1
|
Hernández-Carralero E, Quinet G, Freire R. ATXN3: a multifunctional protein involved in the polyglutamine disease spinocerebellar ataxia type 3. Expert Rev Mol Med 2024; 26:e19. [PMID: 39320846 PMCID: PMC11440613 DOI: 10.1017/erm.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 09/26/2024]
Abstract
ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the ATXN3 gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the ATXN3 gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades. In this review, we summarize the main functions of ATXN3 in proteostasis, DNA repair and transcriptional regulation, as well as the emerging role in regulating chromatin structure. The mentioned molecular functions of ATXN3 are also reviewed in the context of the pathological expanded form of ATXN3.
Collapse
Affiliation(s)
- Esperanza Hernández-Carralero
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Grégoire Quinet
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Raimundo Freire
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Charmpilas N, Sotiriou A, Axarlis K, Tavernarakis N, Hoppe T. Reproductive regulation of the mitochondrial stress response in Caenorhabditis elegans. Cell Rep 2024; 43:114336. [PMID: 38852157 DOI: 10.1016/j.celrep.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Proteome integrity is fundamental for cellular and organismal homeostasis. The mitochondrial unfolded protein response (UPRmt), a key component of the proteostasis network, is activated in a non-cell-autonomous manner in response to mitochondrial stress in distal tissues. However, the importance of inter-tissue communication for UPRmt inducibility under physiological conditions remains elusive. Here, we show that an intact germline is essential for robust UPRmt induction in the Caenorhabditis elegans somatic tissues. A series of nematode mutants with germline defects are unable to respond to genetic or chemical UPRmt inducers. Our genetic analysis suggests that reproductive signals, rather than germline stem cells, are responsible for somatic UPRmt induction. Consistent with this observation, we show that UPRmt is sexually dimorphic, as male nematodes are inherently unresponsive to mitochondrial stress. Our findings highlight a paradigm of germline-somatic communication and suggest that reproductive cessation is a primary cause of age-related UPRmt decline.
Collapse
Affiliation(s)
- Nikolaos Charmpilas
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aggeliki Sotiriou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantinos Axarlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Anton V, Buntenbroich I, Simões T, Joaquim M, Müller L, Buettner R, Odenthal M, Hoppe T, Escobar-Henriques M. E4 ubiquitin ligase promotes mitofusin turnover and mitochondrial stress response. Mol Cell 2023; 83:2976-2990.e9. [PMID: 37595558 PMCID: PMC10434984 DOI: 10.1016/j.molcel.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Ubiquitin-dependent control of mitochondrial dynamics is important for protein quality and neuronal integrity. Mitofusins, mitochondrial fusion factors, can integrate cellular stress through their ubiquitylation, which is carried out by multiple E3 enzymes in response to many different stimuli. However, the molecular mechanisms that enable coordinated responses are largely unknown. Here we show that yeast Ufd2, a conserved ubiquitin chain-elongating E4 enzyme, is required for mitochondrial shape adjustments. Under various stresses, Ufd2 translocates to mitochondria and triggers mitofusin ubiquitylation. This elongates ubiquitin chains on mitofusin and promotes its proteasomal degradation, leading to mitochondrial fragmentation. Ufd2 and its human homologue UBE4B also target mitofusin mutants associated with Charcot-Marie-Tooth disease, a hereditary sensory and motor neuropathy characterized by progressive loss of the peripheral nerves. This underscores the pathophysiological importance of E4-mediated ubiquitylation in neurodegeneration. In summary, we identify E4-dependent mitochondrial stress adaptation by linking various metabolic processes to mitochondrial fusion and fission dynamics.
Collapse
Affiliation(s)
- Vincent Anton
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Ira Buntenbroich
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Tânia Simões
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mariana Joaquim
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Leonie Müller
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Reinhard Buettner
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
| |
Collapse
|
4
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol 2023; 30:3-21. [PMID: 36640759 DOI: 10.1016/j.chembiol.2022.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.
Collapse
Affiliation(s)
- Susan Kilgas
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
6
|
Kong X, Shu X, Wang J, Liu D, Ni Y, Zhao W, Wang L, Gao Z, Chen J, Yang B, Guo X, Wang Z. Fine-tuning of mTOR signaling by the UBE4B-KLHL22 E3 ubiquitin ligase cascade in brain development. Development 2022; 149:286123. [PMID: 36440598 PMCID: PMC9845739 DOI: 10.1242/dev.201286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Spatiotemporal regulation of the mechanistic target of rapamycin (mTOR) pathway is pivotal for establishment of brain architecture. Dysregulation of mTOR signaling is associated with a variety of neurodevelopmental disorders. Here, we demonstrate that the UBE4B-KLHL22 E3 ubiquitin ligase cascade regulates mTOR activity in neurodevelopment. In a mouse model with UBE4B conditionally deleted in the nervous system, animals display severe growth defects, spontaneous seizures and premature death. Loss of UBE4B in the brains of mutant mice results in depletion of neural precursor cells and impairment of neurogenesis. Mechanistically, UBE4B polyubiquitylates and degrades KLHL22, an E3 ligase previously shown to degrade the GATOR1 component DEPDC5. Deletion of UBE4B causes upregulation of KLHL22 and hyperactivation of mTOR, leading to defective proliferation and differentiation of neural precursor cells. Suppression of KLHL22 expression reverses the elevated activity of mTOR caused by acute local deletion of UBE4B. Prenatal treatment with the mTOR inhibitor rapamycin rescues neurogenesis defects in Ube4b mutant mice. Taken together, these findings demonstrate that UBE4B and KLHL22 are essential for maintenance and differentiation of the precursor pool through fine-tuning of mTOR activity.
Collapse
Affiliation(s)
- Xiangxing Kong
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiachuan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining 314400, China,Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Dandan Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yingchun Ni
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Weiqi Zhao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Lebo Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Jiadong Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China,Authors for correspondence (; ; )
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China,Authors for correspondence (; ; )
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China,Authors for correspondence (; ; )
| |
Collapse
|
7
|
Abuetabh Y, Wu HH, Chai C, Al Yousef H, Persad S, Sergi CM, Leng R. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Exp Mol Med 2022; 54:1658-1669. [PMID: 36207426 PMCID: PMC9636249 DOI: 10.1038/s12276-022-00863-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Antitumor therapeutic strategies that fundamentally rely on the induction of DNA damage to eradicate and inhibit the growth of cancer cells are integral approaches to cancer therapy. Although DNA-damaging therapies advance the battle with cancer, resistance, and recurrence following treatment are common. Thus, searching for vulnerabilities that facilitate the action of DNA-damaging agents by sensitizing cancer cells is an active research area. Therefore, it is crucial to decipher the detailed molecular events involved in DNA damage responses (DDRs) to DNA-damaging agents in cancer. The tumor suppressor p53 is active at the hub of the DDR. Researchers have identified an increasing number of genes regulated by p53 transcriptional functions that have been shown to be critical direct or indirect mediators of cell fate, cell cycle regulation, and DNA repair. Posttranslational modifications (PTMs) primarily orchestrate and direct the activity of p53 in response to DNA damage. Many molecules mediating PTMs on p53 have been identified. The anticancer potential realized by targeting these molecules has been shown through experiments and clinical trials to sensitize cancer cells to DNA-damaging agents. This review briefly acknowledges the complexity of DDR pathways/networks. We specifically focus on p53 regulators, protein kinases, and E3/E4 ubiquitin ligases and their anticancer potential.
Collapse
Affiliation(s)
- Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Chengsen Chai
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Habib Al Yousef
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Sujata Persad
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Consolato M Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| |
Collapse
|
8
|
The E3 ubiquitin ligase HECTD1 contributes to cell proliferation through an effect on mitosis. Sci Rep 2022; 12:13160. [PMID: 35915203 PMCID: PMC9343455 DOI: 10.1038/s41598-022-16965-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
The cell cycle is tightly regulated by protein phosphorylation and ubiquitylation events. During mitosis, the multi-subunit cullin-RING E3 ubiquitin ligase APC/c functions as a molecular switch which signals for one cell to divide into two daughter cells, through the ubiquitylation and proteasomal degradation of mitotic cyclins. The contributions of other E3 ligase families during cell cycle progression remain less well understood. Similarly, the roles of ubiquitin chain types beyond homotypic K48 chains in S-phase or branched K11/K48 chains during mitosis, also remain to be fully determined. Our recent findings that HECTD1 ubiquitin ligase activity assembles branched K29/K48 ubiquitin linkages prompted us to evaluate HECTD1 function during the cell cycle. We used transient knockdown and genetic knockout to show that HECTD1 depletion in HEK293T and HeLa cells decreases cell number and we established that this is mediated through loss of ubiquitin ligase activity. Interestingly, we found that HECTD1 depletion increases the proportion of cells with aligned chromosomes (Prometa/Metaphase) and we confirmed this molecularly using phospho-Histone H3 (Ser28) as a marker of mitosis. Time-lapse microscopy of NEBD to anaphase onset established that HECTD1-depleted cells take on average longer to go through mitosis. In line with this data, HECTD1 depletion reduced the activity of the Spindle Assembly Checkpoint, and BUB3, a component of the Mitosis Checkpoint Complex, was identified as novel HECTD1 interactor. BUB3, BUBR1 or MAD2 protein levels remained unchanged in HECTD1-depleted cells. Overall, this study reveals a novel putative role for HECTD1 during mitosis and warrants further work to elucidate the mechanisms involved.
Collapse
|
9
|
Das A, Thapa P, Santiago U, Shanmugam N, Banasiak K, Dąbrowska K, Nolte H, Szulc NA, Gathungu RM, Cysewski D, Krüger M, Dadlez M, Nowotny M, Camacho CJ, Hoppe T, Pokrzywa W. A heterotypic assembly mechanism regulates CHIP E3 ligase activity. EMBO J 2022; 41:e109566. [PMID: 35762422 PMCID: PMC9340540 DOI: 10.15252/embj.2021109566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
CHIP (C-terminus of Hsc70-interacting protein) and its worm ortholog CHN-1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin-proteasome system (UPS). CHN-1 can cooperate with UFD-2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN-1-UFD-2 complex in Caenorhabditis elegans. Our data show that UFD-2 binding promotes the cooperation between CHN-1 and ubiquitin-conjugating E2 enzymes by stabilizing the CHN-1 U-box dimer. However, HSP70/HSP-1 chaperone outcompetes UFD-2 for CHN-1 binding, thereby promoting a shift to the autoinhibited CHN-1 state by acting on a conserved residue in its U-box domain. The interaction with UFD-2 enables CHN-1 to efficiently ubiquitylate and regulate S-adenosylhomocysteinase (AHCY-1), a key enzyme in the S-adenosylmethionine (SAM) regeneration cycle, which is essential for SAM-dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN-1 and UFD-2 in substrate ubiquitylation.
Collapse
Affiliation(s)
- Aniruddha Das
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Pankaj Thapa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Ulises Santiago
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Nilesh Shanmugam
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Katarzyna Banasiak
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Hendrik Nolte
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Present address:
Max‐Planck‐Institute for Biology of AgeingCologneGermany
| | - Natalia A Szulc
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | | | - Marcus Krüger
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Michał Dadlez
- Institute of Biochemistry and BiophysicsPASWarsawPoland
| | - Marcin Nowotny
- Laboratory of Protein StructureInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Carlos J Camacho
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Wojciech Pokrzywa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| |
Collapse
|
10
|
The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet 2022; 38:598-612. [PMID: 35346511 DOI: 10.1016/j.tig.2022.02.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.
Collapse
|
11
|
Franz A, Valledor P, Ubieto-Capella P, Pilger D, Galarreta A, Lafarga V, Fernández-Llorente A, de la Vega-Barranco G, den Brave F, Hoppe T, Fernandez-Capetillo O, Lecona E. USP7 and VCP FAF1 define the SUMO/Ubiquitin landscape at the DNA replication fork. Cell Rep 2021; 37:109819. [PMID: 34644576 PMCID: PMC8527565 DOI: 10.1016/j.celrep.2021.109819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
The AAA+ ATPase VCP regulates the extraction of SUMO and ubiquitin-modified DNA replication factors from chromatin. We have previously described that active DNA synthesis is associated with a SUMO-high/ubiquitin-low environment governed by the deubiquitylase USP7. Here, we unveil a functional cooperation between USP7 and VCP in DNA replication, which is conserved from Caenorhabditis elegans to mammals. The role of VCP in chromatin is defined by its cofactor FAF1, which facilitates the extraction of SUMOylated and ubiquitylated proteins that accumulate after the block of DNA replication in the absence of USP7. The inactivation of USP7 and FAF1 is synthetically lethal both in C. elegans and mammalian cells. In addition, USP7 and VCP inhibitors display synergistic toxicity supporting a functional link between deubiquitylation and extraction of chromatin-bound proteins. Our results suggest that USP7 and VCPFAF1 facilitate DNA replication by controlling the balance of SUMO/Ubiquitin-modified DNA replication factors on chromatin.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Pablo Valledor
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Patricia Ubieto-Capella
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Domenic Pilger
- The Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Antonio Galarreta
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Alejandro Fernández-Llorente
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden.
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
12
|
Ainslie A, Huiting W, Barazzuol L, Bergink S. Genome instability and loss of protein homeostasis: converging paths to neurodegeneration? Open Biol 2021; 11:200296. [PMID: 33878947 PMCID: PMC8059563 DOI: 10.1098/rsob.200296] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genome instability and loss of protein homeostasis are hallmark events of age-related diseases that include neurodegeneration. Several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis are characterized by protein aggregation, while an impaired DNA damage response (DDR) as in many genetic DNA repair disorders leads to pronounced neuropathological features. It remains unclear to what degree these cellular events interconnect with each other in the development of neurological diseases. This review highlights how the loss of protein homeostasis and genome instability influence one other. We will discuss studies that illustrate this connection. DNA damage contributes to many neurodegenerative diseases, as shown by an increased level of DNA damage in patients, possibly due to the effects of protein aggregates on chromatin, the sequestration of DNA repair proteins and novel putative DNA repair functions. Conversely, genome stability is also important for protein homeostasis. For example, gene copy number variations and the loss of key DDR components can lead to marked proteotoxic stress. An improved understanding of how protein homeostasis and genome stability are mechanistically connected is needed and promises to lead to the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Anna Ainslie
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Wouter Huiting
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
13
|
Orr JN, Waugh R, Colas I. Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:667314. [PMID: 33897750 PMCID: PMC8058418 DOI: 10.3389/fpls.2021.667314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Meiosis is a specialized cell division which is essential to sexual reproduction. The success of this highly ordered process involves the timely activation, interaction, movement, and removal of many proteins. Ubiquitination is an extraordinarily diverse post-translational modification with a regulatory role in almost all cellular processes. During meiosis, ubiquitin localizes to chromatin and the expression of genes related to ubiquitination appears to be enhanced. This may be due to extensive protein turnover mediated by proteasomal degradation. However, degradation is not the only substrate fate conferred by ubiquitination which may also mediate, for example, the activation of key transcription factors. In plant meiosis, the specific roles of several components of the ubiquitination cascade-particularly SCF complex proteins, the APC/C, and HEI10-have been partially characterized indicating diverse roles in chromosome segregation, recombination, and synapsis. Nonetheless, these components remain comparatively poorly understood to their counterparts in other processes and in other eukaryotes. In this review, we present an overview of our understanding of the role of ubiquitination in plant meiosis, highlighting recent advances, remaining challenges, and high throughput methods which may be used to overcome them.
Collapse
Affiliation(s)
- Jamie N. Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
14
|
Dello Stritto MR, Bauer B, Barraud P, Jantsch V. DNA topoisomerase 3 is required for efficient germ cell quality control. J Cell Biol 2021; 220:211935. [PMID: 33798260 PMCID: PMC8025215 DOI: 10.1083/jcb.202012057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
An important quality control mechanism eliminates meiocytes that have experienced recombination failure during meiosis. The culling of defective oocytes in Caenorhabditis elegans meiosis resembles late oocyte elimination in female mammals. Here we show that topoisomerase 3 depletion generates DNA lesions in both germline mitotic and meiotic compartments that are less capable of triggering p53 (cep-1)–dependent apoptosis, despite the activation of DNA damage and apoptosis signaling. Elimination of nonhomologous, alternative end joining and single strand annealing repair factors (CKU-70, CKU-80, POLQ-1, and XPF-1) can alleviate the apoptosis block. Remarkably, the ability of single mutants in the other members of the Bloom helicase-topoisomerase-RMI1 complex to elicit apoptosis is not compromised, and depletion of Bloom helicase in topoisomerase 3 mutants restores an effective apoptotic response. Therefore, uncontrolled Bloom helicase activity seems to direct DNA repair toward normally not used repair pathways, and this counteracts efficient apoptosis. This implicates an as-yet undescribed requirement for topoisomerase 3 in mounting an effective apoptotic response to ensure germ cell quality control.
Collapse
Affiliation(s)
- Maria Rosaria Dello Stritto
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Bernd Bauer
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, Centre Nationale de la Recherche Scientific, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
15
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
16
|
Gu J, Liang Q, Liu C, Li S. Genomic Analyses Reveal Adaptation to Hot Arid and Harsh Environments in Native Chickens of China. Front Genet 2021; 11:582355. [PMID: 33424922 PMCID: PMC7793703 DOI: 10.3389/fgene.2020.582355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
The acute thermal response has been extensively studied in commercial chickens because of the adverse effects of heat stress on poultry production worldwide. Here, we performed whole-genome resequencing of autochthonous Niya chicken breed native to the Taklimakan Desert region as well as of 11 native chicken breeds that are widely distributed and reared under native humid and temperate areas. We used combined statistical analysis to search for putative genes that might be related to the adaptation of hot arid and harsh environment in Niya chickens. We obtained a list of intersected candidate genes with log2 θπ ratio, FST and XP-CLR (including 123 regions of 21 chromosomes with the average length of 54.4 kb) involved in different molecular processes and pathways implied complex genetic mechanisms of adaptation of native chickens to hot arid and harsh environments. We identified several selective regions containing genes that were associated with the circulatory system and blood vessel development (BVES, SMYD1, IL18, PDGFRA, NRP1, and CORIN), related to central nervous system development (SIM2 and NALCN), related to apoptosis (CLPTM1L, APP, CRADD, and PARK2) responded to stimuli (AHR, ESRRG FAS, and UBE4B) and involved in fatty acid metabolism (FABP1). Our findings provided the genomic evidence of the complex genetic mechanisms of adaptation to hot arid and harsh environments in chickens. These results may improve our understanding of thermal, drought, and harsh environment acclimation in chickens and may serve as a valuable resource for developing new biotechnological tools to breed stress-tolerant chicken lines and or breeds in the future.
Collapse
Affiliation(s)
- Jingjing Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Can Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Sheng Li
- Maxun Biotechnology Institute, Changsha, China
| |
Collapse
|
17
|
Tu Y, Li X, Zhu X, Liu X, Guo C, Jia D, Tang TS. Determining the Fate of Neurons in SCA3: ATX3, a Rising Decision Maker in Response to DNA Stresses and Beyond. Front Cell Dev Biol 2021; 8:619911. [PMID: 33425926 PMCID: PMC7793700 DOI: 10.3389/fcell.2020.619911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
DNA damage response (DDR) and apoptosis are reported to be involved in the pathogenesis of many neurodegenerative diseases including polyglutamine (polyQ) disorders, such as Spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD). Consistently, an increasing body of studies provide compelling evidence for the crucial roles of ATX3, whose polyQ expansion is defined as the cause of SCA3, in the maintenance of genome integrity and regulation of apoptosis. The polyQ expansion in ATX3 seems to affect its physiological functions in these distinct pathways. These advances have expanded our understanding of the relationship between ATX3's cellular functions and the underlying molecular mechanism of SCA3. Interestingly, dysregulated DDR pathways also contribute to the pathogenesis of other neurodegenerative disorder such as HD, which presents a common molecular mechanism yet distinct in detail among different diseases. In this review, we provide a comprehensive overview of the current studies about the physiological roles of ATX3 in DDR and related apoptosis, highlighting the crosslinks between these impaired pathways and the pathogenesis of SCA3. Moreover, whether these mechanisms are shared in other neurodegenerative diseases are analyzed. Finally, the preclinical studies targeting DDR and related apoptosis for treatment of polyQ disorders including SCA3 and HD are also summarized and discussed.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoling Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Xuefei Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaokang Liu
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Caixia Guo
- Beijing Institute of Genomics (China National Center for Bioinformation), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Gebel J, Tuppi M, Sänger N, Schumacher B, Dötsch V. DNA Damaged Induced Cell Death in Oocytes. Molecules 2020; 25:molecules25235714. [PMID: 33287328 PMCID: PMC7730327 DOI: 10.3390/molecules25235714] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
The production of haploid gametes through meiosis is central to the principle of sexual reproduction. The genetic diversity is further enhanced by exchange of genetic material between homologous chromosomes by the crossover mechanism. This mechanism not only requires correct pairing of homologous chromosomes but also efficient repair of the induced DNA double-strand breaks. Oocytes have evolved a unique quality control system that eliminates cells if chromosomes do not correctly align or if DNA repair is not possible. Central to this monitoring system that is conserved from nematodes and fruit fly to humans is the p53 protein family, and in vertebrates in particular p63. In mammals, oocytes are stored for a long time in the prophase of meiosis I which, in humans, can last more than 50 years. During the entire time of this arrest phase, the DNA damage checkpoint remains active. The treatment of female cancer patients with DNA damaging irradiation or chemotherapeutics activates this checkpoint and results in elimination of the oocyte pool causing premature menopause and infertility. Here, we review the molecular mechanisms of this quality control system and discuss potential therapeutic intervention for the preservation of the oocyte pool during chemotherapy.
Collapse
Affiliation(s)
- Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany; (J.G.); (M.T.)
| | - Marcel Tuppi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany; (J.G.); (M.T.)
| | - Nicole Sänger
- Department for Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53217 Bonn, Germany;
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, and Center for Molecular Medicine, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany;
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany; (J.G.); (M.T.)
- Correspondence: ; Tel.: +49-69-798-29631
| |
Collapse
|
19
|
Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks. Cells 2020; 9:cells9071699. [PMID: 32708614 PMCID: PMC7407225 DOI: 10.3390/cells9071699] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these pathways is in part regulated by histone post-translational modifications (PTMs) including ubiquitination. Ubiquitinated histones not only influence transcription and chromatin architecture at sites neighboring DSBs but serve as critical recruitment platforms for repair machinery as well. The reversal of these modifications by deubiquitinating enzymes (DUBs) is increasingly being recognized in a number of cellular processes including DSB repair. In this context, DUBs ensure proper levels of ubiquitin, regulate recruitment of downstream effectors, dictate repair pathway choice, and facilitate appropriate termination of the repair response. This review outlines the current understanding of histone ubiquitination in response to DSBs, followed by a comprehensive overview of the DUBs that catalyze the removal of these marks.
Collapse
|
20
|
Ubiquitin-like proteins in the DNA damage response: the next generation. Essays Biochem 2020; 64:737-752. [DOI: 10.1042/ebc20190095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 12/29/2022]
Abstract
AbstractDNA suffers constant insult from a variety of endogenous and exogenous sources. To deal with the arising lesions, cells have evolved complex and coordinated pathways, collectively termed the DNA damage response (DDR). Importantly, an improper DDR can lead to genome instability, premature ageing and human diseases, including cancer as well as neurodegenerative disorders. As a crucial process for cell survival, regulation of the DDR is multi-layered and includes several post-translational modifications. Since the discovery of ubiquitin in 1975 and the ubiquitylation cascade in the early 1980s, a number of ubiquitin-like proteins (UBLs) have been identified as post-translational modifiers. However, while the importance of ubiquitin and the UBLs SUMO and NEDD8 in DNA damage repair and signalling is well established, the roles of the remaining UBLs in the DDR are only starting to be uncovered. Herein, we revise the current status of the UBLs ISG15, UBL5, FAT10 and UFM1 as emerging co-regulators of DDR processes. In fact, it is becoming clear that these post-translational modifiers play important pleiotropic roles in DNA damage and/or associated stress-related cellular responses. Expanding our understanding of the molecular mechanisms underlying these emerging UBL functions will be fundamental for enhancing our knowledge of the DDR and potentially provide new therapeutic strategies for various human diseases including cancer.
Collapse
|
21
|
Sui X, Pan M, Li YM. Insights into the Design of p97-targeting Small Molecules from Structural Studies on p97 Functional Mechanism. Curr Med Chem 2020; 27:298-316. [PMID: 31584361 DOI: 10.2174/0929867326666191004162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
p97, also known as valosin-containing protein or CDC48, is a member of the AAA+ protein family that is highly conserved in eukaryotes. It binds to various cofactors in the body to perform its protein-unfolding function and participates in DNA repair, degradation of subcellular membrane proteins, and protein quality control pathways, among other processes. Its malfunction can lead to many diseases, such as inclusion body myopathy, associated with Paget's disease of bone and/or frontotemporal dementia, amyotrophic lateral sclerosis disease, and others. In recent years, many small-molecule inhibitors have been deployed against p97, including bis (diethyldithiocarbamate)- copper and CB-5083, which entered the first phase of clinical tests but failed. One bottleneck in the design of p97 drugs is that its molecular mechanism remains unclear. This paper summarizes recent studies on the molecular mechanisms of p97, which may lead to insight into how the next generation of small molecules targeting p97 can be designed.
Collapse
Affiliation(s)
- Xin Sui
- Department of Chemistry, Tsinghua University, Beijing 100086, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
22
|
Antoniou N, Lagopati N, Balourdas DI, Nikolaou M, Papalampros A, Vasileiou PVS, Myrianthopoulos V, Kotsinas A, Shiloh Y, Liontos M, Gorgoulis VG. The Role of E3, E4 Ubiquitin Ligase (UBE4B) in Human Pathologies. Cancers (Basel) 2019; 12:cancers12010062. [PMID: 31878315 PMCID: PMC7017255 DOI: 10.3390/cancers12010062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022] Open
Abstract
The genome is exposed daily to many deleterious factors. Ubiquitination is a mechanism that regulates several crucial cellular functions, allowing cells to react upon various stimuli in order to preserve their homeostasis. Ubiquitin ligases act as specific regulators and actively participate among others in the DNA damage response (DDR) network. UBE4B is a newly identified member of E3 ubiquitin ligases that appears to be overexpressed in several human neoplasms. The aim of this review is to provide insights into the role of UBE4B ubiquitin ligase in DDR and its association with p53 expression, shedding light particularly on the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Nikolaos Antoniou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
| | - Dimitrios Ilias Balourdas
- Department of Pharmacy, National Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece; (D.I.B.); (V.M.)
| | - Michail Nikolaou
- General Maternal Hospital of Athens “Elena Venizelou”, GR-11521 Athens, Greece;
| | - Alexandros Papalampros
- First Department of Surgery, Laikon Teaching Hospital, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece;
| | - Panagiotis V. S. Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
| | - Vassilios Myrianthopoulos
- Department of Pharmacy, National Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece; (D.I.B.); (V.M.)
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
- Correspondence: (A.K.); (V.G.G.); Tel.: +30-210-746-2350 (V.G.G.)
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Michalis Liontos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
- Oncology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, GR-11528 Athens, Greece
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
- Biomedical Research Foundation of the Academy of Athens, GR-11527 Athens, Greece
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4GJ, UK
- Correspondence: (A.K.); (V.G.G.); Tel.: +30-210-746-2350 (V.G.G.)
| |
Collapse
|
23
|
Singh AN, Oehler J, Torrecilla I, Kilgas S, Li S, Vaz B, Guérillon C, Fielden J, Hernandez‐Carralero E, Cabrera E, Tullis IDC, Meerang M, Barber PR, Freire R, Parsons J, Vojnovic B, Kiltie AE, Mailand N, Ramadan K. The p97-Ataxin 3 complex regulates homeostasis of the DNA damage response E3 ubiquitin ligase RNF8. EMBO J 2019; 38:e102361. [PMID: 31613024 PMCID: PMC6826192 DOI: 10.15252/embj.2019102361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
The E3 ubiquitin ligase RNF8 (RING finger protein 8) is a pivotal enzyme for DNA repair. However, RNF8 hyper-accumulation is tumour-promoting and positively correlates with genome instability, cancer cell invasion, metastasis and poor patient prognosis. Very little is known about the mechanisms regulating RNF8 homeostasis to preserve genome stability. Here, we identify the cellular machinery, composed of the p97/VCP ubiquitin-dependent unfoldase/segregase and the Ataxin 3 (ATX3) deubiquitinase, which together form a physical and functional complex with RNF8 to regulate its proteasome-dependent homeostasis under physiological conditions. Under genotoxic stress, when RNF8 is rapidly recruited to sites of DNA lesions, the p97-ATX3 machinery stimulates the extraction of RNF8 from chromatin to balance DNA repair pathway choice and promote cell survival after ionising radiation (IR). Inactivation of the p97-ATX3 complex affects the non-homologous end joining DNA repair pathway and hypersensitises human cancer cells to IR. We propose that the p97-ATX3 complex is the essential machinery for regulation of RNF8 homeostasis under both physiological and genotoxic conditions and that targeting ATX3 may be a promising strategy to radio-sensitise BRCA-deficient cancers.
Collapse
Affiliation(s)
- Abhay Narayan Singh
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Judith Oehler
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
- Present address:
Department of BiochemistryUniversity of OxfordOxfordUK
| | - Ignacio Torrecilla
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Susan Kilgas
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Shudong Li
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Bruno Vaz
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Claire Guérillon
- Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - John Fielden
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Esperanza Hernandez‐Carralero
- Unidad de InvestigaciónHospital Universitario de CanariasLa LagunaSpain
- Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| | - Elisa Cabrera
- Unidad de InvestigaciónHospital Universitario de CanariasLa LagunaSpain
- Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| | - Iain DC Tullis
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Mayura Meerang
- Institute of Pharmacology and Toxicology‐Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Present address:
Department of Thoracic SurgeryUniversity Hospital ZurichZurichSwitzerland
| | - Paul R Barber
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Raimundo Freire
- Unidad de InvestigaciónHospital Universitario de CanariasLa LagunaSpain
- Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
- Universidad Fernando Pessoa CanariasSanta Maria de GuiaSpain
| | - Jason Parsons
- Department of Molecular and Clinical Cancer MedicineCancer Research CentreUniversity of LiverpoolLiverpoolUK
| | - Borivoj Vojnovic
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Anne E Kiltie
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Kristijan Ramadan
- Department of OncologyCancer Research UK/Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
24
|
The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Int J Mol Sci 2019; 20:ijms20112667. [PMID: 31151253 PMCID: PMC6600158 DOI: 10.3390/ijms20112667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitination regulates nearly every aspect of cellular events in eukaryotes. It modifies intracellular proteins with 76-amino acid polypeptide ubiquitin (Ub) and destines them for proteolysis or activity alteration. Ubiquitination is generally achieved by a tri-enzyme machinery involving ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). E1 activates Ub and transfers it to the active cysteine site of E2 via a transesterification reaction. E3 coordinates with E2 to mediate isopeptide bond formation between Ub and substrate protein. The E1-E2-E3 cascade can create diverse types of Ub modifications, hence effecting distinct outcomes on the substrate proteins. Dysregulation of ubiquitination results in severe consequences and human diseases. There include cancers, developmental defects and immune disorders. In this review, we provide an overview of the ubiquitination machinery and discuss the recent progresses in the ubiquitination-mediated regulation of embryonic stem cell maintenance and cancer biology.
Collapse
|
25
|
The LNT model for cancer induction is not supported by radiobiological data. Chem Biol Interact 2019; 301:34-53. [PMID: 30763552 DOI: 10.1016/j.cbi.2019.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The hallmarks of cancer have been the focus of much research and have influenced the development of risk models for radiation-induced cancer. However, natural defenses against cancer, which constitute the hallmarks of cancer prevention, have largely been neglected in developing cancer risk models. These natural defenses are enhanced by low doses and dose rates of ionizing radiation, which has aided in the continuation of human life over many generations. Our natural defenses operate at the molecular, cellular, tissue, and whole-body levels and include epigenetically regulated (epiregulated) DNA damage repair and antioxidant production, selective p53-independent apoptosis of aberrant cells (e.g. neoplastically transformed and tumor cells), suppression of cancer-promoting inflammation, and anticancer immunity (both innate and adaptive components). This publication reviews the scientific bases for the indicated cancer-preventing natural defenses and evaluates their implication for assessing cancer risk after exposure to low radiation doses and dose rates. Based on the extensive radiobiological evidence reviewed, it is concluded that the linear-no-threshold (LNT) model (which ignores natural defenses against cancer), as it relates to cancer risk from ionizing radiation, is highly implausible. Plausible models include dose-threshold and hormetic models. More research is needed to establish when a given model (threshold, hormetic, or other) applies to a given low-dose-radiation exposure scenario.
Collapse
|
26
|
Germoglio M, Adamo A. A Role in Apoptosis Regulation for the rad-51 Gene of Caenorhabditis elegans. Genetics 2018; 209:1017-1028. [PMID: 29884745 PMCID: PMC6063241 DOI: 10.1534/genetics.118.301152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
The evolutionarily conserved RAD-51 protein is essential for homologous recombination in the germ line as well as homologous repair of DNA double-strand breaks in all eukaryotic cells. In the nematode Caenorhabditis elegans, the rad-51 gene is transcribed into messenger RNAs potentially coding three alternative protein isoforms. Null rad-51 alleles display embryonic lethality, severe defects in chromosome structure, and high levels of germ line apoptosis. To dissect its functions, we genetically modified the C. elegans rad-51 gene by clustered regularly interspaced short palindromic repeats/Cas9 genome-editing technology, obtaining a separation-of-function (sfi-) mutant allele that only disrupts the long-transcript isoform. This mutant shows no defects in an otherwise wild-type meiosis and is able to activate physiological germ cell death, which occurs at the late pachytene stage. However, although the mutant is competent in DNA damage checkpoint activation after exposure to ionizing radiation, it is defective for induction of DNA damage-induced apoptosis in meiotic germ cells. These results suggest that RAD-51 plays a novel role in germ line apoptosis independent of RAD-51-mediated strand invasion for homologous recombination.
Collapse
Affiliation(s)
- Marcello Germoglio
- Institute of Biosciences and BioResources, National Research Council, 80131 Naples, Italy
- University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Adele Adamo
- Institute of Biosciences and BioResources, National Research Council, 80131 Naples, Italy
| |
Collapse
|
27
|
Torrecilla I, Oehler J, Ramadan K. The role of ubiquitin-dependent segregase p97 (VCP or Cdc48) in chromatin dynamics after DNA double strand breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0282. [PMID: 28847819 PMCID: PMC5577460 DOI: 10.1098/rstb.2016.0282] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 12/27/2022] Open
Abstract
DNA double strand breaks (DSBs) are the most cytotoxic DNA lesions and, if not repaired, lead to chromosomal rearrangement, genomic instability and cell death. Cells have evolved a complex network of DNA repair and signalling molecules which promptly detect and repair DSBs, commonly known as the DNA damage response (DDR). The DDR is orchestrated by various post-translational modifications such as phosphorylation, methylation, ubiquitination or SUMOylation. As DSBs are located in complex chromatin structures, the repair of DSBs is engineered at two levels: (i) at sites of broken DNA and (ii) at chromatin structures that surround DNA lesions. Thus, DNA repair and chromatin remodelling machineries must work together to efficiently repair DSBs. Here, we summarize the current knowledge of the ubiquitin-dependent molecular unfoldase/segregase p97 (VCP in vertebrates and Cdc48 in worms and lower eukaryotes) in DSB repair. We identify p97 as an essential factor that regulates DSB repair. p97-dependent extraction of ubiquitinated substrates mediates spatio-temporal protein turnover at and around the sites of DSBs, thus orchestrating chromatin remodelling and DSB repair. As p97 is a druggable target, p97 inhibition in the context of DDR has great potential for cancer therapy, as shown for other DDR components such as PARP, ATR and CHK1.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ignacio Torrecilla
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
28
|
Baranes-Bachar K, Levy-Barda A, Oehler J, Reid DA, Soria-Bretones I, Voss TC, Chung D, Park Y, Liu C, Yoon JB, Li W, Dellaire G, Misteli T, Huertas P, Rothenberg E, Ramadan K, Ziv Y, Shiloh Y. The Ubiquitin E3/E4 Ligase UBE4A Adjusts Protein Ubiquitylation and Accumulation at Sites of DNA Damage, Facilitating Double-Strand Break Repair. Mol Cell 2018; 69:866-878.e7. [PMID: 29499138 PMCID: PMC6265044 DOI: 10.1016/j.molcel.2018.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022]
Abstract
Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.
Collapse
Affiliation(s)
- Keren Baranes-Bachar
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Levy-Barda
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Dylan A Reid
- Perlmutter NYU Cancer Center and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Isabel Soria-Bretones
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Ty C Voss
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Dudley Chung
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Yoon Park
- Department of Biochemistry and Protein Network Research Center, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, Korea
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jong-Bok Yoon
- Department of Biochemistry and Protein Network Research Center, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, Korea
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Graham Dellaire
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Eli Rothenberg
- Perlmutter NYU Cancer Center and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
29
|
Hellerschmied D, Roessler M, Lehner A, Gazda L, Stejskal K, Imre R, Mechtler K, Dammermann A, Clausen T. UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins. Nat Commun 2018; 9:484. [PMID: 29396393 PMCID: PMC5797217 DOI: 10.1038/s41467-018-02924-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022] Open
Abstract
Muscle development requires the coordinated activities of specific protein folding and degradation factors. UFD-2, a U-box ubiquitin ligase, has been reported to play a central role in this orchestra regulating the myosin chaperone UNC-45. Here, we apply an integrative in vitro and in vivo approach to delineate the substrate-targeting mechanism of UFD-2 and elucidate its distinct mechanistic features as an E3/E4 enzyme. Using Caenorhabditis elegans as model system, we demonstrate that UFD-2 is not regulating the protein levels of UNC-45 in muscle cells, but rather shows the characteristic properties of a bona fide E3 ligase involved in protein quality control. Our data demonstrate that UFD-2 preferentially targets unfolded protein segments. Moreover, the UNC-45 chaperone can serve as an adaptor protein of UFD-2 to poly-ubiquitinate unfolded myosin, pointing to a possible role of the UFD-2/UNC-45 pair in maintaining proteostasis in muscle cells.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Max Roessler
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Anita Lehner
- Vienna Biocenter Core Facilities, Doktor-Bohr-Gasse 3, 1030, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Richard Imre
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
- Medical University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
30
|
Rao MV, Williams DR, Cocklin S, Loll PJ. Interaction between the AAA + ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding. J Biol Chem 2017; 292:18392-18407. [PMID: 28939772 DOI: 10.1074/jbc.m117.806281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/16/2017] [Indexed: 12/29/2022] Open
Abstract
p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum-associated degradation. However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants.
Collapse
Affiliation(s)
- Maya V Rao
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Dewight R Williams
- the LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
| | - Simon Cocklin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Patrick J Loll
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
31
|
The AAA+ ATPase p97, a cellular multitool. Biochem J 2017; 474:2953-2976. [PMID: 28819009 PMCID: PMC5559722 DOI: 10.1042/bcj20160783] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy.
Collapse
|