1
|
Chen F, Jiang Y, Xu Z, Zhao D, Li D, Yang H, Zhu S, Xu H, Peng S, Miao Z, Wang H, Tong M, Hou Y, Zhao Y. Design, synthesis and evaluation of novel LpxC inhibitors containing a hydrazone moiety as Gram-negative antibacterial agents. Eur J Med Chem 2024; 279:116892. [PMID: 39341094 DOI: 10.1016/j.ejmech.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
LpxC inhibitors are new-type antibacterial agents developed in the last twenty years, mainly against Gram-negative bacteria infections. To enable the development of novel LpxC inhibitors with potent antibacterial activities, several series of compounds were designed and synthesized and their antibacterial activities were evaluated against E. coli ATCC25922, P. aeruginosa ATCC27853, P. aeruginosa clinical isolate PAE 22-1, K. pneumoniae ATCC700603, K. pneumoniae clinical isolate KPN+22-1 in vitro. Compound 6i exhibited significant antibacterial activities against above five Gram-negative bacteria except P. aeruginosa ATCC27853. Moreover, compound 6i exhibited moderate liver microsomal stability and a promising pharmacokinetic profile (AUC0-t = 1050 ng h mL-1, oral bioavailability of 13.3 %) in Sprague-Dawley rats, acceptable PPB, low risk of drug-drug interactions and non-cytotoxic activity against hepatic cell. Collectively, compound 6i could be a promising Gram-negative antibacterial agent for further investigation.
Collapse
Affiliation(s)
- Fei Chen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Yufeng Jiang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Zidong Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group JiangSu Haici Biological Pharmaceutical Co., Ltd., No. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou, Jiangsu, 225326, China
| | - Dan Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Huiyuan Yang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Shenghong Zhu
- Yangtze River Pharmaceutical Group JiangSu Haici Biological Pharmaceutical Co., Ltd., No. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou, Jiangsu, 225326, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou, Jiangsu, 225321, China
| | - Shan Peng
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Zhenyu Miao
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Han Wang
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Minghui Tong
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
Khan FZ, Palmer KL, Guan Z. Biosynthesis of glucosaminyl phosphatidylglycerol in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617631. [PMID: 39415997 PMCID: PMC11483062 DOI: 10.1101/2024.10.10.617631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Glucosaminyl phosphatidylglycerol (GlcN-PG) was first identified in bacteria in the 1960s and was recently reported in Pseudomonas aeruginosa. Despite the important implications in altering membrane charge (by the modification of anionic PG with cationic glucosamine), the biosynthesis and functions of GlcN-PG have remained uncharacterized. Using bioinformatic and lipidomic analysis, we identified a 3-gene operon, renamed as gpgSDF, that is responsible for the biosynthesis and potential transport of GlcN-PG in P. aeruginosa: gpgS encodes a novel glycotransferase that is responsible for the modification of phosphatidylglycerol (PG) with N-acetylglucosamine (GlcNAc) to produce GlcNAc-PG, and gpgD encodes a novel deacetylase that removes the acetyl group from GlcNAc-PG to produce GlcN-PG. The third gene in the operon, gpgF, is predicated to encode a flippase whose activity remains to be experimentally verified. As expected, the heterologous expression of the gpgSDF operon in Escherichia coli resulted in production of both GlcNAc-PG and GlcN-PG. The identification of the biosynthetic genes of GlcN-PG paves the way for the investigation of its biological and pathological functions, which has significant implications in our understanding of the unique membrane physiology, pathogenesis and antimicrobial resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Fabiha Zaheen Khan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Mielniczuk S, Hoff K, Baselious F, Li Y, Haupenthal J, Kany AM, Riedner M, Rohde H, Rox K, Hirsch AKH, Krimm I, Sippl W, Holl R. Development of Fragment-Based Inhibitors of the Bacterial Deacetylase LpxC with Low Nanomolar Activity. J Med Chem 2024; 67:17363-17391. [PMID: 39303295 PMCID: PMC11472313 DOI: 10.1021/acs.jmedchem.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
In a fragment-based approach using NMR spectroscopy, benzyloxyacetohydroxamic acid-derived inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the uridine diphosphate-binding site of the enzyme were developed. By appending privileged fragments via a suitable linker, potent LpxC inhibitors with promising antibacterial activities could be obtained, like the one-digit nanomolar LpxC inhibitor (S)-13j [Ki (EcLpxC C63A) = 9.5 nM; Ki (PaLpxC): 5.6 nM]. To rationalize the observed structure-activity relationships, molecular docking and molecular dynamics studies were performed. Initial in vitro absorption-distribution-metabolism-excretion-toxicity (ADMET) studies of the most potent compounds have paved the way for multiparameter optimization of our newly developed isoserine-based amides.
Collapse
Affiliation(s)
- Sebastian Mielniczuk
- Institute
of Organic Chemistry, Universität
Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
| | - Katharina Hoff
- Institute
of Organic Chemistry, Universität
Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
| | - Fady Baselious
- Institute
of Pharmacy, Martin-Luther-University of
Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle (Saale), Germany
| | - Yunqi Li
- Team
“Small Molecules for Biological Targets”, Institut Convergence
Plascan, Centre de Recherche en Cancérologie de Lyon, INSERM
U1052-CNRS UMR5286, Centre Léon Bérard, Université
de Lyon, Université Claude Bernard
Lyon1, 69008 Lyon, France
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences & School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Jörg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Andreas M. Kany
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Maria Riedner
- Technology
Platform Mass Spectrometry, Universität
Hamburg, Mittelweg 177, 20148 Hamburg, Germany
| | - Holger Rohde
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
- Institute
of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-infectives, Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabelle Krimm
- Team
“Small Molecules for Biological Targets”, Institut Convergence
Plascan, Centre de Recherche en Cancérologie de Lyon, INSERM
U1052-CNRS UMR5286, Centre Léon Bérard, Université
de Lyon, Université Claude Bernard
Lyon1, 69008 Lyon, France
| | - Wolfgang Sippl
- Institute
of Pharmacy, Martin-Luther-University of
Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle (Saale), Germany
| | - Ralph Holl
- Institute
of Organic Chemistry, Universität
Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Barden CJ, Wu F, Fernandez-Murray JP, Lu E, Sun S, Taylor MM, Rushton AL, Williams J, Tavasoli M, Meek A, Reddy AS, Doyle LM, Sagamanova I, Sivamuthuraman K, Boudreau RTM, Byers DM, Weaver DF, McMaster CR. Computer-aided drug design to generate a unique antibiotic family. Nat Commun 2024; 15:8317. [PMID: 39333560 PMCID: PMC11436758 DOI: 10.1038/s41467-024-52797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
The World Health Organization has identified antibiotic resistance as one of the three greatest threats to human health. The need for antibiotics is a pressing matter that requires immediate attention. Here, computer-aided drug design is used to develop a structurally unique antibiotic family targeting holo-acyl carrier protein synthase (AcpS). AcpS is a highly conserved enzyme essential for bacterial survival that catalyzes the first step in lipid synthesis. To the best of our knowledge, there are no current antibiotics targeting AcpS making this drug development program of high interest. We synthesize a library of > 700 novel compounds targeting AcpS, from which 33 inhibit bacterial growth in vitro at ≤ 2 μg/mL. We demonstrate that compounds from this class have stand-alone activity against a broad spectrum of Gram-positive organisms and synergize with colistin to enable coverage of Gram-negative species. We demonstrate efficacy against clinically relevant multi-drug resistant strains in vitro and in animal models of infection in vivo including a difficult-to-treat ischemic infection exemplified by diabetic foot ulcer infections in humans. This antibiotic family could form the basis for several multi-drug-resistant antimicrobial programs.
Collapse
Affiliation(s)
- Christopher J Barden
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Erhu Lu
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shengguo Sun
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marcia M Taylor
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Annette L Rushton
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Jason Williams
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Autumn Meek
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alla Siva Reddy
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lisa M Doyle
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Irina Sagamanova
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | - David M Byers
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
5
|
Shu S, Tsutsui Y, Nathawat R, Mi W. Dual function of LapB (YciM) in regulating Escherichia coli lipopolysaccharide synthesis. Proc Natl Acad Sci U S A 2024; 121:e2321510121. [PMID: 38635633 PMCID: PMC11046580 DOI: 10.1073/pnas.2321510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Levels of lipopolysaccharide (LPS), an essential glycolipid on the surface of most gram-negative bacteria, are tightly controlled-making LPS synthesis a promising target for developing new antibiotics. Escherichia coli adaptor protein LapB (YciM) plays an important role in regulating LPS synthesis by promoting degradation of LpxC, a deacetylase that catalyzes the first committed step in LPS synthesis. Under conditions where LPS is abundant, LapB recruits LpxC to the AAA+ protease FtsH for degradation. LapB achieves this by simultaneously interacting with FtsH through its transmembrane helix and LpxC through its cytoplasmic domain. Here, we describe a cryo-EM structure of the complex formed between LpxC and the cytoplasmic domain of LapB (LapBcyto). The structure reveals how LapB exploits both its tetratricopeptide repeat (TPR) motifs and rubredoxin domain to interact with LpxC. Through both in vitro and in vivo analysis, we show that mutations at the LapBcyto/LpxC interface prevent LpxC degradation. Unexpectedly, binding to LapBcyto also inhibits the enzymatic activity of LpxC through allosteric effects reminiscent of LpxC activation by MurA in Pseudomonas aeruginosa. Our findings argue that LapB regulates LPS synthesis in two steps: In the first step, LapB inhibits the activity of LpxC, and in the second step, it commits LpxC to degradation by FtsH.
Collapse
Affiliation(s)
- Sheng Shu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Yuko Tsutsui
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
- Cancer Biology Institute, Yale University, West Haven, CT06516
| | - Rajkanwar Nathawat
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Wei Mi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| |
Collapse
|
6
|
Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. RSC Med Chem 2023; 14:1446-1471. [PMID: 37593578 PMCID: PMC10429894 DOI: 10.1039/d3md00116d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
With the increasing prevalence of untreatable infections caused by antibiotic-resistant bacteria, the discovery of new drugs from natural products has become a hot research topic. The antibacterial activity of anthraquinones widely distributed in traditional Chinese medicine has attracted much attention. Herein, the structure and activity relationships (SARs) of anthraquinones as bacteriostatic agents are reviewed and elucidated. The substituents of anthraquinone and its derivatives are closely related to their antibacterial activities. The stronger the polarity of anthraquinone substituents is, the more potent the antibacterial effects appear. The presence of hydroxyl groups is not necessary for the antibacterial activity of hydroxyanthraquinone derivatives. Substitution of di-isopentenyl groups can improve the antibacterial activity of anthraquinone derivatives. The rigid plane structure of anthraquinone lowers its water solubility and results in the reduced activity. Meanwhile, the antibacterial mechanisms of anthraquinone and its analogs are explored, mainly including biofilm formation inhibition, destruction of the cell wall, endotoxin inhibition, inhibition of nucleic acid and protein synthesis, and blockage of energy metabolism and other substances.
Collapse
Affiliation(s)
- Tang Qun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Tiantian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University 440113 Guangzhou China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Jing Xu
- Huanghua Agricultural and Rural Development Bureau Bohai New Area 061100 Hebei China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| |
Collapse
|
7
|
Zhao J, Cochrane CS, Najeeb J, Gooden D, Sciandra C, Fan P, Lemaitre N, Newns K, Nicholas RA, Guan Z, Thaden JT, Fowler VG, Spasojevic I, Sebbane F, Toone EJ, Duncan C, Gammans R, Zhou P. Preclinical safety and efficacy characterization of an LpxC inhibitor against Gram-negative pathogens. Sci Transl Med 2023; 15:eadf5668. [PMID: 37556556 PMCID: PMC10785772 DOI: 10.1126/scitranslmed.adf5668] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/20/2023] [Indexed: 08/11/2023]
Abstract
The UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase LpxC is an essential enzyme in the biosynthesis of lipid A, the outer membrane anchor of lipopolysaccharide and lipooligosaccharide in Gram-negative bacteria. The development of LpxC-targeting antibiotics toward clinical therapeutics has been hindered by the limited antibiotic profile of reported non-hydroxamate inhibitors and unexpected cardiovascular toxicity observed in certain hydroxamate and non-hydroxamate-based inhibitors. Here, we report the preclinical characterization of a slow, tight-binding LpxC inhibitor, LPC-233, with low picomolar affinity. The compound is a rapid bactericidal antibiotic, unaffected by established resistance mechanisms to commercial antibiotics, and displays outstanding activity against a wide range of Gram-negative clinical isolates in vitro. It is orally bioavailable and efficiently eliminates infections caused by susceptible and multidrug-resistant Gram-negative bacterial pathogens in murine soft tissue, sepsis, and urinary tract infection models. It displays exceptional in vitro and in vivo safety profiles, with no detectable adverse cardiovascular toxicity in dogs at 100 milligrams per kilogram. These results establish the feasibility of developing oral LpxC-targeting antibiotics for clinical applications.
Collapse
Affiliation(s)
- Jinshi Zhao
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Javaria Najeeb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Current address: Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Gooden
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Small Molecule Synthesis Facility, Duke University, Durham, NC 27708, USA
| | - Carly Sciandra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ping Fan
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC 27710, USA
| | - Nadine Lemaitre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Kate Newns
- Departments of Pharmacology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Current address: Envision Pharma Group, Philadelphia, PA 19109, USA
| | - Robert A. Nicholas
- Departments of Pharmacology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua T. Thaden
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Vance G. Fowler
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Eric J. Toone
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Current address: Breakthrough Energy Ventures, 4110 Carillon Point Kirkland, WA 98033 USA
| | | | | | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Castro-Velázquez V, Díaz-Cervantes E, Rodríguez-González V, Cortés-García CJ. In-silico assay of a dosing vehicle based on chitosan-TiO 2 and modified benzofuran-isatin molecules against Pseudomonas aeruginosa. PEERJ PHYSICAL CHEMISTRY 2023. [DOI: 10.7717/peerj-pchem.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
A high priority of the World Health Organization (WHO) is the study of drugs against Pseudomonas aeruginosa, which has developed antibiotic resistance. In this order, recent research is analyzing biomaterials and metal oxide nanoparticles, such as chitosan (QT) and TiO2 (NT), which can transport molecules with biological activity against bacteria, to propose them as drug carrier candidates. In the present work, 10 modified benzofuran-isatin molecules were studied through computational simulation using density functional theory (DFT) and molecular docking assays against Hfq and LpxC (proteins of P. aeruginosa). The results show that the ligand efficiency of commercial drugs C-CP and C-AZI against Hfq is low compared with the best-designed molecule MOL-A. However, we highlight that the influence of NT promotes a better interaction of some molecules, where MOL-E generates a better interaction by 0.219 kcal/mol when NT is introduced in Hfq, forming the system Hfq-NT (Target-NT). Similar behavior is observed in the LpxC target, in which MOL-J is better at 0.072 kcal/mol. Finally, two pharmacophoric models for Hfq and LpxC implicate hydrophobic and aromatic-hydrophobic fragments.
Collapse
Affiliation(s)
- Verónica Castro-Velázquez
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnología, San Luis Potosí, San Luis Potosí, Mexico
- Departamento de Alimentos, Universidad de Guanajuato, Tierra Blanca, Guanajuato, Mexico
| | - Erik Díaz-Cervantes
- Departamento de Alimentos, Universidad de Guanajuato, Tierra Blanca, Guanajuato, Mexico
| | - Vicente Rodríguez-González
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnología, San Luis Potosí, San Luis Potosí, Mexico
| | - Carlos J. Cortés-García
- Laboratorio de Diseño Molecular/Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
9
|
Niu Z, Lei P, Wang Y, Wang J, Yang J, Zhang J. Small molecule LpxC inhibitors against gram-negative bacteria: Advances and future perspectives. Eur J Med Chem 2023; 253:115326. [PMID: 37023679 DOI: 10.1016/j.ejmech.2023.115326] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Uridine diphosphate-3-O-(hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a metalloenzyme with zinc ions as cofactors and is a key enzyme in the essential structural outer membrane lipid A synthesis commitment step of gram-negative bacteria. As LpxC is extremely homologous among different Gram-negative bacteria, it is conserved in almost all gram-negative bacteria, which makes LpxC a promising target. LpxC inhibitors have been reported extensively in recent years, such as PF-5081090 and CHIR-090 were found to have broad-spectrum antibiotic activity against P. aeruginosa and E. coli. They are mainly classified into hydroxamate inhibitors and non-hydroxamate inhibitors based on their structure, but no LpxC inhibitors have been marketed due to safety and activity issues. This review, therefore, focuses on small molecule inhibitors of LpxC against gram-negative pathogenic bacteria and covers recent advances in LpxC inhibitors, focusing on their structural optimization process, structure-activity relationships, and future directions, with the aim of providing ideas for the development of LpxC inhibitors and clinical research.
Collapse
|
10
|
Romano K, Hung D. Targeting LPS biosynthesis and transport in gram-negative bacteria in the era of multi-drug resistance. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119407. [PMID: 36543281 PMCID: PMC9922520 DOI: 10.1016/j.bbamcr.2022.119407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Gram-negative bacteria pose a major threat to human health in an era fraught with multi-drug resistant bacterial infections. Despite extensive drug discovery campaigns over the past decades, no new antibiotic target class effective against gram-negative bacteria has become available to patients since the advent of the carbapenems in 1985. Antibiotic discovery efforts against gram-negative bacteria have been hampered by limited intracellular accumulation of xenobiotics, in large part due to the impermeable cell envelope comprising lipopolysaccharide (LPS) in the outer leaflet of the outer membrane, as well as a panoply of efflux pumps. The biosynthesis and transport of LPS are essential to the viability and virulence of most gram-negative bacteria. Thus, both LPS biosynthesis and transport are attractive pathways to target therapeutically. In this review, we summarize the LPS biosynthesis and transport pathways and discuss efforts to find small molecule inhibitors against targets within these pathways.
Collapse
Affiliation(s)
- K.P. Romano
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA,The Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - D.T. Hung
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA,Department of Genetics, Harvard Medical School, Boston, MA, USA,Corresponding author at: The Broad Institute of MIT and Harvard, Cambridge, MA, USA. (D.T. Hung)
| |
Collapse
|
11
|
Dewachter L, Brooks AN, Noon K, Cialek C, Clark-ElSayed A, Schalck T, Krishnamurthy N, Versées W, Vranken W, Michiels J. Deep mutational scanning of essential bacterial proteins can guide antibiotic development. Nat Commun 2023; 14:241. [PMID: 36646716 PMCID: PMC9842644 DOI: 10.1038/s41467-023-35940-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Deep mutational scanning is a powerful approach to investigate a wide variety of research questions including protein function and stability. Here, we perform deep mutational scanning on three essential E. coli proteins (FabZ, LpxC and MurA) involved in cell envelope synthesis using high-throughput CRISPR genome editing, and study the effect of the mutations in their original genomic context. We use more than 17,000 variants of the proteins to interrogate protein function and the importance of individual amino acids in supporting viability. Additionally, we exploit these libraries to study resistance development against antimicrobial compounds that target the selected proteins. Among the three proteins studied, MurA seems to be the superior antimicrobial target due to its low mutational flexibility, which decreases the chance of acquiring resistance-conferring mutations that simultaneously preserve MurA function. Additionally, we rank anti-LpxC lead compounds for further development, guided by the number of resistance-conferring mutations against each compound. Our results show that deep mutational scanning studies can be used to guide drug development, which we hope will contribute towards the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| | | | | | | | | | - Thomas Schalck
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | | | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Wim Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| |
Collapse
|
12
|
Klobucar K, Jardine E, Farha MA, MacKinnon MR, Fragis M, Nkonge B, Bhando T, Borrillo L, Tsai CN, Johnson JW, Coombes BK, Magolan J, Brown ED. Genetic and Chemical Screening Reveals Targets and Compounds to Potentiate Gram-Positive Antibiotics against Gram-Negative Bacteria. ACS Infect Dis 2022; 8:2187-2197. [PMID: 36098580 DOI: 10.1021/acsinfecdis.2c00357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gram-negative bacteria are intrinsically resistant to a plethora of antibiotics that effectively inhibit the growth of Gram-positive bacteria. The intrinsic resistance of Gram-negative bacteria to classes of antibiotics, including rifamycins, aminocoumarins, macrolides, glycopeptides, and oxazolidinones, has largely been attributed to their lack of accumulation within cells due to poor permeability across the outer membrane, susceptibility to efflux pumps, or a combination of these factors. Due to the difficulty in discovering antibiotics that can bypass these barriers, finding targets and compounds that increase the activity of these ineffective antibiotics against Gram-negative bacteria has the potential to expand the antibiotic spectrum. In this study, we investigated the genetic determinants for resistance to rifampicin, novobiocin, erythromycin, vancomycin, and linezolid to determine potential targets of antibiotic-potentiating compounds. We subsequently performed a high-throughput screen of ∼50,000 diverse, synthetic compounds to uncover molecules that potentiate the activity of at least one of the five Gram-positive-targeting antibiotics. This led to the discovery of two membrane active compounds capable of potentiating linezolid and an inhibitor of lipid A biosynthesis capable of potentiating rifampicin and vancomycin. Furthermore, we characterized the ability of known inhibitors of lipid A biosynthesis to potentiate the activity of rifampicin against Gram-negative pathogens.
Collapse
Affiliation(s)
- Kristina Klobucar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Emily Jardine
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Maya A Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Marc R MacKinnon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Meghan Fragis
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brenda Nkonge
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Timsy Bhando
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Louis Borrillo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
13
|
Rosy JC, Babkiewicz E, Maszczyk P, Mrówka P, Kumar BK, Murugesan S, Kunjiappan S, Sundar K. l-Ornithine-N5-monooxygenase (PvdA) Substrate Analogue Inhibitors for Pseudomonas aeruginosa Infections Treatment: Drug Repurposing Computational Studies. Biomolecules 2022; 12:biom12070887. [PMID: 35883443 PMCID: PMC9313252 DOI: 10.3390/biom12070887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause acute and severe infections. Increasing resistance to antibiotics has given rise to the urgent need for an alternative antimicrobial agent. A promising strategy is the inhibition of iron sequestration in the bacteria. The current work aimed to screen for inhibitors of pyoverdine-mediated iron sequestration in P. aeruginosa. As a drug target, we choose l-ornithine-N5-monooxygenase (PvdA), an enzyme involved in the biosynthesis of pyoverdine that catalyzes the FAD-dependent hydroxylation of the side chain amine of ornithine. As drug repurposing is a fast and cost-efficient way of discovering new applications for known drugs, the approach may help to solve emerging clinical problems. In this study, we use data about molecules from drug banks for screening. A total of 15 drugs that are similar in structure to l-ornithine, the substrate of PvdA, and 30 drugs that are sub-structures of l-ornithine were virtually docked against PvdA. N-2-succinyl ornithine and cilazapril were found to be the top binders with a binding energy of -12.8 and -9.1 kcal mol-1, respectively. As the drug-likeness and ADME properties of the drugs were also found to be promising, molecular dynamics studies were performed to further confirm the stability of the complexes. The results of this in silico study indicate that N-2-succinyl ornithine could potentially be explored as a drug for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Joseph Christina Rosy
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; (J.C.R.); (S.K.)
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland; (E.B.); (P.M.)
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland; (E.B.); (P.M.)
| | - Piotr Mrówka
- Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, 5 Chalubinskiego Street, 02-004 Warsaw, Poland;
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 5 Chocimska Street, 00-791 Warsaw, Poland
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India; (B.K.K.); (S.M.)
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India; (B.K.K.); (S.M.)
| | - Selvaraj Kunjiappan
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; (J.C.R.); (S.K.)
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; (J.C.R.); (S.K.)
- Correspondence: ; Tel.: +91-948-963-6442
| |
Collapse
|
14
|
Sebbane F, Lemaître N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021; 11:724. [PMID: 34065940 PMCID: PMC8151713 DOI: 10.3390/biom11050724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and β-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.
Collapse
Affiliation(s)
- Florent Sebbane
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaître
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire Amiens Picardie, UR 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Université de Picardie Jules Verne, F-80000 Amiens, France
| |
Collapse
|
15
|
Zhou P, Hong J. Structure- and Ligand-Dynamics-Based Design of Novel Antibiotics Targeting Lipid A Enzymes LpxC and LpxH in Gram-Negative Bacteria. Acc Chem Res 2021; 54:1623-1634. [PMID: 33720682 DOI: 10.1021/acs.accounts.0c00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial infections caused by multi-drug-resistant Gram-negative pathogens pose a serious threat to public health. Gram-negative bacteria are characterized by the enrichment of lipid A-anchored lipopolysaccharide (LPS) or lipooligosaccharide (LOS) in the outer leaflet of their outer membrane. Constitutive biosynthesis of lipid A via the Raetz pathway is essential for bacterial viability and fitness in the human host. The inhibition of early-stage lipid A enzymes such as LpxC not only suppresses the growth of Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter spp., and other clinically important Gram-negative pathogens but also sensitizes these bacteria to other antibiotics. The inhibition of late-stage lipid A enzymes such as LpxH is uniquely advantageous because it has an extra mechanism of bacterial killing through the accumulation of toxic lipid A intermediates, rendering LpxH inhibition additionally lethal to Acinetobacter baumannii. Because essential enzymes of the Raetz pathway have never been exploited by commercial antibiotics, they are excellent targets for the development of novel antibiotics against multi-drug-resistant Gram-negative infections.This Account describes the ongoing research on characterizing the structure and inhibition of LpxC and LpxH, the second and fourth enzymes of the Raetz pathway of lipid A biosynthesis, in the laboratories of Dr. Pei Zhou and Dr. Jiyong Hong at Duke University. Our studies have elucidated the molecular basis of LpxC inhibition by the first broad-spectrum inhibitor, CHIR-090, as well as the mechanism underlying its spectrum of activity. Such an analysis has provided a molecular explanation for the broad-spectrum antibiotic activity of diacetylene-based LpxC inhibitors. Through the structural and biochemical investigation of LpxC inhibition by diacetylene LpxC inhibitors and the first nanomolar LpxC inhibitor, L-161,240, we have elucidated the intrinsic conformational and dynamics difference in individual LpxC enzymes near the active site. A similar approach has been taken to investigate LpxH inhibition, leading to the establishment of the pharmacophore model of LpxH inhibitors and subsequent structural elucidation of LpxH in complex with its first reported small-molecule inhibitor based on a sulfonyl piperazine scaffold.Intriguingly, although our crystallographic analysis of LpxC- and LpxH-inhibitor complexes detected only a single inhibitor conformation in the crystal lattice, solution NMR studies revealed the existence of multiple ligand conformations that together delineate a cryptic ligand envelope expanding the ligand-binding footprint beyond that observed in the crystal structure. By harnessing the ligand dynamics information and structural insights, we demonstrate the feasibility to design potent LpxC and LpxH inhibitors by merging multiple ligand conformations. Such an approach has enabled us to rationally design compounds with significantly enhanced potency in enzymatic assays and outstanding antibiotic activities in vitro and in animal models of bacterial infection. We anticipate that continued efforts with structure and ligand dynamics-based lead optimization will ultimately lead to the discovery of LpxC- and LpxH-targeting clinical antibiotics against a broad range of Gram-negative pathogens.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
16
|
Fan S, Li D, Yan M, Feng X, Lv G, Wu G, Jin Y, Wang Y, Yang Z. The Complex Structure of Protein AaLpxC from Aquifex aeolicus with ACHN-975 Molecule Suggests an Inhibitory Mechanism at Atomic-Level against Gram-Negative Bacteria. Molecules 2021; 26:molecules26051451. [PMID: 33800069 PMCID: PMC7962117 DOI: 10.3390/molecules26051451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
New drugs with novel antibacterial targets for Gram-negative bacterial pathogens are desperately needed. The protein LpxC is a vital enzyme for the biosynthesis of lipid A, an outer membrane component of Gram-negative bacterial pathogens. The ACHN-975 molecule has high enzymatic inhibitory capacity against the infectious diseases, which are caused by multidrug-resistant bacteria, but clinical research was halted because of its inflammatory response in previous studies. In this work, the structure of the recombinant UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase from Aquifex aeolicus in complex with ACHN-975 was determined to a resolution at 1.21 Å. According to the solved complex structure, ACHN-975 was docked into the AaLpxC’s active site, which occupied the site of AaLpxC substrate. Hydroxamate group of ACHN-975 forms five-valenced coordination with resides His74, His226, Asp230, and the long chain part of ACHN-975 containing the rigid alkynyl groups docked in further to interact with the hydrophobic area of AaLpxC. We employed isothermal titration calorimetry for the measurement of affinity between AaLpxC mutants and ACHN-975, and the results manifest the key residues (His74, Thr179, Tyr212, His226, Asp230 and His253) for interaction. The determined AaLpxC crystal structure in complex with ACHN-975 is expected to serve as a guidance and basis for the design and optimization of molecular structures of ACHN-975 analogues to develop novel drug candidates against Gram-negative bacteria.
Collapse
Affiliation(s)
- Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Danyang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, China;
| | - Xiao Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Guangxin Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Guangteng Wu
- ArNuXon Pharm-Sci Co., Ltd., Beijing 100085, China;
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
- Correspondence: (Y.W.); (Z.Y.)
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
- Correspondence: (Y.W.); (Z.Y.)
| |
Collapse
|
17
|
Troudi A, Pagès JM, Brunel JM. Chemical Highlights Supporting the Role of Lipid A in Efficient Biological Adaptation of Gram-Negative Bacteria to External Stresses. J Med Chem 2021; 64:1816-1834. [PMID: 33538159 DOI: 10.1021/acs.jmedchem.0c02185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria provides an efficient barrier against external noxious compounds such as antimicrobial agents. Associated with drug target modification, it contributes to the overall failure of chemotherapy. In the complex OM architecture, Lipid A plays an essential role by anchoring the lipopolysaccharide in the membrane and ensuring the spatial organization between lipids, proteins, and sugars. Currently, the targets of almost all antibiotics are intracellularly located and require translocation across membranes. We report herein an integrated view of Lipid A synthesis, membrane assembly, a structure comparison at the molecular structure level of numerous Gram-negative bacterial species, as well as its recent use as a target for original antibacterial molecules. This review paves the way for a new vision of a key membrane component that acts during bacterial adaptation to environmental stresses and for the development of new weapons against microbial resistance to usual antibiotics.
Collapse
Affiliation(s)
- Azza Troudi
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France.,Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1008, Tunisia
| | - Jean Marie Pagès
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| | - Jean Michel Brunel
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| |
Collapse
|
18
|
Deng X, Song M. Synthesis, antibacterial and anticancer activity, and docking study of aminoguanidines containing an alkynyl moiety. J Enzyme Inhib Med Chem 2020; 35:354-364. [PMID: 31851531 PMCID: PMC6968633 DOI: 10.1080/14756366.2019.1702654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Two series of aminoguanidines containing an alkynyl moiety were designed, synthesised, and screened for antibacterial and anticancer activities. Generally, the series 3a-3j with a 1,2-diphenylethyne exhibited better antibacterial activity than the other series (6a-6k) holding 1,4-diphenylbuta-1,3-diyne moiety antibacterial activity. Most compounds in series 3a-3j showed potent growth inhibition against the tested bacterial strains, with minimum inhibitory concentration (MIC) values in the range 0.25-8 µg/mL. Compound 3g demonstrated rapid and persistent bactericidal activity at 2 × MIC. The resistance study revealed that resistance of the tested bacteria towards 3g is not easily developed. Molecular docking studies revealed that compounds 3g and 6e bind strongly to the LpxC and FabH enzymes. Moreover, excellent activity of selected compounds against the growth of cancer cell lines A549 and SGC7901 was also observed, with IC50 values in the range 0.30-4.57 µg/mL. These findings indicate that compounds containing the aminoguanidine moiety are promising candidates for the development of new antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Xianqing Deng
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an, China
| | - Mingxia Song
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an, China
| |
Collapse
|
19
|
Ding S, Ji J, Zhang M, Yang Y, Wang R, Zhu X, Wang L, Zhong Y, Gao L, Lu M, Liu J, Chen Y. Exploration of the structure–activity relationship and druggability of novel oxazolidinone‐based compounds as Gram‐negative antibacterial agents. Arch Pharm (Weinheim) 2019; 352:e1900129. [DOI: 10.1002/ardp.201900129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shi Ding
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Jing‐Chao Ji
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Ming‐Juan Zhang
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Yu‐She Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Rui Wang
- Central Hospital affiliated to Shenyang Medical College Shenyang Liaoning China
| | - Xing‐Long Zhu
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Li‐Hong Wang
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Yi Zhong
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Le Gao
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Man Lu
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Ju Liu
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| | - Ye Chen
- Key Laboratory of New Drug Research and Development of Liaoning Province, College of Pharmacy Liaoning University Shenyang Liaoning China
| |
Collapse
|
20
|
Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019; 165:172-197. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Numerous metal-containing enzymes (metalloenzymes) have been considered as drug targets related to diseases such as cancers, diabetes, anemia, AIDS, malaria, bacterial infection, fibrosis, and neurodegenerative diseases. Inhibitors of the metalloenzymes have been developed independently, most of which are mimics of substrates of the corresponding enzymes. However, little attention has been paid to the interactions between inhibitors and active site metal ions. This review is focused on different metal binding fragments and their chelating properties in the metal-containing active binding pockets of metalloenzymes. We have enumerated over one hundred of inhibitors targeting various metalloenzymes and identified over ten kinds of fragments with different binding patterns. Furthermore, we have investigated the inhibitors that are undergoing clinical evaluation in order to help looking for more potential scaffolds bearing metal binding fragments. This review will provide deep insights for the rational design of novel inhibitors targeting the metal-containing binding sites of specific proteins.
Collapse
Affiliation(s)
- Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
21
|
Current Progress in the Structural and Biochemical Characterization of Proteins Involved in the Assembly of Lipopolysaccharide. Int J Microbiol 2018; 2018:5319146. [PMID: 30595696 PMCID: PMC6286764 DOI: 10.1155/2018/5319146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
The lipid component of the outer leaflet of the outer membrane of Gram-negative bacteria is primarily composed of the glycolipid lipopolysaccharide (LPS), which serves to form a protective barrier against hydrophobic toxins and many antibiotics. LPS is comprised of three regions: the lipid A membrane anchor, the nonrepeating core oligosaccharide, and the repeating O-antigen polysaccharide. The lipid A portion is also referred to as endotoxin as its overstimulation of the toll-like receptor 4 during systemic infection precipitates potentially fatal septic shock. Because of the importance of LPS for the viability and virulence of human pathogens, understanding how LPS is synthesized and transported to the outer leaflet of the outer membrane is important for developing novel antibiotics to combat resistant Gram-negative strains. The following review describes the current state of our understanding of the proteins responsible for the synthesis and transport of LPS with an emphasis on the contribution of protein structures to our understanding of their functions. Because the lipid A portion of LPS is relatively well conserved, a detailed description of the biosynthetic enzymes in the Raetz pathway of lipid A synthesis is provided. Conversely, less well-conserved biosynthetic enzymes later in LPS synthesis are described primarily to demonstrate conserved principles of LPS synthesis. Finally, the conserved LPS transport systems are described in detail.
Collapse
|
22
|
Interplay of Klebsiella pneumoniae fabZ and lpxC Mutations Leads to LpxC Inhibitor-Dependent Growth Resulting from Loss of Membrane Homeostasis. mSphere 2018; 3:3/5/e00508-18. [PMID: 30381354 PMCID: PMC6211225 DOI: 10.1128/msphere.00508-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Emergence of antibiotic resistance has prompted efforts to identify and optimize novel inhibitors of antibacterial targets such as LpxC. This enzyme catalyzes the first committed step of lipid A synthesis, which is necessary to generate lipopolysaccharide and ultimately the Gram-negative protective outer membrane. Investigation of this pathway and its interrelationship with inner membrane (phospholipid) biosynthesis or other pathways is therefore highly important to the fundamental understanding of Gram-negative bacteria and by extension to antibiotic discovery. Here we exploited the availability of a novel LpxC inhibitor to engender the generation of K. pneumoniae resistant mutants whose growth depends on chemical inhibition of LpxC. Inhibitor dependency resulted from the interaction of different resistance mutations and was based on loss of normal cellular mechanisms required to establish membrane homeostasis. This study provides new insights into the importance of this process in K. pneumoniae and how it may be linked to novel biosynthetic pathway inhibitors. Tight coordination of inner and outer membrane biosynthesis is very important in Gram-negative bacteria. Biosynthesis of the lipid A moiety of lipopolysaccharide, which comprises the outer leaflet of the outer membrane has garnered interest for Gram-negative antibacterial discovery. In particular, several potent inhibitors of LpxC (the first committed step of the lipid A pathway) are described. Here we show that serial passaging of Klebsiella pneumoniae in increasing levels of an LpxC inhibitor yielded mutants that grew only in the presence of the inhibitor. These strains had mutations in fabZ and lpxC occurring together (encoding either FabZR121L/LpxCV37G or FabZF51L/LpxCV37G). K. pneumoniae mutants having only LpxCV37G or LpxCV37A or various FabZ mutations alone were less susceptible to the LpxC inhibitor and did not require LpxC inhibition for growth. Western blotting revealed that LpxCV37G accumulated to high levels, and electron microscopy of cells harboring FabZR121L/LpxCV37G indicated an extreme accumulation of membrane in the periplasm when cells were subcultured without LpxC inhibitor. Significant accumulation of detergent-like lipid A pathway intermediates that occur downstream of LpxC (e.g., lipid X and disaccharide monophosphate [DSMP]) was also seen. Taken together, our results suggest that redirection of lipid A pathway substrate by less active FabZ variants, combined with increased activity from LpxCV37G was overdriving the lipid A pathway, necessitating LpxC chemical inhibition, since native cellular maintenance of membrane homeostasis was no longer functioning. IMPORTANCE Emergence of antibiotic resistance has prompted efforts to identify and optimize novel inhibitors of antibacterial targets such as LpxC. This enzyme catalyzes the first committed step of lipid A synthesis, which is necessary to generate lipopolysaccharide and ultimately the Gram-negative protective outer membrane. Investigation of this pathway and its interrelationship with inner membrane (phospholipid) biosynthesis or other pathways is therefore highly important to the fundamental understanding of Gram-negative bacteria and by extension to antibiotic discovery. Here we exploited the availability of a novel LpxC inhibitor to engender the generation of K. pneumoniae resistant mutants whose growth depends on chemical inhibition of LpxC. Inhibitor dependency resulted from the interaction of different resistance mutations and was based on loss of normal cellular mechanisms required to establish membrane homeostasis. This study provides new insights into the importance of this process in K. pneumoniae and how it may be linked to novel biosynthetic pathway inhibitors.
Collapse
|
23
|
Wang T, Yu Y, Liang X, Luo S, He Z, Sun Z, Jiang Y, Omsland A, Zhou P, Song L. Lipid A Has Significance for Optimal Growth of Coxiella burnetii in Macrophage-Like THP-1 Cells and to a Lesser Extent in Axenic Media and Non-phagocytic Cells. Front Cell Infect Microbiol 2018; 8:192. [PMID: 29938202 PMCID: PMC6002510 DOI: 10.3389/fcimb.2018.00192] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 02/02/2023] Open
Abstract
Lipid A is an essential basal component of lipopolysaccharide of most Gram-negative bacteria. Inhibitors targeting LpxC, a conserved enzyme in lipid A biosynthesis, are antibiotic candidates against Gram-negative pathogens. Here we report the characterization of the role of lipid A in Coxiella burnetii growth in axenic media, monkey kidney cells (BGMK and Vero), and macrophage-like THP-1 cells by using a potent LpxC inhibitor -LPC-011. We first determined the susceptibility of C. burnetii LpxC to LPC-011 in a surrogate E. coli model. In E. coli, the minimum inhibitory concentration (MIC) of LPC-011 against C. burnetii LpxC is < 0.05 μg/mL, a value lower than the inhibitor's MIC against E. coli LpxC. Considering the inhibitor's problematic pharmacokinetic properties in vivo and Coxiella's culturing time up to 7 days, the stability of LPC-011 in cell cultures was assessed. We found that regularly changing inhibitor-containing media was required for sustained inhibition of C. burnetii LpxC in cells. Under inhibitor treatment, Coxiella has reduced growth yields in axenic media and during replication in non-phagocytic cells, and has a reduced number of productive vacuoles in such cells. Inhibiting lipid A biosynthesis in C. burnetii by the inhibitor was shown in a phase II strain transformed with chlamydial kdtA. This exogenous KdtA enzyme modifies Coxiella lipid A with an α-Kdo-(2 → 8)-α-Kdo epitope that can be detected by anti-chlamydia genus antibodies. In inhibitor-treated THP-1 cells, Coxiella shows severe growth defects characterized by poor vacuole formation and low growth yields. Coxiella progenies prepared from inhibitor-treated cells retain the capability of normally infecting all tested cells in the absence of the inhibitor, which suggests a dispensable role of lipid A for infection and early vacuole development. In conclusion, our data suggest that lipid A has significance for optimal development of Coxiella-containing vacuoles, and for robust multiplication of C. burnetii in macrophage-like THP-1 cells. Unlike many bacteria, C. burnetii replication in axenic media and non-phagocytic cells was less dependent on normal lipid A biosynthesis.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaofei Liang
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Shengdong Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zemin He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Anders Omsland
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Lihua Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
24
|
Bohl HO, Shi K, Lee JK, Aihara H. Crystal structure of lipid A disaccharide synthase LpxB from Escherichia coli. Nat Commun 2018; 9:377. [PMID: 29371662 PMCID: PMC5785501 DOI: 10.1038/s41467-017-02712-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022] Open
Abstract
Most Gram-negative bacteria are surrounded by a glycolipid called lipopolysaccharide (LPS), which forms a barrier to hydrophobic toxins and, in pathogenic bacteria, is a virulence factor. During LPS biosynthesis, a membrane-associated glycosyltransferase (LpxB) forms a tetra-acylated disaccharide that is further acylated to form the membrane anchor moiety of LPS. Here we solve the structure of a soluble and catalytically competent LpxB by X-ray crystallography. The structure reveals that LpxB has a glycosyltransferase-B family fold but with a highly intertwined, C-terminally swapped dimer comprising four domains. We identify key catalytic residues with a product, UDP, bound in the active site, as well as clusters of hydrophobic residues that likely mediate productive membrane association or capture of lipidic substrates. These studies provide the basis for rational design of antibiotics targeting a crucial step in LPS biosynthesis.
Collapse
Affiliation(s)
- Heather O Bohl
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - John K Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
- Bristol-Myers Squibb, Redwood City, CA, 94063, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
25
|
Ding S, Dai RY, Wang WK, Cao Q, Lan LF, Zhou XL, Yang YS. Design, synthesis and structure-activity relationship evaluation of novel LpxC inhibitors as Gram-negative antibacterial agents. Bioorg Med Chem Lett 2018; 28:94-102. [DOI: 10.1016/j.bmcl.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
26
|
Piizzi G, Parker DT, Peng Y, Dobler M, Patnaik A, Wattanasin S, Liu E, Lenoir F, Nunez J, Kerrigan J, McKenney D, Osborne C, Yu D, Lanieri L, Bojkovic J, Dzink-Fox J, Lilly MD, Sprague ER, Lu Y, Wang H, Ranjitkar S, Xie L, Wang B, Glick M, Hamann LG, Tommasi R, Yang X, Dean CR. Design, Synthesis, and Properties of a Potent Inhibitor of Pseudomonas aeruginosa Deacetylase LpxC. J Med Chem 2017; 60:5002-5014. [PMID: 28549219 DOI: 10.1021/acs.jmedchem.7b00377] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David McKenney
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Colin Osborne
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Donghui Yu
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Leanne Lanieri
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Jade Bojkovic
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - JoAnn Dzink-Fox
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Maria-Dawn Lilly
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | | | | | | | - Srijan Ranjitkar
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Lili Xie
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | | | | | | | | | - Xia Yang
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| | - Charles R Dean
- Infectious Diseases Area, Novartis Institutes for BioMedical Research , Emeryville, California 94608, United States
| |
Collapse
|
27
|
3D-QSAR, Molecular Docking and Molecular Dynamics Simulation of Pseudomonas aeruginosa LpxC Inhibitors. Int J Mol Sci 2017; 18:ijms18050761. [PMID: 28481250 PMCID: PMC5454807 DOI: 10.3390/ijms18050761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 11/17/2022] Open
Abstract
As an important target for the development of novel antibiotics, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) has been widely studied. Pyridone methylsulfone hydroxamate (PMH) compounds can effectively inhibit the catalytic activity of LpxC. In this work, the three-dimensional quantitative structure-activity relationships of PMH inhibitors were explored and models with good predictive ability were established using comparative molecular field analysis and comparative molecular similarity index analysis methods. The effect of PMH inhibitors' electrostatic potential on the inhibitory ability of Pseudomonas aeruginosa LpxC (PaLpxC) is revealed at the molecular level via molecular electrostatic potential analyses. Then, two molecular dynamics simulations for the PaLpxC and PaLpxC-inhibitor systems were also performed respectively to investigate the key residues of PaLpxC hydrolase binding to water molecules. The results indicate that orderly alternative water molecules can form stable hydrogen bonds with M62, E77, T190, and H264 in the catalytic center, and tetracoordinate to zinc ion along with H78, H237, and D241. It was found that the conformational transition space of PaLpxC changes after association with PMH inhibitors through free energy landscape and cluster analyses. Finally, a possible inhibitory mechanism of PMH inhibitors was proposed, based on our molecular simulation. This paper will provide a theoretical basis for the molecular design of LpxC-targeting antibiotics.
Collapse
|
28
|
|
29
|
Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Med Res Rev 2016; 37:1095-1139. [PMID: 27957758 DOI: 10.1002/med.21430] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022]
Abstract
Many enzymes contain tunnels and gates that are essential to their function. Gates reversibly switch between open and closed conformations and thereby control the traffic of small molecules-substrates, products, ions, and solvent molecules-into and out of the enzyme's structure via molecular tunnels. Many transient tunnels and gates undoubtedly remain to be identified, and their functional roles and utility as potential drug targets have received comparatively little attention. Here, we describe a set of general concepts relating to the structural properties, function, and classification of these interesting structural features. In addition, we highlight the potential of enzyme tunnels and gates as targets for the binding of small molecules. The different types of binding that are possible and the potential pharmacological benefits of such targeting are discussed. Twelve examples of ligands bound to the tunnels and/or gates of clinically relevant enzymes are used to illustrate the different binding modes and to explain some new strategies for drug design. Such strategies could potentially help to overcome some of the problems facing medicinal chemists and lead to the discovery of more effective drugs.
Collapse
Affiliation(s)
- Sergio M Marques
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Tomas Buryska
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
30
|
Zhou P, Zhao J. Structure, inhibition, and regulation of essential lipid A enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1424-1438. [PMID: 27940308 DOI: 10.1016/j.bbalip.2016.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
The Raetz pathway of lipid A biosynthesis plays a vital role in the survival and fitness of Gram-negative bacteria. Research efforts in the past three decades have identified individual enzymes of the pathway and have provided a mechanistic understanding of the action and regulation of these enzymes at the molecular level. This article reviews the discovery, biochemical and structural characterization, and regulation of the essential lipid A enzymes, as well as continued efforts to develop novel antibiotics against Gram-negative pathogens by targeting lipid A biosynthesis. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Research Drive, DUMC 3711, Durham, NC 27710, USA.
| | - Jinshi Zhao
- Department of Biochemistry, Duke University Medical Center, Research Drive, DUMC 3711, Durham, NC 27710, USA
| |
Collapse
|
31
|
Sperandeo P, Martorana AM, Polissi A. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1451-1460. [PMID: 27760389 DOI: 10.1016/j.bbalip.2016.10.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Alessandra M Martorana
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
32
|
Trent MS, Stead CM, Tran AX, Hankins JV. Invited review: Diversity of endotoxin and its impact on pathogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120040201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions — lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.
Collapse
Affiliation(s)
- M. Stephen Trent
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA,
| | - Christopher M. Stead
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - An X. Tran
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jessica V. Hankins
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
33
|
Erwin AL. Antibacterial Drug Discovery Targeting the Lipopolysaccharide Biosynthetic Enzyme LpxC. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025304. [PMID: 27235477 DOI: 10.1101/cshperspect.a025304] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The enzyme LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase) is broadly conserved across Gram-negative bacteria and is essential for synthesis of lipid A, the membrane anchor of the lipopolysaccharides (LPSs), which are a major component of the outer membrane in nearly all Gram-negative bacteria. LpxC has been the focus of target-directed antibiotic discovery projects in numerous pharmaceutical and academic groups for more than 20 years. Despite intense effort, no LpxC inhibitor has been approved for therapeutic use, and only one has yet reached human studies. This article will summarize the history of LpxC as a drug target and the parallel history of research on LpxC biology. Both academic and industrial researchers have used LpxC inhibitors as tool compounds, leading to increased understanding of the differing mechanisms for regulation of LPS synthesis in Escherichia coli and Pseudomonas aeruginosa.
Collapse
|
34
|
Kurasaki H, Tsuda K, Shinoyama M, Takaya N, Yamaguchi Y, Kishii R, Iwase K, Ando N, Nomura M, Kohno Y. LpxC Inhibitors: Design, Synthesis, and Biological Evaluation of Oxazolidinones as Gram-negative Antibacterial Agents. ACS Med Chem Lett 2016; 7:623-8. [PMID: 27326338 DOI: 10.1021/acsmedchemlett.6b00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/05/2016] [Indexed: 02/02/2023] Open
Abstract
Herein we report a scaffold-hopping approach to identify a new scaffold with a zinc binding headgroup. Structural information was used to give novel oxazolidinone-based LpxC inhibitors. In particular, the most potent compound, 23j, showed a low efflux ratio, nanomolar potencies against E. coli LpxC enzyme, and excellent antibacterial activity against E. coli and K. pneumoniae. Computational docking was used to predict the interaction between 23j and E. coli LpxC, suggesting that the interactions with C207 and C63 contribute to the strong activity. These results provide new insights into the design of next-generation LpxC inhibitors.
Collapse
Affiliation(s)
- Haruaki Kurasaki
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Kosuke Tsuda
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Mariko Shinoyama
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Noriko Takaya
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Yuko Yamaguchi
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Ryuta Kishii
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Kazuhiko Iwase
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Naoki Ando
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Masahiro Nomura
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Yasushi Kohno
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| |
Collapse
|
35
|
Lee CJ, Liang X, Wu Q, Najeeb J, Zhao J, Gopalaswamy R, Titecat M, Sebbane F, Lemaitre N, Toone EJ, Zhou P. Drug design from the cryptic inhibitor envelope. Nat Commun 2016; 7:10638. [PMID: 26912110 PMCID: PMC4773385 DOI: 10.1038/ncomms10638] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/05/2016] [Indexed: 11/09/2022] Open
Abstract
Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC--an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target--access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics.
Collapse
Affiliation(s)
- Chul-Jin Lee
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Xiaofei Liang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Qinglin Wu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Javaria Najeeb
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jinshi Zhao
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ramesh Gopalaswamy
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Marie Titecat
- Inserm, Univ. Lille, CHU Lille, Institut Pasteur de Lille, CNRS, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florent Sebbane
- Inserm, Univ. Lille, CHU Lille, Institut Pasteur de Lille, CNRS, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaitre
- Inserm, Univ. Lille, CHU Lille, Institut Pasteur de Lille, CNRS, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eric J Toone
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
36
|
Miller MD, Gao N, Ross PL, Olivier NB. Crystal structure of A. aeolicus LpxC with bound product suggests alternate deacetylation mechanism. Proteins 2015; 83:1706-19. [PMID: 26177919 DOI: 10.1002/prot.24856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/08/2015] [Accepted: 07/01/2015] [Indexed: 11/07/2022]
Abstract
UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is the first committed step to form lipid A, an essential component of the outer membrane of Gram-negative bacteria. As it is essential for the survival of many pathogens, LpxC is an attractive target for antibacterial therapeutics. Herein, we report the product-bound co-crystal structure of LpxC from the acheal Aquifex aeolicus solved to 1.6 Å resolution. We identified interactions by hydroxyl and hydroxymethyl substituents of the product glucosamine ring that may enable new insights to exploit waters in the active site for structure-based design of LpxC inhibitors with novel scaffolds. By using this product structure, we have performed quantum mechanical modeling on the substrate in the active site. Based on our results and published experimental data, we propose a new mechanism that may lead to a better understanding of LpxC catalysis and inhibition.
Collapse
Affiliation(s)
- Matthew D Miller
- AstraZeneca R&D Boston, Infection Innovative Medicines Unit, Waltham, Massachusetts, 02451
| | - Ning Gao
- AstraZeneca R&D Boston, Discovery Sciences, Waltham, Massachusetts, 02451
| | - Philip L Ross
- AstraZeneca R&D Boston, Discovery Sciences, Waltham, Massachusetts, 02451
| | - Nelson B Olivier
- AstraZeneca R&D Cambridge-UK, Discovery Sciences, Cambridge, CB4 0FZ, United Kingdom
| |
Collapse
|
37
|
Design, synthesis and biological evaluation of LpxC inhibitors with novel hydrophilic terminus. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival. mBio 2015; 6:e00478-15. [PMID: 25991684 PMCID: PMC4442142 DOI: 10.1128/mbio.00478-15] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Acinetobacter baumannii is an emerging Gram-negative pathogen found in hospitals and intensive care units. In order to persist in hospital environments, A. baumannii withstands desiccative conditions and can rapidly develop multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the conserved lipid A component of the Gram-negative outer membrane to lyse the bacterial cell. However, many Gram-negative pathogenic bacteria, including A. baumannii, fortify their outer membrane with hepta-acylated lipid A to protect the cell from CAMP-dependent cell lysis. Whereas in Escherichia coli and Salmonella, increased production of the outer membrane acyltransferase PagP results in formation of protective hepta-acylated lipid A, which reinforces the lipopolysaccharide portion of the outer membrane barrier, A. baumannii does not carry a gene that encodes a PagP homolog. Instead, A. baumannii has evolved a PagP-independent mechanism to synthesize protective hepta-acylated lipid A. Taking advantage of a recently adapted A. baumannii genetic recombineering system, we characterized two putative acyltransferases in A. baumannii designated LpxLAb (A. baumannii LpxL) and LpxMAb (A. baumannii LpxM), which transfer one and two lauroyl (C12:0) acyl chains, respectively, during lipid A biosynthesis. Hepta-acylation of A. baumannii lipid A promoted resistance to vertebrate and polymyxin CAMPs, which are prescribed as last-resort treatment options. Intriguingly, our analysis also showed that LpxMAb-dependent acylation of lipid A is essential for A. baumannii desiccation survival, a key resistance mechanism for survival in hospital environments. Compounds that inhibit LpxMAb-dependent hepta-acylation of lipid A could act synergistically with CAMPs to provide innovative transmission prevention strategies and treat multidrug-resistant infections. IMPORTANCE Acinetobacter baumannii infections can be life threatening, and disease can progress in a variety of host tissues. Current antibiotic regimen and disinfectant strategies have failed to limit nosocomial A. baumannii infections. Instead, the rate of A. baumannii infection among health care communities has skyrocketed due to the bacterium's adaptability. Its aptitude for survival over extended periods on inanimate objects, such as catheters, respirators, and surfaces in intensive care units, or on the hands of health care workers and its ability to rapidly develop antibiotic resistance make A. baumannii a threat to health care communities. Emergence of multidrug- and extremely drug-resistant A. baumannii illustrates the ineffectiveness of current prevention and treatment options. Our analysis to understand how A. baumannii resists cationic antimicrobial peptide (CAMP)-mediated and desiccative killing revealed two lipid A acyltransferases that produce protective hepta-acylated lipid A. Our work suggests that inhibiting lipid A biosynthesis by targeting the acyltransferase LpxMAb (A. baumannii LpxM) could provide a novel target to combat this pathogen.
Collapse
|
39
|
Hou X, McMillan M, Coumans JVF, Poljak A, Raftery MJ, Pereg L. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant. PLoS One 2014; 9:e114435. [PMID: 25502569 PMCID: PMC4264754 DOI: 10.1371/journal.pone.0114435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023] Open
Abstract
FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA− strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.
Collapse
Affiliation(s)
- Xingsheng Hou
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mary McMillan
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - Joëlle V. F. Coumans
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- School of Rural Medicine, University of New England, Armidale, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
- The School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry Facility, Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Lily Pereg
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- * E-mail: mailto:
| |
Collapse
|
40
|
Lee CJ, Liang X, Gopalaswamy R, Najeeb J, Ark ED, Toone EJ, Zhou P. Structural basis of the promiscuous inhibitor susceptibility of Escherichia coli LpxC. ACS Chem Biol 2014; 9:237-46. [PMID: 24117400 DOI: 10.1021/cb400067g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The LpxC enzyme in the lipid A biosynthetic pathway is one of the most promising and clinically unexploited antibiotic targets for treatment of multidrug-resistant Gram-negative infections. Progress in medicinal chemistry has led to the discovery of potent LpxC inhibitors with a variety of chemical scaffolds and distinct antibiotic profiles. The vast majority of these compounds, including the nanomolar inhibitors L-161,240 and BB-78485, are highly effective in suppressing the activity of Escherichia coli LpxC (EcLpxC) but not divergent orthologs such as Pseudomonas aeruginosa LpxC (PaLpxC) in vitro. The molecular basis for such promiscuous inhibition of EcLpxC has remained poorly understood. Here, we report the crystal structure of EcLpxC bound to L-161,240, providing the first molecular insight into L-161,240 inhibition. Additionally, structural analysis of the EcLpxC/L-161,240 complex together with the EcLpxC/BB-78485 complex reveals an unexpected backbone flipping of the Insert I βa-βb loop in EcLpxC in comparison with previously reported crystal structures of EcLpxC complexes with l-threonyl-hydroxamate-based broad-spectrum inhibitors. Such a conformational switch, which has only been observed in EcLpxC but not in divergent orthologs such as PaLpxC, results in expansion of the active site of EcLpxC, enabling it to accommodate LpxC inhibitors with a variety of head groups, including compounds containing single (R- or S-enantiomers) or double substitutions at the neighboring Cα atom of the hydroxamate warhead group. These results highlight the importance of understanding inherent conformational plasticity of target proteins in lead optimization.
Collapse
Affiliation(s)
- Chul-Jin Lee
- Department
of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
- Structural Biology & Biophysics Program, Duke University, Durham, North Carolina 27710, United States
| | - Xiaofei Liang
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ramesh Gopalaswamy
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Javaria Najeeb
- Department
of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
- Structural Biology & Biophysics Program, Duke University, Durham, North Carolina 27710, United States
| | - Eugene D. Ark
- Trinity College of Arts & Sciences, Duke University, Durham, North Carolina 27708, United States
| | - Eric J. Toone
- Department
of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
- Structural Biology & Biophysics Program, Duke University, Durham, North Carolina 27710, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Pei Zhou
- Department
of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
- Structural Biology & Biophysics Program, Duke University, Durham, North Carolina 27710, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
41
|
Clayton GM, Klein DJ, Rickert KW, Patel SB, Kornienko M, Zugay-Murphy J, Reid JC, Tummala S, Sharma S, Singh SB, Miesel L, Lumb KJ, Soisson SM. Structure of the bacterial deacetylase LpxC bound to the nucleotide reaction product reveals mechanisms of oxyanion stabilization and proton transfer. J Biol Chem 2013; 288:34073-34080. [PMID: 24108127 DOI: 10.1074/jbc.m113.513028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here, we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad spectrum Gram-negative antibiotics.
Collapse
Affiliation(s)
- Gina M Clayton
- Global Structural Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Daniel J Klein
- Global Structural Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Keith W Rickert
- Screening and Protein Sciences, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Sangita B Patel
- Global Structural Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Maria Kornienko
- Screening and Protein Sciences, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Joan Zugay-Murphy
- Screening and Protein Sciences, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - John C Reid
- Global Structural Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Srivanya Tummala
- Screening and Protein Sciences, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Sujata Sharma
- Screening and Protein Sciences, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Sheo B Singh
- Discovery Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - Lynn Miesel
- Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - Kevin J Lumb
- Screening and Protein Sciences, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Stephen M Soisson
- Global Structural Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486.
| |
Collapse
|
42
|
Liang X, Lee CJ, Zhao J, Toone EJ, Zhou P. Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors. J Med Chem 2013; 56:6954-6966. [PMID: 23914798 PMCID: PMC3941642 DOI: 10.1021/jm4007774] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The zinc-dependent deacetylase LpxC catalyzes the committed step of lipid A biosynthesis in Gram-negative bacteria and is a validated target for the development of novel antibiotics to combat multidrug-resistant Gram-negative infections. Many potent LpxC inhibitors contain an essential threonyl-hydroxamate headgroup for high-affinity interaction with LpxC. We report the synthesis, antibiotic activity, and structural and enzymatic characterization of novel LpxC inhibitors containing an additional aryl group in the threonyl-hydroxamate moiety, which expands the inhibitor-binding surface in LpxC. These compounds display enhanced potency against LpxC in enzymatic assays and superior antibiotic activity against Francisella novicida in cell culture. The comparison of the antibiotic activities of these compounds against a leaky Escherichia coli strain and the wild-type strain reveals the contribution of the formidable outer-membrane permeability barrier that reduces the compounds efficacy in cell culture and emphasizes the importance of maintaining a balanced hydrophobicity and hydrophilicity profile in developing effective LpxC-targeting antibiotics.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Chul-Jin Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Structural Biology & Biophysics Program, Duke University, Durham, NC 27710, USA
| | - Jinshi Zhao
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric J. Toone
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Pei Zhou
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Structural Biology & Biophysics Program, Duke University, Durham, NC 27710, USA
| |
Collapse
|
43
|
Williamson MP. Using chemical shift perturbation to characterise ligand binding. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 73:1-16. [PMID: 23962882 DOI: 10.1016/j.pnmrs.2013.02.001] [Citation(s) in RCA: 968] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/12/2013] [Accepted: 02/18/2013] [Indexed: 05/05/2023]
Abstract
Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by simultaneous fitting of many measured shift changes, or more simply by adding substoichiometric amounts of ligand. The chemical shift changes can be used as restraints for docking ligand onto protein. By use of quantitative calculations of ligand-induced chemical shift changes, it is becoming possible to determine not just the position but also the orientation of ligands.
Collapse
Affiliation(s)
- Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
44
|
High-resolution structures of the IgM Fc domains reveal principles of its hexamer formation. Proc Natl Acad Sci U S A 2013; 110:10183-8. [PMID: 23733956 DOI: 10.1073/pnas.1300547110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IgM is the first antibody produced during the humoral immune response. Despite its fundamental role in the immune system, IgM is structurally only poorly described. In this work we used X-ray crystallography and NMR spectroscopy to determine the atomic structures of the constant IgM Fc domains (Cµ2, Cµ3, and Cµ4) and to address their roles in IgM oligomerization. Although the isolated domains share the typical Ig fold, they differ substantially in dimerization properties and quaternary contacts. Unexpectedly, the Cµ4 domain and its C-terminal tail piece are responsible and sufficient for the specific polymerization of Cµ4 dimers into covalently linked hexamers of dimers. Based on small angle X-ray scattering data, we present a model of the ring-shaped Cµ4 structure, which reveals the principles of IgM oligomerization.
Collapse
|
45
|
Schitter G, Wrodnigg TM. Update on carbohydrate-containing antibacterial agents. Expert Opin Drug Discov 2013; 4:315-56. [PMID: 23489128 DOI: 10.1517/17460440902778725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Since the first known use of antibiotics > 2,500 years ago, a research field with immense importance for the welfare of mankind has been developed. After a decrease in interest in this topic by the end of the 20th century the occurrence of (poly-)resistant strains of bacteria induced a revival of antibiotics research. Health systems have been seeking viable and reliable solutions to this dangerous and expansive threat. OBJECTIVE This review will focus on carbohydrate-containing antibiotics and will give an outline of recently published novel isolated, semisynthetic as well as synthetic structures, their mechanism of action, if known, and the strategies for the design of compounds with potential by improved antibacterial properties. METHODS The literature between 2000 and 2008 was screened with main focus on recent examples of novel structures and strategies for the lead finding of exclusively antibacterial agents. RESULTS/CONCLUSION With the explanation of the role of the carbohydrate moieties in the respective antibacterial agents together with better synthetic strategies in carbohydrate chemistry as well as improvements in assay development for high throughput screening methods, carbohydrate-containing antibiotics can be used for the finding of potential drug leads that contribute to the fight against infections and diseases caused by (resistant) bacterial pathogens.
Collapse
Affiliation(s)
- Georg Schitter
- Technical University Graz, Institute of Organic Chemistry, Univ.-Doz. TMW, Dip.-Ing. GS, Glycogroup, A-8010 Graz, Austria +43 316 873 8744 ; +43 316 873 8740 ;
| | | |
Collapse
|
46
|
Hale MR, Hill P, Lahiri S, Miller MD, Ross P, Alm R, Gao N, Kutschke A, Johnstone M, Prince B, Thresher J, Yang W. Exploring the UDP pocket of LpxC through amino acid analogs. Bioorg Med Chem Lett 2013; 23:2362-7. [PMID: 23499237 DOI: 10.1016/j.bmcl.2013.02.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 11/19/2022]
Abstract
Lipopolysaccharide (LPS) biosynthesis is an attractive antibacterial target as it is both conserved and essential for the survival of key pathogenic bacteria. Lipid A is the hydrophobic anchor for LPS and a key structural component of the outer membrane of Gram-negative bacteria. Lipid A biosynthesis is performed in part by a unique zinc dependent metalloamidase, LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase), which catalyzes the first non-reversible step in lipid A biosynthesis. The UDP portion of the LpxC substrate-binding pocket has been relatively unexplored. We have designed and evaluated a series of hydroxamate based inhibitors which explore the SAR of substitutions directed into the UDP pocket with a range of substituted α-amino acid based linkers. We also provide the first wild type structure of Pseudomonas aeruginosa LpxC which was utilized in the design of many of these analogs.
Collapse
Affiliation(s)
- Michael R Hale
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yadav V, Panilaitis B, Shi H, Numuta K, Lee K, Kaplan DL. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus. PLoS One 2011; 6:e18099. [PMID: 21655093 PMCID: PMC3107205 DOI: 10.1371/journal.pone.0018099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/25/2011] [Indexed: 11/18/2022] Open
Abstract
Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tet(r); named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
| | - Bruce Panilaitis
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
| | - Hai Shi
- Department of Chemical and Biological Engineering, Tufts University,
Medford, Massachusetts, United States of America
| | - Keiji Numuta
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University,
Medford, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
- Department of Chemical and Biological Engineering, Tufts University,
Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Mansoor UF, Vitharana D, Reddy PA, Daubaras DL, McNicholas P, Orth P, Black T, Siddiqui MA. Design and synthesis of potent Gram-negative specific LpxC inhibitors. Bioorg Med Chem Lett 2010; 21:1155-61. [PMID: 21273067 DOI: 10.1016/j.bmcl.2010.12.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022]
Abstract
Antibiotic resistant hospital acquired infections are on the rise, creating an urgent need for novel bactericidal drugs. Enzymes involved in lipopolysaccharide (LPS) biosynthesis are attractive antibacterial targets since LPS is the major structural component of the outer membrane of Gram-negative bacteria. Lipid A is an essential hydrophobic anchor of LPS and the first committed step in lipid A biosynthesis is catalyzed by a unique zinc dependent metalloamidase, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC). LpxC is an attractive Gram-negative only target that has been chemically validated by potent bactericidal hydroxamate inhibitors that work by coordination of the enzyme's catalytic zinc ion. An exploratory chemistry effort focused on expanding the SAR around hydroxamic acid zinc-binding 'warheads' lead to the identification of novel compounds with enzyme potency and antibacterial activity similar to CHIR-090.
Collapse
Affiliation(s)
- U Faruk Mansoor
- Department of Chemistry, Merck Research Laboratories, 320 Bent Street, Cambridge, MA 02141, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cole KE, Gattis SG, Angell HD, Fierke CA, Christianson DW. Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090 . Biochemistry 2010; 50:258-65. [PMID: 21171638 DOI: 10.1021/bi101622a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first committed step of lipid A biosynthesis is catalyzed by UDP-(3-O-((R)-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase, a metal-dependent deacetylase also known as LpxC. Because lipid A is essential for bacterial viability, the inhibition of LpxC is an appealing therapeutic strategy for the treatment of Gram-negative bacterial infections. Here we report the 1.79 Å resolution X-ray crystal structure of LpxC from Yersinia enterocolitica (YeLpxC) complexed with the potent hydroxamate inhibitor CHIR-090. This enzyme is a nearly identical orthologue of LpxC from Yersinia pestis (99.7% sequence identity), the pathogen that causes bubonic plague. Similar to the inhibition of LpxC from Escherichia coli, CHIR-090 inhibits YeLpxC via a two-step slow, tight-binding mechanism with an apparent K(i) of 0.54 ± 0.14 nM followed by conversion of the E·I to E·I* species with a rate constant of 0.11 ± 0.01 min(-1). The structure of the LpxC complex with CHIR-090 shows that the inhibitor hydroxamate group chelates the active site zinc ion, and the "tail" of the inhibitor binds in the hydrophobic tunnel in the active site. This hydrophobic tunnel is framed by a βαβ subdomain that exhibits significant conformational flexibility as it accommodates inhibitor binding. CHIR-090 displays a 27 mm zone of inhibition against Y. enterocolitica in a Kirby-Bauer antibiotic assay, which is comparable to its reported activity against other Gram-negative species including E. coli and Pseudomonas aeruginosa. This study demonstrates that the inhibition of LpxC should be explored as a potential therapeutic and/or prophylatic response to infection by weaponized Yersinia species.
Collapse
Affiliation(s)
- Kathryn E Cole
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, United States
| | | | | | | | | |
Collapse
|
50
|
Lee CJ, Liang X, Chen X, Zeng D, Joo SH, Chung HS, Barb AW, Swanson SM, Nicholas RA, Li Y, Toone EJ, Raetz CRH, Zhou P. Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design. ACTA ACUST UNITED AC 2010; 18:38-47. [PMID: 21167751 DOI: 10.1016/j.chembiol.2010.11.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
LpxC is an essential enzyme in the lipid A biosynthetic pathway in gram-negative bacteria. Several promising antimicrobial lead compounds targeting LpxC have been reported, though they typically display a large variation in potency against different gram-negative pathogens. We report that inhibitors with a diacetylene scaffold effectively overcome the resistance caused by sequence variation in the LpxC substrate-binding passage. Compound binding is captured in complex with representative LpxC orthologs, and structural analysis reveals large conformational differences that mostly reflect inherent molecular features of distinct LpxC orthologs, whereas ligand-induced structural adaptations occur at a smaller scale. These observations highlight the need for a molecular understanding of inherent structural features and conformational plasticity of LpxC enzymes for optimizing LpxC inhibitors as broad-spectrum antibiotics against gram-negative infections.
Collapse
Affiliation(s)
- Chul-Jin Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|