1
|
Heskett MB, Vouzas AE, Smith LG, Yates PA, Boniface C, Bouhassira EE, Spellman PT, Gilbert DM, Thayer MJ. Epigenetic control of chromosome-associated lncRNA genes essential for replication and stability. Nat Commun 2022; 13:6301. [PMID: 36273230 PMCID: PMC9588035 DOI: 10.1038/s41467-022-34099-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023] Open
Abstract
ASARs are long noncoding RNA genes that control replication timing of entire human chromosomes in cis. The three known ASAR genes are located on human chromosomes 6 and 15, and are essential for chromosome integrity. To identify ASARs on all human chromosomes we utilize a set of distinctive ASAR characteristics that allow for the identification of hundreds of autosomal loci with epigenetically controlled, allele-restricted behavior in expression and replication timing of coding and noncoding genes, and is distinct from genomic imprinting. Disruption of noncoding RNA genes at five of five tested loci result in chromosome-wide delayed replication and chromosomal instability, validating their ASAR activity. In addition to the three known essential cis-acting chromosomal loci, origins, centromeres, and telomeres, we propose that all mammalian chromosomes also contain "Inactivation/Stability Centers" that display allele-restricted epigenetic regulation of protein coding and noncoding ASAR genes that are essential for replication and stability of each chromosome.
Collapse
Affiliation(s)
- Michael B Heskett
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Molecular and Medical Genetics Oregon Health & Science University, Portland, OR, 97239, USA
| | - Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Leslie G Smith
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, Portland, OR, 97239, USA
| | - Phillip A Yates
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute Oregon Health & Science University, Portland, OR, 97239, USA
| | - Eric E Bouhassira
- Department of Cell Biology and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Paul T Spellman
- Department of Molecular and Medical Genetics Oregon Health & Science University, Portland, OR, 97239, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute Oregon Health & Science University, Portland, OR, 97239, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Mathew J Thayer
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Bergman Y, Simon I, Cedar H. Asynchronous Replication Timing: A Mechanism for Monoallelic Choice During Development. Front Cell Dev Biol 2021; 9:737681. [PMID: 34660595 PMCID: PMC8517340 DOI: 10.3389/fcell.2021.737681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental programming is carried out by a sequence of molecular choices that epigenetically mark the genome to generate the stable cell types which make up the total organism. A number of important processes, such as genomic imprinting, selection of immune or olfactory receptors, and X-chromosome inactivation in females are dependent on the ability to stably choose one single allele in each cell. In this perspective, we propose that asynchronous replication timing (ASRT) serves as the basis for a sophisticated universal mechanism for mediating and maintaining these decisions.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Hebrew University Hadassah Medical School, The Institute for Medical Research Israel-Canada (IMRIC), Jerusalem, Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
3
|
Chromosomal coordination and differential structure of asynchronous replicating regions. Nat Commun 2021; 12:1035. [PMID: 33589603 PMCID: PMC7884787 DOI: 10.1038/s41467-021-21348-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
Stochastic asynchronous replication timing (AS-RT) is a phenomenon in which the time of replication of each allele is different, and the identity of the early allele varies between cells. By taking advantage of stable clonal pre-B cell populations derived from C57BL6/Castaneous mice, we have mapped the genome-wide AS-RT loci, independently of genetic differences. These regions are characterized by differential chromatin accessibility, mono-allelic expression and include new gene families involved in specifying cell identity. By combining population level mapping with single cell FISH, our data reveal the existence of a novel regulatory program that coordinates a fixed relationship between AS-RT regions on any given chromosome, with some loci set to replicate in a parallel and others set in the anti-parallel orientation. Our results show that AS-RT is a highly regulated epigenetic mark established during early embryogenesis that may be used for facilitating the programming of mono-allelic choice throughout development. Most regions of the mammalian genome replicate both alleles in a synchronous manner, but some loci have been found to replicate asynchronously and the time of replication of each allele is different. Here the authors, by employing clonal mouse cells from a hybrid strain chart replication timing over the entire genome, using polymorphisms to distinguish between the paternal and maternal alleles.
Collapse
|
4
|
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 2019; 20:721-737. [PMID: 31477886 DOI: 10.1038/s41580-019-0162-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
The 3D organization of mammalian chromatin was described more than 30 years ago by visualizing sites of DNA synthesis at different times during the S phase of the cell cycle. These early cytogenetic studies revealed structurally stable chromosome domains organized into subnuclear compartments. Active-gene-rich domains in the nuclear interior replicate early, whereas more condensed chromatin domains that are largely at the nuclear and nucleolar periphery replicate later. During the past decade, this spatiotemporal DNA replication programme has been mapped along the genome and found to correlate with epigenetic marks, transcriptional activity and features of 3D genome architecture such as chromosome compartments and topologically associated domains. But the causal relationship between these features and DNA replication timing and the regulatory mechanisms involved have remained an enigma. The recent identification of cis-acting elements regulating the replication time and 3D architecture of individual replication domains and of long non-coding RNAs that coordinate whole chromosome replication provide insights into such mechanisms.
Collapse
Affiliation(s)
- Claire Marchal
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
6
|
Mor N, Rais Y, Sheban D, Peles S, Aguilera-Castrejon A, Zviran A, Elinger D, Viukov S, Geula S, Krupalnik V, Zerbib M, Chomsky E, Lasman L, Shani T, Bayerl J, Gafni O, Hanna S, Buenrostro JD, Hagai T, Masika H, Vainorius G, Bergman Y, Greenleaf WJ, Esteban MA, Elling U, Levin Y, Massarwa R, Merbl Y, Novershtern N, Hanna JH. Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. Cell Stem Cell 2018; 23:412-425.e10. [PMID: 30122475 DOI: 10.1016/j.stem.2018.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/19/2018] [Accepted: 07/10/2018] [Indexed: 01/08/2023]
Abstract
Mbd3, a member of nucleosome remodeling and deacetylase (NuRD) co-repressor complex, was previously identified as an inhibitor for deterministic induced pluripotent stem cell (iPSC) reprogramming, where up to 100% of donor cells successfully complete the process. NuRD can assume multiple mutually exclusive conformations, and it remains unclear whether this deterministic phenotype can be attributed to a specific Mbd3/NuRD subcomplex. Moreover, since complete ablation of Mbd3 blocks somatic cell proliferation, we aimed to explore functionally relevant alternative ways to neutralize Mbd3-dependent NuRD activity. We identify Gatad2a, a NuRD-specific subunit, whose complete deletion specifically disrupts Mbd3/NuRD repressive activity on the pluripotency circuitry during iPSC differentiation and reprogramming without ablating somatic cell proliferation. Inhibition of Gatad2a facilitates deterministic murine iPSC reprogramming within 8 days. We validate a distinct molecular axis, Gatad2a-Chd4-Mbd3, within Mbd3/NuRD as being critical for blocking reestablishment of naive pluripotency and further highlight signaling-dependent and post-translational modifications of Mbd3/NuRD that influence its interactions and assembly.
Collapse
Affiliation(s)
- Nofar Mor
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Yoach Rais
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel.
| | - Daoud Sheban
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel; Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Peles
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | | | - Asaf Zviran
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel; New York Genome Center, New York, NY, USA
| | - Dalia Elinger
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Viukov
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Shay Geula
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Vladislav Krupalnik
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Mirie Zerbib
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Elad Chomsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Lasman
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Tom Shani
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Jonathan Bayerl
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Ohad Gafni
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Suhair Hanna
- Department of Pediatrics, Rambam Health Care Campus, Haifa, Israel
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Tzachi Hagai
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Hagit Masika
- Department of Developmental Biology and Cancer Research, Hebrew University, Jerusalem, Israel
| | | | - Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Hebrew University, Jerusalem, Israel
| | - William J Greenleaf
- Department of Genetics, Stanford University, Palo Alto, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Miguel A Esteban
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ulrich Elling
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Rada Massarwa
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Novershtern
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel.
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl, Rehovot 76100, Israel.
| |
Collapse
|