1
|
Hao JD, Liu QL, Liu MX, Yang X, Wang LM, Su SY, Xiao W, Zhang MQ, Zhang YC, Zhang L, Chen YS, Yang YG, Ren J. DDX21 mediates co-transcriptional RNA m 6A modification to promote transcription termination and genome stability. Mol Cell 2024; 84:1711-1726.e11. [PMID: 38569554 DOI: 10.1016/j.molcel.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.
Collapse
Affiliation(s)
- Jin-Dong Hao
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Lan Liu
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng-Xia Liu
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xing Yang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu-Ming Wang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Yi Su
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Xiao
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qi Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Chang Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yu-Sheng Chen
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Ren
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Li H, Rahman MA, Ruesch M, Eisele CD, Anderson EM, Wright PW, Cao J, Ratnayake S, Chen Q, Yan C, Meerzaman D, Abraham RS, Freud AG, Anderson SK. Abundant binary promoter switches in lineage-determining transcription factors indicate a digital component of cell fate determination. Cell Rep 2023; 42:113454. [PMID: 37976160 PMCID: PMC10842785 DOI: 10.1016/j.celrep.2023.113454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Previous studies of the murine Ly49 and human KIR gene clusters implicated competing sense and antisense promoters in the control of variegated gene expression. In the current study, an examination of transcription factor genes defines an abundance of convergent and divergent sense/antisense promoter pairs, suggesting that competing promoters may control cell fate determination. Differentiation of CD34+ hematopoietic progenitors in vitro shows that cells with GATA1 antisense transcription have enhanced GATA2 transcription and a mast cell phenotype, whereas cells with GATA2 antisense transcription have increased GATA1 transcripts and an erythroblast phenotype. Detailed analyses of the AHR and RORC genes demonstrate the ability of competing promoters to act as binary switches and the association of antisense transcription with an immature/progenitor cell phenotype. These data indicate that alternative cell fates generated by promoter competition in lineage-determining transcription factors contribute to the programming of cell differentiation.
Collapse
Affiliation(s)
- Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Md Ahasanur Rahman
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael Ruesch
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caprice D Eisele
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erik M Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Paul W Wright
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennie Cao
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shashikala Ratnayake
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chunhua Yan
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
3
|
Balasubramanian RN, Gao M, Umen J. Identification of cell-type specific alternative transcripts in the multicellular alga Volvox carteri. BMC Genomics 2023; 24:654. [PMID: 37904088 PMCID: PMC10617192 DOI: 10.1186/s12864-023-09558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/06/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cell type specialization is a hallmark of complex multicellular organisms and is usually established through implementation of cell-type-specific gene expression programs. The multicellular green alga Volvox carteri has just two cell types, germ and soma, that have previously been shown to have very different transcriptome compositions which match their specialized roles. Here we interrogated another potential mechanism for differentiation in V. carteri, cell type specific alternative transcript isoforms (CTSAI). METHODS We used pre-existing predictions of alternative transcripts and de novo transcript assembly with HISAT2 and Ballgown software to compile a list of loci with two or more transcript isoforms, identified a small subset that were candidates for CTSAI, and manually curated this subset of genes to remove false positives. We experimentally verified three candidates using semi-quantitative RT-PCR to assess relative isoform abundance in each cell type. RESULTS Of the 1978 loci with two or more predicted transcript isoforms 67 of these also showed cell type isoform expression biases. After curation 15 strong candidates for CTSAI were identified, three of which were experimentally verified, and their predicted gene product functions were evaluated in light of potential cell type specific roles. A comparison of genes with predicted alternative splicing from Chlamydomonas reinhardtii, a unicellular relative of V. carteri, identified little overlap between ortholog pairs with alternative splicing in both species. Finally, we interrogated cell type expression patterns of 126 V. carteri predicted RNA binding protein (RBP) encoding genes and found 40 that showed either somatic or germ cell expression bias. These RBPs are potential mediators of CTSAI in V. carteri and suggest possible pre-adaptation for cell type specific RNA processing and a potential path for generating CTSAI in the early ancestors of metazoans and plants. CONCLUSIONS We predicted numerous instances of alternative transcript isoforms in Volvox, only a small subset of which showed cell type specific isoform expression bias. However, the validated examples of CTSAI supported existing hypotheses about cell type specialization in V. carteri, and also suggested new hypotheses about mechanisms of functional specialization for their gene products. Our data imply that CTSAI operates as a minor but important component of V. carteri cellular differentiation and could be used as a model for how alternative isoforms emerge and co-evolve with cell type specialization.
Collapse
Affiliation(s)
| | - Minglu Gao
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - James Umen
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
| |
Collapse
|
4
|
Reichenbach P, Giordano Attianese GMP, Ouchen K, Cribioli E, Triboulet M, Ash S, Saillard M, Vuillefroy de Silly R, Coukos G, Irving M. A lentiviral vector for the production of T cells with an inducible transgene and a constitutively expressed tumour-targeting receptor. Nat Biomed Eng 2023; 7:1063-1080. [PMID: 37069267 PMCID: PMC10504085 DOI: 10.1038/s41551-023-01013-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
Vectors that facilitate the engineering of T cells that can better harness endogenous immunity and overcome suppressive barriers in the tumour microenvironment would help improve the safety and efficacy of T-cell therapies for more patients. Here we report the design, production and applicability, in T-cell engineering, of a lentiviral vector leveraging an antisense configuration and comprising a promoter driving the constitutive expression of a tumour-directed receptor and a second promoter enabling the efficient activation-inducible expression of a genetic payload. The vector allows for the delivery of a variety of genes to human T cells, as we show for interleukin-2 and a microRNA-based short hairpin RNA for the knockdown of the gene coding for haematopoietic progenitor kinase 1, a negative regulator of T-cell-receptor signalling. We also show that a gene encoded under an activation-inducible promoter is specifically expressed by tumour-redirected T cells on encountering a target antigen in the tumour microenvironment. The single two-gene-encoding vector can be produced at high titres under an optimized protocol adaptable to good manufacturing practices.
Collapse
Affiliation(s)
- Patrick Reichenbach
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Khaoula Ouchen
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elisabetta Cribioli
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melanie Triboulet
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Margaux Saillard
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Romain Vuillefroy de Silly
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Wang L, Watters JW, Ju X, Lu G, Liu S. Head-on and co-directional RNA polymerase collisions orchestrate bidirectional transcription termination. Mol Cell 2023; 83:1153-1164.e4. [PMID: 36917983 PMCID: PMC10081963 DOI: 10.1016/j.molcel.2023.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
Genomic DNA is a crowded track where motor proteins frequently collide. It remains underexplored whether these collisions carry physiological function. In this work, we develop a single-molecule assay to visualize the trafficking of individual E. coli RNA polymerases (RNAPs) on DNA. Based on transcriptomic data, we hypothesize that RNAP collisions drive bidirectional transcription termination of convergent gene pairs. Single-molecule results show that the head-on collision between two converging RNAPs is necessary to prevent transcriptional readthrough but insufficient to release the RNAPs from the DNA. Remarkably, co-directional collision of a trailing RNAP into the head-on collided complex dramatically increases the termination efficiency. Furthermore, stem-loop structures formed in the nascent RNA are required for collisions to occur at well-defined positions between convergent genes. These findings suggest that physical collisions between RNAPs furnish a mechanism for transcription termination and that programmed genomic conflicts can be exploited to co-regulate the expression of multiple genes.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Xiangwu Ju
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Genzhe Lu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Woo HH, Chambers SK. Regulation of closely juxtaposed proto-oncogene c-fms and HMGXB3 gene expression by mRNA 3' end polymorphism in breast cancer cells. RNA (NEW YORK, N.Y.) 2021; 27:1068-1081. [PMID: 34155128 PMCID: PMC8370744 DOI: 10.1261/rna.078749.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Sense-antisense mRNA pairs generated by convergent transcription is a way of gene regulation. c-fms gene is closely juxtaposed to the HMGXB3 gene in the opposite orientation, in chromosome 5. The intergenic region (IR) between c-fms and HMGXB3 genes is 162 bp. We found that a small portion (∼4.18%) of HMGXB3 mRNA is transcribed further downstream, including the end of the c-fms gene generating antisense mRNA against c-fms mRNA. Similarly, a small portion (∼1.1%) of c-fms mRNA is transcribed further downstream, including the end of the HMGXB3 gene generating antisense mRNA against the HMGXB3 mRNA. Insertion of the strong poly(A) signal sequence in the IR results in decreased c-fms and HMGXB3 antisense mRNAs, resulting in up-regulation of both c-fms and HMGXB3 mRNA expression. miR-324-5p targets HMGXB3 mRNA 3' UTR, and as a result, regulates c-fms mRNA expression. HuR stabilizes c-fms mRNA, and as a result, down-regulates HMGXB3 mRNA expression. UALCAN analysis indicates that the expression pattern between c-fms and HMGXB3 proteins are opposite in vivo in breast cancer tissues. Together, our results indicate that the mRNA encoded by the HMGXB3 gene can influence the expression of adjacent c-fms mRNA, or vice versa.
Collapse
MESH Headings
- 3' Untranslated Regions
- CRISPR-Cas Systems
- Cell Line, Tumor
- Chromosomes, Human, Pair 5
- DNA, Intergenic/genetics
- DNA, Intergenic/metabolism
- ELAV-Like Protein 1/genetics
- ELAV-Like Protein 1/metabolism
- Female
- Gene Editing
- Gene Expression Regulation, Neoplastic
- Genes, fms
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Humans
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Polymorphism, Genetic
- Proto-Oncogene Mas
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- Signal Transduction
- Transcription, Genetic
Collapse
Affiliation(s)
- Ho-Hyung Woo
- The University of Arizona Cancer Center, Tucson, Arizona 85724, USA
| | - Setsuko K Chambers
- The University of Arizona Cancer Center, Tucson, Arizona 85724, USA
- Department of Obstetrics and Gynecology, College of Medicine, The University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
7
|
La Rocca G, King B, Shui B, Li X, Zhang M, Akat KM, Ogrodowski P, Mastroleo C, Chen K, Cavalieri V, Ma Y, Anelli V, Betel D, Vidigal J, Tuschl T, Meister G, Thompson CB, Lindsten T, Haigis K, Ventura A. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. eLife 2021; 10:e70948. [PMID: 34463618 PMCID: PMC8476124 DOI: 10.7554/elife.70948] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Although virtually all gene networks are predicted to be controlled by miRNAs, the contribution of this important layer of gene regulation to tissue homeostasis in adult animals remains unclear. Gain and loss-of-function experiments have provided key insights into the specific function of individual miRNAs, but effective genetic tools to study the functional consequences of global inhibition of miRNA activity in vivo are lacking. Here we report the generation and characterization of a genetically engineered mouse strain in which miRNA-mediated gene repression can be reversibly inhibited without affecting miRNA biogenesis or abundance. We demonstrate the usefulness of this strategy by investigating the consequences of acute inhibition of miRNA function in adult animals. We find that different tissues and organs respond differently to global loss of miRNA function. While miRNA-mediated gene repression is essential for the homeostasis of the heart and the skeletal muscle, it is largely dispensable in the majority of other organs. Even in tissues where it is not required for homeostasis, such as the intestine and hematopoietic system, miRNA activity can become essential during regeneration following acute injury. These data support a model where many metazoan tissues primarily rely on miRNA function to respond to potentially pathogenic events.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bryan King
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bing Shui
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Xiaoyi Li
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kemal M Akat
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, United States
| | - Paul Ogrodowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kevin Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Yilun Ma
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, United States
| | - Viviana Anelli
- Center of Integrative Biology, University of Trento, Trento, Italy
| | - Doron Betel
- Hem/Oncology, Medicine and Institution for Computational Biomedicine, Weill Cornell Medical College, New York, United States
| | - Joana Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, United States
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, United States
| | - Gunter Meister
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tullia Lindsten
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kevin Haigis
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
8
|
Inagaki S, Takahashi M, Takashima K, Oya S, Kakutani T. Chromatin-based mechanisms to coordinate convergent overlapping transcription. NATURE PLANTS 2021; 7:295-302. [PMID: 33649596 DOI: 10.1038/s41477-021-00868-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
In eukaryotic genomes, the transcription units of genes often overlap with other protein-coding and/or noncoding transcription units1,2. In such intertwined genomes, the coordinated transcription of nearby or overlapping genes would be important to ensure the integrity of genome function3-6; however, the mechanisms underlying this coordination are largely unknown. Here, we show in Arabidopsis thaliana that genes with convergent orientation of transcription are major sources of antisense transcripts and that these genes transcribed on both strands are regulated by a putative Lysine-Specific Demethylase 1 family histone demethylase, FLOWERING LOCUS D (FLD)7,8. Our genome-wide chromatin profiling revealed that FLD, as well as its associating factor LUMINIDEPENDENS9, downregulates histone H3K4me1 in regions with convergent overlapping transcription. FLD localizes to actively transcribed genes, where it colocalizes with elongating RNA polymerase II phosphorylated at the Ser2 or Ser5 sites. Genome-wide transcription analyses suggest that FLD-mediated H3K4me1 removal negatively regulates the transcription of genes with high levels of antisense transcription. Furthermore, the effect of FLD on transcription dynamics is antagonized by DNA topoisomerase I. Our study reveals chromatin-based mechanisms to cope with overlapping transcription, which may occur by modulating DNA topology. This global mechanism to cope with overlapping transcription could be co-opted for specific epigenetic processes, such as cellular memory of responses to the environment10.
Collapse
Affiliation(s)
- Soichi Inagaki
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo, Japan.
- National Institute of Genetics, Mishima, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Shonankokusaimura, Hayama, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| | | | | | - Satoyo Oya
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo, Japan
- National Institute of Genetics, Mishima, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Shonankokusaimura, Hayama, Japan
| |
Collapse
|
9
|
Dicing the Disease with Dicer: The Implications of Dicer Ribonuclease in Human Pathologies. Int J Mol Sci 2020; 21:ijms21197223. [PMID: 33007856 PMCID: PMC7583940 DOI: 10.3390/ijms21197223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gene expression dictates fundamental cellular processes and its de-regulation leads to pathological conditions. A key contributor to the fine-tuning of gene expression is Dicer, an RNA-binding protein (RBPs) that forms complexes and affects transcription by acting at the post-transcriptional level via the targeting of mRNAs by Dicer-produced small non-coding RNAs. This review aims to present the contribution of Dicer protein in a wide spectrum of human pathological conditions, including cancer, neurological, autoimmune, reproductive and cardiovascular diseases, as well as viral infections. Germline mutations of Dicer have been linked to Dicer1 syndrome, a rare genetic disorder that predisposes to the development of both benign and malignant tumors, but the exact correlation of Dicer protein expression within the different cancer types is unclear, and there are contradictions in the data. Downregulation of Dicer is related to Geographic atrophy (GA), a severe eye-disease that is a leading cause of blindness in industrialized countries, as well as to psychiatric and neurological diseases such as depression and Parkinson's disease, respectively. Both loss and upregulation of Dicer protein expression is implicated in severe autoimmune disorders, including psoriasis, ankylosing spondylitis, rheumatoid arthritis, multiple sclerosis and autoimmune thyroid diseases. Loss of Dicer contributes to cardiovascular diseases and causes defective germ cell differentiation and reproductive system abnormalities in both sexes. Dicer can also act as a strong antiviral with a crucial role in RNA-based antiviral immunity. In conclusion, Dicer is an essential enzyme for the maintenance of physiology due to its pivotal role in several cellular processes, and its loss or aberrant expression contributes to the development of severe human diseases. Further exploitation is required for the development of novel, more effective Dicer-based diagnostic and therapeutic strategies, with the goal of new clinical benefits and better quality of life for patients.
Collapse
|
10
|
Pasquier C, Agnel S, Robichon A. Transcriptome-wide-scale-predicted dsRNAs potentially involved in RNA homoeostasis are remarkably excluded from genes with no/very low expression in all developmental stages. RNA Biol 2020; 17:554-570. [PMID: 31971862 DOI: 10.1080/15476286.2020.1717154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi) refers to a conserved posttranscriptional mechanism for the degradation of RNA by short dsRNAs. A genome-wide analysis of mRNAs that are complementary to RNAs of variable length that are transcribed from the full transcriptome and susceptible to being loaded onto Argonaute type 2 was performed through computational searches in the Drosophila model. We report the segments of RNAs that are complementary to mRNAs originating from introns, the exons of mRNAs and lncRNAs as a potential source of siRNAs. A full catalogue of the mRNAs that fulfill these criteria is presented, along with the quantification of multiple annealing. The catalogue was assessed for biological validation using three published lists: two for Ago2-associated RNAs and one for dsRNAs isolated from a crude extract. A broad spectrum of mRNAs were found to theoretically form intermolecular segmental dsRNAs, which should qualify them as Dicer/Ago2 substrates if they exist in vivo. These results suggest a genome-wide scale of mRNA homoeostasis via RNAi metabolism and could extend the known roles of canonical miRNAs and hairpin RNAs. The distribution of the genes for which transcripts are engaged in intermolecular segmental pairing is largely lacking in the gene collections defined as showing no expression in each individual developmental stage from early embryos to adulthood. This trend was also observed for the genes showing very low expression from the 8-12-hour embryonic to larval stage 2. This situation was also suggested by the 3 lists generated with minimal 20-, 25- and 30-base pairing lengths.
Collapse
Affiliation(s)
- Claude Pasquier
- Laboratoire d'informatique, signaux et système (I3S) CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Sandra Agnel
- Agrobiotech Institute (ISA)INRA, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Alain Robichon
- Agrobiotech Institute (ISA)INRA, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| |
Collapse
|
11
|
Cheresiz SV, Volgin AD, Kokorina Evsyukova A, Bashirzade AAO, Demin KA, de Abreu MS, Amstislavskaya TG, Kalueff AV. Understanding neurobehavioral genetics of zebrafish. J Neurogenet 2020; 34:203-215. [PMID: 31902276 DOI: 10.1080/01677063.2019.1698565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to its fully sequenced genome, high genetic homology to humans, external fertilization, fast development, transparency of embryos, low cost and active reproduction, the zebrafish (Danio rerio) has become a novel promising model organism in biomedicine. Zebrafish are a useful tool in genetic and neuroscience research, including linking various genetic mutations to brain mechanisms using forward and reverse genetics. These approaches have produced novel models of rare genetic CNS disorders and common brain illnesses, such as addiction, aggression, anxiety and depression. Genetically modified zebrafish also foster neuroanatomical studies, manipulating neural circuits and linking them to different behaviors. Here, we discuss recent advances in neurogenetics of zebrafish, and evaluate their unique strengths, inherent limitations and the rapidly growing potential for elucidating the conserved roles of genes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sergey V Cheresiz
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra Kokorina Evsyukova
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Alim A O Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Ural Federal University, Ekaterinburg, Russia.,Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| |
Collapse
|
12
|
Gushchanskaia ES, Esse R, Ma Q, Lau NC, Grishok A. Interplay between small RNA pathways shapes chromatin landscapes in C. elegans. Nucleic Acids Res 2019; 47:5603-5616. [PMID: 31216042 PMCID: PMC6582410 DOI: 10.1093/nar/gkz275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
The nematode Caenorhabditis elegans contains several types of endogenous small interfering RNAs (endo-siRNAs) produced by RNA-dependent RNA polymerase (RdRP) complexes. Both 'silencing' siRNAs bound by Worm-specific Argonautes (WAGO) and 'activating' siRNAs bound by the CSR-1 Argonaute require the DRH-3 helicase, an RdRP component. Here, we show that, in the drh-3(ne4253) mutant deficient in RdRP-produced secondary endo-siRNAs, the silencing histone mark H3K9me3 is largely depleted, whereas in the csr-1 partially rescued null mutant strain (WM193), this mark is ectopically deposited on CSR-1 target genes. Moreover, we observe ectopic H3K9me3 at enhancer elements and an increased number of small RNAs that match enhancers in both drh-3 and csr-1 mutants. Finally, we detect accumulation of H3K27me3 at highly expressed genes in the drh-3(ne4253) mutant, which correlates with their reduced transcription. Our study shows that when abundant RdRP-produced siRNAs are depleted, there is ectopic elevation of noncoding RNAs linked to sites with increased silencing chromatin marks. Moreover, our results suggest that enhancer small RNAs may guide local H3K9 methylation.
Collapse
Affiliation(s)
| | - Ruben Esse
- Boston University School of Medicine, Department of Biochemistry, Boston, MA 02118, USA
| | - Qicheng Ma
- Boston University School of Medicine, Department of Biochemistry, Boston, MA 02118, USA
| | - Nelson C Lau
- Boston University School of Medicine, Department of Biochemistry, Boston, MA 02118, USA
- Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alla Grishok
- Boston University School of Medicine, Department of Biochemistry, Boston, MA 02118, USA
- Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
14
|
D'Alessandro G, d'Adda di Fagagna F. Transcription and DNA Damage: Holding Hands or Crossing Swords? J Mol Biol 2017; 429:3215-3229. [DOI: 10.1016/j.jmb.2016.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/12/2023]
|
15
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
16
|
Piatek MJ, Henderson V, Fearn A, Chaudhry B, Werner A. Ectopically expressed Slc34a2a sense-antisense transcripts cause a cerebellar phenotype in zebrafish embryos depending on RNA complementarity and Dicer. PLoS One 2017; 12:e0178219. [PMID: 28542524 PMCID: PMC5436864 DOI: 10.1371/journal.pone.0178219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
Natural antisense transcripts (NATs) are complementary to protein coding genes and potentially regulate their expression. Despite widespread occurrence of NATs in the genomes of higher eukaryotes, their biological role and mechanism of action is poorly understood. Zebrafish embryos offer a unique model system to study sense-antisense transcript interplay at whole organism level. Here, we investigate putative antisense transcript-mediated mechanisms by ectopically co-expressing the complementary transcripts during early zebrafish development. In zebrafish the gene Slc34a2a (Na-phosphate transporter) is bi-directionally transcribed, the NAT predominantly during early development up to 48 hours after fertilization. Declining levels of the NAT, Slc34a2a(as), coincide with an increase of the sense transcript. At that time, sense and antisense transcripts co-localize in the endoderm at near equal amounts. Ectopic expression of the sense transcript during embryogenesis leads to specific failure to develop a cerebellum. The defect is RNA-mediated and dependent on sense-antisense complementarity. Overexpression of a Slc34a2a paralogue (Slc34a2b) or the NAT itself had no phenotypic consequences. Knockdown of Dicer rescued the brain defect suggesting that RNA interference is required to mediate the phenotype. Our results corroborate previous reports of Slc34a2a-related endo-siRNAs in two days old zebrafish embryos and emphasize the importance of coordinated expression of sense-antisense transcripts. Our findings suggest that RNAi is involved in gene regulation by certain natural antisense RNAs.
Collapse
Affiliation(s)
- Monica J. Piatek
- RNA Interest Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victoria Henderson
- RNA Interest Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy Fearn
- RNA Interest Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bill Chaudhry
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andreas Werner
- RNA Interest Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Koroleva ON, Dubrovin EV, Yaminsky IV, Drutsa VL. Effect of DNA bending on transcriptional interference in the systems of closely spaced convergent promoters. Biochim Biophys Acta Gen Subj 2016; 1860:2086-96. [DOI: 10.1016/j.bbagen.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/22/2023]
|
18
|
Much C, Auchynnikava T, Pavlinic D, Buness A, Rappsilber J, Benes V, Allshire R, O’Carroll D. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein. PLoS Genet 2016; 12:e1006095. [PMID: 27254021 PMCID: PMC4890738 DOI: 10.1371/journal.pgen.1006095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.
Collapse
Affiliation(s)
- Christian Much
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tania Auchynnikava
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Buness
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robin Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dónal O’Carroll
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Svobodova E, Kubikova J, Svoboda P. Production of small RNAs by mammalian Dicer. Pflugers Arch 2016; 468:1089-102. [PMID: 27048428 PMCID: PMC4893058 DOI: 10.1007/s00424-016-1817-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 01/16/2023]
Abstract
MicroRNA (miRNA) and RNA interference (RNAi) pathways employ RNase III Dicer for the biogenesis of small RNAs guiding post-transcriptional repression. Requirements for Dicer activity differ in the two pathways. The biogenesis of miRNAs requires a single Dicer cleavage of a short hairpin precursor to produce a small RNA with a precisely defined sequence, while small RNAs in RNAi come from a processive cleavage of a long double-stranded RNA (dsRNA) into a pool of small RNAs with different sequences. While Dicer is generally conserved among eukaryotes, its substrate recognition, cleavage, and biological roles differ. In Metazoa, a single Dicer can function as a universal factor for RNAi and miRNA pathways or as a factor adapted specifically for one of the pathways. In this review, we focus on the structure, function, and evolution of mammalian Dicer. We discuss key structural features of Dicer and other factors defining Dicer substrate repertoire and biological functions in mammals in comparison with invertebrate models. The key for adaptation of Dicer for miRNA or RNAi pathways is the N-terminal helicase, a dynamically evolving Dicer domain. Its functionality differs between mammals and invertebrates: the mammalian Dicer is well adapted to produce miRNAs while its ability to support RNAi is limited.
Collapse
Affiliation(s)
- Eliska Svobodova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Jana Kubikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic.
| |
Collapse
|
20
|
Integrating RNA-seq and ChIP-seq data to characterize long non-coding RNAs in Drosophila melanogaster. BMC Genomics 2016; 17:220. [PMID: 26969372 PMCID: PMC4787191 DOI: 10.1186/s12864-016-2457-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent advances in sequencing technology have opened a new era in RNA studies. Novel types of RNAs such as long non-coding RNAs (lncRNAs) have been discovered by transcriptomic sequencing and some lncRNAs have been found to play essential roles in biological processes. However, only limited information is available for lncRNAs in Drosophila melanogaster, an important model organism. Therefore, the characterization of lncRNAs and identification of new lncRNAs in D. melanogaster is an important area of research. Moreover, there is an increasing interest in the use of ChIP-seq data (H3K4me3, H3K36me3 and Pol II) to detect signatures of active transcription for reported lncRNAs. RESULTS We have developed a computational approach to identify new lncRNAs from two tissue-specific RNA-seq datasets using the poly(A)-enriched and the ribo-zero method, respectively. In our results, we identified 462 novel lncRNA transcripts, which we combined with 4137 previously published lncRNA transcripts into a curated dataset. We then utilized 61 RNA-seq and 32 ChIP-seq datasets to improve the annotation of the curated lncRNAs with regards to transcriptional direction, exon regions, classification, expression in the brain, possession of a poly(A) tail, and presence of conventional chromatin signatures. Furthermore, we used 30 time-course RNA-seq datasets and 32 ChIP-seq datasets to investigate whether the lncRNAs reported by RNA-seq have active transcription signatures. The results showed that more than half of the reported lncRNAs did not have chromatin signatures related to active transcription. To clarify this issue, we conducted RT-qPCR experiments and found that ~95.24% of the selected lncRNAs were truly transcribed, regardless of whether they were associated with active chromatin signatures or not. CONCLUSIONS In this study, we discovered a large number of novel lncRNAs, which suggests that many remain to be identified in D. melanogaster. For the lncRNAs that are known, we improved their characterization by integrating a large number of sequencing datasets (93 sets in total) from multiple sources (lncRNAs, RNA-seq and ChIP-seq). The RT-qPCR experiments demonstrated that RNA-seq is a reliable platform to discover lncRNAs. This set of curated lncRNAs with improved annotations can serve as an important resource for investigating the function of lncRNAs in D. melanogaster.
Collapse
|
21
|
Falcicchia C, Trempat P, Binaschi A, Perrier-Biollay C, Roncon P, Soukupova M, Berthommé H, Simonato M. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors. PLoS One 2016; 11:e0150995. [PMID: 26954758 PMCID: PMC4783051 DOI: 10.1371/journal.pone.0150995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/21/2016] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.
Collapse
Affiliation(s)
- Chiara Falcicchia
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
- * E-mail:
| | - Pascal Trempat
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Anna Binaschi
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | | | - Paolo Roncon
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | - Marie Soukupova
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | - Hervé Berthommé
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Michele Simonato
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Mellor J, Woloszczuk R, Howe FS. The Interleaved Genome. Trends Genet 2016; 32:57-71. [DOI: 10.1016/j.tig.2015.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022]
|
23
|
Vad-Nielsen J, Nielsen AL. Beyond the histone tale: HP1α deregulation in breast cancer epigenetics. Cancer Biol Ther 2015; 16:189-200. [PMID: 25588111 DOI: 10.1080/15384047.2014.1001277] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) encoded from the CBX5-gene is an evolutionary conserved protein that binds histone H3 di- or tri-methylated at position lysine 9 (H3K9me2/3), a hallmark for heterochromatin, and has an essential role in forming higher order chromatin structures. HP1α has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. Emerging evidence has shown that HP1α serves a unique biological role in breast cancer related processes and in particular for epigenetic control mechanisms involved in aberrant cell proliferation and metastasis. However, how HP1α deregulation plays dual mechanistic functions for cancer cell proliferation and metastasis suppression and the underlying cellular mechanisms are not yet comprehensively described. In this paper we provide an overview of the role of HP1α as a new sight of epigenetics in proliferation and metastasis of human breast cancer. This highlights the importance of addressing HP1α in breast cancer diagnostics and therapeutics.
Collapse
Key Words
- CBX, chromobox homolog
- CD, chromo domain
- CSC, cancer stem cells
- CSD, cromo shadow domain
- CTE, C-terminal extension
- DNMT, DNA-methyltransferase
- EMT, epithelial-to-mesenchymal transition
- HDMT, histone demethylase
- HMT, histone methyltransferase
- HP1, heterochromatin protein 1
- NTE, N-terminal extension
- PEV, position effect variegation
- SOMU, sumoylation
- TGS, transcriptional gene silencing
- TSS, transcriptional start site
- bp, base pair
- breast-cancer, metastasis
- chromatin
- epigenetics
- histone-modifications
- invasion
- mitosis
- proliferation
Collapse
|
24
|
Francia S. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Front Genet 2015; 6:320. [PMID: 26617633 PMCID: PMC4643122 DOI: 10.3389/fgene.2015.00320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.
Collapse
Affiliation(s)
- Sofia Francia
- IFOM - FIRC Institute of Molecular Oncology Milan, Italy ; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche Pavia, Italy
| |
Collapse
|
25
|
Antisense Transcription of Retrotransposons in Drosophila: An Origin of Endogenous Small Interfering RNA Precursors. Genetics 2015; 202:107-21. [PMID: 26534950 DOI: 10.1534/genetics.115.177196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Movement of transposons causes insertions, deletions, and chromosomal rearrangements potentially leading to premature lethality in Drosophila melanogaster. To repress these elements and combat genomic instability, eukaryotes have evolved several small RNA-mediated defense mechanisms. Specifically, in Drosophila somatic cells, endogenous small interfering (esi)RNAs suppress retrotransposon mobility. EsiRNAs are produced by Dicer-2 processing of double-stranded RNA precursors, yet the origins of these precursors are unknown. We show that most transposon families are transcribed in both the sense (S) and antisense (AS) direction in Dmel-2 cells. LTR retrotransposons Dm297, mdg1, and blood, and non-LTR retrotransposons juan and jockey transcripts, are generated from intraelement transcription start sites with canonical RNA polymerase II promoters. We also determined that retrotransposon antisense transcripts are less polyadenylated than sense. RNA-seq and small RNA-seq revealed that Dicer-2 RNA interference (RNAi) depletion causes a decrease in the number of esiRNAs mapping to retrotransposons and an increase in expression of both S and AS retrotransposon transcripts. These data support a model in which double-stranded RNA precursors are derived from convergent transcription and processed by Dicer-2 into esiRNAs that silence both sense and antisense retrotransposon transcripts. Reduction of sense retrotransposon transcripts potentially lowers element-specific protein levels to prevent transposition. This mechanism preserves genomic integrity and is especially important for Drosophila fitness because mobile genetic elements are highly active.
Collapse
|
26
|
Banerjee S, Barraud P. Functions of double-stranded RNA-binding domains in nucleocytoplasmic transport. RNA Biol 2015; 11:1226-32. [PMID: 25584639 DOI: 10.4161/15476286.2014.972856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The double-stranded RNA-binding domain (dsRBD) is a small protein domain found in eukaryotic, prokaryotic and viral proteins, whose central property is to bind to double-stranded RNA (dsRNA). Aside from this major function, recent examples of dsRBDs involved in the regulation of the sub-cellular localization of proteins, suggest that the participation of dsRBDs in nucleocytoplasmic trafficking is likely to represent a widespread auxiliary function of this type of RNA-binding domain. Overall, dsRBDs from proteins involved in many different biological processes have been reported to be implicated in nuclear import and export, as well as cytoplasmic, nuclear and nucleolar retention. Interestingly, the function of dsRBDs in nucleocytoplasmic trafficking is often regulated by their dsRNA-binding capacity, which can either enhance or impair the transport from one compartment to another. Here, we present and discuss the emerging function of dsRBDs in nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Silpi Banerjee
- a Department of Chromosome Biology; Max F. Perutz Laboratories ; University of Vienna ; Vienna , Austria
| | | |
Collapse
|
27
|
Parent JS, Jauvion V, Bouché N, Béclin C, Hachet M, Zytnicki M, Vaucheret H. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes. Nucleic Acids Res 2015. [PMID: 26209135 PMCID: PMC4787800 DOI: 10.1093/nar/gkv753] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3′ maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS.
Collapse
Affiliation(s)
| | - Vincent Jauvion
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | - Christophe Béclin
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | | | | | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| |
Collapse
|
28
|
Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 2015; 161:541-554. [PMID: 25910208 DOI: 10.1016/j.cell.2015.03.010] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/26/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023]
Abstract
Major features of transcription by human RNA polymerase II (Pol II) remain poorly defined due to a lack of quantitative approaches for visualizing Pol II progress at nucleotide resolution. We developed a simple and powerful approach for performing native elongating transcript sequencing (NET-seq) in human cells that globally maps strand-specific Pol II density at nucleotide resolution. NET-seq exposes a mode of antisense transcription that originates downstream and converges on transcription from the canonical promoter. Convergent transcription is associated with a distinctive chromatin configuration and is characteristic of lower-expressed genes. Integration of NET-seq with genomic footprinting data reveals stereotypic Pol II pausing coincident with transcription factor occupancy. Finally, exons retained in mature transcripts display Pol II pausing signatures that differ markedly from skipped exons, indicating an intrinsic capacity for Pol II to recognize exons with different processing fates. Together, human NET-seq exposes the topography and regulatory complexity of human gene expression.
Collapse
|
29
|
Tombácz D, Csabai Z, Oláh P, Havelda Z, Sharon D, Snyder M, Boldogkői Z. Characterization of novel transcripts in pseudorabies virus. Viruses 2015; 7:2727-44. [PMID: 26008709 PMCID: PMC4452928 DOI: 10.3390/v7052727] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023] Open
Abstract
In this study we identified two 3'-coterminal RNA molecules in the pseudorabies virus. The highly abundant short transcript (CTO-S) proved to be encoded between the ul21 and ul22 genes in close vicinity of the replication origin (OriL) of the virus. The less abundant long RNA molecule (CTO-L) is a transcriptional readthrough product of the ul21 gene and overlaps OriL. These polyadenylated RNAs were characterized by ascertaining their nucleotide sequences with the Illumina HiScanSQ and Pacific Biosciences Real-Time (PacBio RSII) sequencing platforms and by analyzing their transcription kinetics through use of multi-time-point Real-Time RT-PCR and the PacBio RSII system. It emerged that transcription of the CTOs is fully dependent on the viral transactivator protein IE180 and CTO-S is not a microRNA precursor. We propose an interaction between the transcription and replication machineries at this genomic location, which might play an important role in the regulation of DNA synthesis.
Collapse
Affiliation(s)
- Dóra Tombácz
- These authors contributed equally to this work..
| | - Zsolt Csabai
- These authors contributed equally to this work..
| | - Péter Oláh
- These authors contributed equally to this work..
| | - Zoltán Havelda
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged H-6720, Hungary.
| | - Donald Sharon
- Agricultural Biotechnology Center, Institute for Plant Biotechnology, Plant Developmental Biology Group, Szent-Györgyi A. u. 4, Gödöllő H-2100, Hungary.
| | - Michael Snyder
- Agricultural Biotechnology Center, Institute for Plant Biotechnology, Plant Developmental Biology Group, Szent-Györgyi A. u. 4, Gödöllő H-2100, Hungary.
| | | |
Collapse
|
30
|
Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res 2015; 43:4365-80. [PMID: 25883138 PMCID: PMC4482082 DOI: 10.1093/nar/gkv328] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/31/2015] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence indicating that the production of small regulatory RNAs is not the only process in which ribonuclease Dicer can participate. For example, it has been demonstrated that this enzyme is also involved in chromatin structure remodelling, inflammation and apoptotic DNA degradation. Moreover, it has become increasingly clear that cellular transcript and protein levels of Dicer must be strictly controlled because even small changes in their accumulation can initiate various pathological processes, including carcinogenesis. Accordingly, in recent years, a number of studies have been performed to identify the factors regulating Dicer gene expression and protein activity. As a result, a large amount of complex and often contradictory data has been generated. None of these data have been subjected to an exhaustive review or critical discussion. This review attempts to fill this gap by summarizing the current knowledge of factors that regulate Dicer gene transcription, primary transcript processing, mRNA translation and enzyme activity. Because of the high complexity of this topic, this review mainly concentrates on human Dicer. This review also focuses on an additional regulatory layer of Dicer activity involving the interactions of protein and RNA factors with Dicer substrates.
Collapse
Affiliation(s)
| | - Natalia Koralewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Maria Pokornowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Aleksander Tworak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Agnieszka Mickiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland Institute of Computing Science, Poznan University of Technology, Poznan 60-965, Poland
| |
Collapse
|
31
|
Oda A, Takemata N, Hirata Y, Miyoshi T, Suzuki Y, Sugano S, Ohta K. Dynamic transition of transcription and chromatin landscape during fission yeast adaptation to glucose starvation. Genes Cells 2015; 20:392-407. [DOI: 10.1111/gtc.12229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/18/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Arisa Oda
- Department of Biophysics and Biochemistry Graduate School of Science The University of Tokyo Hongo Tokyo 113‐0033 Japan
| | - Naomichi Takemata
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Meguro‐ku Tokyo 153‐8902 Japan
| | - Yoshito Hirata
- Institute of Industrial Science The University of Tokyo Meguro‐ku Tokyo 153‐8505 Japan
| | - Tomoichiro Miyoshi
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Meguro‐ku Tokyo 153‐8902 Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences Graduate School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277‐8561 Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences Graduate School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277‐8561 Japan
| | - Kunihiro Ohta
- Department of Biophysics and Biochemistry Graduate School of Science The University of Tokyo Hongo Tokyo 113‐0033 Japan
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Meguro‐ku Tokyo 153‐8902 Japan
| |
Collapse
|
32
|
Cytoplasmic sensing of viral nucleic acids. Curr Opin Virol 2015; 11:31-7. [PMID: 25668758 PMCID: PMC7172233 DOI: 10.1016/j.coviro.2015.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
Viral nucleic acids (NAs) are targeted by cellular proteins with diverse functions. NA sensing proteins are forming a three-layered defence system. NA localisation and modifications synergistically activate defence systems.
Viruses are the most abundant pathogens on earth. A fine-tuned framework of intervening pathways is in place in mammalian cells to orchestrate the cellular defence against these pathogens. Key for this system is sensor proteins that recognise specific features associated with nucleic acids of incoming viruses. Here we review the current knowledge on cytoplasmic sensors for viral nucleic acids. These sensors induce expression of cytokines, affect cellular functions required for virus replication and directly target viral nucleic acids through degradation or sequestration. Their ability to respond to a given nucleic acid is based on both the differential specificity of the individual proteins and the downstream signalling or adaptor proteins. The cooperation of these multiple proteins and pathways plays a key role in inducing successful immunity against virus infections.
Collapse
|
33
|
Werner A, Piatek MJ, Mattick JS. Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms. Ann N Y Acad Sci 2014; 1341:156-63. [PMID: 25557795 PMCID: PMC4390386 DOI: 10.1111/nyas.12608] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Complex organisms, particularly mammals, have long generation times and produce small numbers of progeny that undergo increasingly entangled developmental programs. This reduces the ability of such organisms to explore evolutionary space, and, consequently, strategies that mitigate this problem likely have a strategic advantage. Here, we suggest that animals exploit the controlled shuffling of transposons to enhance genomic variability in conjunction with a molecular screening mechanism to exclude deleterious events. Accordingly, the removal of repressive DNA-methylation marks during male germ cell development is an evolved function that exploits the mutagenic potential of transposable elements. A wave of transcription during the meiotic phase of spermatogenesis produces the most complex transcriptome of all mammalian cells, including genic and noncoding sense-antisense RNA pairs that enable a genome-wide quality-control mechanism. Cells that fail the genomic quality test are excluded from further development, eventually resulting in a positively selected mature sperm population. We suggest that these processes, enhanced variability and stringent molecular quality control, compensate for the apparent reduced potential of complex animals to adapt and evolve.
Collapse
Affiliation(s)
- Andreas Werner
- RNA Biology Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | | | | |
Collapse
|
34
|
Meng FL, Du Z, Federation A, Hu J, Wang Q, Kieffer-Kwon KR, Meyers RM, Amor C, Wasserman CR, Neuberg D, Casellas R, Nussenzweig MC, Bradner JE, Liu XS, Alt FW. Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 2014; 159:1538-48. [PMID: 25483776 PMCID: PMC4322776 DOI: 10.1016/j.cell.2014.11.014] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/01/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023]
Abstract
Activation-induced cytidine deaminase (AID) initiates both somatic hypermutation (SHM) for antibody affinity maturation and DNA breakage for antibody class switch recombination (CSR) via transcription-dependent cytidine deamination of single-stranded DNA targets. Though largely specific for immunoglobulin genes, AID also acts on a limited set of off-targets, generating oncogenic translocations and mutations that contribute to B cell lymphoma. How AID is recruited to off-targets has been a long-standing mystery. Based on deep GRO-seq studies of mouse and human B lineage cells activated for CSR or SHM, we report that most robust AID off-target translocations occur within highly focal regions of target genes in which sense and antisense transcription converge. Moreover, we found that such AID-targeting "convergent" transcription arises from antisense transcription that emanates from super-enhancers within sense transcribed gene bodies. Our findings provide an explanation for AID off-targeting to a small subset of mostly lineage-specific genes in activated B cells.
Collapse
Affiliation(s)
- Fei-Long Meng
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhou Du
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Alexander Federation
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Qiao Wang
- Howard Hughes Medical Institute, Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, NIAMS, and Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robin M Meyers
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Corina Amor
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Caitlyn R Wasserman
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, and Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel C Nussenzweig
- Howard Hughes Medical Institute, Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Ross JP, Kassir Z. The varied roles of nuclear argonaute-small RNA complexes and avenues for therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e203. [PMID: 25313622 PMCID: PMC4217078 DOI: 10.1038/mtna.2014.54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
Argonautes are highly conserved proteins found in almost all eukaryotes and some bacteria and archaea. In humans, there are eight argonaute proteins evenly distributed across two clades, the Ago clade (AGO1-4) and the Piwi clade (PIWIL1-4). The function of Ago proteins is best characterized by their role in RNA interference (RNAi) and cytoplasmic post-transcriptional gene silencing (PTGS) – which involves the loading of siRNA or miRNA into argonaute to direct silencing of genes at the posttranscriptional or translational level. However, nuclear-localized, as opposed to cytoplasmic, argonaute-small RNA complexes may also orchestrate the mechanistically very different process of transcriptional gene silencing, which results in prevention of transcription from a gene locus by the formation of silent chromatin domains. More recently, the role of argonaute in other aspects of epigenetic regulation of chromatin, alternative splicing and DNA repair is emerging. This review focuses on the activity of nuclear-localized short RNA-argonaute complexes in a mammalian setting and discusses recent in vivo studies employing nuclear-directed sRNA for therapeutic interventions. These studies heed the potential development of RNA-based drugs which induce epigenetic changes in the cell.
Collapse
Affiliation(s)
- Jason P Ross
- CSIRO Food and Nutrition Flagship, Sydney, New South Wales, Australia
| | - Zena Kassir
- 1] CSIRO Food and Nutrition Flagship, Sydney, New South Wales, Australia [2] Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res 2014; 21:587-600. [PMID: 24254230 DOI: 10.1007/s10577-013-9394-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA,
| |
Collapse
|
37
|
RNAi-mediated gene silencing in zebrafish triggered by convergent transcription. Sci Rep 2014; 4:5222. [PMID: 24909225 PMCID: PMC4048883 DOI: 10.1038/srep05222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/20/2014] [Indexed: 12/02/2022] Open
Abstract
RNAi based strategies to induce gene silencing are commonly employed in numerous model organisms but have not been extensively used in zebrafish. We found that introduction of transgenes containing convergent transcription units in zebrafish embryos induced stable transcriptional gene silencing (TGS) in cis and trans for reporter (mCherry) and endogenous (One-Eyed Pinhead (OEP) and miR-27a/b) genes. Convergent transcription enabled detection of both sense and antisense transcripts and silencing was suppressed upon Dicer knockdown, indicating processing of double stranded RNA. By ChIP analyses, increased silencing was accompanied by enrichment of the heterochromatin mark H3K9me3 in the two convergently arranged promoters and in the intervening reading frame. Our work demonstrates that convergent transcription can induce gene silencing in zebrafish providing another tool to create specific temporal and spatial control of gene expression.
Collapse
|
38
|
White E, Schlackow M, Kamieniarz-Gdula K, Proudfoot NJ, Gullerova M. Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA. Nat Struct Mol Biol 2014; 21:552-9. [PMID: 24814348 PMCID: PMC4129937 DOI: 10.1038/nsmb.2827] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Dicer is a central enzymatic player in RNA-interference pathways that acts to regulate gene expression in nearly all eukaryotes. Although the cytoplasmic function of Dicer is well documented in mammals, its nuclear function remains obscure. Here we show that Dicer is present in both the nucleus and cytoplasm, and its nuclear levels are tightly regulated. Dicer interacts with RNA polymerase II (Pol II) at actively transcribed gene loci. Loss of Dicer causes the appearance of endogenous double-stranded RNA (dsRNA), which in turn leads to induction of the interferon-response pathway and consequent cell death. Our results suggest that Pol II-associated Dicer restricts endogenous dsRNA formation from overlapping noncoding-RNA transcription units. Failure to do so has catastrophic effects on cell function.
Collapse
Affiliation(s)
- Eleanor White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Phillips DD, Garboczi DN, Singh K, Hu Z, Leppla SH, Leysath CE. The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recognit 2014; 26:376-81. [PMID: 23784994 DOI: 10.1002/jmr.2284] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 11/12/2022]
Abstract
The monoclonal antibody S9.6 binds DNA-RNA hybrids with high affinity, making it useful in research and diagnostic applications, such as in microarrays and in the detection of R-loops. A single-chain variable fragment (scFv) of S9.6 was produced, and its affinities for various synthetic nucleic acid hybrids were measured by surface plasmon resonance (SPR). S9.6 exhibits dissociation constants of approximately 0.6 nM for DNA-RNA and, surprisingly, 2.7 nM for RNA-RNA hybrids that are AU-rich. The affinity of the S9.6 scFv did not appear to be strongly influenced by various buffer conditions or by ionic strength below 500 mM NaCl. The smallest epitope that was strongly bound by the S9.6 scFv contained six base pairs of DNA-RNA hybrid. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Damilola D Phillips
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
NATs (natural antisense transcripts) are widespread in eukaryotic genomes. Experimental evidence indicates that sense and antisense transcripts interact, suggesting a role for NATs in the regulation of gene expression. On the other hand, the transcription of a gene locus in both orientations and RNA hybrid formation can also lead to transcriptional interference, trigger an immune response or induce gene silencing. Tissue-specific expression of NATs and the compartmentalization of cells ensure that the regulatory impact of NATs prevails. Consequently, NATs are now acknowledged as important modulators of gene expression. New mechanisms of action and important biological roles of NATs keep emerging, making regulatory RNAs an exciting and quickly moving area of research.
Collapse
|
41
|
Abstract
A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome. DOI:http://dx.doi.org/10.7554/eLife.01581.001 Genes contain the codes that are needed to make the proteins used by cells. This code is transcribed to make a messenger RNA molecule that is then translated to make a protein. However, other types of RNA called non-coding RNA molecules can disrupt this process by binding to messenger RNA molecules, with matching sequences, before translation begins. This phenomenon, which is known as RNA interference, involves enzymes called Dicer and Argonaute. Many cells contain large numbers of non-coding RNA molecules—so called because they are not translated to produce proteins—and many of these are capable of starting the process of RNA interference. However, most do not, and the reasons for this are not understood. Now, work by Cruz and Houseley has provided new insight into this phenomenon by showing that it is related to the number of copies of the gene encoding such RNAs in the genome. Yeast cells normally do not have the genes for RNA interference, but Cruz and Houseley used genetically engineered yeast cells containing Dicer and Argonaute. Although most of the messenger RNA molecules in these cells showed no change, the expression of some genes with high ‘copy numbers’ was reduced. Further experiments that involved adding more and more copies of other genes showed that RNA interference could selectively target messenger RNA molecules produced from genes with an increased copy number—particularly if the copies of the genes were clustered in one location in the genome. RNA interference is also used to defend against DNA sequences that invade and multiply within a genome, such as viruses and other ‘genetic parasites’. As such, the effect observed by Cruz and Houseley could explain why entire genomes are often continuously copied to RNA at low levels. This activity would allow the monitoring of the genome for the invasion of any genetic parasites that had multiplied to high numbers. Following on from this work, the next challenge will be to understand how gene copy number and location are balanced to achieve a selective RNA interference system. DOI:http://dx.doi.org/10.7554/eLife.01581.002
Collapse
Affiliation(s)
- Cristina Cruz
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
42
|
Werner A, Cockell S, Falconer J, Carlile M, Alnumeir S, Robinson J. Contribution of natural antisense transcription to an endogenous siRNA signature in human cells. BMC Genomics 2014; 15:19. [PMID: 24410956 PMCID: PMC3898206 DOI: 10.1186/1471-2164-15-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/15/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Eukaryotic cells express a complex layer of noncoding RNAs. An intriguing family of regulatory RNAs includes transcripts from the opposite strand of protein coding genes, so called natural antisense transcripts (NATs). Here, we test the hypothesis that antisense transcription triggers RNA interference and gives rise to endogenous short RNAs (endo-siRNAs). RESULTS We used cloned human embryonic kidney cells (HEK293) followed by short RNAseq to investigate the small genic RNA transcriptome. 378 genes gave rise to short RNA reads that mapped to exons of RefSeq genes. The length profile of short RNAs showed a broad peak of 20-24 nucleotides, indicative of endo-siRNAs. Collapsed reads mapped predominantly to the first and the last exon of genes (74%). RNAs reads were intersected with sequences occupied by RNAPII or bound to Argonaute (AGO1 by crosslinking, ligation, and sequencing of hybrids, CLASH). In the first exon, 94% of the reads correlated with RNAPII occupancy with an average density of 130 (relative units); this decreased to 65%/20 in middle exons and 54%/12 in the last exon. CLASH reads mapping to multi-exon genes showed little distribution bias with an average of about 5 CLASH reads overlapping with 60% of the endo-siRNA reads. However, endo-siRNAs (21-25 nt) intersecting with CLASH reads were enriched at the 5'end and decreased towards the 3'end.We then investigated the 378 genes with particular focus on features indicative for short RNA production; however, found that endo-siRNA numbers did not correlate with gene structures that favor convergent transcription. In contrast, our gene set was found notably over-represented in the NATsDB sense/antisense group as compared to non-overlapping and non-bidirectional groups. Moreover, read counts showed no correlation with the steady-state levels of the related mRNAs and the pattern of endo-siRNAs proved reproducible after an induced mutagenic insult. CONCLUSIONS Our results suggest that antisense transcripts contribute to low levels of endo-siRNAs in fully differentiated human cells. A characteristic endo-siRNA footprint is being produced at sites of RNAPII transcription which is also related to AGO1. This endo-siRNA signature represents an intriguing finding and its reproducibility suggests that the production of endo-siRNAs is a regulated process with potential homoeostatic impact.
Collapse
Affiliation(s)
- Andreas Werner
- RNA Biology Group, Institute of Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Antisense transcription, which was initially considered by many as transcriptional noise, is increasingly being recognized as an important regulator of gene expression. It is widespread among all kingdoms of life and has been shown to influence - either through the act of transcription or through the non-coding RNA that is produced - almost all stages of gene expression, from transcription and translation to RNA degradation. Antisense transcription can function as a fast evolving regulatory switch and a modular scaffold for protein complexes, and it can 'rewire' regulatory networks. The genomic arrangement of antisense RNAs opposite sense genes indicates that they might be part of self-regulatory circuits that allow genes to regulate their own expression.
Collapse
|
44
|
Doyle M, Badertscher L, Jaskiewicz L, Güttinger S, Jurado S, Hugenschmidt T, Kutay U, Filipowicz W. The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal. RNA (NEW YORK, N.Y.) 2013; 19:1238-52. [PMID: 23882114 PMCID: PMC3753931 DOI: 10.1261/rna.039255.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and double-stranded RNA into ∼21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. We show that the dsRBD-NLS can mediate nuclear import of a reporter protein via interaction with importins β, 7, and 8. In the context of full-length Dicer, the dsRBD-NLS is masked. However, duplication of the dsRBD localizes the full-length protein to the nucleus. Furthermore, deletion of the N-terminal helicase domain results in partial accumulation of Dicer in the nucleus upon leptomycin B treatment, indicating that CRM1 contributes to nuclear export of Dicer. Finally, we demonstrate that human Dicer has the ability to shuttle between the nucleus and the cytoplasm. We conclude that Dicer is a shuttling protein whose steady-state localization is cytoplasmic.
Collapse
Affiliation(s)
- Michael Doyle
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- Corresponding authorsE-mail E-mail
| | - Lukas Badertscher
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
- Molecular Life Science Ph.D. Program, CH-8057 Zurich, Switzerland
| | - Lukasz Jaskiewicz
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | | | - Sabine Jurado
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Tabea Hugenschmidt
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- University of Basel, CH-4056 Basel, Switzerland
- Corresponding authorsE-mail E-mail
| |
Collapse
|
45
|
Cruickshanks HA, Vafadar-Isfahani N, Dunican DS, Lee A, Sproul D, Lund JN, Meehan RR, Tufarelli C. Expression of a large LINE-1-driven antisense RNA is linked to epigenetic silencing of the metastasis suppressor gene TFPI-2 in cancer. Nucleic Acids Res 2013; 41:6857-69. [PMID: 23703216 PMCID: PMC3737543 DOI: 10.1093/nar/gkt438] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/18/2022] Open
Abstract
LINE-1 retrotransposons are abundant repetitive elements of viral origin, which in normal cells are kept quiescent through epigenetic mechanisms. Activation of LINE-1 occurs frequently in cancer and can enable LINE-1 mobilization but also has retrotransposition-independent consequences. We previously reported that in cancer, aberrantly active LINE-1 promoters can drive transcription of flanking unique sequences giving rise to LINE-1 chimeric transcripts (LCTs). Here, we show that one such LCT, LCT13, is a large transcript (>300 kb) running antisense to the metastasis-suppressor gene TFPI-2. We have modelled antisense RNA expression at TFPI-2 in transgenic mouse embryonic stem (ES) cells and demonstrate that antisense RNA induces silencing and deposition of repressive histone modifications implying a causal link. Consistent with this, LCT13 expression in breast and colon cancer cell lines is associated with silencing and repressive chromatin at TFPI-2. Furthermore, we detected LCT13 transcripts in 56% of colorectal tumours exhibiting reduced TFPI-2 expression. Our findings implicate activation of LINE-1 elements in subsequent epigenetic remodelling of surrounding genes, thus hinting a novel retrotransposition-independent role for LINE-1 elements in malignancy.
Collapse
Affiliation(s)
- Hazel A. Cruickshanks
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Natasha Vafadar-Isfahani
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Donncha S. Dunican
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Andy Lee
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Duncan Sproul
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Jonathan N. Lund
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Richard R. Meehan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Cristina Tufarelli
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| |
Collapse
|