1
|
Hayashi SY, Pak S, Torlentino A, Rizzo RC, Miller WT. Mutations in Mig6 reduce inhibition of the epidermal growth factor receptor. FASEB J 2024; 38:e70194. [PMID: 39548957 PMCID: PMC11707679 DOI: 10.1096/fj.202401330r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Mitogen-inducible gene 6 (Mig6) is a cellular inhibitor of epidermal growth factor receptor (EGFR) that binds directly to the EGFR kinase domain and interferes with signaling. Reduced Mig6 expression is correlated with increased EGFR activity in multiple cancer models. Here, we investigated whether disease-associated point mutations could reduce the inhibitory potency of Mig6. We show that several cancer-associated mutations, and a mutation derived from Alzheimer's Disease patients, diminish the ability of Mig6 to bind and inhibit EGFR in vitro. In mammalian cells, the mutations decreased the Mig6-induced suppression of basal and EGF-stimulated autophosphorylation, MAP kinase phosphorylation, and cell migration. To probe the mechanisms by which the mutations could lead to reduced Mig6 inhibition, we constructed atomic-level computational models of Mig6 complexed with the EGFR catalytic domain, and performed molecular dynamics simulations for wild-type and mutant complexes.
Collapse
Affiliation(s)
- Samantha Y. Hayashi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Steven Pak
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Antonio Torlentino
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Robert C. Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
- Department of Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
2
|
Burr R, Leshchiner I, Costantino CL, Blohmer M, Sundaresan T, Cha J, Seeger K, Guay S, Danysh BP, Gore I, Jacobs RA, Slowik K, Utro F, Rhrissorrakrai K, Levovitz C, Barth JL, Dubash T, Chirn B, Parida L, Sequist LV, Lennerz JK, Mino-Kenudson M, Maheswaran S, Naxerova K, Getz G, Haber DA. Developmental mosaicism underlying EGFR-mutant lung cancer presenting with multiple primary tumors. NATURE CANCER 2024; 5:1681-1696. [PMID: 39406916 PMCID: PMC11584400 DOI: 10.1038/s43018-024-00840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/10/2024] [Indexed: 10/30/2024]
Abstract
Although the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple tumors at presentation in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. In the present study, we identified ten patients with early stage, resectable, non-small cell lung cancer who presented with multiple, anatomically distinct, EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole-exome sequencing (WES) and hypermutable poly(guanine) (poly(G)) repeat genotyping as orthogonal methods for lineage tracing. In four patients, developmental mosaicism, assessed by WES and poly(G) lineage tracing, indicates a common non-germline cell of origin. In two other patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. Thus, in addition to germline variants, developmental mosaicism defines a distinct mechanism of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for their etiology and clinical management.
Collapse
Affiliation(s)
- Risa Burr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Ignaty Leshchiner
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Boston University, Boston, MA, USA
| | - Christina L Costantino
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tilak Sundaresan
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Justin Cha
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karsen Seeger
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Sara Guay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Brian P Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ira Gore
- Ascension St. Vincent's Birmingham, Birmingham, AL, USA
| | - Raquel A Jacobs
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Slowik
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Brian Chirn
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | | | - Lecia V Sequist
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
3
|
Ficarro SB, Kothiwal D, Bae HJ, Tavares I, Giordano G, Buratowski S, Marto JA. Leveraging HILIC/ERLIC Separations for Online Nanoscale LC-MS/MS Analysis of Phosphopeptide Isoforms from RNA Polymerase II C-terminal Domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617299. [PMID: 39416017 PMCID: PMC11482835 DOI: 10.1101/2024.10.08.617299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The eukaryotic RNA polymerase II (Pol II) multi-protein complex transcribes mRNA and coordinates several steps of co-transcriptional mRNA processing and chromatin modification. The largest Pol II subunit, Rpb1, has a C-terminal domain (CTD) comprising dozens of repeated heptad sequences (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), each containing five phospho-accepting amino acids. The CTD heptads are dynamically phosphorylated, creating specific patterns correlated with steps of transcription initiation, elongation, and termination. This CTD phosphorylation 'code' choreographs dynamic recruitment of important co-regulatory proteins during gene transcription. Genetic tools were used to engineer protease cleavage sites across the CTD (msCTD), creating tryptic peptides with unique sequences amenable to mass spectrometry analysis. However, phosphorylation isoforms within each msCTD sequence are difficult to resolve by standard reversed phase chromatography typically used for LC-MS/MS applications. Here, we use a panel of synthetic CTD phosphopeptides to explore the potential of hydrophilic interaction and electrostatic repulsion hydrophilic interaction (HILIC and ERLIC) chromatography as alternatives to reversed phase separation for CTD phosphopeptide analysis. Our results demonstrate that ERLIC provides improved performance for separation of singly- and doubly-phosphorylated CTD peptides for sequence analysis by LC-MS/MS. Analysis of native yeast msCTD confirms that phosphorylation on Ser5 and Ser2 represents the major endogenous phosphoisoforms. We expect this methodology will be especially useful in the investigation of pathways where multiple protein phosphorylation events converge in close proximity.
Collapse
|
4
|
Biswas B, Huang YH, Craik DJ, Wang CK. The prospect of substrate-based kinase inhibitors to improve target selectivity and overcome drug resistance. Chem Sci 2024; 15:13130-13147. [PMID: 39183924 PMCID: PMC11339801 DOI: 10.1039/d4sc01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
Human kinases are recognized as one of the most important drug targets associated with cancer. There are >80 FDA-approved kinase inhibitors to date, most of which work by inhibiting ATP binding to the kinase. However, the frequent development of single-point mutations within the kinase domain has made overcoming drug resistance a major challenge in drug discovery today. Targeting the substrate site of kinases can offer a more selective and resistance-resilient solution compared to ATP inhibition but has traditionally been challenging. However, emerging technologies for the discovery of drug leads using recombinant display and stabilization of lead compounds have increased interest in targeting the substrate site of kinases. This review discusses recent advances in the substrate-based inhibition of protein kinases and the potential of such approaches for overcoming the emergence of resistance.
Collapse
Affiliation(s)
- Biswajit Biswas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| |
Collapse
|
5
|
Yi SA, Cho D, Kim S, Kim H, Choi MK, Choi HS, Shin S, Yun S, Lim A, Jeong JK, Yoon DE, Cha HJ, Kim K, Han JW, Cho HS, Cho J. Functional loss of ERBB receptor feedback inhibitor 1 (MIG6) promotes glioblastoma tumorigenesis by aberrant activation of epidermal growth factor receptor (EGFR). Mol Oncol 2024. [PMID: 39129344 DOI: 10.1002/1878-0261.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Dysregulation of epidermal growth factor receptor (EGFR) is one of the most common mechanisms associated with the pathogenesis of various cancers. Mitogen-inducible gene 6 [MIG6; also known as ERBB receptor feedback inhibitor 1 (ERRFI1)], identified as a feedback inhibitor of EGFR, negatively regulates EGFR by directly inhibiting its kinase activity and facilitating its internalization, subsequently leading to degradation. Despite its proposed role as an EGFR-dependent tumor suppressor, the functional consequences and clinical relevance in cancer etiology remain incompletely understood. Here, we identify that the stoichiometric balance between MIG6 and EGFR is crucial in promoting EGFR-dependent oncogenic growth in various experimental model systems. In addition, a subset of ERRFI1 (the official gene symbol of MIG6) mutations exhibit impaired ability to suppress the enzymatic activation of EGFR at multiple levels. In summary, our data suggest that decreased or loss of MIG6 activity can lead to abnormal activation of EGFR, potentially contributing to cellular transformation. We propose that the mutation status of ERRFI1 and the expression levels of MIG6 can serve as additional biomarkers for guiding EGFR-targeted cancer therapies, including glioblastoma.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Daseul Cho
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Sujin Kim
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Hyunjin Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hee Seong Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sukjin Shin
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Sujin Yun
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Ahjin Lim
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Jae Kyun Jeong
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hye Ji Cha
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Jeung-Whan Han
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeonghee Cho
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| |
Collapse
|
6
|
Chen N, Tyler LC, Le AT, Welsh EA, Fang B, Elliott A, Davies KD, Danhorn T, Riely GJ, Ladanyi M, Haura EB, Doebele RC. MIG6 Mediates Adaptive and Acquired Resistance to ALK/ROS1 Fusion Kinase Inhibition through EGFR Bypass Signaling. Mol Cancer Ther 2024; 23:92-105. [PMID: 37748191 PMCID: PMC10762338 DOI: 10.1158/1535-7163.mct-23-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Despite the initial benefit from tyrosine kinase inhibitors (TKI) targeting oncogenic ALK and ROS1 gene fusions in non-small cell lung cancer, complete responses are rare and resistance ultimately emerges from residual tumor cells. Although several acquired resistance mechanisms have been reported at the time of disease progression, adaptative resistance mechanisms that contribute to residual diseases before the outgrowth of tumor cells with acquired resistance are less clear. For the patients who have progressed after TKI treatments, but do not demonstrate ALK/ROS1 kinase mutations, there is a lack of biomarkers to guide effective treatments. Herein, we found that phosphorylation of MIG6, encoded by the ERRFI1 gene, was downregulated by ALK/ROS1 inhibitors as were mRNA levels, thus potentiating EGFR activity to support cell survival as an adaptive resistance mechanism. MIG6 downregulation was sustained following chronic exposure to ALK/ROS1 inhibitors to support the establishment of acquired resistance. A higher ratio of EGFR to MIG6 expression was found in ALK TKI-treated and ALK TKI-resistant tumors and correlated with the poor responsiveness to ALK/ROS1 inhibition in patient-derived cell lines. Furthermore, we identified and validated a MIG6 EGFR-binding domain truncation mutation in mediating resistance to ROS1 inhibitors but sensitivity to EGFR inhibitors. A MIG6 deletion was also found in a patient after progressing to ROS1 inhibition. Collectively, this study identifies MIG6 as a novel regulator for EGFR-mediated adaptive and acquired resistance to ALK/ROS1 inhibitors and suggests EGFR to MIG6 ratios and MIG6-damaging alterations as biomarkers to predict responsiveness to ALK/ROS1 and EGFR inhibitors.
Collapse
Affiliation(s)
- Nan Chen
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Logan C. Tyler
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anh T. Le
- Cell Technologies Shared Resources, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resources, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Andrew Elliott
- Clinical and Translational Research, Caris Life Sciences, Phoenix, Arizona
| | - Kurtis D. Davies
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas Danhorn
- Department of Pharmacology and of University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gregory J. Riely
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Robert C. Doebele
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
7
|
Kondo N, Utsumi T, Shimizu Y, Takemoto A, Oh-hara T, Uchibori K, Subat-Motoshi S, Ninomiya H, Takeuchi K, Nishio M, Miyazaki Y, Katayama R. MIG6 loss confers resistance to ALK/ROS1 inhibitors in NSCLC through EGFR activation by low-dose EGF. JCI Insight 2023; 8:e173688. [PMID: 37917191 PMCID: PMC10807714 DOI: 10.1172/jci.insight.173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Although tyrosine kinase inhibitor (TKI) therapy shows marked clinical efficacy in patients with anaplastic lymphoma kinase-positive (ALK+) and ROS proto-oncogene 1-positive (ROS1+) non-small cell lung cancer (NSCLC), most of these patients eventually relapse with acquired resistance. Therefore, genome-wide CRISPR/Cas9 knockout screening was performed using an ALK+ NSCLC cell line established from pleural effusion without ALK-TKI treatment. After 9 days of ALK-TKI therapy, sequencing analysis was performed, which identified several tumor suppressor genes, such as NF2 or MED12, and multiple candidate genes. Among them, this study focused on ERRFI1, which is known as MIG6 and negatively regulates EGFR signaling. Interestingly, MIG6 loss induced resistance to ALK-TKIs by treatment with quite a low dose of EGF, which is equivalent to plasma concentration, through the upregulation of MAPK and PI3K/AKT/mTOR pathways. Combination therapy with ALK-TKIs and anti-EGFR antibodies could overcome the acquired resistance in both in vivo and in vitro models. In addition, this verified that MIG6 loss induces resistance to ROS1-TKIs in ROS1+ cell lines. This study found a potentially novel factor that plays a role in ALK and ROS1-TKI resistance by activating the EGFR pathway with low-dose ligands.
Collapse
Affiliation(s)
- Nobuyuki Kondo
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Utsumi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Shimizu
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tomoko Oh-hara
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital
| | - Sophia Subat-Motoshi
- Department of Pathology, the Cancer Institute Hospital, and
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | | | - Kengo Takeuchi
- Department of Pathology, the Cancer Institute Hospital, and
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Yang YY, Lin SC, Lay JD, Cho CY, Jang TH, Ku HY, Yao CJ, Chuang SE. Intervention of AXL in EGFR Signaling via Phosphorylation and Stabilization of MIG6 in Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:14879. [PMID: 37834326 PMCID: PMC10573631 DOI: 10.3390/ijms241914879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
About 80% of lung cancer patients are diagnosed with non-small cell lung cancer (NSCLC). EGFR mutation and overexpression are common in NSCLC, thus making EGFR signaling a key target for therapy. While EGFR kinase inhibitors (EGFR-TKIs) are widely used and efficacious in treatment, increases in resistance and tumor recurrence with alternative survival pathway activation, such as that of AXL and MET, occur frequently. AXL is one of the EMT (epithelial-mesenchymal transition) signature genes, and EMT morphological changes are also responsible for EGFR-TKI resistance. MIG6 is a negative regulator of ERBB signaling and has been reported to be positively correlated with EGFR-TKI resistance, and downregulation of MIG6 by miR-200 enhances EMT transition. While MIG6 and AXL are both correlated with EMT and EGFR signaling pathways, how AXL, MIG6 and EGFR interplay in lung cancer remains elusive. Correlations between AXL and MIG6 expression were analyzed using Oncomine or the CCLE. A luciferase reporter assay was used for determining MIG6 promoter activity. Ectopic overexpression, RNA interference, Western blot analysis, qRT-PCR, a proximity ligation assay and a coimmunoprecipitation assay were performed to analyze the effects of certain gene expressions on protein-protein interaction and to explore the underlying mechanisms. An in vitro kinase assay and LC-MS/MS were utilized to determine the phosphorylation sites of AXL. In this study, we demonstrate that MIG6 is a novel substrate of AXL and is stabilized upon phosphorylation at Y310 and Y394/395 by AXL. This study reveals a connection between MIG6 and AXL in lung cancer. AXL phosphorylates and stabilizes MIG6 protein, and in this way EGFR signaling may be modulated. This study may provide new insights into the EGFR regulatory network and may help to advance cancer treatment.
Collapse
Affiliation(s)
- Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Sheng-Chieh Lin
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Jong-Ding Lay
- Department of Nursing, National Taichung University of Science and Technology, Taichung 40343, Taiwan;
| | - Chun-Yu Cho
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Te-Hsuan Jang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsiu-Ying Ku
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Chih-Jung Yao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| |
Collapse
|
9
|
Hayashi SY, Craddock BP, Miller WT. Phosphorylation of Ack1 by the Receptor Tyrosine Kinase Mer. KINASES AND PHOSPHATASES 2023; 1:167-180. [PMID: 37662484 PMCID: PMC10473914 DOI: 10.3390/kinasesphosphatases1030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Ack1 is a nonreceptor tyrosine kinase that is associated with cellular proliferation and survival. The receptor tyrosine kinase Mer, a member of the TAM family of receptors, has previously been reported to be an upstream activator of Ack1 kinase. The mechanism linking the two kinases, however, has not been investigated. We confirmed that Ack1 and Mer interact by co-immunoprecipitation experiments and found that Mer expression led to increased Ack1 activity. The effect on Ack1 was dependent on the kinase activity of Mer, whereas mutation of the Mer C-terminal tyrosines Y867 and Y924 did not significantly decrease the ability of Mer to activate Ack1. Ack1 possesses a Mig6 Homology Region (MHR) that contains adjacent regulatory tyrosines (Y859 and Y860). Using synthetic peptides, we showed that Mer preferentially binds and phosphorylates the MHR sequence containing phosphorylated pY860, as compared to the pY859 sequence. This suggested the possibility of sequential phosphorylation within the MHR of Ack1, as has been observed previously for other kinases. In cells co-expressing Mer and Ack1 MHR mutants, the Y859F mutant had higher activity than the Y860F mutant, consistent with this model. The interaction between Mer and Ack1 could play a role in immune cell signaling in normal physiology and could also contribute to the hyperactivation of Ack1 in prostate cancer and other tumors.
Collapse
Affiliation(s)
- Samantha Y. Hayashi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Barbara P. Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768, USA
| |
Collapse
|
10
|
Kan Y, Paung Y, Seeliger MA, Miller WT. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023; 12:900. [PMID: 36980241 PMCID: PMC10047419 DOI: 10.3390/cells12060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.
Collapse
Affiliation(s)
- Yagmur Kan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - YiTing Paung
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Markus A. Seeliger
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768-2200, USA
| |
Collapse
|
11
|
Basavarajappa HD, Irimia JM, Bauer BM, Fueger PT. The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis. Int J Mol Sci 2023; 24:ijms24043308. [PMID: 36834720 PMCID: PMC9959170 DOI: 10.3390/ijms24043308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Avoiding the loss of functional beta cell mass is critical for preventing or treating diabetes. Currently, the molecular mechanisms underlying beta cell death are partially understood, and there is a need to identify new targets for developing novel therapeutics to treat diabetes. Previously, our group established that Mig6, an inhibitor of EGF signaling, mediates beta cell death under diabetogenic conditions. The objective here was to clarify the mechanisms linking diabetogenic stimuli to beta cell death by investigating Mig6-interacting proteins. Using co-immunoprecipitation and mass spectrometry, we evaluated the binding partners of Mig6 under both normal glucose (NG) and glucolipotoxic (GLT) conditions in beta cells. We identified that Mig6 interacted dynamically with NumbL, whereas Mig6 associated with NumbL under NG, and this interaction was disrupted under GLT conditions. Further, we demonstrated that the siRNA-mediated suppression of NumbL expression in beta cells prevented apoptosis under GLT conditions by blocking the activation of NF-κB signaling. Using co-immunoprecipitation experiments, we observed that NumbL's interactions with TRAF6, a key component of NFκB signaling, were increased under GLT conditions. The interactions among Mig6, NumbL, and TRAF6 were dynamic and context-dependent. We proposed a model wherein these interactions activated pro-apoptotic NF-κB signaling while blocking pro-survival EGF signaling under diabetogenic conditions, leading to beta cell apoptosis. These findings indicated that NumbL should be further investigated as a candidate anti-diabetic therapeutic target.
Collapse
Affiliation(s)
- Halesha D. Basavarajappa
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jose M. Irimia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Brandon M. Bauer
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Patrick T. Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-218-0620
| |
Collapse
|
12
|
He Q, Xu S, Ma X, Ling T, Feng W, Lu X, Liu W, Chen Z. Coupled folding-upon-binding of human tumor suppressor MIG6 to lung cancer EGFR kinase domain and molecular trimming/stapling of MIG6-derived β-hairpins to target the coupling event. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:17-25. [PMID: 36547692 DOI: 10.1007/s00249-022-01624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Human epidermal growth factor receptor (EGFR) is involved in strong association with malignant proliferation, which has been shown to play a central role in the development and progression of non-small cell lung cancer and other solid tumors. The tumor-suppressor protein MIG6 is a negative regulator of EGFR kinase activity by binding at the activation interface of asymmetric dimer of EGFR kinase domain to disrupt EGFR dimerization and then inactivate the kinase. The protein adopts two discrete fragments 1 and 2 to directly interact with EGFR. It is revealed that the MIG6 fragment 2 is intrinsically disordered in free unbound state, but would fold into a well-structured β-hairpin when binding to EGFR, thus characterized by a so-called coupled folding-upon-binding process, which can be regarded as a compromise between favorable direct readout and unfavorable indirect readout. Here, a 23-mer F2P peptide was derived from MIG6 fragment 2, trimmed into a 17-mer tF2P peptide that contains the binding hotspot region of the fragment 2, and then constrained with an ordered hairpin conformation in free unbound state by disulfide stapling, finally resulting in a rationally stapled/trimmed stF2P peptide that largely minimizes the unfavorable indirect readout effect upon its binding to EGFR kinase domain, with affinity improved considerably upon the trimming and stapling/trimming. These rationally designed β-hairpin peptides may be further exploited as potent anti-lung cancer agents to target the activation event of EGFR dimerization.
Collapse
Affiliation(s)
- Quan He
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Xiaomei Ma
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Ting Ling
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Weiqi Feng
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Xuzhi Lu
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Weihua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
13
|
Kan Y, Miller WT. Activity of the nonreceptor tyrosine kinase Ack1 is regulated by tyrosine phosphorylation of its Mig6 homology region. FEBS Lett 2022; 596:2808-2820. [PMID: 36178070 PMCID: PMC9879303 DOI: 10.1002/1873-3468.14505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023]
Abstract
Ack1 is a proto-oncogenic tyrosine kinase with homology to the tumour suppressor Mig6, an inhibitor of the epidermal growth factor receptor (EGFR). The residues critical for binding of Mig6 to EGFR are conserved within the Mig6 homology region (MHR) of Ack1. We tested whether intramolecular interactions between the Ack1 MHR and kinase domain (KD) are regulated by phosphorylation. We identified two Src phosphorylation sites within the MHR (Y859, Y860). Addition of Src-phosphorylated MHR to the Ack1 KD enhanced enzymatic activity. Co-expression of Src in cells led to increased Ack1 activity; mutation of Y859/Y860 blocked this increase. Collectively, the data suggest that phosphorylation of the Ack1 MHR regulates its kinase activity. Phosphorylation of Y859/Y860 occurs in cancers of the brain, breast, colon, and prostate, where genomic amplification or somatic mutations of Ack1 play a role in disease progression. Our findings suggest that MHR phosphorylation could contribute to Ack1 dysregulation in tumours.
Collapse
Affiliation(s)
- Yağmur Kan
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| |
Collapse
|
14
|
Wang D, Ruan W, Fan L, Xu H, Song Q, Diao H, He R, Jin Y, Zhang A. Hypermethylation of Mig-6 gene promoter region inactivates its function, leading to EGFR/ERK signaling hyperphosphorylation, and is involved in arsenite-induced hepatic stellate cells activation and extracellular matrix deposition. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129577. [PMID: 35850069 DOI: 10.1016/j.jhazmat.2022.129577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a widespread naturally contaminant. Previous studies have highlighted the issue of liver fibrosis induced by arsenic exposure, while the exact mechanisms are not yet fully understood. Recent studies suggest that Mig-6/EGFR/ERK signaling appear to play important roles in fibrosis caused by various factors. In this study, we focused on the epigenetic modification combined with the signaling dysregulation to validate the role of Mig-6 in regulating EGFR/ERK signaling in arsenite-induced human hepatic stellate cells (HSCs) activation. Our results revealed that arsenite exposure induced HSCs activation and extracellular matrix (ECM) deposition. The EGFR/ERK signaling was significantly hyperphosphorylated in arsenite-exposed HSCs, and Mig-6 inactivation was involved in arsenite induced hyperphosphorylation of EGFR and activation of HSCs. Additionally, we further illustrated that hypermethylation of Mig-6 gene promoter region was responsible for the downregulation of Mig-6 induced by arsenite exposure. Moreover, 5-Aza-dC (a DNA methyltransferase inhibitor) can efficiently rescue hypermethylation of Mig-6 gene, decrease the hyperphosphorylation of EGFR/ERK signaling, then reverse arsenite induced HSCs activation. Taken together, the present study strongly suggests that inactivating of Mig-6 function by hypermethylation of its promoter region leading to hyperphosphorylation of EGFR/ERK signaling, and is involved in arsenite-induced HSCs activation and ECM deposition.
Collapse
Affiliation(s)
- Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Wenli Ruan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China; Tongren Center for Disease Control and Prevention, Tongren 554300, Guizhou, China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Huifen Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
15
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
16
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Wang N, Li R, Feng B, Cheng Y, Guo Y, Qian H. Chicoric Acid Prevents Neuroinflammation and Neurodegeneration in a Mouse Parkinson’s Disease Model: Immune Response and Transcriptome Profile of the Spleen and Colon. Int J Mol Sci 2022; 23:ijms23042031. [PMID: 35216146 PMCID: PMC8874631 DOI: 10.3390/ijms23042031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Chicoric acid (CA), a polyphenolic acid compound extracted from chicory and echinacea, possesses antiviral, antioxidative and anti-inflammatory activities. Growing evidence supports the pivotal roles of brain–spleen and brain–gut axes in neurodegenerative diseases, including Parkinson’s disease (PD), and the immune response of the spleen and colon is always the active participant in the pathogenesis and development of PD. In this study, we observe that CA prevented dopaminergic neuronal lesions, motor deficits and glial activation in PD mice, along with the increment in striatal brain-derived neurotrophic factor (BDNF), dopamine (DA) and 5-hydroxyindoleacetic acid (5-HT). Furthermore, CA reversed the level of interleukin-17(IL-17), interferon-gamma (IFN-γ) and transforming growth factor-beta (TGF-β) of PD mice, implicating its regulatory effect on the immunological response of spleen and colon. Transcriptome analysis revealed that 22 genes in the spleen (21 upregulated and 1 downregulated) and 306 genes (190 upregulated and 116 downregulated) in the colon were significantly differentially expressed in CA-pretreated mice. These genes were functionally annotated with GSEA, GO and KEGG pathway enrichment, providing the potential target genes and molecular biological mechanisms for the modulation of CA on the spleen and gut in PD. Remarkably, CA restored some gene expressions to normal level. Our results highlighted that the neuroprotection of CA might be associated with the manipulation of CA on brain–spleen and brain–gut axes in PD.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
| | - Rui Li
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China;
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
- Correspondence: (Y.G.); (H.Q.)
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
- Correspondence: (Y.G.); (H.Q.)
| |
Collapse
|
18
|
Carlin CR. Role of EGF Receptor Regulatory Networks in the Host Response to Viral Infections. Front Cell Infect Microbiol 2022; 11:820355. [PMID: 35083168 PMCID: PMC8785968 DOI: 10.3389/fcimb.2021.820355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this review article, we will first provide a brief overview of EGF receptor (EGFR) structure and function, and its importance as a therapeutic target in epithelial carcinomas. We will then compare what is currently known about canonical EGFR trafficking pathways that are triggered by ligand binding, versus ligand-independent pathways activated by a variety of intrinsic and environmentally induced cellular stresses. Next, we will review the literature regarding the role of EGFR as a host factor with critical roles facilitating viral cell entry and replication. Here we will focus on pathogens exploiting virus-encoded and endogenous EGFR ligands, as well as EGFR-mediated trafficking and signaling pathways that have been co-opted by wild-type viruses and recombinant gene therapy vectors. We will also provide an overview of a recently discovered pathway regulating non-canonical EGFR trafficking and signaling that may be a common feature of viruses like human adenoviruses which signal through p38-mitogen activated protein kinase. We will conclude by discussing the emerging role of EGFR signaling in innate immunity to viral infections, and how viral evasion mechanisms are contributing to our understanding of fundamental EGFR biology.
Collapse
Affiliation(s)
- Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Cathleen R. Carlin,
| |
Collapse
|
19
|
Liu R, Zhan S, Che Y, Shen J. Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases. J Med Chem 2021; 65:1525-1535. [PMID: 34647463 DOI: 10.1021/acs.jmedchem.1c01186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The front pocket (FP) N-terminal cap (Ncap) cysteine is the most popular site of covalent modification in kinases. A long-standing hypothesis associates the Ncap position with cysteine hyper-reactivity; however, traditional computational predictions suggest that the FP Ncap cysteines are predominantly unreactive. Here we applied the state-of-the-art continuous constant pH molecular dynamics (CpHMD) to test the Ncap hypothesis. Simulations found that the Ncap cysteines of BTK/BMX/TEC/ITK/TXK, JAK3, and MKK7 are reactive to varying degrees; however, those of BLK and EGFR/ERBB2/ERBB4 possessing a Ncap+3 aspartate are unreactive. Analysis suggested that hydrogen bonding and electrostatic interactions drive the reactivity, and their absence renders the Ncap cysteine unreactive. To further test the Ncap hypothesis, we examined the FP Ncap+2 cysteines in JNK1/JNK2/JNK3 and CASK. Our work offers a systematic understanding of the cysteine structure-reactivity relationship and illustrates the use of CpHMD to differentiate cysteines toward the design of targeted covalent inhibitors with reduced chemical reactivities.
Collapse
Affiliation(s)
- Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Shaoqi Zhan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Ye Che
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
20
|
Making ERRFI1-Derived Peptides ‘Bindable’ to the Allosteric Dimerization Interface of Breast Cancer ERBB3 Kinase by Adding a Nonbonded Interaction System. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Lu G, Li X, Zhang J, Xu Q. Molecular insight into the affinity, specificity and cross-reactivity of systematic hepatocellular carcinoma RALT interaction profile with human receptor tyrosine kinases. Amino Acids 2021; 53:1715-1728. [PMID: 34618235 DOI: 10.1007/s00726-021-03083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
The ErbB family of receptor tyrosine kinases (RTKs) contains four members: EGFR, ErbB2, ErbB3 and ErbB4; they are involved in the tumorigenesis of diverse cancers and can be inhibited natively by receptor-associated late transducer (RALT), a negative feedback regulator of ErbB signaling in human hepatocytes and hepatocellular carcinoma. Although the biological effects of RALT on EGFR kinase have been widely documented previously, the binding behavior of RALT to other ErbB/RTK kinases still remains largely unexplored. Here, the intermolecular interactions of RALT ErbB-binding region (EBR) as well as its functional sections and peptide segments with ErbBs and other human RTKs were systematically investigated at molecular and structural levels, from which we were able to identify those potential kinase targets of RALT protein, and to profile the affinity, specificity and cross-reactivity of RALT EBR domain and its sub-regions against various RTKs. It is revealed that RALT can target all the four ErbB kinases with high affinity for EGFR/ErbB2/ErbB4 and moderate affinity for ErbB3, but generally exhibits modest affinity to other RTKs, albeit few kinases such as LTK, EPHB6, MET and MUSK were also top-ranked as the unexpected targets of RALT. Peptide segments covering the key binding regions of RALT EBR domain were identified with computational alanine scanning, which were then optimized to obtain a number of designed peptide mutants with improved selectivity between different top-ranked RTKs.
Collapse
Affiliation(s)
- Guang Lu
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China
| | - Xiaoping Li
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China
| | - Jun Zhang
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China
| | - Qinghua Xu
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China.
| |
Collapse
|
22
|
Gu H, Liu L. Molecular modeling and rational design of noncovalent halogen⋯oxygen⋯hydrogen motif at the complex interface of EGFR kinase domain with RALT peptide. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Zhang A, Liu P, Dou C, Liu Y, Che L. Molecular conversion of MIG6 hotspot-3 peptide from the nonbinder to a moderate binder of HER2 by rational design of an orthogonal interaction system at the HER2-peptide interface. Biophys Chem 2021; 276:106625. [PMID: 34077816 DOI: 10.1016/j.bpc.2021.106625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) has been established as an approved druggable target for the treatment of patients with diverse gynecological tumors such as ovarian, cervical and breast cancers. The mitogen-inducible gene 6 (MIG6) protein is a negative regulator of HER2 signaling by using its Seg1 segment to disrupt the allosteric dimerization of HER2 kinase domain. Previous studies found that the Seg1 adopts three separated hotspots to interact with the HER2 dimerization interface, in which the third hotspot (H3) is located at the core region of the interface but its derived H3 peptide (356PKYVS360) and Tyr358Phe mutant (356PKFVS360) cannot bind effectively to the interface in an independent manner. In this study, we demonstrate that the H3 peptide can be converted from nonbinder to a moderate binder of HER2 by just adding an orthogonal noncovalent interaction system (X⋯O┄H) between a halogen bond (X⋯O) and a hydrogen bond (H┄O) involving peptide Phe358 residue and HER2 Val948/Trp951 residues. High-level calculations are utilized to rigorously characterize and rationally design the X⋯O┄H system, which is then optimized with different halogen atoms and at different substituting positions. It is revealed that there is a synergistic effect between the X⋯O and H┄O of the orthogonal interaction system; formation of the halogen bond can enhance the interaction strength of the hydrogen bond. In silico analysis and in vitro assay reach a consistence that Br-substitution at the m-position of peptide Phe358 phenyl moiety is the best choice that can render strong interaction for the X⋯O┄H system, which also makes the peptide 'bindable' to HER2 kinase domain, while F/Cl/I-substitution at the same position can only improve the peptide affinity moderately or modestly. In contrast, the Br-substitution at the o- and p-positions of peptide Phe358 phenyl moiety cannot define effective X⋯O┄H interaction and thus does not confer additional affinity to the HER2-peptide complex.
Collapse
Affiliation(s)
- Aihong Zhang
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Chuncheng Dou
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Lifan Che
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China.
| |
Collapse
|
24
|
Zhong H, He J, Yu J, Li X, Mei Y, Hao L, Wu X. Mig6 not only inhibits EGFR and HER2 but also targets HER3 and HER4 in a differential specificity: Implications for targeted esophageal cancer therapy. Biochimie 2021; 190:132-142. [PMID: 34293452 DOI: 10.1016/j.biochi.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022]
Abstract
The human EGF receptor family plays pivotal roles in physiology and cancer, which contains four closely-related members: HER1/EGFR, HER2, HER3 and HER4. Previously, it was found that the mitogen-inducible gene 6 (Mig6) protein is a negative regulator of EGFR and HER2 by using its S1 segment to bind at the kinase dimerization interface. However, it is still unclear whether the S1 segment can also effectively target HER3 and HER4? Here, we performed a systematic investigation to address this issue. The segment can bind to all the four HER kinases with a varying affinity and moderate selectivity; breaking of the segment into shorter hotspot peptides would largely impair the affinity and selectivity, indicating that the full-length sequence is required for the effective binding of S1 to these kinases. The hs2 peptide, which corresponds to the middle hotspot region of S1 segment, can partially retain the affinity to HER kinases, can moderately compete with S1 segment at the dimerization interfaces, and can mimic the biological function of Mig6 protein to suppress HER4+ esophageal cancer at cellular level. In addition, we also analyzed the binding potency of S1 segment and hs2 peptide to the kinase domains of other five widely documented growth factor receptors (GFRs). It was showed that both the S1 and hs2 cannot effectively interact with these receptors. Overall, the Mig6 is suggested as a specific pan-HER inhibitor, which can target and suppress HER family members with a broad selectivity, but exhibits weak or no activity towards other GFRs.
Collapse
Affiliation(s)
- Hai Zhong
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Cardiothoracic Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Jiajia He
- Department of Hematologic Oncology, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Jingjing Yu
- Department of Hematologic Oncology, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Xiang Li
- Department of Emergency, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxian Mei
- Department of Urology, Wenling Hospital of Traditional Chinese Medicine, Wenling, 317500, China
| | - Long Hao
- Department of General Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Xu Wu
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
25
|
Periyasamy L, Muruganantham B, Deivasigamani M, Lakshmanan H, Muthusami S. Acetogenin Extracted from Annona muricata Prevented the Actions of EGF in PA-1 Ovarian Cancer Cells. Protein Pept Lett 2021; 28:304-314. [PMID: 32938339 DOI: 10.2174/0929866527666200916141730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In individuals with ovarian cancer, an increase in the circulating level of the epidermal growth factor (EGF) is readily apparent. Ovarian cancer cells exhibit signaling pathway of the epidermal growth factor (EGFR) and respond to the EGF. Annona muricata (AM) has been shown to decrease ovarian cell proliferation however, role of AM in regulating EGF actions is not yet to be reported. OBJECTIVE In this study, we proposed that the fractionated compound acetogenin can inhibit the activation of EGFR-regulated signaling cascades such as MAPK7 / PI3K-Akt / mTOR / STAT upon EGF stimulation. METHODS Ethanolic extract was prepared for the whole AM plant and Thin Layer Chromatography (TLC) was performed to characterize the secondary metabolites and each fraction was assessed using kedde reagent for the presence of acetogenin. The effects of acetogenins were then tested on the survival of PA-1 ovarian cancer cells under basal and EGF stimulated conditions. To delineate the role of acetogenin in EGFR signaling cascades, the in silico docking studies were conducted. RESULTS The fraction of acetogenin decreased the viability of EGF induced PA-1 ovarian cancer cells that indicating the EGF inhibitory effects of acetogenin. The docking studies specifically illustrated that when the acetogenin binding with tyrosine kinase (TK) and regulatory unit (RU) which subsequently resulted in a reduction in EGF induced the survival of PA-1 ovarian cancer cells. DISCUSSION The vital regulatory role of acetogenin reported in this study indicate significant anticancer activities of acetogenin from AM. The in silico study of the acetogenin function predicted that it binds specifically to Asp837 (phosphor-acceptor site) of EGFR, essential for phosphorylation of substrates in the TK domain and RU which promote downstream signaling. CONCLUSION Acetogenin isolated from AM effectively inhibited the survival of PA-1 ovarian cancer cells through impaired EGF signaling.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| | - Malarvizhi Deivasigamani
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| | - Hariprasath Lakshmanan
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| |
Collapse
|
26
|
Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021; 10:cells10071574. [PMID: 34206547 PMCID: PMC8306081 DOI: 10.3390/cells10071574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein–protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.
Collapse
|
27
|
Rational Molecular Profiling of Receptor-Associated Late Transducer Peptide Selectivity Across Her/Rtk Kinases. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Qiao Z, Wang S. Directed Molecular Engineering of Mig6 Peptide Selectivity between Proto-oncogene ErbB Family Receptor Tyrosine Kinases. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0102-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
He J, Li CF, Lee HJ, Shin DH, Chern YJ, Pereira De Carvalho B, Chan CH. MIG-6 is essential for promoting glucose metabolic reprogramming and tumor growth in triple-negative breast cancer. EMBO Rep 2021; 22:e50781. [PMID: 33655623 PMCID: PMC8097377 DOI: 10.15252/embr.202050781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of triple‐negative breast cancer (TNBC) remains challenging due to a lack of effective targeted therapies. Dysregulated glucose uptake and metabolism are essential for TNBC growth. Identifying the molecular drivers and mechanisms underlying the metabolic vulnerability of TNBC is key to exploiting dysregulated cancer metabolism for therapeutic applications. Mitogen‐inducible gene‐6 (MIG‐6) has long been thought of as a feedback inhibitor that targets activated EGFR and suppresses the growth of tumors driven by constitutive activated mutant EGFR. Here, our bioinformatics and histological analyses uncover that MIG‐6 is upregulated in TNBC and that MIG‐6 upregulation is positively correlated with poorer clinical outcomes in TNBC. Metabolic arrays and functional assays reveal that MIG‐6 drives glucose metabolism reprogramming toward glycolysis. Mechanistically, MIG‐6 recruits HAUSP deubiquitinase for stabilizing HIF1α protein expression and the subsequent upregulation of GLUT1 and other HIF1α‐regulated glycolytic genes, substantiating the comprehensive regulation of MIG‐6 in glucose metabolism. Moreover, our mouse studies demonstrate that MIG‐6 regulates GLUT1 expression in tumors and subsequent tumor growth in vivo. Collectively, this work reveals that MIG‐6 is a novel prognosis biomarker, metabolism regulator, and molecular driver of TNBC.
Collapse
Affiliation(s)
- Jiabei He
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Pathology, Chi-Mei Foundational Medical Center, Tainan, Taiwan
| | - Hong-Jen Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Dong-Hui Shin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Jye Chern
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | | | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
30
|
Liu L, Xing L, Chen R, Zhang J, Huang Y, Huang L, Xie B, Ren X, Wang S, Kuang H, Lin X, Kumar A, Kim JK, Lee C, Li X. Mitogen-Inducible Gene 6 Inhibits Angiogenesis by Binding to SHC1 and Suppressing Its Phosphorylation. Front Cell Dev Biol 2021; 9:634242. [PMID: 33693003 PMCID: PMC7937727 DOI: 10.3389/fcell.2021.634242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
The mitogen-inducible gene 6 (MIG6) is an adaptor protein widely expressed in vascular endothelial cells. However, it remains unknown thus far whether it plays a role in angiogenesis. Here, using comprehensive in vitro and in vivo model systems, we unveil a potent anti-angiogenic effect of MIG6 in retinal development and neovascularization and the underlying molecular and cellular mechanisms. Loss of function assays using genetic deletion of Mig6 or siRNA knockdown increased angiogenesis in vivo and in vitro, while MIG6 overexpression suppressed pathological angiogenesis. Moreover, we identified the cellular target of MIG6 by revealing its direct inhibitory effect on vascular endothelial cells (ECs). Mechanistically, we found that the anti-angiogenic effect of MIG6 is fulfilled by binding to SHC1 and inhibiting its phosphorylation. Indeed, SHC1 knockdown markedly diminished the effect of MIG6 on ECs. Thus, our findings show that MIG6 is a potent endogenous inhibitor of angiogenesis that may have therapeutic value in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Lixian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuye Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jong Kyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
C-demethylation and 1, 2-amino shift in (E)-2-(1-(3-aminophenyl) ethylidene)hydrazinecarboxamide to (E)-2-(2-aminobenzylidene)hydrazinecarboxamide and their applications. Sci Rep 2020; 10:21913. [PMID: 33318572 PMCID: PMC7736590 DOI: 10.1038/s41598-020-79027-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
A Novel (E)-2-(1-(3-aminophenyl)ethylidene)hydrazinecarboxamide 1 was synthesized by traditional method and converted to (E)-2-(2-aminobenzylidene)hydrazinecarboxamide 2 by single step in DMSO at room temperature. Synthesized compound 1 was analysed by spectroscopy (NMR and LC–MS) techniques and molecule 2 was characterized using single crystal X-ray diffraction and spectroscopy (NMR and GC–MS) techniques. These analytical technique results revealed that, C-demethylation and 1, 2 amino shift in phenyl ring of compound 1 gives molecule 2. DNA binding studies of compounds 1 and 2 was carried out by electronic absorption spectroscopy. This result revealed that, compounds 1 and 2 showed hyperchromism with bathochromic shift. Anticancer activity of compounds 1 and 2 is carried out by molecular docking with five receptors.Computer aided virtual screening demonstrated that the synthesized molecules possess ideal drug likeliness, pharmacokinetics features, toxicity profile for structure based drug discovery. The molecular docking studies revealed that the synthesized molecules are significant binding with the five selected cancer receptors with minimum binding energy (kcal/mol), number of hydrogen bonds, weak interaction, docking score and cluster RMS. The docking studies also suggested that the molecules showed interactions with DNA and the theoretical values of the binding are comparable with that of the experimental values. Hirshfeld surface analysis was used to analyze and quantify the intermolecular interactions in the crystal structure of compound 2.
Collapse
|
32
|
Cho J. Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective. BMB Rep 2020. [PMID: 32172728 PMCID: PMC7118354 DOI: 10.5483/bmbrep.2020.53.3.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.
Collapse
Affiliation(s)
- Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
33
|
Wang M, Zhao Y, Yu ZY, Zhang RD, Li SA, Zhang P, Shan TK, Liu XY, Wang ZM, Zhao PC, Sun HW. Glioma exosomal microRNA-148a-3p promotes tumor angiogenesis through activating the EGFR/MAPK signaling pathway via inhibiting ERRFI1. Cancer Cell Int 2020; 20:518. [PMID: 33117083 PMCID: PMC7590612 DOI: 10.1186/s12935-020-01566-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Glioma is the most frequent and lethal primary brain malignancy. Amounting evidence has highlighted the importance of exosomal microRNAs (miRNAs or miRs) in this malignancy. This study aimed to investigate the regulatory role of exosomal miR-148a-3p in glioma. Methods Bioinformatics analysis was firstly used to predict the target genes of miR-148a-3p. Exosomes were then extracted from normal human astrocytes and glioma cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to determine the expression patterns of miR-148a-3p and ERBB receptor feedback inhibitor 1 (ERRFI1). Dual-luciferase reporter gene assay was applied to verify the direct binding between miR-148a-3p and ERRFI1. Cell counting kit-8 and tube formation assays were further conducted to assess the proliferation and angiogenic properties of human umbilical vein endothelial cells (HUVECs) in the co-culture system with exosomes. Lastly, glioma tumor models were established in BALB/c nude mice to study the role of exosomal miR-148a-3p in vivo. Results miR-148a-3p was highly expressed, while ERRFI1 was poorly expressed in glioma. miR-148a-3p was found to be enriched in glioma cells-derived exosomes and could be transferred to HUVECs via exosomes to promote their proliferation and angiogenesis. ERRFI1 was identified as a target gene of miR-148a-3p. In addition, miR-148a-3p activated the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling pathway by inhibiting ERRFI1. In the co-culture system, our data demonstrated that glioma cells-derived exosomal miR-148a-3p down-regulated ERRFI1 and activated the EGFR/MAPK signaling pathway, so as to promote cell proliferation and angiogenesis. In vivo experimentation further demonstrated that this mechanism was responsible for the promotive role of exosomal miR-148a-3p in tumorigenesis and angiogenesis. Conclusion Taken together, glioma-derived exosomal miR-148a-3p promoted tumor angiogenesis through activation of the EGFR/MAPK signaling pathway by ERRFI1 inhibition.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 People's Republic of China
| | - Zhi-Yun Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Ren-De Zhang
- Department of Medical, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 People's Republic of China
| | - Peng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Ti-Kun Shan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Xue-You Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Ze-Ming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Pei-Chao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Hong-Wei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| |
Collapse
|
34
|
Liu Q, Zhou J, Gao J, Ma W, Wang S, Xing L. Rational design of EGFR dimerization-disrupting peptides: A new strategy to combat drug resistance in targeted lung cancer therapy. Biochimie 2020; 176:128-137. [DOI: 10.1016/j.biochi.2020.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022]
|
35
|
Mojica CAR, Ybañez WS, Olarte KCV, Poblete ABC, Bagamasbad PD. Differential Glucocorticoid-Dependent Regulation and Function of the ERRFI1 Gene in Triple-Negative Breast Cancer. Endocrinology 2020; 161:5841101. [PMID: 32432675 PMCID: PMC7316368 DOI: 10.1210/endocr/bqaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GCs; eg, hydrocortisone [CORT]) are routinely used as chemotherapeutic, anti-emetic, and palliative agents in breast cancer (BCa) therapy. The effects of GC signaling on BCa progression, however, remain a contentious topic as GC treatment seems to be beneficial for receptor-positive subtypes but elicits unfavorable responses in triple-negative BCa (TNBC). The mechanistic basis for these conflicting effects of GC in BCa is poorly understood. In this study, we sought to decipher the molecular mechanisms that govern the GC-dependent induction of the tumor suppressor ERRFI1 gene, an inhibitor of epidermal growth factor receptor (EGFR) signaling, and characterize the role of the GC-ERRFI1 regulatory axis in TNBC. Treatment of TNBC cell lines with a protein synthesis inhibitor or GC receptor (GR) antagonist followed by gene expression analysis suggests that ERRFI1 is a direct GR target. Using in silico analysis coupled with enhancer-reporter assays, we identified a putative ERRFI1 enhancer that supports CORT-dependent transactivation. In orthogonal assays for cell proliferation, survival, migration, and apoptosis, CORT mostly facilitated an oncogenic phenotype regardless of malignancy status. Lentiviral knockdown and overexpression of ERRFI1 showed that the CORT-enhanced oncogenic phenotype is restricted by ERRFI1 in the normal breast epithelial model MCF10A and to a lesser degree in the metastatic TNBC line MDA-MB-468. Conversely, ERRFI1 conferred pro-tumorigenic effects in the highly metastatic TNBC model MDA-MB-231. Taken together, our findings suggest that the progressive loss of the GC-dependent regulation and anti-tumorigenic function of ERRFI1 influences BCa progression and may contribute to the unfavorable effects of GC therapy in TNBC.
Collapse
Affiliation(s)
- Chromewell Agustin R Mojica
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Weand S Ybañez
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Kevin Christian V Olarte
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Alyssa Beatrice C Poblete
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Correspondence: Pia D. Bagamasbad, PhD, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, Quezon City, Metro Manila 1101, Philippines. E-mail:
| |
Collapse
|
36
|
Kubota N, Suyama M. An integrated analysis of public genomic data unveils a possible functional mechanism of psoriasis risk via a long-range ERRFI1 enhancer. BMC Med Genomics 2020; 13:8. [PMID: 31969149 PMCID: PMC6977261 DOI: 10.1186/s12920-020-0662-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease, for which genome-wide association studies (GWAS) have identified many genetic variants as risk markers. However, the details of underlying molecular mechanisms, especially which variants are functional, are poorly understood. METHODS We utilized a computational approach to survey psoriasis-associated functional variants that might affect protein functions or gene expression levels. We developed a pipeline by integrating publicly available datasets provided by GWAS Catalog, FANTOM5, GTEx, SNP2TFBS, and DeepBlue. To identify functional variants on exons or splice sites, we used a web-based annotation tool in the Ensembl database. To search for noncoding functional variants within promoters or enhancers, we used eQTL data calculated by GTEx. The data of variants lying on transcription factor binding sites provided by SNP2TFBS were used to predict detailed functions of the variants. RESULTS We discovered 22 functional variant candidates, of which 8 were in noncoding regions. We focused on the enhancer variant rs72635708 (T > C) in the 1p36.23 region; this variant is within the enhancer region of the ERRFI1 gene, which regulates lipid metabolism in the liver and skin morphogenesis via EGF signaling. Further analysis showed that the ERRFI1 promoter spatially contacts with the enhancer, despite the 170 kb distance between them. We found that this variant lies on the AP-1 complex binding motif and may modulate binding levels. CONCLUSIONS The minor allele rs72635708 (rs72635708-C) might affect the ERRFI1 promoter activity, which results in unstable expression of ERRFI1, enhancing the risk of psoriasis via disruption of lipid metabolism and skin cell proliferation. Our study represents a successful example of predicting molecular pathogenesis by integration and reanalysis of public data.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
37
|
Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K. In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Front Chem 2020; 7:873. [PMID: 31970149 PMCID: PMC6960140 DOI: 10.3389/fchem.2019.00873] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Rational drug design implies usage of molecular modeling techniques such as pharmacophore modeling, molecular dynamics, virtual screening, and molecular docking to explain the activity of biomolecules, define molecular determinants for interaction with the drug target, and design more efficient drug candidates. Kinases play an essential role in cell function and therefore are extensively studied targets in drug design and discovery. Kinase inhibitors are clinically very important and widely used antineoplastic drugs. In this review, computational methods used in rational drug design of kinase inhibitors are discussed and compared, considering some representative case studies.
Collapse
Affiliation(s)
- Zarko Gagic
- Department of Pharmaceutical Chemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Teodora Djikic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
38
|
Structure-based inhibitory peptide design targeting peptide-substrate binding site in EGFR tyrosine kinase. PLoS One 2019; 14:e0217031. [PMID: 31116768 PMCID: PMC6530890 DOI: 10.1371/journal.pone.0217031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/02/2019] [Indexed: 11/19/2022] Open
Abstract
EGFR (epidermal growth factor receptor) plays the critical roles in the vital cell activities, proliferation, differentiation, migration and survival in response to polypeptide growth factor ligands. Aberrant activation of this receptor has been demonstrated in many human cancers, particularly in non-small cell lung carcinoma (NSCLC). L858R point mutation is the most common oncogenic mutation in EGFR tyrosine kinase domain in patients with EGFR-mutated NSCLC. A feedback inhibitor of EGFR is MIG6 molecule which binds peptide-substrate binding site of the receptor and leads to degradation of activated EGFR. In this in silico study, the peptide-substrate binding site of EGFRL858R mutant has been targeted to inhibit it using molecular docking, MD simulation and MM-PBSA method. Finally, physicochemical properties of the designed peptides have been evaluated. A peptide library was provided composed of 31 peptides which were designed based on the MIG6 structure. The results indicated that, two peptides were able to inhibit EGFRL858R mutant selectively. This computational study could be helpful in designing novel inhibitory peptides to inhibit oncogenic EGFR mutants which do not respond to available EGFR TKIs.
Collapse
|
39
|
Menezes SV, Kovacevic Z, Richardson DR. The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6. J Biol Chem 2019; 294:4045-4064. [PMID: 30679310 DOI: 10.1074/jbc.ra118.006279] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
The metastasis suppressor, N-Myc downstream-regulated gene-1 (NDRG1) inhibits a plethora of oncogenic signaling pathways by down-regulating the epidermal growth factor receptor (EGFR). Herein, we examined the mechanism involved in NDRG1-mediated EGFR down-regulation. NDRG1 overexpression potently increased the levels of mitogen-inducible gene 6 (MIG6), which inhibits EGFR and facilitates its lysosomal processing and degradation. Conversely, silencing NDRG1 in multiple human cancer cell types decreased MIG6 expression, demonstrating the regulatory role of NDRG1. Further, NDRG1 overexpression facilitated MIG6-EGFR association in the cytoplasm, possibly explaining the significantly (p <0.001) increased half-life of MIG6 from 1.6 ± 0.2 h under control conditions to 7.9 ± 0.4 h after NDRG1 overexpression. The increased MIG6 levels enhanced EGFR co-localization with the late endosome/lysosomal marker, lysosomal-associated membrane protein 2 (LAMP2). An increase in EGFR levels after MIG6 silencing was particularly apparent when NDRG1 was overexpressed, suggesting a role for MIG6 in NDRG1-mediated down-regulation of EGFR. Silencing phosphatase and tensin homolog (PTEN), which facilitates early to late endosome maturation, decreased MIG6, and also increased EGFR levels in both the presence and absence of NDRG1 overexpression. These results suggest a role for PTEN in regulating MIG6 expression. Anti-tumor drugs of the di-2-pyridylketone thiosemicarbazone class that activate NDRG1 expression also potently increased MIG6 and induced its cytosolic co-localization with NDRG1. This was accompanied by a decrease in activated and total EGFR levels and its redistribution to late endosomes/lysosomes. In conclusion, NDRG1 promotes EGFR down-regulation through the EGFR inhibitor MIG6, which leads to late endosomal/lysosomal processing of EGFR.
Collapse
Affiliation(s)
- Sharleen V Menezes
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - Zaklina Kovacevic
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - Des R Richardson
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| |
Collapse
|
40
|
Donner DB, Ruan DT, Toriguchi K, Bergsland EK, Nakakura EK, Lin MH, Antonia RJ, Warren RS. Mitogen Inducible Gene-6 Is a Prognostic Marker for Patients with Colorectal Liver Metastases. Transl Oncol 2019; 12:550-560. [PMID: 30639964 PMCID: PMC6328378 DOI: 10.1016/j.tranon.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Prognostic schemes that rely on clinical variables to predict outcome after resection of colorectal metastases remain imperfect. We hypothesized that molecular markers can improve the accuracy of prognostic schemes. METHODS We screened the transcriptome of matched colorectal liver metastases (CRCLM) and primary tumors from 42 patients with unresected CRCLM to identify differentially expressed genes. Among the differentially expressed genes identified, we looked for associations between expression and time to disease progression or overall survival. To validate such associations, mRNA levels of the candidate genes were assayed by qRT-PCR from CRCLM in 56 additional patients who underwent hepatectomy. RESULTS Seven candidate genes were selected for validation based on their differential expression between metastases and primary tumors and a correlation between expression and surgical outcome: lumican; tissue inhibitor metalloproteinase 1; basic helix-loop-helix domain containing class B2; fibronectin; transmembrane 4 superfamily member 1; mitogen inducible gene 6 (MIG-6); and serpine 2. In the hepatectomy group, only MIG-6 expression was predictive of poor survival after hepatectomy. Quantitative PCR of MIG-6 mRNA was performed on 25 additional hepatectomy patients to determine if MIG-6 expression could substratify patients beyond the clinical risk score. Patients within defined clinical risk score categories were effectively substratified into distinct groups by relative MIG-6 expression. CONCLUSIONS MIG-6 expression is inversely associated with survival after hepatectomy and may be used to improve traditional prognostic schemes that rely on clinicopathologic data such as the Clinical Risk Score.
Collapse
Affiliation(s)
- David B Donner
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143.
| | - Dan T Ruan
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Kan Toriguchi
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Emily K Bergsland
- The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; Department of Medicine, Division of Hematology/Oncology, The University of California San Francisco, San Francisco, CA. 94143
| | - Eric K Nakakura
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Meng Hsun Lin
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Ricardo J Antonia
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Robert S Warren
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| |
Collapse
|
41
|
Wu R, Li C, Li C, Ren J, Sun X, Zhang S, Zou J, Ling X. Rapid screening of multi-target antitumor drugs by nonimmobilized tumor cells/tissues capillary electrophoresis. Anal Chim Acta 2018; 1045:152-161. [PMID: 30454570 DOI: 10.1016/j.aca.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/15/2018] [Accepted: 09/08/2018] [Indexed: 12/31/2022]
Abstract
As there are more target categories on tumor cells/tissues than on receptor-overexpressing cells, and tumor tissues can better simulate TME, we established a new method of screening multi-target antitumor drugs by nonimmobilized tumor cells/tissues capillary electrophoresis under approximately tumor physiological environment. In this method, the natural structure and active conformation of the target proteins on tumor cells/tissues can be well maintained without separation and purification. Therefore, we successfully used this method to study the interactions between the Aidi injection (ADI)/its main components and tumor cells/tissues by optimizing a series of experimental conditions, discovered seven components with binding activity to A549 cells, five of them with specific interaction to tumor tissues, and calculated the binding kinetic parameters (K, ka, kd, and k'). Then, antitumor activity assays in vitro and in vivo were carried out to discover a new drug combination with higher targeting, better pharmaceutical efficacy, and lower toxic side effects. Finally, molecular docking studies were performed to investigate the potential target groups of the interactions between the effective drug combination and A549 cells/tissues. In summary, the method was verified to be valid and feasible, and can be easily transferred to a capillary array electrophoresis for high-throughput drug screening.
Collapse
Affiliation(s)
- Ruijun Wu
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Chen Li
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Cong Li
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Jinyu Ren
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xiaozhi Sun
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Sufang Zhang
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Juncheng Zou
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xiaomei Ling
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
42
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
43
|
The Tumor Suppressor MIG6 Controls Mitotic Progression and the G2/M DNA Damage Checkpoint by Stabilizing the WEE1 Kinase. Cell Rep 2018; 24:1278-1289. [DOI: 10.1016/j.celrep.2018.06.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
|
44
|
Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, Callaghan K, Nicola NA, Kershaw NJ, Babon JJ. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun 2018. [PMID: 29674694 DOI: 10.1038/s41467‐018‐04013‐1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The SOCS family of proteins are negative-feedback inhibitors of signalling induced by cytokines that act via the JAK/STAT pathway. SOCS proteins can act as ubiquitin ligases by recruiting Cullin5 to ubiquitinate signalling components; however, SOCS1, the most potent member of the family, can also inhibit JAK directly. Here we determine the structural basis of both these modes of inhibition. Due to alterations within the SOCS box domain, SOCS1 has a compromised ability to recruit Cullin5; however, it is a direct, potent and selective inhibitor of JAK catalytic activity. The kinase inhibitory region of SOCS1 targets the substrate binding groove of JAK with high specificity and thereby blocks any subsequent phosphorylation. SOCS1 is a potent inhibitor of the interferon gamma (IFNγ) pathway, however, it does not bind the IFNγ receptor, making its mode-of-action distinct from SOCS3. These findings reveal the mechanism used by SOCS1 to inhibit signalling by inflammatory cytokines.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Artem Laktyushin
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Shenggen Yao
- The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Eden Whitlock
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Kimberley Callaghan
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
45
|
Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, Callaghan K, Nicola NA, Kershaw NJ, Babon JJ. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun 2018; 9:1558. [PMID: 29674694 PMCID: PMC5908791 DOI: 10.1038/s41467-018-04013-1] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
The SOCS family of proteins are negative-feedback inhibitors of signalling induced by cytokines that act via the JAK/STAT pathway. SOCS proteins can act as ubiquitin ligases by recruiting Cullin5 to ubiquitinate signalling components; however, SOCS1, the most potent member of the family, can also inhibit JAK directly. Here we determine the structural basis of both these modes of inhibition. Due to alterations within the SOCS box domain, SOCS1 has a compromised ability to recruit Cullin5; however, it is a direct, potent and selective inhibitor of JAK catalytic activity. The kinase inhibitory region of SOCS1 targets the substrate binding groove of JAK with high specificity and thereby blocks any subsequent phosphorylation. SOCS1 is a potent inhibitor of the interferon gamma (IFNγ) pathway, however, it does not bind the IFNγ receptor, making its mode-of-action distinct from SOCS3. These findings reveal the mechanism used by SOCS1 to inhibit signalling by inflammatory cytokines. Cytokines are key molecules in controlling haematopoiesis that signal via the JAK/STAT pathway. Here the authors present the structures of SOCS1 bound to its JAK1 target as well as in complex with elonginB and elonginC, providing a molecular explanation for the potent JAK- inhibitory activity of SOCS1.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Artem Laktyushin
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Shenggen Yao
- The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Eden Whitlock
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Kimberley Callaghan
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
46
|
Cho J, Kim S, Du J, Meyerson M. Autophosphorylation of the carboxyl-terminal domain is not required for oncogenic transformation by lung-cancer derived EGFR mutants. Int J Cancer 2018; 143:679-685. [PMID: 29464683 PMCID: PMC6033109 DOI: 10.1002/ijc.31332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/06/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Aberrant activation of cancer-derived mutants of the epidermal growth factor receptor (EGFR) is closely associated with cancer pathogenesis and is thought to be mediated through multiple tyrosine phosphorylations within the C-terminal domain. Here, we examined the consequences of the loss of these C-terminal phosphorylation sites on cellular transformation in the context of lung-cancer-derived L858R, exon 19 deletion and exon 20 insertion mutant EGFR. Oncogenic EGFR mutants with substitution of the 10 potential C-terminal tyrosine autophosphorylation sites for phenylalanine (CYF10) were still able to promote anchorage-independent growth in soft agar at levels comparable to the parental L858R or exon19 deletion or exon 20 insertion mutants with intact autophosphorylation sites. Furthermore, these CYF10 mutants retained the ability to transform Ba/F3 cells in the absence of IL-3. Bead-based phosphorylation and immunoprecipitation analyses demonstrated that key EGFR-associated proteins-including Grb2 and PLC-γ-are neither phosphorylated nor bound to CYF10 mutants in transformed cells. Taken together, we conclude that tyrosine phosphorylation is not required for oncogenic activity of lung-cancer-derived mutant EGFR, suggesting these mutants can lead to cellular transformation by an alternative mechanism independent of EGFR phosphorylation.
Collapse
Affiliation(s)
- Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Sujin Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jinyan Du
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, 02115.,Discovery, Merrimack Pharmaceuticals, Cambridge, MA, 02139
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, 02115.,The Broad Institute of MIT and Harvard, Cambridge, MA, 02112.,Department of Pathology, Harvard Medical School, Boston, MA, 02115
| |
Collapse
|
47
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
48
|
Rational Design and Cyclization of MIG6 Peptide to Restore its Binding Affinity for ErbB Family Receptor Tyrosine Kinases. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-017-9593-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Roumans NJT, Wang P, Vink RG, van Baak MA, Mariman ECM. Combined Analysis of Stress- and ECM-Related Genes in Their Effect on Weight Regain. Obesity (Silver Spring) 2018; 26:492-498. [PMID: 29399976 DOI: 10.1002/oby.22093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE During weight loss, the volume of adipocytes decreases, leading to stress because of the misfit between the cell contents and the surrounding extracellular matrix (ECM). This stress can be resolved by remodeling the ECM or the restorage of triglycerides within the adipocytes. The objective of this study was to investigate the existence of a connection between stress-related and ECM-related genes that is associated with weight regain. METHODS Thirty-one participants with overweight or obesity followed a 5-week very-low-calorie diet (500 kcal/d) with a subsequent 4-week weight-stable diet (WS), and then an uncontrolled 9-month follow-up. Adipose tissue biopsies were collected for microarray analysis. A correlation and interaction analysis was performed with the weight regain percentage (WR%) ([weight after follow-up - weight after WS] ÷ weight after WS × 100%) by using two gene sets that were previously defined as "stress-related" (n = 107) and "ECM-related" genes (n = 277). RESULTS During WS, a coexpression network of 8 stress-related genes and 15 ECM-related genes correlating with WR% could be constructed, with links to multiple biological processes. Interaction analysis between stress- and ECM-related genes revealed that several gene combinations were highly related to weight regain. CONCLUSIONS Our findings underscore the importance of the connection between stress- and ECM-related genes in the risk for weight regain.
Collapse
Affiliation(s)
- Nadia J T Roumans
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ping Wang
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roel G Vink
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marleen A van Baak
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Edwin C M Mariman
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
50
|
Hassan W, Chitcholtan K, Sykes P, Garrill A. Ascitic fluid from advanced ovarian cancer patients compromises the activity of receptor tyrosine kinase inhibitors in 3D cell clusters of ovarian cancer cells. Cancer Lett 2018; 420:168-181. [PMID: 29432847 DOI: 10.1016/j.canlet.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer patients in the advanced stages of the disease show clinical ascites, which is associated with a poor prognosis. There is limited understanding of the effect of ascitic fluid on ovarian cancer cells and their response to anticancer drugs. We investigated the antitumour effects of EGFR/Her-2 (canertinib) and c-Met (PHA665752) inhibitors in a 3D cell model of three ovarian cancer lines. Single and combined inhibitor treatments affected cell growth of OVCAR-5 and SKOV-3 cell lines but not OV-90 cell line. Growth reduction was correlated with the down expression of PCNA, EGFR, HER-2, c-MET, ERK and AKT and their phosphorylation status in cells in growth factor supplemented media. However, these effects were not re-producible in OVCAR-5 and SKOV-3 cell lines when they were exposed to ascitic fluid obtained from three ovarian cancer patients. Serum albumin and protein components in the ascitic fluids may reduce the cellular uptake of the inhibitors.
Collapse
Affiliation(s)
- Wafaa Hassan
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
| | - Kenny Chitcholtan
- Gynaecological Oncology Research Group, Department of Obstetrics and Gynaecology, University of Otago, Christchurch Women's Hospital, 2 Riccarton Avenue, Christchurch, 8011, New Zealand.
| | - Peter Sykes
- Gynaecological Oncology Research Group, Department of Obstetrics and Gynaecology, University of Otago, Christchurch Women's Hospital, 2 Riccarton Avenue, Christchurch, 8011, New Zealand.
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
| |
Collapse
|