1
|
Huang M, Cao S, Huang Y, Tan Z, Duan R. The combined metabolism and transcriptome of tail muscles reveal the effects of antimony pulse exposure on swimming behavior of Pelophylax nigromaculatus tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177929. [PMID: 39647201 DOI: 10.1016/j.scitotenv.2024.177929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Due to the periodic emission of pollutants, the exposure mode of contaminants in water bodies is mostly pulse exposure, and the toxic effects of fluctuating exposure on aquatic animals are not consistent with traditional toxicological experiments of constant exposure. The toxic effects of heavy metal antimony (Sb) on the swimming behavior of Pelophylax nigromaculatus tadpoles after pulse exposure (PESb) and continuous exposure (CESb) for 28 days were explored. The mechanisms were analyzed from the perspectives of tail muscle metabolism and transcriptomics. Compared to the control group, PESb and CESb decreased the average speed of P. nigromaculatus tadpoles by 25.72 % and 18.08 %, respectively. PESb and CESb led to changes in 70 and 24 metabolites of tail muscle, respectively. PESb led to alterations in metabolic pathways related to pyrimidine metabolism, arginine biosynthesis, and glycerophospholipid metabolism. In contrast, CESb altered metabolic pathways such as alanine, aspartate, and glutamate metabolism. Compared to the control, 1225 and 1139 DEGs were identified for PESb and CESb, respectively. These DEGs were mainly associated with functions such as immune response, DNA replication, protein digestion, and absorption. It can be seen that PESb and CESb can alter the metabolism and transcriptome of the tail muscle of P. nigromaculatus tadpoles, leading to differential expression of individual movements.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Songle Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Ying Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Zikang Tan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China.
| |
Collapse
|
2
|
Dong MZ, Ouyang YC, Gao SC, Gu LJ, Guo JN, Sun SM, Wang ZB, Sun QY. Protein phosphatase 4 maintains the survival of primordial follicles by regulating autophagy in oocytes. Cell Death Dis 2024; 15:658. [PMID: 39245708 PMCID: PMC11381532 DOI: 10.1038/s41419-024-07051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
In mammalian ovary, the primordial follicle pool serves as the source of developing follicles and fertilizable ova. To maintain the normal length of female reproductive life, the primordial follicles must have adequate number and be kept in a quiescent state before menopause. However, the molecular mechanisms underlying primordial follicle survival are poorly understood. Here, we provide genetic evidence showing that lacking protein phosphatase 4 (PPP4) in oocytes, a member of PP2A-like subfamily, results in infertility in female mice. A large quantity of primordial follicles has been depleted around the primordial follicle pool formation phase and the ovarian reserve is exhausted at about 7 months old. Further investigation demonstrates that depletion of PPP4 causes the abnormal activation of mTOR, which suppresses autophagy in primordial follicle oocytes. The abnormal primordial follicle oocytes are eventually erased by pregranulosa cells in the manner of lysosome invading. These results show that autophagy prevents primordial follicles over loss and PPP4-mTOR pathway governs autophagy during the primordial follicle formation and dormant period.
Collapse
Affiliation(s)
- Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Cai Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Yero A, Goulet JP, Shi T, Costiniuk CT, Routy JP, Tremblay C, Mboumba Bouassa RS, Alexandrova Y, Pagliuzza A, Chomont N, Ancuta P, Jenabian MA. Altered memory CCR6 + Th17-polarised T-cell function and biology in people with HIV under successful antiretroviral therapy and HIV elite controllers. EBioMedicine 2024; 107:105274. [PMID: 39178742 PMCID: PMC11388266 DOI: 10.1016/j.ebiom.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Despite successful antiretroviral therapy (ART), frequencies and immunological functions of memory CCR6+ Th17-polarised CD4+ T-cells are not fully restored in people with HIV (PWH). Moreover, long-lived Th17 cells contribute to HIV persistence under ART. However, the molecular mechanisms underlying these observations remain understudied. METHODS mRNA-sequencing was performed using Illumina technology on freshly FACS-sorted memory CCR6+CD4+ T-cells from successfully ART-treated (ST), elite controllers (EC), and uninfected donors (HD). Gene expression validation was performed by RT-PCR, flow cytometry, and in vitro functional assays. FINDINGS Decreased Th17 cell frequencies in STs and ECs versus HDs coincided with reduced Th17-lineage cytokine production in vitro. Accordingly, the RORγt/RORC2 repressor NR1D1 was upregulated, while the RORγt/RORC2 inducer Semaphorin 4D was decreased in memory CCR6+ T-cells of STs and ECs versus HDs. The presence of HIV-DNA in memory CCR6+ T-cells of ST and EC corresponded with the downregulation of HIV restriction factors (SERINC3, KLF3, and RNF125) and HIV inhibitors (tetraspanins), along with increased expression of the HIV-dependency factor MRE11, indicative of higher susceptibility/permissiveness to HIV-1 infection. Furthermore, markers of DNA damage/modification were elevated in memory CCR6+ T-cells of STs and ECs versus HDs, in line with their increased activation (CD38/HLA-DR), senescence/exhaustion phenotype (CTLA-4/PD-1/CD57) and their decreased expression of proliferation marker Ki-67. INTERPRETATION These results reveal new molecular mechanisms of Th17 cell deficit in ST and EC PWH despite a successful control of HIV-1 replication. This knowledge points to potential therapeutic interventions to limit HIV-1 infection and restore frequencies, effector functions, and senescence/exhaustion in Th17 cells. FUNDING This study was funded by the Canadian Institutes of Health Research (CIHR, operating grant MOP 142294, and the Canadian HIV Cure Enterprise [CanCURE 2.0] Team Grant HB2 164064), and in part, by the Réseau SIDA et maladies infectieuses du Fonds de recherche du Québec-Santé (FRQ-S).
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | | | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Cecilia T Costiniuk
- Chronic Viral Illness Service and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cecile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Yulia Alexandrova
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
4
|
Cokelaere C, Dok R, Cortesi EE, Zhao P, Sablina A, Nuyts S, Derua R, Janssens V. TIPRL1 and its ATM-dependent phosphorylation promote radiotherapy resistance in head and neck cancer. Cell Oncol (Dordr) 2024; 47:793-818. [PMID: 37971644 DOI: 10.1007/s13402-023-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE TIPRL1 (target of rapamycin signaling pathway regulator-like 1) is a known interactor and inhibitor of protein phosphatases PP2A, PP4 and PP6 - all pleiotropic modulators of the DNA Damage Response (DDR). Here, we investigated the role of TIPRL1 in the radiotherapy (RT) response of Head and Neck Squamous Cell Carcinoma (HNSCC). METHODS TIPRL1 mRNA (cBioportal) and protein expression (immunohistochemistry) in HNSCC samples were linked with clinical patient data. TIPRL1-depleted HNSCC cells were generated by CRISPR/Cas9 editing, and effects on colony growth, micronuclei formation (microscopy), cell cycle (flow cytometry), DDR signaling (immunoblots) and proteome (mass spectrometry) following RT were assessed. Mass spectrometry was used for TIPRL1 phosphorylation and interactomics analysis in irradiated cells. RESULTS TIPRL1 expression was increased in tumor versus non-tumor tissue, with high tumoral TIPRL1 expression associating with lower locoregional control and decreased survival of RT-treated patients. TIPRL1 deletion in HNSCC cells resulted in increased RT sensitivity, a faster but prolonged cell cycle arrest, increased micronuclei formation and an altered proteome-wide DDR. Upon irradiation, ATM phosphorylates TIPRL1 at Ser265. A non-phospho Ser265Ala mutant could not rescue the increased radiosensitivity phenotype of TIPRL1-depleted cells. While binding to PP2A-like phosphatases was confirmed, DNA-dependent protein kinase (DNA-PKcs), RAD51 recombinase and nucleosomal histones were identified as novel TIPRL1 interactors. Histone binding, although stimulated by RT, was adversely affected by TIPRL1 Ser265 phosphorylation. CONCLUSIONS Our findings underscore a clinically relevant role for TIPRL1 and its ATM-dependent phosphorylation in RT resistance through modulation of the DDR, highlighting its potential as a new HNSCC predictive marker and therapeutic target.
Collapse
Affiliation(s)
- Célie Cokelaere
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Rüveyda Dok
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Emanuela E Cortesi
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Peihua Zhao
- VIB Laboratory of Mechanisms of Cell Transformation, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Anna Sablina
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
- VIB Laboratory of Mechanisms of Cell Transformation, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
- SybioMA, Proteomics Core Facility, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
5
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Feng P, Wang Y, Liu N, Chen Y, Hu Y, Huang Z, Liu Y, Zheng S, Jiang T, Xiao X, Dai W, Huang P, Xia Y. High expression of PPP1CC promotes NHEJ-mediated DNA repair leading to radioresistance and poor prognosis in nasopharyngeal carcinoma. Cell Death Differ 2024; 31:683-696. [PMID: 38589496 PMCID: PMC11094031 DOI: 10.1038/s41418-024-01287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Ping Feng
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ying Wang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Na Liu
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yanming Chen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yujun Hu
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zilu Huang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ya Liu
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shuohan Zheng
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tongchao Jiang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang Xiao
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (SAR), China
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Metabolic Innovation Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Yunfei Xia
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Hui X, Li L, Xiong W, Liu Y, Li H, Zhang H, Zhao S, Zhang Y. High PPP4C expression predicts poor prognosis in diffuse large B-cell lymphoma. Clin Exp Med 2024; 24:89. [PMID: 38683255 PMCID: PMC11058967 DOI: 10.1007/s10238-024-01356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The significance of Protein phosphatase 4 catalytic subunit (PPP4C) in diffuse large B-cell lymphoma (DLBCL) prognosis is not well understood. This work aimed to investigate the expression of PPP4C in DLBCL, investigate the correlation between PPP4C expression and clinicopathological parameters, and assess the prognostic significance of PPP4C. The mRNA expression of PPP4C was investigated using data from TCGA and GEO. To further analyze PPP4C expression, immunohistochemistry was performed on tissue microarray samples. Correlation analysis between clinicopathological parameters and PPP4C expression was conducted using Pearson's chi-square test or Fisher's exact test. Univariate and multivariate Cox hazard models were utilized to determine the prognostic significance of clinicopathological features and PPP4C expression. Additionally, survival analysis was performed using Kaplan-Meier survival curves. In both TCGA and GEO datasets, we identified higher mRNA levels of PPP4C in tumor tissues compared to normal tissues. Upon analysis of various clinicopathological features of DLBCL, we observed a correlation between high PPP4C expression and ECOG score (P = 0.003). Furthermore, according to a Kaplan-Meier survival analysis, patients with DLBCL who exhibit high levels of PPP4C had worse overall survival (P = 0.001) and progression-free survival (P = 0.002). PPP4C was shown to be an independent predictive factor for OS and PFS in DLBCL by univariate and multivariate analysis (P = 0.011 and P = 0.040). This study's findings indicate that high expression of PPP4C is linked to a poor prognosis for DLBCL and may function as an independent prognostic factors.
Collapse
Affiliation(s)
- Xue Hui
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Liru Li
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Wenjing Xiong
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yue Liu
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Hongbin Li
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Han Zhang
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Shu Zhao
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| | - Yue Zhang
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| |
Collapse
|
8
|
Liu S, Byrne BM, Byrne TN, Oakley GG. Role of RPA Phosphorylation in the ATR-Dependent G2 Cell Cycle Checkpoint. Genes (Basel) 2023; 14:2205. [PMID: 38137027 PMCID: PMC10742774 DOI: 10.3390/genes14122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Cells respond to DNA double-strand breaks by initiating DSB repair and ensuring a cell cycle checkpoint. The primary responder to DSB repair is non-homologous end joining, which is an error-prone repair pathway. However, when DSBs are generated after DNA replication in the G2 phase of the cell cycle, a second DSB repair pathway, homologous recombination, can come into action. Both ATM and ATR are important for DSB-induced DSB repair and checkpoint responses. One method of ATM and ATR working together is through the DNA end resection of DSBs. As a readout and marker of DNA end resection, RPA is phosphorylated at Ser4/Ser8 of the N-terminus of RPA32 in response to DSBs. Here, the significance of RPA32 Ser4/Ser8 phosphorylation in response to DNA damage, specifically in the S phase to G2 phase of the cell cycle, is examined. RPA32 Ser4/Ser8 phosphorylation in G2 synchronized cells is necessary for increases in TopBP1 and Rad9 accumulation on chromatin and full activation of the ATR-dependent G2 checkpoint. In addition, our data suggest that RPA Ser4/Ser8 phosphorylation modulates ATM-dependent KAP-1 phosphorylation and Rad51 chromatin loading in G2 cells. Through the phosphorylation of RPA Ser4/Ser8, ATM acts as a partner with ATR in the G2 phase checkpoint response, regulating key downstream events including Rad9, TopBP1 phosphorylation and KAP-1 phosphorylation/activation via the targeting of RPA32 Ser4/Ser8.
Collapse
Affiliation(s)
- Shengqin Liu
- Department of Oral Biology, University of Nebraska Medical Center College of Dentistry, Lincoln, NE 68583, USA
| | - Brendan M. Byrne
- Department of Oral Biology, University of Nebraska Medical Center College of Dentistry, Lincoln, NE 68583, USA
| | - Thomas N. Byrne
- Department of Oral Biology, University of Nebraska Medical Center College of Dentistry, Lincoln, NE 68583, USA
| | - Gregory G. Oakley
- Department of Oral Biology, University of Nebraska Medical Center College of Dentistry, Lincoln, NE 68583, USA
- Eppley Cancer Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep 2023; 56:618-623. [PMID: 37605615 PMCID: PMC10689085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Most cancer cells utilize glucose at a high rate to produce energyand precursors for the biosynthesis of macromolecules such as lipids, proteins, and nucleic acids. This phenomenon is called the Warburg effect or aerobic glycolysis- this distinct characteristic is an attractive target for developing anticancer drugs. Here, we found that Phosphofructokinase-1 (PFK-1) is a substrate of the Protein Phosphatase 4 catalytic subunit (PP4C)/PP4 regulatory subunit 1 (PP4R1) complex by using immunoprecipitation and in vitro assay. While manipulation of PP4C/PP4R1 does not have a critical impact on PFK-1 expression, the absence of the PP4C/PP4R1 complex increases PFK-1 activity. Although PP4C depletion or overexpression does not cause a dramatic change in the overall glycolytic rate, PP4R1 depletion induces a considerable increase in both basal and compensatory glycolytic rates, as well as the oxygen consumption rate, indicating oxidative phosphorylation. Collectively, the PP4C/PP4R1 complex regulates PFK-1 activity by reversing its phosphorylation and is a promising candidate for treating glycolytic disorders and cancers. Targeting PP4R1 could be a more efficient and safer strategy to avoid pleiotropic effects than targeting PP4C directly. [BMB Reports 2023; 56(11): 618-623].
Collapse
Affiliation(s)
- Jaehong Park
- School of Biological Sciences and Biotechnology Graduate School, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Hyun Lee
- Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Korea
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
10
|
Réthi-Nagy Z, Ábrahám E, Sinka R, Juhász S, Lipinszki Z. Protein Phosphatase 4 Is Required for Centrobin Function in DNA Damage Repair. Cells 2023; 12:2219. [PMID: 37759442 PMCID: PMC10526779 DOI: 10.3390/cells12182219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Genome stability in human cells relies on the efficient repair of double-stranded DNA breaks, which is mainly achieved by homologous recombination (HR). Among the regulators of various cellular functions, Protein phosphatase 4 (PP4) plays a pivotal role in coordinating cellular response to DNA damage. Meanwhile, Centrobin (CNTRB), initially recognized for its association with centrosomal function and microtubule dynamics, has sparked interest due to its potential contribution to DNA repair processes. In this study, we investigate the involvement of PP4 and its interaction with CNTRB in HR-mediated DNA repair in human cells. Employing a range of experimental strategies, we investigate the physical interaction between PP4 and CNTRB and shed light on the importance of two specific motifs in CNTRB, the PP4-binding FRVP and the ATR kinase recognition SQ sequences, in the DNA repair process. Moreover, we examine cells depleted of PP4 or CNTRB and cells harboring FRVP and SQ mutations in CNTRB, which result in similar abnormal chromosome morphologies. This phenomenon likely results from the impaired resolution of Holliday junctions, which serve as crucial intermediates in HR. Taken together, our results provide new insights into the intricate mechanisms of PP4 and CNTRB-regulated HR repair and their interrelation.
Collapse
Affiliation(s)
- Zsuzsánna Réthi-Nagy
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Edit Ábrahám
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
| | - Szilvia Juhász
- Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
11
|
Rasti G, Becker M, Vazquez BN, Espinosa-Alcantud M, Fernández-Duran I, Gámez-García A, Ianni A, Gonzalez J, Bosch-Presegué L, Marazuela-Duque A, Guitart-Solanes A, Segura-Bayona S, Bech-Serra JJ, Scher M, Serrano L, Shankavaram U, Erdjument-Bromage H, Tempst P, Reinberg D, Olivella M, Stracker T, de la Torre C, Vaquero A. SIRT1 regulates DNA damage signaling through the PP4 phosphatase complex. Nucleic Acids Res 2023; 51:6754-6769. [PMID: 37309898 PMCID: PMC10359614 DOI: 10.1093/nar/gkad504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
The Sirtuin family of NAD+-dependent enzymes plays an important role in maintaining genome stability upon stress. Several mammalian Sirtuins have been linked directly or indirectly to the regulation of DNA damage during replication through Homologous recombination (HR). The role of one of them, SIRT1, is intriguing as it seems to have a general regulatory role in the DNA damage response (DDR) that has not yet been addressed. SIRT1-deficient cells show impaired DDR reflected in a decrease in repair capacity, increased genome instability and decreased levels of γH2AX. Here we unveil a close functional antagonism between SIRT1 and the PP4 phosphatase multiprotein complex in the regulation of the DDR. Upon DNA damage, SIRT1 interacts specifically with the catalytical subunit PP4c and promotes its inhibition by deacetylating the WH1 domain of the regulatory subunits PP4R3α/β. This in turn regulates γH2AX and RPA2 phosphorylation, two key events in the signaling of DNA damage and repair by HR. We propose a mechanism whereby during stress, SIRT1 signaling ensures a global control of DNA damage signaling through PP4.
Collapse
Affiliation(s)
- George Rasti
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Maximilian Becker
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Berta N Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Espinosa-Alcantud
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Irene Fernández-Duran
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231Bad Nauheim, Germany
| | - Jessica Gonzalez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Laia Bosch-Presegué
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IrisCC). Experimental Sciences and Methodology Department. Faculty of Health Sciences and Welfare (FCSB), University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Guitart-Solanes
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Current affiliation: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joan-Josep Bech-Serra
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain
| | - Michael Scher
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, NJ08854, USA
| | - Lourdes Serrano
- Department of Science, BMCC, The City University of New York (CUNY), 199 Chambers Street N699P, New Yirk, NY10007, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD20892, USA
| | - Hediye Erdjument-Bromage
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY10016, USA
| | - Paul Tempst
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, NJ08854, USA
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, NY10016, USA
| | - Mireia Olivella
- Bioinfomatics and Medical Statistics Group, Faculty of Science, Technology and Engineering. University of Vic-Central University of Catalonia, Vic, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD20892, USA
| | - Carolina de la Torre
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
12
|
Ma Y, Hou J, Huang D, Zhang Y, Liu Z, Tian M. Expression of protein phosphatase 4 in different tissues under hypoxia. INDIAN J PATHOL MICR 2023; 66:577-583. [PMID: 37530343 DOI: 10.4103/ijpm.ijpm_1179_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Relevant research data shows that there is a certain degree of energy metabolism imbalance in highland residents. Protein phosphatase 4 (PP4) has been found as a new factor in the regulation of sugar and lipid metabolism. Here, we investigate the differential expression of PP4 at a simulated altitude of 4,500 m in the heart, lung, and brain tissues of rats. A hypoxic plateau rat model was established using an animal decompression chamber. A blood routine test was performed by an animal blood cell analyzer on rats cultured for different hypoxia periods at 4,500 m above sea level. Quantitative polymerase chain reaction (qPCR) and western blot were used to detect the changes of protein phosphatase 4 catalytic subunit (PP4C) gene and protein in heart, lung, and brain tissues. The PP4C gene with the highest expression level found in rats slowly entering the high altitude area (20 m-2200 m-7 d-4500 m-3 d) was about twice as high as the low elevation group (20 m above sea level). The simulated high-altitude hypoxia induced an increase of PP4C expression level in all tissues, and the expression in the lung tissue was twice as expressed as heart and brain tissue at high altitude (P < 0.05). These results suggest that the PP4 phosphatase complex is ubiquitously expressed in rat tissues and likely involved in adaptation to or disease associated with high-altitude hypoxia.
Collapse
Affiliation(s)
- Yanyan Ma
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| | - Jing Hou
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Dengliang Huang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Yaogang Zhang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Zhe Liu
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Meiyuan Tian
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| |
Collapse
|
13
|
Wang Y, Han W, Yun S, Han J. Identification of protein phosphatase 4 catalytic subunit as a Wnt promoting factor in pan-cancer and Xenopus early embryogenesis. Sci Rep 2023; 13:10240. [PMID: 37353511 PMCID: PMC10290155 DOI: 10.1038/s41598-023-35719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Protein Phosphatase 4 Catalytic Subunit (PPP4C) is an evolutionarily conserved protein involved in multiple biological and pathological events, including embryogenesis, organogenesis, cellular homeostasis, and oncogenesis. However, the detailed mechanisms underlying these processes remain largely unknown. Thus, we investigated the potential correlation between PPP4C and biological processes (BPs) and canonical Wnt signaling using pan-cancer analysis and Xenopus laevis (X. laevis) embryo model. Our results indicate that PPP4C is a potential biomarker for specific cancer types due to its high diagnostic accuracy and significant prognostic correlation. Furthermore, in multiple cancer types, PPP4C-related differentially expressed genes (DEGs) were significantly enriched in pattern specification, morphogenesis, and canonical Wnt activation. Consistently, perturbation of Ppp4c in X. laevis embryos interfered with normal embryogenesis and canonical Wnt responses. Moreover, biochemical analysis of X. laevis embryos demonstrated that both endogenous and exogenous Ppp4c negatively regulated AXIN1 (Wnt inhibitor) abundance. This study provides novel insights into PPP4C roles in pattern specification and Wnt activation. The similarities in BPs and Wnt signaling regulation regarding PPP4C support the intrinsic link between tumorigenesis and early embryogenesis.
Collapse
Affiliation(s)
- YiLi Wang
- Laboratory of Developmental Biology, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - WonHee Han
- Laboratory of Developmental Biology, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - SeokMin Yun
- Laboratory of Developmental Biology, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - JinKwan Han
- Laboratory of Developmental Biology, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
14
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
15
|
Pu Y, Wu W, Xiang H, Chen Y, Xu H. CRISPR/Cas9-based genome editing for multimodal synergistic cancer nanotherapy. NANO TODAY 2023; 48:101734. [DOI: 10.1016/j.nantod.2022.101734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
16
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
17
|
Raja R, Wu C, Bassoy EY, Rubino TE, Utagawa EC, Magtibay PM, Butler KA, Curtis M. PP4 inhibition sensitizes ovarian cancer to NK cell-mediated cytotoxicity via STAT1 activation and inflammatory signaling. J Immunother Cancer 2022; 10:jitc-2022-005026. [PMID: 36564125 PMCID: PMC9791393 DOI: 10.1136/jitc-2022-005026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increased infiltration of T cells into ovarian tumors has been repeatedly shown to be predictive of enhanced patient survival. However, despite the evidence of an active immune response in ovarian cancer (OC), the frequency of responses to immune checkpoint blockade (ICB) therapy in OC is much lower than other cancer types. Recent studies have highlighted that deficiencies in the DNA damage response (DDR) can drive increased genomic instability and tumor immunogenicity, which leads to enhanced responses to ICB. Protein phosphatase 4 (PP4) is a critical regulator of the DDR; however, its potential role in antitumor immunity is currently unknown. RESULTS Our results show that the PP4 inhibitor, fostriecin, combined with carboplatin leads to increased carboplatin sensitivity, DNA damage, and micronuclei formation. Using multiple OC cell lines, we show that PP4 inhibition or PPP4C knockdown combined with carboplatin triggers inflammatory signaling via Nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 1 (STAT1) activation. This resulted in increased expression of the pro-inflammatory cytokines and chemokines: CCL5, CXCL10, and IL-6. In addition, IFNB1 expression was increased suggesting activation of the type I interferon response. Conditioned media from OC cells treated with the combination of PP4 inhibitor and carboplatin significantly increased migration of both CD8 T cell and natural killer (NK) cells over carboplatin treatment alone. Knockdown of stimulator of interferon genes (STING) in OC cells significantly abrogated the increase in CD8 T-cell migration induced by PP4 inhibition. Co-culture of NK-92 cells and OC cells with PPP4C or PPP4R3B knockdown resulted in strong induction of NK cell interferon-γ, increased degranulation, and increased NK cell-mediated cytotoxicity against OC cells. Stable knockdown of PP4C in a syngeneic, immunocompetent mouse model of OC resulted in significantly reduced tumor growth in vivo. Tumors with PP4C knockdown had increased infiltration of NK cells, NK T cells, and CD4+ T cells. Addition of low dose carboplatin treatment led to increased CD8+ T-cell infiltration in PP4C knockdown tumors as compared with the untreated PP4C knockdown tumors. CONCLUSIONS Our work has identified a role for PP4 inhibition in promoting inflammatory signaling and enhanced immune cell effector function. These findings support the further investigation of PP4 inhibitors to enhance chemo-immunotherapy for OC treatment.
Collapse
Affiliation(s)
- Remya Raja
- Department of Immunology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA
| | - Christopher Wu
- Department of Immunology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA
| | - Esen Yonca Bassoy
- Department of Immunology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA
| | - Thomas E Rubino
- Department of Immunology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA
| | - Emma C Utagawa
- Department of Immunology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA
| | - Paul M Magtibay
- Department of Gynecology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Kristina A Butler
- Department of Gynecology, Mayo Clinic, Scottsdale, Arizona, USA,College of Medicine and Science, Mayo Clinic, Scottsdale, Arizona, USA
| | - Marion Curtis
- Department of Immunology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA,College of Medicine and Science, Mayo Clinic, Scottsdale, Arizona, USA,Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
18
|
Oo JA, Pálfi K, Warwick T, Wittig I, Prieto-Garcia C, Matkovic V, Tomašković I, Boos F, Izquierdo Ponce J, Teichmann T, Petriukov K, Haydar S, Maegdefessel L, Wu Z, Pham MD, Krishnan J, Baker AH, Günther S, Ulrich HD, Dikic I, Leisegang MS, Brandes RP. Long non-coding RNA PCAT19 safeguards DNA in quiescent endothelial cells by preventing uncontrolled phosphorylation of RPA2. Cell Rep 2022; 41:111670. [PMID: 36384122 PMCID: PMC9681662 DOI: 10.1016/j.celrep.2022.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
In healthy vessels, endothelial cells maintain a stable, differentiated, and growth-arrested phenotype for years. Upon injury, a rapid phenotypic switch facilitates proliferation to restore tissue perfusion. Here we report the identification of the endothelial cell-enriched long non-coding RNA (lncRNA) PCAT19, which contributes to the proliferative switch and acts as a safeguard for the endothelial genome. PCAT19 is enriched in confluent, quiescent endothelial cells and binds to the full replication protein A (RPA) complex in a DNA damage- and cell-cycle-related manner. Our results suggest that PCAT19 limits the phosphorylation of RPA2, primarily on the serine 33 (S33) residue, and thereby facilitates an appropriate DNA damage response while slowing cell cycle progression. Reduction in PCAT19 levels in response to either loss of cell contacts or knockdown promotes endothelial proliferation and angiogenesis. Collectively, PCAT19 acts as a dynamic guardian of the endothelial genome and facilitates rapid switching from quiescence to proliferation.
Collapse
Affiliation(s)
- James A Oo
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Katalin Pálfi
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany; Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, 60596 Frankfurt, Germany
| | - Cristian Prieto-Garcia
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60596 Frankfurt, Germany
| | - Vigor Matkovic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60596 Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt, Germany
| | - Ines Tomašković
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60596 Frankfurt, Germany
| | - Frederike Boos
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Judit Izquierdo Ponce
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Tom Teichmann
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | | | - Shaza Haydar
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar-Technical University Munich, 81675 Munich, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Munich, Munich, Germany
| | - Zhiyuan Wu
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar-Technical University Munich, 81675 Munich, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Munich, Munich, Germany
| | - Minh Duc Pham
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, 60596 Frankfurt, Germany; Genome Biologics, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Jaya Krishnan
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany; Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, 60596 Frankfurt, Germany; Cardio-Pulmonary Institute, Giessen, Germany
| | - Andrew H Baker
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland; CARIM Institute, University of Maastricht, Universiteitssingel 50, 6200 Maastricht, the Netherlands
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60596 Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt, Germany; Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany.
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany.
| |
Collapse
|
19
|
Lu C, Lv Y, Kou G, Liu Y, Liu Y, Chen Y, Wu X, Yang F, Luo J, Yang X. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113993. [PMID: 35994909 DOI: 10.1016/j.ecoenv.2022.113993] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
Sliver nanoparticles (AgNPs) are widely used in industry, agriculture, and medicine, potentially resulting in adverse effects on human health and aquatic environments. Here, we investigated the developmental toxicity of zebrafish embryos with acute exposure to AgNPs. Our results demonstrated developmental defects in 4 hpf zebrafish embryos after exposure to different concentrations of AgNPs for 72 h. In addition, RNA-seq profiling of zebrafish embryos after AgNPs treatment. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the differentially expressed genes (DEGs) were enriched in DNA replication initiation, oxidoreductase activity, DNA replication, cellular senescence, and oxidative phosphorylation signaling pathways in the AgNPs-treated group. Notably, we also found that AgNPs exposure could result in the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the inhibition of superoxide dismutase (SOD), catalase (CAT), and mitochondrial complex I-V activities, and the downregulated expression of SOD, CAT, and mitochondrial complex I-IV chain-related genes. Moreover, the expression of mitochondrion-mediated apoptosis signaling pathway-related genes, such as bax, bcl2, caspase-3, and caspase-9, was significantly regulated after AgNPs exposure in zebrafish. Therefore, these findings demonstrated that AgNPs exposure could cause oxidative stress, induce mitochondrial dysfunction, and ultimately lead to developmental toxicity.
Collapse
Affiliation(s)
- Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yuhang Lv
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Guanhua Kou
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yao Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yi Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xuewei Wu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
20
|
Guo H, Stamper EL, Sato-Carlton A, Shimazoe MA, Li X, Zhang L, Stevens L, Tam KCJ, Dernburg AF, Carlton PM. Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. eLife 2022; 11:77956. [PMID: 35758641 PMCID: PMC9278955 DOI: 10.7554/elife.77956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants and in the wild-type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.
Collapse
Affiliation(s)
- Heyun Guo
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Ericca L Stamper
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Aya Sato-Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Masa A Shimazoe
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Department of Science, Kyoto University, Kyoto, Japan
| | - Xuan Li
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - K C Jacky Tam
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Radiation Biology Center, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Dong MZ, Ouyang YC, Gao SC, Ma XS, Hou Y, Schatten H, Wang ZB, Sun QY. PPP4C facilitates homologous recombination DNA repair by dephosphorylating PLK1 during early embryo development. Development 2022; 149:dev200351. [PMID: 35546066 DOI: 10.1242/dev.200351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/24/2022] [Indexed: 12/17/2023]
Abstract
Mammalian early embryo cells have complex DNA repair mechanisms to maintain genomic integrity, and homologous recombination (HR) plays the main role in response to double-strand DNA breaks (DSBs) in these cells. Polo-like kinase 1 (PLK1) participates in the HR process and its overexpression has been shown to occur in a variety of human cancers. Nevertheless, the regulatory mechanism of PLK1 remains poorly understood, especially during the S and G2 phase. Here, we show that protein phosphatase 4 catalytic subunit (PPP4C) deletion causes severe female subfertility due to accumulation of DNA damage in oocytes and early embryos. PPP4C dephosphorylated PLK1 at the S137 site, negatively regulating its activity in the DSB response in early embryonic cells. Depletion of PPP4C induced sustained activity of PLK1 when cells exhibited DNA lesions that inhibited CHK2 and upregulated the activation of CDK1, resulting in inefficient loading of the essential HR factor RAD51. On the other hand, when inhibiting PLK1 in the S phase, DNA end resection was restricted. These results demonstrate that PPP4C orchestrates the switch between high-PLK1 and low-PLK1 periods, which couple the checkpoint to HR.
Collapse
Affiliation(s)
- Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Cai Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| |
Collapse
|
22
|
Topchu I, Pangeni RP, Bychkov I, Miller SA, Izumchenko E, Yu J, Golemis E, Karanicolas J, Boumber Y. The role of NSD1, NSD2, and NSD3 histone methyltransferases in solid tumors. Cell Mol Life Sci 2022; 79:285. [PMID: 35532818 PMCID: PMC9520630 DOI: 10.1007/s00018-022-04321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Iuliia Topchu
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Rajendra P Pangeni
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Sitapakha, Mahalaxmi-4, Lalitpur, Bagmati, 44700, Nepal
| | - Igor Bychkov
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Sven A Miller
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Jindan Yu
- Department of Medicine-Hematology/Oncology and Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Erica Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, 3500 North Broad St, Philadelphia, PA, 19140, USA
| | - John Karanicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Yanis Boumber
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. 74 Karl Marks, Kazan, 420012, Russia.
| |
Collapse
|
23
|
Kadri NK, Zhang J, Oget-Ebrad C, Wang Y, Couldrey C, Spelman R, Charlier C, Georges M, Druet T. High male specific contribution of the X-chromosome to individual global recombination rate in dairy cattle. BMC Genomics 2022; 23:114. [PMID: 35144552 PMCID: PMC8832838 DOI: 10.1186/s12864-022-08328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background Meiotic recombination plays an important role in reproduction and evolution. The individual global recombination rate (GRR), measured as the number of crossovers (CO) per gametes, is a complex trait that has been shown to be heritable. The sex chromosomes play an important role in reproduction and fertility related traits. Therefore, variants present on the X-chromosome might have a high contribution to the genetic variation of GRR that is related to meiosis and to reproduction. Results We herein used genotyping data from 58,474 New Zealand dairy cattle to estimate the contribution of the X-chromosome to male and female GRR levels. Based on the pedigree-based relationships, we first estimated that the X-chromosome accounted for 30% of the total additive genetic variance for male GRR. This percentage was equal to 19.9% when the estimation relied on a SNP-BLUP approach assuming each SNP has a small contribution. We then carried out a haplotype-based association study to map X-linked QTL, and subsequently fine-mapped the identified QTL with imputed sequence variants. With this approach we identified three QTL with large effect accounting for 7.7% of the additive genetic variance of male GRR. The associated effects were equal to + 0.79, − 1.16 and + 1.18 CO for the alternate alleles. In females, the estimated contribution of the X-chromosome to GRR was null and no significant association with X-linked loci was found. Interestingly, two of the male GRR QTL were associated with candidate genes preferentially expressed in testis, in agreement with a male-specific effect. Finally, the most significant QTL was associated with PPP4R3C, further supporting the important role of protein phosphatase in double-strand break repair by homologous recombination. Conclusions Our study illustrates the important role the X-chromosome can have on traits such as individual recombination rate, associated with testis in males. We also show that contribution of the X-chromosome to such a trait might be sex dependent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08328-8.
Collapse
Affiliation(s)
- N K Kadri
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium.,Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - J Zhang
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - C Oget-Ebrad
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - Y Wang
- Livestock Improvement Corporation Ltd, Private Bag 3016, 3240, Hamilton, New Zealand
| | - C Couldrey
- Livestock Improvement Corporation Ltd, Private Bag 3016, 3240, Hamilton, New Zealand
| | - R Spelman
- Livestock Improvement Corporation Ltd, Private Bag 3016, 3240, Hamilton, New Zealand
| | - C Charlier
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - M Georges
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - T Druet
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
24
|
RPA phosphorylation facilitates RAD52 dependent homologous recombination in BRCA-deficient cells. Mol Cell Biol 2021; 42:e0052421. [PMID: 34928169 DOI: 10.1128/mcb.00524-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of RAD52 is synthetically lethal in BRCA-deficient cells, owing to its role in backup homologous recombination (HR) repair of DNA double-strand breaks (DSBs). In HR in mammalian cells, DSBs are processed to single-stranded DNA (ssDNA) overhangs, which are then bound by Replication Protein A(RPA). RPA is exchanged for RAD51 by mediator proteins: in mammals BRCA2 is the primary mediator, however, RAD52 provides an alternative mediator pathway in BRCA-deficient cells. RAD51 stimulates strand exchange between homologous DNA duplexes, a critical step in HR. RPA phosphorylation and de-phosphorylation are important for HR, but its effect on RAD52 mediator function is unknown. Here, we show that RPA phosphorylation is required for RAD52 to salvage HR in BRCA-deficient cells. Using BRCA2-depleted human cells, in which the only available mediator pathway is RAD52-dependent, the expression of phosphorylation-deficient RPA mutant reduced HR. Furthermore, RPA-phospho-mutant cells showed reduced association of RAD52 with RAD51. Interestingly, there was no effect of RPA phosphorylation on RAD52 recruitment to repair foci. Finally, we show that RPA phosphorylation does not affect RAD52-dependent ssDNA annealing. Thus, although RAD52 can be recruited independently of RPA's phosphorylation status, RPA phosphorylation is required for RAD52's association with RAD51, and its subsequent promotion of RAD52-mediated HR.
Collapse
|
25
|
Regulation of TLR4 signaling through the TRAF6/sNASP axis by reversible phosphorylation mediated by CK2 and PP4. Proc Natl Acad Sci U S A 2021; 118:2107044118. [PMID: 34789577 DOI: 10.1073/pnas.2107044118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of invading pathogens by Toll-like receptors (TLRs) activates innate immunity through signaling pathways that involved multiple protein kinases and phosphatases. We previously demonstrated that somatic nuclear autoantigenic sperm protein (sNASP) binds to TNF receptor-associated factor 6 (TRAF6) in the resting state. Upon TLR4 activation, a signaling complex consisting of TRAF6, sNASP, interleukin (IL)-1 receptor-associated kinase 4, and casein kinase 2 (CK2) is formed. CK2 then phosphorylates sNASP to release phospho-sNASP (p-sNASP) from TRAF6, initiating downstream signaling pathways. Here, we showed that protein phosphatase 4 (PP4) is the specific sNASP phosphatase that negatively regulates TLR4-induced TRAF6 activation and its downstream signaling pathway. Mechanistically, PP4 is directly recruited by phosphorylated sNASP to dephosphorylate p-sNASP to terminate TRAF6 activation. Ectopic expression of PP4 specifically inhibited sNASP-dependent proinflammatory cytokine production and downstream signaling following bacterial lipopolysaccharide (LPS) treatment, whereas silencing PP4 had the opposite effect. Primary macrophages and mice infected with recombinant adenovirus carrying a gene encoding PP4 (Ad-PP4) showed significant reduction in IL-6 and TNF-α production. Survival of Ad-PP4-infected mice was markedly increased due to a better ability to clear bacteria in a sepsis model. These results indicate that the serine/threonine phosphatase PP4 functions as a negative regulator of innate immunity by regulating the binding of sNASP to TRAF6.
Collapse
|
26
|
Lu H, Zhang Q, He S, Liu S, Xie Z, Li X, Huang Y. Reduction-Sensitive Fluorinated-Pt(IV) Universal Transfection Nanoplatform Facilitating CT45-Targeted CRISPR/dCas9 Activation for Synergistic and Individualized Treatment of Ovarian Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102494. [PMID: 34510754 DOI: 10.1002/smll.202102494] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Compared to traditional clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, CRISPR/dead Cas9 (dCas9) system can precisely regulate endogenous gene expression without damaging the host gene, representing a greater potential for cancer therapy. Cancer/testis antigen 45 (CT45) is proved to enhance platinum-based chemosensitivity for individualized ovarian cancer therapy. However, the development of a single nanocarrier codelivering CRISPR/dCas9 system and chemotherapeutics for synergistic cancer therapy still faces challenges. Herein, a reduction-sensitive fluorinated-Pt(IV) universal transfection nanoplatform (PtUTP-F) is developed for the CT45-targeted CRISPR/dCas9 activation to achieve synergistic and individualized treatment of ovarian cancer. Overcoming multiple physiological barriers, PtUTP-F condensed gene can efficiently transfect into different cells including 293T cells, A2780, SKOV3, A549, and A2780/cisplatin (DDP) cancer cells, which is superior to Lipofectamine 6000. With the responsive release of gene and Pt(II) in the intracellular reducing microenvironment, PtUTP-F/dCas9-CT45 can generate CRISPR/dCas9 activation of CT45 expression for protein phosphatase 4C (PP4C) activity inhibition to hinder the DNA repair pathway and thus enhances the sensitivity to Pt(II) drugs for individualized A2780 tumor therapy. The PtUTP-F not only represents a powerful nanoplatform for CRISPR/dCas9 system delivery but also initiates a novel strategy for synergistic and individualized treatment of CRISPR/dCas9-based gene therapy with chemotherapy.
Collapse
Affiliation(s)
- Hongtong Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Sha Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaoyuan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
27
|
A complex of BRCA2 and PP2A-B56 is required for DNA repair by homologous recombination. Nat Commun 2021; 12:5748. [PMID: 34593815 PMCID: PMC8484605 DOI: 10.1038/s41467-021-26079-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mutations in the tumour suppressor gene BRCA2 are associated with predisposition to breast and ovarian cancers. BRCA2 has a central role in maintaining genome integrity by facilitating the repair of toxic DNA double-strand breaks (DSBs) by homologous recombination (HR). BRCA2 acts by controlling RAD51 nucleoprotein filament formation on resected single-stranded DNA, but how BRCA2 activity is regulated during HR is not fully understood. Here, we delineate a pathway where ATM and ATR kinases phosphorylate a highly conserved region in BRCA2 in response to DSBs. These phosphorylations stimulate the binding of the protein phosphatase PP2A-B56 to BRCA2 through a conserved binding motif. We show that the phosphorylation-dependent formation of the BRCA2-PP2A-B56 complex is required for efficient RAD51 filament formation at sites of DNA damage and HR-mediated DNA repair. Moreover, we find that several cancer-associated mutations in BRCA2 deregulate the BRCA2-PP2A-B56 interaction and sensitize cells to PARP inhibition. Collectively, our work uncovers PP2A-B56 as a positive regulator of BRCA2 function in HR with clinical implications for BRCA2 and PP2A-B56 mutated cancers.
Collapse
|
28
|
Wu MX, Zou Y, Yu YH, Chen BX, Zheng QW, Ye ZW, Wei T, Ye SQ, Guo LQ, Lin JF. Comparative transcriptome and proteome provide new insights into the regulatory mechanisms of the postharvest deterioration of Pleurotus tuoliensis fruitbodies during storage. Food Res Int 2021; 147:110540. [PMID: 34399517 DOI: 10.1016/j.foodres.2021.110540] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The Pleurotus tuoliensis (Pt), a precious edible mushroom with high economic value, is widely popular for its rich nutrition and meaty texture. However, rapid postharvest deterioration depreciates the commercial value of Pt and severely restricts its marketing. By RNA-Seq transcriptomic and TMT-MS MS proteomic, we study the regulatory mechanisms of the postharvest storage of Pt fruitbodies at 25 ℃ for 0, 38, and 76 h (these three-time points recorded as groups A, B, and C, respectively). 2,008 DEGs (Differentially expressed genes) were identified, and all DEGs shared 265 factors with all DEPs (Differentially expressed proteins). Jointly, the DEGs and DEPs of two-omics showed that the category of the metabolic process contained the most DEGs and DEPs in the biological process by GO (Gene Ontology) classification. The top 17 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways with the highest sum of DEG and DEP numbers in groups B/A (38 h vs. 0 h) and C/A (76 h vs. 0 h) and pathways closely related to energy metabolism were selected for analysis and discussion. Actively expression of CAZymes (Carbohydrate active enzymes), represented by laccase, chitinase, and β-glucanase, directly leads to the softening of fruitbodies. The transcription factor Rlm1 of 1,3-β-glucan synthase attracted attention with a significant down-regulation of gene levels in the C/A group. Laccase also contributes, together with phenylalanine ammonia-lyase (PAL), to the discoloration reaction in the first 76 h of the fruitbodies. Significant expression of several crucial enzymes for EMP (Glycolysis), Fatty acid degradation, and Valine, leucine and isoleucine degradation at the gene or protein level supply substantial amounts of acetyl-CoA to the TCA cycle. Citrate synthase (CS), isocitrate dehydrogenase (ICDH), and three mitochondrial respiratory complexes intensify respiration and produce high levels of ROS (Reactive oxygen species) by significant up-regulation. In the ROS scavenging system, only Mn-SOD was significantly up-regulated at the gene level and was probably interacted with Hsp60 (Heat shock protein 60), which was significantly up-regulated at the protein level, to play a dominant role in antioxidation. Three types of stresses - cell wall stress, starvation, and oxidative stress - were suffered by Pt fruitbodies postharvest, resulting in cell cycle arrest and gene expression disorder.
Collapse
Affiliation(s)
- Mu-Xiu Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Yuan Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Ying-Hao Yu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Bai-Xiong Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Qian-Wang Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Zhi-Wei Ye
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Tao Wei
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Si-Qiang Ye
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China.
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
29
|
Padam KSR, Basavarajappa DS, Shenoy US, Chakrabarty S, Kabekkodu SP, Hunter KD, Radhakrishnan R. In silico interaction of HOX cluster-embedded microRNAs and long non-coding RNAs in oral cancer. J Oral Pathol Med 2021; 51:18-29. [PMID: 34358375 DOI: 10.1111/jop.13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
The essential role HOX-associated non-coding RNAs play in chromatin dynamics and gene regulation has been well documented. The potential roles of these microRNAs and long non-coding RNAs in oral cancer development, with their attendant involvement in various cellular processes including proliferation, invasion, migration, epithelial-mesenchymal transition and metastasis is gaining credence. An interaction network of HOX-embedded non-coding RNAs was constructed to identify the RNA interaction landscape using the arena-Idb platform and visualized using Cytoscape. The miR-10a was shown to interact with HOXA1, miR-10b with HOXD10, miR-196a1 with HOXA5, HOXA7, HOXB8, HOXC8, HOXD8, and miR-196a2 with HOXA5. The lncRNAs, HOTAIR interacted with HOXC11, HOTAIRM1 with HOXA1 and HOXA4, HOTTIP with HOXA13, HOXA-AS2 with HOXA3, HOXA11-AS with HOXA11 and HOXD-AS1 with HOXB8. Changes in the HOX cluster-embedded non-coding RNAs have implications for prognosis and overall disease survival. Our review aims to analyze the functional significance and clinical relevance of non-coding RNAs within the HOX cluster in the context of oral carcinogenesis. Elucidating these interactions between the non-coding RNAs and HOX genes in oral cancer development and progression could pave the way for the identification of reliable biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Dhanraj Salur Basavarajappa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
30
|
Molinaro C, Martoriati A, Cailliau K. Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel) 2021; 13:3819. [PMID: 34359720 PMCID: PMC8345162 DOI: 10.3390/cancers13153819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells respond to genotoxic stress through a series of complex protein pathways called DNA damage response (DDR). These monitoring mechanisms ensure the maintenance and the transfer of a correct genome to daughter cells through a selection of DNA repair, cell cycle regulation, and programmed cell death processes. Canonical or non-canonical DDRs are highly organized and controlled to play crucial roles in genome stability and diversity. When altered or mutated, the proteins in these complex networks lead to many diseases that share common features, and to tumor formation. In recent years, technological advances have made it possible to benefit from the principles and mechanisms of DDR to target and eliminate cancer cells. These new types of treatments are adapted to the different types of tumor sensitivity and could benefit from a combination of therapies to ensure maximal efficiency.
Collapse
Affiliation(s)
| | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
31
|
Shi J, Zhang X, Li J, Huang W, Wang Y, Wang Y, Qin J. MTA2 sensitizes gastric cancer cells to PARP inhibition by induction of DNA replication stress. Transl Oncol 2021; 14:101167. [PMID: 34280886 PMCID: PMC8313750 DOI: 10.1016/j.tranon.2021.101167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib selectively kills cancer cells with BRCA-deficiency and is approved for BRCA-mutated breast, ovarian and pancreatic cancers by FDA. However, phase III study of olaparib failed to show a significant improvement in overall survival in patients with gastric cancer (GC). To discover an effective biomarker for GC patient-selection in olaparib treatment, we analyzed proteomic profiling of 12 GC cell lines. MTA2 was identified to confer sensitivity to olaparib by aggravating olaparib-induced replication stress in cancer cells. Mechanistically, we applied Cleavage Under Targets and Tagmentation assay to find that MTA2 proteins preferentially bind regions of replication origin-associated DNA sequences, which could be enhanced by olaparib treatment. Furthermore, MTA2 was validated here to render cancer cells susceptible to combination of olaparib with ATR inhibitor AZD6738. In general, our study identified MTA2 as a potential biomarker for olaparib sensitivity by aggravating olaparib-induced replication stress.
Collapse
Affiliation(s)
- Jinwen Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaofeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenwen Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
32
|
Argunhan B, Iwasaki H, Tsubouchi H. Post-translational modification of factors involved in homologous recombination. DNA Repair (Amst) 2021; 104:103114. [PMID: 34111757 DOI: 10.1016/j.dnarep.2021.103114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023]
Abstract
DNA is the molecule that stores the chemical instructions necessary for life and its stability is therefore of the utmost importance. Despite this, DNA is damaged by both exogenous and endogenous factors at an alarming frequency. The most severe type of DNA damage is a double-strand break (DSB), in which a scission occurs in both strands of the double helix, effectively dividing a single normal chromosome into two pathological chromosomes. Homologous recombination (HR) is a universal DSB repair mechanism that solves this problem by identifying another region of the genome that shares high sequence similarity with the DSB site and using it as a template for repair. Rad51 possess the enzymatic activity that is essential for this repair but several auxiliary factors are required for Rad51 to fulfil its function. It is becoming increasingly clear that many HR factors are subjected to post-translational modification. Here, we review what is known about how these modifications affect HR. We first focus on cases where there is experimental evidence to support a function for the modification, then discuss speculative cases where a function can be inferred. Finally, we contemplate why such modifications might be necessary.
Collapse
Affiliation(s)
- Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
33
|
Bakhtiari M, Park J, Ding YC, Shleizer-Burko S, Neuhausen SL, Halldórsson BV, Stefánsson K, Gymrek M, Bafna V. Variable number tandem repeats mediate the expression of proximal genes. Nat Commun 2021; 12:2075. [PMID: 33824302 PMCID: PMC8024321 DOI: 10.1038/s41467-021-22206-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Variable number tandem repeats (VNTRs) account for significant genetic variation in many organisms. In humans, VNTRs have been implicated in both Mendelian and complex disorders, but are largely ignored by genomic pipelines due to the complexity of genotyping and the computational expense. We describe adVNTR-NN, a method that uses shallow neural networks to genotype a VNTR in 18 seconds on 55X whole genome data, while maintaining high accuracy. We use adVNTR-NN to genotype 10,264 VNTRs in 652 GTEx individuals. Associating VNTR length with gene expression in 46 tissues, we identify 163 "eVNTRs". Of the 22 eVNTRs in blood where independent data is available, 21 (95%) are replicated in terms of significance and direction of association. 49% of the eVNTR loci show a strong and likely causal impact on the expression of genes and 80% have maximum effect size at least 0.3. The impacted genes are involved in diseases including Alzheimer's, obesity and familial cancers, highlighting the importance of VNTRs for understanding the genetic basis of complex diseases.
Collapse
Affiliation(s)
- Mehrdad Bakhtiari
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jonghun Park
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yuan-Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | | | - Melissa Gymrek
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
34
|
Nageswaran DC, Kim J, Lambing C, Kim J, Park J, Kim EJ, Cho HS, Kim H, Byun D, Park YM, Kuo P, Lee S, Tock AJ, Zhao X, Hwang I, Choi K, Henderson IR. HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis. NATURE PLANTS 2021; 7:452-467. [PMID: 33846593 PMCID: PMC7610654 DOI: 10.1038/s41477-021-00889-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/25/2021] [Indexed: 05/19/2023]
Abstract
Meiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination pathways; however, similar pathways repressing class I crossovers have not been identified. Here, we performed a forward genetic screen in Arabidopsis using fluorescent crossover reporters to identify mutants with increased or decreased recombination frequency. We identified HIGH CROSSOVER RATE1 (HCR1) as repressing crossovers and encoding PROTEIN PHOSPHATASE X1. Genome-wide analysis showed that hcr1 crossovers are increased in the distal chromosome arms. MLH1 foci significantly increase in hcr1 and crossover interference decreases, demonstrating an effect on class I repair. Consistently, yeast two-hybrid and in planta assays show interaction between HCR1 and class I proteins, including HEI10, PTD, MSH5 and MLH1. We propose that HCR1 plays a major role in opposition to pro-recombination kinases to restrict crossovers in Arabidopsis.
Collapse
Affiliation(s)
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | - Juhyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihye Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eun-Jung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dohwan Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeong Mi Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Seungchul Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
35
|
Park J, Lee DH. Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe. BMB Rep 2021. [PMID: 32192570 PMCID: PMC7196183 DOI: 10.5483/bmbrep.2020.53.4.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein phosphatase 4 (PP4), one of serine/threonine phosphatases, is involved in many critical cellular pathways, including DNA damage response (DNA repair, cell cycle regulation, and apoptosis), tumorigenesis, cell migration, immune response, stem cell development, glucose metabolism, and diabetes. PP4 has been steadily studied over the past decade about wide spectrum of physiological activities in cells. Given the many vital functions in cells, PP4 has great potential to develop into the finding of key working mechanisms and effective treatments for related diseases such as cancer and diabetes. In this review, we provide an overview of the cellular and molecular mechanisms by which PP4 impacts and also discuss the functional significance of it in cell health.
Collapse
Affiliation(s)
- Jaehong Park
- School of Biological Sciences and Biotechnology Graduate School, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186; Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
36
|
Karman Z, Rethi-Nagy Z, Abraham E, Fabri-Ordogh L, Csonka A, Vilmos P, Debski J, Dadlez M, Glover DM, Lipinszki Z. Novel perspectives of target-binding by the evolutionarily conserved PP4 phosphatase. Open Biol 2020; 10:200343. [PMID: 33352067 PMCID: PMC7776573 DOI: 10.1098/rsob.200343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 4 (PP4) is an evolutionarily conserved and essential Ser/Thr phosphatase that regulates cell division, development and DNA repair in eukaryotes. The major form of PP4, present from yeast to human, is the PP4c-R2-R3 heterotrimeric complex. The R3 subunit is responsible for substrate-recognition via its EVH1 domain. In typical EVH1 domains, conserved phenylalanine, tyrosine and tryptophan residues form the specific recognition site for their target's proline-rich sequences. Here, we identify novel binding partners of the EVH1 domain of the Drosophila R3 subunit, Falafel, and demonstrate that instead of binding to proline-rich sequences this EVH1 variant specifically recognizes atypical ligands, namely the FxxP and MxPP short linear consensus motifs. This interaction is dependent on an exclusively conserved leucine that replaces the phenylalanine invariant of all canonical EVH1 domains. We propose that the EVH1 domain of PP4 represents a new class of the EVH1 family that can accommodate low proline content sequences, such as the FxxP motif. Finally, our data implicate the conserved Smk-1 domain of Falafel in target-binding. These findings greatly enhance our understanding of the substrate-recognition mechanisms and function of PP4.
Collapse
Affiliation(s)
- Zoltan Karman
- Biological Research Centre, Institute of Biochemistry, MTA Lendület Laboratory of Cell Cycle Regulation, Szeged, H‐6726, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H‐6725, Hungary
| | - Zsuzsanna Rethi-Nagy
- Biological Research Centre, Institute of Biochemistry, MTA Lendület Laboratory of Cell Cycle Regulation, Szeged, H‐6726, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H‐6725, Hungary
| | - Edit Abraham
- Biological Research Centre, Institute of Biochemistry, MTA Lendület Laboratory of Cell Cycle Regulation, Szeged, H‐6726, Hungary
| | - Lilla Fabri-Ordogh
- Biological Research Centre, Institute of Biochemistry, MTA Lendület Laboratory of Cell Cycle Regulation, Szeged, H‐6726, Hungary
| | - Akos Csonka
- Department of Traumatology, University of Szeged, Szeged, H‐6725, Hungary
| | - Peter Vilmos
- Biological Research Centre, Institute of Genetics, Szeged, H‐6726, Hungary
| | - Janusz Debski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - David M. Glover
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Zoltan Lipinszki
- Biological Research Centre, Institute of Biochemistry, MTA Lendület Laboratory of Cell Cycle Regulation, Szeged, H‐6726, Hungary
| |
Collapse
|
37
|
Chai ZX, Xin JW, Zhang CF, Dawayangla, Luosang, Zhang Q, Pingcuozhandui, Li C, Zhu Y, Cao HW, Wang H, Han JL, Ji QM, Zhong JC. Whole-genome resequencing provides insights into the evolution and divergence of the native domestic yaks of the Qinghai-Tibet Plateau. BMC Evol Biol 2020; 20:137. [PMID: 33109104 PMCID: PMC7590491 DOI: 10.1186/s12862-020-01702-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND On the Qinghai-Tibet Plateau, known as the roof ridge of the world, the yak is a precious cattle species that has been indispensable to the human beings living in this high-altitude area. However, the origin of domestication, dispersal route, and the divergence of domestic yaks from different areas are poorly understood. RESULTS Here, we resequenced the genome of 91 domestic yak individuals from 31 populations and 1 wild yaks throughout China. Using a population genomics approach, we observed considerable genetic variation. Phylogenetic analysis suggested that the earliest domestications of yak occurred in the south-eastern QTP, followed by dispersal to the west QTP and northeast to SiChuang, Gansu, and Qinghai by two routes. Interestingly, we also found potential associations between the distribution of some breeds and historical trade routes such as the Silk Road and Tang-Tibet Ancient Road. Selective analysis identified 11 genes showing differentiation between domesticated and wild yaks and the potentially positively selected genes in each group were identified and compared among domesticated groups. We also detected an unbalanced pattern of introgression among domestic yak, wild yak, and Tibetan cattle. CONCLUSIONS Our research revealed population genetic evidence for three groups of domestic yaks. In addition to providing genomic evidence for the domestication history of yaks, we identified potential selected genes and introgression, which provide a theoretical basis and resources for the selective breeding of superior characters and high-quality yak.
Collapse
Affiliation(s)
- Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dawayangla
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Luosang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Pingcuozhandui
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Chao Li
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
38
|
Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2020; 2:zcaa022. [PMID: 34316690 PMCID: PMC8210275 DOI: 10.1093/narcan/zcaa022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) forms continuously during DNA replication and is an important intermediate during recombination-mediated repair of damaged DNA. Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein. As such, RPA protects the transiently formed ssDNA from nucleolytic degradation and serves as a physical platform for the recruitment of DNA damage response factors. Prominent and well-studied RPA-interacting partners are the tumor suppressor protein p53, the RAD51 recombinase and the ATR-interacting proteins ATRIP and ETAA1. RPA interactions are also documented with the helicases BLM, WRN and SMARCAL1/HARP, as well as the nucleotide excision repair proteins XPA, XPG and XPF–ERCC1. Besides its well-studied roles in DNA replication (restart) and repair, accumulating evidence shows that RPA is engaged in DNA activities in a broader biological context, including nucleosome assembly on nascent chromatin, regulation of gene expression, telomere maintenance and numerous other aspects of nucleic acid metabolism. In addition, novel RPA inhibitors show promising effects in cancer treatment, as single agents or in combination with chemotherapeutics. Since the biochemical properties of RPA and its roles in DNA repair have been extensively reviewed, here we focus on recent discoveries describing several non-canonical functions.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
39
|
Roy A, Bharadvaja N. Venom-Derived Bioactive Compounds as Potential Anticancer Agents: A Review. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10073-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Villoria MT, Gutiérrez-Escribano P, Alonso-Rodríguez E, Ramos F, Merino E, Campos A, Montoya A, Kramer H, Aragón L, Clemente-Blanco A. PP4 phosphatase cooperates in recombinational DNA repair by enhancing double-strand break end resection. Nucleic Acids Res 2020; 47:10706-10727. [PMID: 31544936 PMCID: PMC6846210 DOI: 10.1093/nar/gkz794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
The role of Rad53 in response to a DNA lesion is central for the accurate orchestration of the DNA damage response. Rad53 activation relies on its phosphorylation by Mec1 and its own autophosphorylation in a manner dependent on the adaptor Rad9. While the mechanism behind Rad53 activation has been well documented, less is known about the processes that counteract its activity along the repair of a DNA adduct. Here, we describe that PP4 phosphatase is required to avoid Rad53 hyper-phosphorylation during the repair of a double-strand break, a process that impacts on the phosphorylation status of multiple factors involved in the DNA damage response. PP4-dependent Rad53 dephosphorylation stimulates DNA end resection by relieving the negative effect that Rad9 exerts over the Sgs1/Dna2 exonuclease complex. Consequently, elimination of PP4 activity affects resection and repair by single-strand annealing, defects that are bypassed by reducing Rad53 hyperphosphorylation. These results confirm that Rad53 phosphorylation is controlled by PP4 during the repair of a DNA lesion and demonstrate that the attenuation of its kinase activity during the initial steps of the repair process is essential to efficiently enhance recombinational DNA repair pathways that depend on long-range resection for their success.
Collapse
Affiliation(s)
- María Teresa Villoria
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Pilar Gutiérrez-Escribano
- Cell Cycle Group. Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Facundo Ramos
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Eva Merino
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Adrián Campos
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Luis Aragón
- Cell Cycle Group. Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| |
Collapse
|
41
|
DAF-16 and SMK-1 Contribute to Innate Immunity During Adulthood in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:1521-1539. [PMID: 32161087 PMCID: PMC7202018 DOI: 10.1534/g3.120.401166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aging is accompanied by a progressive decline in immune function termed "immunosenescence". Deficient surveillance coupled with the impaired function of immune cells compromises host defense in older animals. The dynamic activity of regulatory modules that control immunity appears to underlie age-dependent modifications to the immune system. In the roundworm Caenorhabditis elegans levels of PMK-1 p38 MAP kinase diminish over time, reducing the expression of immune effectors that clear bacterial pathogens. Along with the PMK-1 pathway, innate immunity in C. elegans is regulated by the insulin signaling pathway. Here we asked whether DAF-16, a Forkhead box (FOXO) transcription factor whose activity is inhibited by insulin signaling, plays a role in host defense later in life. While in younger C. elegans DAF-16 is inactive unless stimulated by environmental insults, we found that even in the absence of acute stress the transcriptional activity of DAF-16 increases in an age-dependent manner. Beginning in the reproductive phase of adulthood, DAF-16 upregulates a subset of its transcriptional targets, including genes required to kill ingested microbes. Accordingly, DAF-16 has little to no role in larval immunity, but functions specifically during adulthood to confer resistance to bacterial pathogens. We found that DAF-16-mediated immunity in adults requires SMK-1, a regulatory subunit of the PP4 protein phosphatase complex. Our data suggest that as the function of one branch of the innate immune system of C. elegans (PMK-1) declines over time, DAF-16-mediated immunity ramps up to become the predominant means of protecting adults from infection, thus reconfiguring immunity later in life.
Collapse
|
42
|
Cell Cycle and DNA Repair Regulation in the Damage Response: Protein Phosphatases Take Over the Reins. Int J Mol Sci 2020; 21:ijms21020446. [PMID: 31936707 PMCID: PMC7014277 DOI: 10.3390/ijms21020446] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cells are constantly suffering genotoxic stresses that affect the integrity of our genetic material. Genotoxic insults must be repaired to avoid the loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental abnormalities and tumorigenesis. To combat this threat, eukaryotic cells have evolved a set of sophisticated molecular mechanisms that are collectively known as the DNA damage response (DDR). This surveillance system controls several aspects of the cellular response, including the detection of lesions, a temporary cell cycle arrest, and the repair of the broken DNA. While the regulation of the DDR by numerous kinases has been well documented over the last decade, the complex roles of protein dephosphorylation have only recently begun to be investigated. Here, we review recent progress in the characterization of DDR-related protein phosphatases during the response to a DNA lesion, focusing mainly on their ability to modulate the DNA damage checkpoint and the repair of the damaged DNA. We also discuss their protein composition and structure, target specificity, and biochemical regulation along the different stages encompassed in the DDR. The compilation of this information will allow us to better comprehend the physiological significance of protein dephosphorylation in the maintenance of genome integrity and cell viability in response to genotoxic stress.
Collapse
|
43
|
DAF-16/FOXO requires Protein Phosphatase 4 to initiate transcription of stress resistance and longevity promoting genes. Nat Commun 2020; 11:138. [PMID: 31919361 PMCID: PMC6952425 DOI: 10.1038/s41467-019-13931-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
In C. elegans, the conserved transcription factor DAF-16/FOXO is a powerful aging regulator, relaying dire conditions into expression of stress resistance and longevity promoting genes. For some of these functions, including low insulin/IGF signaling (IIS), DAF-16 depends on the protein SMK-1/SMEK, but how SMK-1 exerts this role has remained unknown. We show that SMK-1 functions as part of a specific Protein Phosphatase 4 complex (PP4SMK-1). Loss of PP4SMK-1 hinders transcriptional initiation at several DAF-16-activated genes, predominantly by impairing RNA polymerase II recruitment to their promoters. Search for the relevant substrate of PP4SMK-1 by phosphoproteomics identified the conserved transcriptional regulator SPT-5/SUPT5H, whose knockdown phenocopies the loss of PP4SMK-1. Phosphoregulation of SPT-5 is known to control transcriptional events such as elongation and termination. Here we also show that transcription initiating events are influenced by the phosphorylation status of SPT-5, particularly at DAF-16 target genes where transcriptional initiation appears rate limiting, rendering PP4SMK-1 crucial for many of DAF-16’s physiological roles. The transcription factor DAF-16/FOXO mediates a wide variety of aging-preventive responses by driving the expression of stress resistance and longevity promoting genes. Here the authors show that transcriptional initiation at many DAF-16/FOXO target genes requires the dephosphorylation of SPT-5 by Protein Phosphatase 4.
Collapse
|
44
|
Lai Y, Zhu M, Wu W, Rokutanda N, Togashi Y, Liang W, Ohta T. HERC2 regulates RPA2 by mediating ATR-induced Ser33 phosphorylation and ubiquitin-dependent degradation. Sci Rep 2019; 9:14257. [PMID: 31582797 PMCID: PMC6776656 DOI: 10.1038/s41598-019-50812-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 01/26/2023] Open
Abstract
Replication protein A (RPA) binds to and stabilizes single-stranded DNA and is essential for the genome stability. We reported that an E3 ubiquitin ligase, HERC2, suppresses G-quadruplex (G4) DNA by regulating RPA-helicase complexes. However, the precise mechanism of HERC2 on RPA is as yet largely unknown. Here, we show essential roles for HERC2 on RPA2 status: induction of phosphorylation and degradation of the modified form. HERC2 interacted with RPA through the C-terminal HECT domain. Ubiquitination of RPA2 was inhibited by HERC2 depletion and rescued by reintroduction of the C-terminal fragment of HERC2. ATR-mediated phosphorylation of RPA2 at Ser33 induced by low-level replication stress was inhibited by depletion of HERC2. Contrary, cells lacking HERC2 catalytic residues constitutively expressed an increased level of Ser33-phosphorylated RPA2. HERC2-mediated ubiquitination of RPA2 was abolished by an ATR inhibitor, supporting a hypothesis that the ubiquitinated RPA2 is a phosphorylated subset. Functionally, HERC2 E3 activity has an epistatic relationship with RPA in the suppression of G4 when judged with siRNA knockdown experiments. Together, these results suggest that HERC2 fine-tunes ATR-phosphorylated RPA2 levels through induction and degradation, a mechanism that could be critical for the suppression of secondary DNA structures during cell proliferation.
Collapse
Affiliation(s)
- Yongqiang Lai
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan city, Guangdong province, China
| | - Mingzhang Zhu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan city, Guangdong province, China
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Nana Rokutanda
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Oncology TA Division/Research & Development, AstraZeneca Japan, Osaka, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Weixin Liang
- Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan city, Guangdong province, China
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.
| |
Collapse
|
45
|
Park J, Lee J, Lee DH. Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response. Mol Cells 2019; 42:546-556. [PMID: 31272138 PMCID: PMC6681864 DOI: 10.14348/molcells.2019.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.
Collapse
Affiliation(s)
- Jaehong Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Jihye Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186,
Korea
- Research Center of Ecomimetics, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
46
|
Haas KT, Lee M, Esposito A, Venkitaraman AR. Single-molecule localization microscopy reveals molecular transactions during RAD51 filament assembly at cellular DNA damage sites. Nucleic Acids Res 2019; 46:2398-2416. [PMID: 29309696 PMCID: PMC5861458 DOI: 10.1093/nar/gkx1303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 11/14/2022] Open
Abstract
RAD51 recombinase assembles on single-stranded (ss)DNA substrates exposed by DNA end-resection to initiate homologous recombination (HR), a process fundamental to genome integrity. RAD51 assembly has been characterized using purified proteins, but its ultrastructural topography in the cell nucleus is unexplored. Here, we combine cell genetics with single-molecule localization microscopy and a palette of bespoke analytical tools, to visualize molecular transactions during RAD51 assembly in the cellular milieu at resolutions approaching 30-40 nm. In several human cell types, RAD51 focalizes in clusters that progressively extend into long filaments, which abut-but do not overlap-with globular bundles of replication protein A (RPA). Extended filaments alter topographically over time, suggestive of succeeding steps in HR. In cells depleted of the tumor suppressor protein BRCA2, or overexpressing its RAD51-binding BRC repeats, RAD51 fails to assemble at damage sites, although RPA accumulates unhindered. By contrast, in cells lacking a BRCA2 carboxyl (C)-terminal region targeted by cancer-causing mutations, damage-induced RAD51 assemblies initiate but do not extend into filaments. We suggest a model wherein RAD51 assembly proceeds concurrently with end-resection at adjacent sites, via an initiation step dependent on the BRC repeats, followed by filament extension through the C-terminal region of BRCA2.
Collapse
Affiliation(s)
- Kalina T Haas
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - MiYoung Lee
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Alessandro Esposito
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
47
|
Zhang J, Lee YR, Dang F, Gan W, Menon AV, Katon JM, Hsu CH, Asara JM, Tibarewal P, Leslie NR, Shi Y, Pandolfi PP, Wei W. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov 2019; 9:1306-1323. [PMID: 31217297 DOI: 10.1158/2159-8290.cd-18-0083] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/05/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
The function of PTEN in the cytoplasm largely depends on its lipid-phosphatase activity, though which it antagonizes the PI3K-AKT oncogenic pathway. However, molecular mechanisms underlying the role of PTEN in the nucleus remain largely elusive. Here, we report that DNA double-strand breaks (DSB) promote PTEN interaction with MDC1 upon ATM-dependent phosphorylation of T/S398-PTEN. Importantly, DNA DSBs enhance NSD2 (MMSET/WHSC1)-mediated dimethylation of PTEN at K349, which is recognized by the tudor domain of 53BP1 to recruit PTEN to DNA-damage sites, governing efficient repair of DSBs partly through dephosphorylation of γH2AX. Of note, inhibiting NSD2-mediated methylation of PTEN, either through expressing methylation-deficient PTEN mutants or through inhibiting NSD2, sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor and DNA-damaging agents in both cell culture and in vivo xenograft models. Therefore, our study provides a novel molecular mechanism for PTEN regulation of DSB repair in a methylation- and protein phosphatase-dependent manner. SIGNIFICANCE: NSD2-mediated dimethylation of PTEN is recognized by the 53BP1 tudor domain to facilitate PTEN recruitment into DNA-damage sites, governing efficient repair of DNA DSBs. Importantly, inhibiting PTEN methylation sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor combined with DNA-damaging agents in both cell culture and in vivo xenograft models.This article is highlighted in the In This Issue feature, p. 1143.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.,Medical Research Institute, Wuhan University, Wuhan, P.R. China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jesse M Katon
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts
| | - Chih-Hung Hsu
- Department of Public Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.,Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Priyanka Tibarewal
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom.,UCL Cancer Institute, University College London, London, United Kingdom
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts. .,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
48
|
Coscia F, Lengyel E, Duraiswamy J, Ashcroft B, Bassani-Sternberg M, Wierer M, Johnson A, Wroblewski K, Montag A, Yamada SD, López-Méndez B, Nilsson J, Mund A, Mann M, Curtis M. Multi-level Proteomics Identifies CT45 as a Chemosensitivity Mediator and Immunotherapy Target in Ovarian Cancer. Cell 2019; 175:159-170.e16. [PMID: 30241606 DOI: 10.1016/j.cell.2018.08.065] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
Most high-grade serous ovarian cancer (HGSOC) patients develop resistance to platinum-based chemotherapy and recur, but 15% remain disease free over a decade. To discover drivers of long-term survival, we quantitatively analyzed the proteomes of platinum-resistant and -sensitive HGSOC patients from minute amounts of formalin-fixed, paraffin-embedded tumors. This revealed cancer/testis antigen 45 (CT45) as an independent prognostic factor associated with a doubling of disease-free survival in advanced-stage HGSOC. Phospho- and interaction proteomics tied CT45 to DNA damage pathways through direct interaction with the PP4 phosphatase complex. In vitro, CT45 regulated PP4 activity, and its high expression led to increased DNA damage and platinum sensitivity. CT45-derived HLA class I peptides, identified by immunopeptidomics, activate patient-derived cytotoxic T cells and promote tumor cell killing. This study highlights the power of clinical cancer proteomics to identify targets for chemo- and immunotherapy and illuminate their biological roles.
Collapse
Affiliation(s)
- Fabian Coscia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | | - Bradley Ashcroft
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Michal Bassani-Sternberg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alyssa Johnson
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Kristen Wroblewski
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Anthony Montag
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - S Diane Yamada
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Mund
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Marion Curtis
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Soniat MM, Myler LR, Kuo HC, Paull TT, Finkelstein IJ. RPA Phosphorylation Inhibits DNA Resection. Mol Cell 2019; 75:145-153.e5. [PMID: 31153714 DOI: 10.1016/j.molcel.2019.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/26/2019] [Accepted: 05/01/2019] [Indexed: 01/20/2023]
Abstract
Genetic recombination in all kingdoms of life initiates when helicases and nucleases process (resect) the free DNA ends to expose single-stranded DNA (ssDNA) overhangs. Resection regulation in bacteria is programmed by a DNA sequence, but a general mechanism limiting resection in eukaryotes has remained elusive. Using single-molecule imaging of reconstituted human DNA repair factors, we identify phosphorylated RPA (pRPA) as a negative resection regulator. Bloom's syndrome (BLM) helicase together with exonuclease 1 (EXO1) and DNA2 nucleases catalyze kilobase-length DNA resection on nucleosome-coated DNA. The resulting ssDNA is rapidly bound by RPA, which further stimulates DNA resection. RPA is phosphorylated during resection as part of the DNA damage response (DDR). Remarkably, pRPA inhibits DNA resection in cellular assays and in vitro via inhibition of BLM helicase. pRPA suppresses BLM initiation at DNA ends and promotes the intrinsic helicase strand-switching activity. These findings establish that pRPA provides a feedback loop between DNA resection and the DDR.
Collapse
Affiliation(s)
- Michael M Soniat
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Logan R Myler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
50
|
Ballew O, Lacefield S. The DNA damage checkpoint and the spindle position checkpoint: guardians of meiotic commitment. Curr Genet 2019; 65:1135-1140. [PMID: 31028453 DOI: 10.1007/s00294-019-00981-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Exogenous signals induce cells to enter the specialized cell division process of meiosis, which produces haploid gametes from diploid progenitor cells. Once cells initiate the meiotic divisions, it is imperative that they complete meiosis. Inappropriate exit from meiosis and entrance into mitosis can create polyploid cells and can lead to germline tumors. Saccharomyces cerevisiae cells enter meiosis when starved of nutrients but can return to mitosis if provided nutrient-rich medium before a defined commitment point. Once past the meiotic commitment point in prometaphase I, cells stay committed to meiosis even in the presence of a mitosis-inducing signal. Recent research investigated the maintenance of meiotic commitment in budding yeast and found that two checkpoints that do not normally function in meiosis I, the DNA damage checkpoint and the spindle position checkpoint, have crucial functions in maintaining meiotic commitment. Here, we review these findings and discuss how the mitosis-inducing signal of nutrient-rich medium could activate these two checkpoints in meiosis to prevent inappropriate meiotic exit.
Collapse
Affiliation(s)
- Olivia Ballew
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|