'(CO) for the completely closed states is 1000-fold slower, ∼0.08 μm(-1) s(-1). A transient intermediate with k'(CO) ≈ 0.7 μm(-1) s(-1) is observed after photolysis of Trp-63(E7) βCO subunits and indicates that the indole ring blocks the entrance to the E7 channel, as observed in the crystal structures of Trp(E7) deoxyMb and βCO subunits. Thus, either blocking or completely filling the E7 channel dramatically slows bimolecular binding, providing strong evidence that the E7 channel is the major pathway (≥90%) for ligand entry in human hemoglobin.
Collapse
Affiliation(s)
- Ivan Birukou
- Department of Biochemistry and Cell Biology and the W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
36
|
Anselmi M, Di Nola A, Amadei A. The effects of the L29F mutation on the ligand migration kinetics in crystallized myoglobin as revealed by molecular dynamics simulations. Proteins 2010; 79:867-79. [DOI: 10.1002/prot.22924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 10/13/2010] [Indexed: 11/09/2022]
|
37
|
|
38
|
Tomita A, Kreutzer U, Adachi SI, Koshihara SY, Jue T. ‘It's hollow’: the function of pores within myoglobin. J Exp Biol 2010; 213:2748-54. [DOI: 10.1242/jeb.042994] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Despite a century of research, the cellular function of myoglobin (Mb), the mechanism regulating oxygen (O2) transport in the cell and the structure–function relationship of Mb remain incompletely understood. In particular, the presence and function of pores within Mb have attracted much recent attention. These pores can bind to Xe as well as to other ligands. Indeed, recent cryogenic X-ray crystallographic studies using novel techniques have captured snapshots of carbon monoxide (CO) migrating through these pores. The observed movement of the CO molecule from the heme iron site to the internal cavities and the associated structural changes of the amino acid residues around the cavities confirm the integral role of the pores in forming a ligand migration pathway from the protein surface to the heme. These observations resolve a long-standing controversy – but how these pores affect the physiological function of Mb poses a striking question at the frontier of biology.
Collapse
Affiliation(s)
- Ayana Tomita
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo, 152-8551, Japan
- Non-equilibrium Dynamics Project, ERATO/JST, 1-1 O-ho, Tsukuba, Ibaraki 305-0801, Japan
| | - Ulrike Kreutzer
- Department of Biochemistry and Molecular Medicine, University of California Davis, CA 95616-8635, USA
| | - Shin-ichi Adachi
- Non-equilibrium Dynamics Project, ERATO/JST, 1-1 O-ho, Tsukuba, Ibaraki 305-0801, Japan
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 O-ho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-ya Koshihara
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo, 152-8551, Japan
- Non-equilibrium Dynamics Project, ERATO/JST, 1-1 O-ho, Tsukuba, Ibaraki 305-0801, Japan
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California Davis, CA 95616-8635, USA
| |
Collapse
|
39
|
Nienhaus K, Nienhaus GU. Ligand dynamics in heme proteins observed by Fourier transform infrared-temperature derivative spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1030-41. [PMID: 20656073 DOI: 10.1016/j.bbapap.2010.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a powerful tool for the investigation of protein-ligand interactions in heme proteins. Nitric oxide and carbon monoxide are attractive physiologically relevant ligands because their bond stretching vibrations give rise to strong mid-infrared absorption bands that can be measured with exquisite sensitivity and precision using photolysis difference spectroscopy at cryogenic temperatures. These stretching bands are fine-tuned by electrostatic interactions with the environment and, therefore, ligands can be utilized as local probes of structure and dynamics. Bound to the heme iron, the ligand stretching bands are susceptible to changes in the iron-ligand bond and the electric field at the active site. Upon photolysis, the vibrational bands display changes due to ligand relocation to docking sites within the protein, rotational motions of the ligand in these sites and protein conformational changes. Photolysis difference spectra taken over a wide temperature range (3-300K) using specific temperature protocols for sample photodissociation can provide detailed insights into both protein and ligand dynamics. Moreover, temperature-derivative spectroscopy (TDS) has proven to be a particularly powerful technique to study protein-ligand interactions. The FTIR-TDS technique has been extensively applied to studies of carbon monoxide binding to heme proteins, whereas measurements with nitric oxide are still scarce. Here we describe infrared cryo-spectroscopy and present a variety of applications to the study of protein-ligand interactions in heme proteins. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics and Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany
| | | |
Collapse
|
40
|
Blouin GC, Schweers RL, Olson JS. Alkyl isocyanides serve as transition state analogues for ligand entry and exit in myoglobin. Biochemistry 2010; 49:4987-97. [PMID: 20476741 DOI: 10.1021/bi1001745] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alkyl isocyanides (CNRs) identify pathways for diatomic ligand movement into and out of Mb, with their side chains acting as transition state analogues. The bound alkyl groups point either into the back of the distal pocket (in conformation, nu(CN) approximately 2070-2090 cm(-1)), which allows hydrogen bond donation from His64(E7) to the isocyano group, or toward solvent through an open His(E7) channel (out conformation, nu(CN) approximately 2110-2130 cm(-1)), which prevents polar interactions with the isocyano atoms. Fractions of the in conformer (F(in)) were measured by FTIR spectroscopy for methyl through n-pentyl isocyanide bound to a series of 20 different distal pocket mutants of sperm whale myoglobin and found to be governed by the ease of rotation of the His(E7) side chain, distal pocket volume and steric interactions, and, for the longer isocyanides, the unfavorable hydrophobic effect of placing their terminal carbon atoms into the solvent phase in the out conformation. There are strong correlations between the fraction of in conformer, F(in), for long-chain MbCNR complexes measured by FTIR spectroscopy, the fraction of geminate recombination of photodissociated O(2), and the bimolecular rates of O(2) entry into the distal pocket. These correlations indicate that alkyl isocyanides serve as transition state analogues for the movement of O(2) into and out of the binding pocket of Mb.
Collapse
Affiliation(s)
- George C Blouin
- Department of Biochemistry and Cell Biology and W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
41
|
Knapp JE, Pahl R, Cohen J, Nichols JC, Schulten K, Gibson QH, Srajer V, Royer WE. Ligand migration and cavities within Scapharca Dimeric HbI: studies by time-resolved crystallo-graphy, Xe binding, and computational analysis. Structure 2010; 17:1494-504. [PMID: 19913484 DOI: 10.1016/j.str.2009.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/25/2009] [Accepted: 09/09/2009] [Indexed: 11/19/2022]
Abstract
As in many other hemoglobins, no direct route for migration of ligands between solvent and active site is evident from crystal structures of Scapharca inaequivalvis dimeric HbI. Xenon (Xe) and organic halide binding experiments, along with computational analysis presented here, reveal protein cavities as potential ligand migration routes. Time-resolved crystallographic experiments show that photodissociated carbon monoxide (CO) docks within 5 ns at the distal pocket B site and at more remote Xe4 and Xe2 cavities. CO rebinding is not affected by the presence of dichloroethane within the major Xe4 protein cavity, demonstrating that this cavity is not on the major exit pathway. The crystal lattice has a substantial influence on ligand migration, suggesting that significant conformational rearrangements may be required for ligand exit. Taken together, these results are consistent with a distal histidine gate as one important ligand entry and exit route, despite its participation in the dimeric interface.
Collapse
Affiliation(s)
- James E Knapp
- Department of Biochemistry and Molecular Pharmacology, The University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Scorciapino MA, Robertazzi A, Casu M, Ruggerone P, Ceccarelli M. Heme Proteins: The Role of Solvent in the Dynamics of Gates and Portals. J Am Chem Soc 2010; 132:5156-63. [DOI: 10.1021/ja909822d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariano Andrea Scorciapino
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Arturo Robertazzi
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Mariano Casu
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Paolo Ruggerone
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Matteo Ceccarelli
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| |
Collapse
|
43
|
Maragliano L, Cottone G, Ciccotti G, Vanden-Eijnden E. Mapping the Network of Pathways of CO Diffusion in Myoglobin. J Am Chem Soc 2009; 132:1010-7. [DOI: 10.1021/ja905671x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luca Maragliano
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, Department of Physical and Astronomical Sciences and CNISM, University of Palermo, Palermo, Italy, Physics Department and CNISM Unit of Rome 1, University of Rome “La Sapienza”, Rome, Italy, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| | - Grazia Cottone
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, Department of Physical and Astronomical Sciences and CNISM, University of Palermo, Palermo, Italy, Physics Department and CNISM Unit of Rome 1, University of Rome “La Sapienza”, Rome, Italy, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| | - Giovanni Ciccotti
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, Department of Physical and Astronomical Sciences and CNISM, University of Palermo, Palermo, Italy, Physics Department and CNISM Unit of Rome 1, University of Rome “La Sapienza”, Rome, Italy, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| | - Eric Vanden-Eijnden
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, Department of Physical and Astronomical Sciences and CNISM, University of Palermo, Palermo, Italy, Physics Department and CNISM Unit of Rome 1, University of Rome “La Sapienza”, Rome, Italy, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| |
Collapse
|
44
|
Scorciapino MA, Robertazzi A, Casu M, Ruggerone P, Ceccarelli M. Breathing motions of a respiratory protein revealed by molecular dynamics simulations. J Am Chem Soc 2009; 131:11825-32. [PMID: 19653680 DOI: 10.1021/ja9028473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Internal cavities, which are central to the biological functions of myoglobin, are exploited by gaseous ligands (e.g., O(2), NO, CO, etc.) to migrate inside the protein matrix. At present, it is not clear whether the ligand makes its own way inside the protein or instead the internal cavities are an intrinsic feature of myoglobin. To address this issue, standard molecular dynamics simulations were performed on horse-heart met-myoglobin with no ligand migrating inside the protein matrix. To reveal intrinsic internal pathways, the use of a statistical approach was applied to the cavity calculation, with special emphasis on the major pathway from the distal pocket to Xe1. Our study points out the remarkable dynamical behavior of Xe4, whose "breathing motions" may facilitate migration of ligands through the distal region. Additionally, our results highlight a two-way path for a ligand to diffuse through the proximal region, possibly allowing an alternative route in case Xe1 is occupied. Finally, our approach has led us to the identification of key residues, such as leucines, that may work as switches between cavities.
Collapse
Affiliation(s)
- Mariano Andrea Scorciapino
- Department of Chemical Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (Ca), Italy
| | | | | | | | | |
Collapse
|
45
|
Mishra S, Meuwly M. Nitric oxide dynamics in truncated hemoglobin: docking sites, migration pathways, and vibrational spectroscopy from molecular dynamics simulations. Biophys J 2009; 96:2105-18. [PMID: 19289037 DOI: 10.1016/j.bpj.2008.11.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/28/2022] Open
Abstract
Atomistic simulations of nitric oxide (NO) dynamics and migration in the trHbN of Mycobacterium tuberculosis are reported. From extensive molecular dynamics simulations (48 ns in total), the structural and energetic properties of the ligand docking sites in the protein have been characterized and a connectivity network between the ligand docking sites has been built. Several novel migration and exit pathways are found and are analyzed in detail. The interplay between a hydrogen-bonding network involving residues Tyr(33) and Gln(58) and the bound O(2) ligand is discussed and the role of Phe(62) residue in ligand migration is examined. It is found that Phe(62) is directly involved in controlling ligand migration. This is reminiscent of His(64) in myoglobin, which also plays a central role in CO migration pathways. Finally, infrared spectra of the NO molecule in different ligand docking sites of the protein are calculated. The pocket-specific spectra are typically blue-shifted by 5-10 cm(-1), which should be detectable in future spectroscopic experiments.
Collapse
|
46
|
Kiyota Y, Hiraoka R, Yoshida N, Maruyama Y, Imai T, Hirata F. Theoretical Study of CO Escaping Pathway in Myoglobin with the 3D-RISM Theory. J Am Chem Soc 2009; 131:3852-3. [DOI: 10.1021/ja900332e] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuomi Kiyota
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Ryusuke Hiraoka
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Norio Yoshida
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yutaka Maruyama
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takashi Imai
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Fumio Hirata
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
47
|
Salter MD, Nienhaus K, Nienhaus GU, Dewilde S, Moens L, Pesce A, Nardini M, Bolognesi M, Olson JS. The apolar channel in Cerebratulus lacteus hemoglobin is the route for O2 entry and exit. J Biol Chem 2008; 283:35689-702. [PMID: 18840607 PMCID: PMC2602902 DOI: 10.1074/jbc.m805727200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/08/2008] [Indexed: 11/06/2022] Open
Abstract
The major pathway for O2 binding to mammalian myoglobins (Mb) and hemoglobins (Hb) involves transient upward movement of the distal histidine (His-64(E7)), allowing ligand capture in the distal pocket. The mini-globin from Cerebratulus lacteus (CerHb) appears to have an alternative pathway between the E and H helices that is made accessible by loss of the N-terminal A helix. To test this pathway, we examined the effects of changing the size of the E7 gate and closing the end of the apolar channel in CerHb by site-directed mutagenesis. Increasing the size of Gln-44(E7) from Ala to Trp causes variation of association (k'O2) and dissociation (kO2) rate coefficients, but the changes are not systematic. More significantly, the fractions (Fgem approximately 0.05-0.19) and rates (kgem approximately 50-100 micros(-1)) of geminate CO recombination in the Gln-44(E7) mutants are all similar. In contrast, blocking the entrance to the apolar channel by increasing the size of Ala-55(E18) to Phe and Trp causes the following: 1) both k'O2 and kO2 to decrease roughly 4-fold; 2) Fgem for CO to increase from approximately 0.05 to 0.45; and 3) kgem to decrease from approximately 80 to approximately 9 micros(-1), as ligands become trapped in the channel. Crystal structures and low temperature Fourier-transform infrared spectra of Phe-55 and Trp-55 CerHb confirm that the aromatic side chains block the channel entrance, with little effect on the distal pocket. These results provide unambiguous experimental proof that diatomic ligands can enter and exit a globin through an interior channel in preference to the more direct E7 pathway.
Collapse
Affiliation(s)
- Mallory D Salter
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Atomic level computational identification of ligand migration pathways between solvent and binding site in myoglobin. Proc Natl Acad Sci U S A 2008; 105:9204-9. [PMID: 18599444 DOI: 10.1073/pnas.0710825105] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myoglobin is a globular protein involved in oxygen storage and transport. No consensus yet exists on the atomic level mechanism by which oxygen and other small nonpolar ligands move between the myoglobin's buried heme, which is the ligand binding site, and surrounding solvent. This study uses room temperature molecular dynamics simulations to provide a complete atomic level picture of ligand migration in myoglobin. Multiple trajectories--providing a cumulative total of 7 micros of simulation--are analyzed. Our simulation results are consistent with and tie together previous experimental findings. Specifically, we characterize: (i) Explicit full trajectories in which the CO ligand shuttles between the internal binding site and the solvent and (ii) pattern and structural origins of transient voids available for ligand migration. The computations are performed both in sperm whale myoglobin wild-type and in sperm whale V68F myoglobin mutant, which is experimentally known to slow ligand-binding kinetics. On the basis of these independent, but mutually consistent ligand migration and transient void computations, we find that there are two discrete dynamical pathways for ligand migration in myoglobin. Trajectory hops between these pathways are limited to two bottleneck regions. Ligand enters and exits the protein matrix in common identifiable portals on the protein surface. The pathways are located in the "softer" regions of the protein matrix and go between its helices and in its loop regions. Localized structural fluctuations are the primary physical origin of the simulated CO migration pathways inside the protein.
Collapse
|
49
|
Use of the Conjugate Peak Refinement Algorithm for Identification of Ligand‐Binding Pathways in Globins. Methods Enzymol 2008; 437:417-37. [DOI: 10.1016/s0076-6879(07)37021-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Abstract
Recent advances in computational biology have made it possible to map the complete network and energy profile of gas migration pathways inside proteins. Although networks of O(2) pathways have already been characterized for a small number of proteins, the general properties and locations of these pathways have not been previously compared between proteins. In this study, maps of the O(2) pathways inside 12 monomeric globins were computed. It is found that, despite the conserved tertiary structure fold of the studied globins, the shape and topology of O(2) pathway networks exhibit a large variability between different globins, except when two globins are nearly identical. The locations of the O(2) pathways are, however, found to be correlated with the location of large hydrophobic residues, and a similar correlation is observed in two unrelated protein families: monomeric globins and copper-containing amine oxidases. The results have implications for the evolution of gas pathways in proteins and for protein engineering applications involving modifications of these pathways.
Collapse
Affiliation(s)
- Jordi Cohen
- Beckman Institute, University of Illinois, Urbana, Illinois, USA
| | | |
Collapse
|