1
|
Alavi Z, Casanova-Morales N, Quiroga-Roger D, Wilson CAM. Towards the understanding of molecular motors and its relationship with local unfolding. Q Rev Biophys 2024; 57:e7. [PMID: 38715547 DOI: 10.1017/s0033583524000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | | | - Diego Quiroga-Roger
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Ribeiro C, Cariello M, Malfait A, Bria M, Fournier D, Lyskawa J, Le Fer G, Potier J, Hoogenboom R, Cooke G, Woisel P. Synergistic topological and supramolecular control of Diels-Alder reactivity based on a tunable self-complexing host-guest molecular switch. Chemistry 2024; 30:e202302300. [PMID: 37991250 DOI: 10.1002/chem.202302300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Compartmentalization and binding-triggered conformational change regulate many metabolic processes in living matter. Here, we have synergistically combined these two biorelevant processes to tune the Diels-Alder (DA) reactivity of a synthetic self-complexing host-guest molecular switch CBPQT4+ -Fu, consisting of an electron-rich furan unit covalently attached to the electron-deficient cyclobis(paraquat-p-phenylene) tetrachloride (CBPQT4+ , 4Cl- ) host. This design allows CBPQT4+ -Fu to efficiently compartmentalize the furan ring inside its host cavity in water, thereby protecting it from the DA reaction with maleimide. Remarkably, the self-complexed CBPQT4+ -Fu can undergo a conformational change through intramolecular decomplexation upon the addition of a stronger binding molecular naphthalene derivative as a competitive guest, triggering the DA reaction upon addition of a chemical regulator. Remarkably, connecting the guest to a thermoresponsive lower critical solution temperature (LCST) copolymer regulator controls the DA reaction on command upon heating and cooling the reaction media beyond and below the cloud point temperature of the copolymer, representing a rare example of decreased reactivity upon increasing temperature. Altogether, this work opens up new avenues towards combined topological and supramolecular control over reactivity in synthetic constructs, enabling control over reactivity through molecular regulators or even mild temperature variations.
Collapse
Affiliation(s)
- Cédric Ribeiro
- Univ. Lille, CNRS, NRAE, Centrale Lille, UMR 8207 - UMET -, Unité Matériaux et Transformations, F-59000, Lille, France
| | - Michele Cariello
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Aurélie Malfait
- Univ. Lille, CNRS, NRAE, Centrale Lille, UMR 8207 - UMET -, Unité Matériaux et Transformations, F-59000, Lille, France
| | - Marc Bria
- Univ. Lille, CNRS, NRAE, Centrale Lille, UMR 8207 - UMET -, Unité Matériaux et Transformations, F-59000, Lille, France
| | - David Fournier
- Univ. Lille, CNRS, NRAE, Centrale Lille, UMR 8207 - UMET -, Unité Matériaux et Transformations, F-59000, Lille, France
| | - Joël Lyskawa
- Univ. Lille, CNRS, NRAE, Centrale Lille, UMR 8207 - UMET -, Unité Matériaux et Transformations, F-59000, Lille, France
| | - Gaëlle Le Fer
- Univ. Lille, CNRS, NRAE, Centrale Lille, UMR 8207 - UMET -, Unité Matériaux et Transformations, F-59000, Lille, France
| | - Jonathan Potier
- Univ. Lille, CNRS, NRAE, Centrale Lille, UMR 8207 - UMET -, Unité Matériaux et Transformations, F-59000, Lille, France
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
| | - Graeme Cooke
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Patrice Woisel
- Univ. Lille, CNRS, NRAE, Centrale Lille, UMR 8207 - UMET -, Unité Matériaux et Transformations, F-59000, Lille, France
| |
Collapse
|
3
|
Krishnamurthy S, Sardis MF, Eleftheriadis N, Chatzi KE, Smit JH, Karathanou K, Gouridis G, Portaliou AG, Bondar AN, Karamanou S, Economou A. Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism. Cell Rep 2022; 38:110346. [PMID: 35139375 DOI: 10.1016/j.celrep.2022.110346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly "catch and release" trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted.
Collapse
Affiliation(s)
- Srinath Krishnamurthy
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Marios-Frantzeskos Sardis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Nikolaos Eleftheriadis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Katerina E Chatzi
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Jochem H Smit
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, 14195 Berlin, Germany
| | - Giorgos Gouridis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium; Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands; Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Nikolaou Plastira 100, Heraklion, Crete, Greece
| | - Athina G Portaliou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, 14195 Berlin, Germany; University of Bucharest, Faculty of Physics, Atomiștilor 405, 077125 Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, IAS-5/INM-9, Wilhelm-Johnen Straße, 5428 Jülich, Germany
| | - Spyridoula Karamanou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
A nexus of intrinsic dynamics underlies translocase priming. Structure 2021; 29:846-858.e7. [PMID: 33852897 DOI: 10.1016/j.str.2021.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/06/2021] [Accepted: 03/25/2021] [Indexed: 11/22/2022]
Abstract
The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA. Using atomistic simulations, smFRET, and HDX-MS, we reveal multiple dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are functionally important and conserved. Central to the nexus is a slender stem through which rotation of the preprotein clamp of SecA is biased by ATPase domain motions between open and closed clamping states. An H-bonded framework covering most of SecA enables multi-tier dynamics and conformational alterations with minimal energy input. As a result, cognate ligands select preexisting conformations and alter local dynamics to regulate catalytic activity and clamp motions. These events prime the translocase for high-affinity reception of non-folded preprotein clients. Dynamics nexuses are likely universal and essential in multi-liganded proteins.
Collapse
|
5
|
Abstract
More than a third of all bacterial polypeptides, comprising the 'exportome', are transported to extracytoplasmic locations. Most of the exportome is targeted and inserts into ('membranome') or crosses ('secretome') the plasma membrane. The membranome and secretome use distinct targeting signals and factors, and driving forces, but both use the ubiquitous and essential Sec translocase and its SecYEG protein-conducting channel. Membranome export is co-translational and uses highly hydrophobic N-terminal signal anchor sequences recognized by the signal recognition particle on the ribosome, that also targets C-tail anchor sequences. Translating ribosomes drive movement of these polypeptides through the lateral gate of SecY into the inner membrane. On the other hand, secretome export is post-translational and carries two types of targeting signals: cleavable N-terminal signal peptides and multiple short hydrophobic targeting signals in their mature domains. Secretome proteins remain translocation competent due to occupying loosely folded to completely non-folded states during targeting. This is accomplished mainly by the intrinsic properties of mature domains and assisted by signal peptides and/or chaperones. Secretome proteins bind to the dimeric SecA subunit of the translocase. SecA converts from a dimeric preprotein receptor to a monomeric ATPase motor and drives vectorial crossing of chains through SecY aided by the proton motive force. Signal peptides are removed by signal peptidases and translocated chains fold or follow subsequent trafficking.
Collapse
|
6
|
Vandenberk N, Karamanou S, Portaliou AG, Zorzini V, Hofkens J, Hendrix J, Economou A. The Preprotein Binding Domain of SecA Displays Intrinsic Rotational Dynamics. Structure 2018; 27:90-101.e6. [PMID: 30471924 DOI: 10.1016/j.str.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
Abstract
SecA converts ATP energy to protein translocation work. Together with the membrane-embedded SecY channel it forms the bacterial protein translocase. How secretory proteins bind to SecA and drive conformational cascades to promote their secretion remains unknown. To address this, we focus on the preprotein binding domain (PBD) of SecA. PBD crystalizes in three distinct states, swiveling around its narrow stem. Here, we examined whether PBD displays intrinsic dynamics in solution using single-molecule Förster resonance energy transfer (smFRET). Unique cysteinyl pairs on PBD and apposed domains were labeled with donor/acceptor dyes. Derivatives were analyzed using pulsed interleaved excitation and multi-parameter fluorescence detection. The PBD undergoes significant rotational motions, occupying at least three distinct states in dimeric and four in monomeric soluble SecA. Nucleotides do not affect smFRET-detectable PBD dynamics. These findings lay the foundations for single-molecule dissection of translocase mechanics and suggest models for possible PBD involvement during catalysis.
Collapse
Affiliation(s)
- Niels Vandenberk
- KU Leuven, Department of Chemistry, Division for Molecular Imaging and Photonics, Laboratory for Photochemistry and Spectroscopy, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium
| | - Athina G Portaliou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium
| | - Valentina Zorzini
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium
| | - Johan Hofkens
- KU Leuven, Department of Chemistry, Division for Molecular Imaging and Photonics, Laboratory for Photochemistry and Spectroscopy, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jelle Hendrix
- KU Leuven, Department of Chemistry, Division for Molecular Imaging and Photonics, Laboratory for Photochemistry and Spectroscopy, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, B-3590 Diepenbeek, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Chada N, Chattrakun K, Marsh BP, Mao C, Bariya P, King GM. Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis. SCIENCE ADVANCES 2018; 4:eaat8797. [PMID: 30397644 PMCID: PMC6200364 DOI: 10.1126/sciadv.aat8797] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/13/2018] [Indexed: 05/06/2023]
Abstract
SecA is the critical adenosine triphosphatase that drives preprotein transport through the translocon, SecYEG, in Escherichia coli. This process is thought to be regulated by conformational changes of specific domains of SecA, but real-time, real-space measurement of these changes is lacking. We use single-molecule atomic force microscopy (AFM) to visualize nucleotide-dependent conformations and conformational dynamics of SecA. Distinct topographical populations were observed in the presence of specific nucleotides. AFM investigations during basal adenosine triphosphate (ATP) hydrolysis revealed rapid, reversible transitions between a compact and an extended state at the ~100-ms time scale. A SecA mutant lacking the precursor-binding domain (PBD) aided interpretation. Further, the biochemical activity of SecA prepared for AFM was confirmed by tracking inorganic phosphate release. We conclude that ATP-driven dynamics are largely due to PBD motion but that other segments of SecA contribute to this motion during the transition state of the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Priya Bariya
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
- Corresponding author.
| |
Collapse
|
8
|
Motions of the SecA protein motor bound to signal peptide: Insights from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:416-427. [DOI: 10.1016/j.bbamem.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022]
|
9
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M. Crane
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
|
11
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
12
|
Zea DJ, Monzon AM, Gonzalez C, Fornasari MS, Tosatto SCE, Parisi G. Disorder transitions and conformational diversity cooperatively modulate biological function in proteins. Protein Sci 2016; 25:1138-46. [PMID: 27038125 DOI: 10.1002/pro.2931] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
Structural differences between conformers sustain protein biological function. Here, we studied in a large dataset of 745 intrinsically disordered proteins, how ordered-disordered transitions modulate structural differences between conformers as derived from crystallographic data. We found that almost 50% of the proteins studied show no transitions and have low conformational diversity while the rest show transitions and a higher conformational diversity. In this last subset, 60% of the proteins become more ordered after ligand binding, while 40% more disordered. As protein conformational diversity is inherently connected with protein function our analysis suggests differences in structure-function relationships related to order-disorder transitions.
Collapse
Affiliation(s)
- Diego Javier Zea
- Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, Argentina
| | - Alexander Miguel Monzon
- Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, Argentina
| | - Claudia Gonzalez
- Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, Argentina
| | - María Silvina Fornasari
- Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, Argentina
| | - Silvio C E Tosatto
- Biocomputing up, Department of Biomedical Sciences, University of Padova, Italy
| | - Gustavo Parisi
- Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, Argentina
| |
Collapse
|
13
|
Abstract
There is a consensus in the medical profession of the pressing need for novel antimicrobial agents due to issues related to drug resistance. In practice, solutions to this problem to a large degree lie with the identification of new and vital targets in bacteria and subsequently designing their inhibitors. We consider SecA a very promising antimicrobial target. In this review, we compile and analyze information available on SecA to show that inhibition of SecA has a multitude of consequences. Furthermore, we discuss issues critical to the design and evaluation of SecA inhibitors.
Collapse
|
14
|
Milenkovic S, Bondar AN. Mechanism of conformational coupling in SecA: Key role of hydrogen-bonding networks and water interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:374-85. [PMID: 26607006 DOI: 10.1016/j.bbamem.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022]
Abstract
SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear. The observation that SecA contains numerous hydrogen-bonding groups raises important questions about the role of hydrogen-bonding networks and hydrogen-bond dynamics in long-distance conformational couplings. To address these questions, we explored the molecular dynamics of SecA from three different organisms, with and without bound nucleotide, in water. By computing two-dimensional hydrogen-bonding maps we identify networks of hydrogen bonds that connect the nucleotide-binding site to remote regions of the protein, and sites in the protein that respond to specific perturbations. We find that the nucleotide-binding site of ADP-bound SecA has a preferred geometry whereby the first two carboxylates of the DEAD motif bridge via hydrogen-bonding water. Simulations of a mutant with perturbed ATP hydrolysis highlight the water-bridged geometry as a key structural element of the reaction path.
Collapse
Affiliation(s)
- Stefan Milenkovic
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
15
|
Conformational kinetics reveals affinities of protein conformational states. Proc Natl Acad Sci U S A 2015; 112:9352-7. [PMID: 26162682 DOI: 10.1073/pnas.1502084112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein's affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states.
Collapse
|
16
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
17
|
Large interdomain rearrangement triggered by suppression of micro- to millisecond dynamics in bacterial Enzyme I. Nat Commun 2015; 6:5960. [PMID: 25581904 PMCID: PMC4293084 DOI: 10.1038/ncomms6960] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022] Open
Abstract
Enzyme I (EI), the first component of the bacterial phosphotransfer signal transduction system, undergoes one of the largest substrate-induced interdomain rearrangements documented to date. Here, we characterize the perturbations generated by two small molecules, the natural substrate phosphoenolpyruvate (PEP) and the inhibitor α-ketoglutarate (αKG), on the structure and dynamics of EI using NMR, small-angle X-ray scattering (SAXS) and biochemical techniques. The results indicate unambiguously that the open-to-closed conformational switch of EI is triggered by complete suppression of micro- to millisecond dynamics within the C-terminal domain of EI. Indeed, we show that a ligand-induced transition from a dynamic to a more rigid conformational state of the C-terminal domain stabilizes the interface between the N- and C-terminal domains observed in the structure of the closed state, thereby promoting the resulting conformational switch and autophosphorylation of EI. The mechanisms described here may be common to several other multidomain proteins and allosteric systems.
Collapse
|
18
|
Gouridis G, Karamanou S, Sardis MF, Schärer MA, Capitani G, Economou A. Quaternary dynamics of the SecA motor drive translocase catalysis. Mol Cell 2014; 52:655-66. [PMID: 24332176 DOI: 10.1016/j.molcel.2013.10.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/15/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022]
Abstract
Most secretory preproteins exit bacterial cells through the protein translocase, comprising the SecYEG channel and the dimeric peripheral ATPase motor SecA. Energetic coupling to work remains elusive. We now demonstrate that translocation is driven by unusually dynamic quaternary changes in SecA. The dimer occupies several successive states with distinct protomer arrangements. SecA docks on SecYEG as a dimer and becomes functionally asymmetric. Docking occurs via only one protomer. The second protomer allosterically regulates downstream steps. Binding of one preprotein signal peptide to the SecYEG-docked SecA protomer elongates the SecA dimer and triggers the translocase holoenzyme to obtain a lower activation energy conformation. ATP hydrolysis monomerizes the triggered SecA dimer, causing mature chain trapping and processive translocation. This is a unique example of one protein exploiting quaternary dynamics to become a substrate receptor, a "loading clamp," and a "processive motor." This mechanism has widespread implications on protein translocases, chaperones, and motors.
Collapse
Affiliation(s)
- Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Rega Institute, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Marios Frantzeskos Sardis
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Department of Biology, University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece
| | | | - Guido Capitani
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Department of Biology, University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Rega Institute, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Chatzi KE, Sardis MF, Economou A, Karamanou S. SecA-mediated targeting and translocation of secretory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1466-74. [PMID: 24583121 DOI: 10.1016/j.bbamcr.2014.02.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
More than 30 years of research have revealed that the dynamic nanomotor SecA is a central player in bacterial protein secretion. SecA associates with the SecYEG channel and transports polypeptides post-translationally to the trans side of the cytoplasmic membrane. It comprises a helicase-like ATPase core coupled to two domains that provide specificity for preprotein translocation. Apart from SecYEG, SecA associates with multiple ligands like ribosomes, nucleotides, lipids, chaperones and preproteins. It exerts its essential contribution in two phases. First, SecA, alone or in concert with chaperones, helps mediate the targeting of the secretory proteins from the ribosome to the membrane. Next, at the membrane it converts chemical energy to mechanical work and translocates preproteins through the SecYEG channel. SecA is a highly dynamic enzyme, it exploits disorder-order kinetics, swiveling and dissociation of domains and dimer to monomer transformations that are tightly coupled with its catalytic function. Preprotein signal sequences and mature domains exploit these dynamics to manipulate the nanomotor and thus achieve their export at the expense of metabolic energy. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Katerina E Chatzi
- Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece; KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Marios Frantzeskos Sardis
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece; Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece; KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece; KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
21
|
Rydberg J, Baltzer L, Sarojini V. Intrinsically unstructured proteins by design-electrostatic interactions can control binding, folding, and function of a helix-loop-helix heterodimer. J Pept Sci 2013; 19:461-9. [PMID: 23813758 DOI: 10.1002/psc.2520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 11/10/2022]
Abstract
Intrinsically disordered proteins that exist as unordered monomeric structures in aqueous solution at pH 7 but fold into four-helix bundles upon binding to recognized polypeptide targets have been designed. NMR and CD spectra of the monomeric polypeptides show the hallmarks of unordered structures, whereas in the bound state they are highly helical. Analytical ultracentrifugation data shows that the polypeptides bind to their targets to form exclusively heterodimers at neutral pH. To demonstrate the relationship between binding, folding, and function, a catalytic site for ester hydrolysis was introduced into an unordered and largely inactive monomer, but that was structured and catalytically active in the presence of a specific polypeptide target. Electrostatic interactions between surface-exposed residues inhibited the binding and folding of the monomers at pH 7. Charge-charge repulsion between ionizable amino acids was thus found to be sufficient to disrupt binding between polypeptide chains despite their inherent propensities for structure formation and may be involved in the folding and function of inherently disordered proteins in biology.
Collapse
Affiliation(s)
- Johan Rydberg
- Department of Chemistry-IFM, Linköping University, 581 83, Linköping, Sweden
| | | | | |
Collapse
|
22
|
Ahmad E, Rabbani G, Zaidi N, Khan MA, Qadeer A, Ishtikhar M, Singh S, Khan RH. Revisiting ligand-induced conformational changes in proteins: essence, advancements, implications and future challenges. J Biomol Struct Dyn 2013; 31:630-48. [DOI: 10.1080/07391102.2012.706081] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Kim DM, Zheng H, Huang YJ, Montelione GT, Hunt JF. ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase. J Am Chem Soc 2013; 135:2999-3010. [PMID: 23167435 PMCID: PMC4134686 DOI: 10.1021/ja306361q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SecA is an intensively studied mechanoenzyme that uses ATP hydrolysis to drive processive extrusion of secreted proteins through a protein-conducting channel in the cytoplasmic membrane of eubacteria. The ATPase motor of SecA is strongly homologous to that in DEAD-box RNA helicases. It remains unclear how local chemical events in its ATPase active site control the overall conformation of an ~100 kDa multidomain enzyme and drive protein transport. In this paper, we use biophysical methods to establish that a single electrostatic charge in the ATPase active site controls the global conformation of SecA. The enzyme undergoes an ATP-modulated endothermic conformational transition (ECT) believed to involve similar structural mechanics to the protein transport reaction. We have characterized the effects of an isosteric glutamate-to-glutamine mutation in the catalytic base, a mutation which mimics the immediate electrostatic consequences of ATP hydrolysis in the active site. Calorimetric studies demonstrate that this mutation facilitates the ECT in Escherichia coli SecA and triggers it completely in Bacillus subtilis SecA. Consistent with the substantial increase in entropy observed in the course of the ECT, hydrogen-deuterium exchange mass spectrometry demonstrates that it increases protein backbone dynamics in domain-domain interfaces at remote locations from the ATPase active site. The catalytic glutamate is one of ~250 charged amino acids in SecA, and yet neutralization of its side chain charge is sufficient to trigger a global order-disorder transition in this 100 kDa enzyme. The intricate network of structural interactions mediating this effect couples local electrostatic changes during ATP hydrolysis to global conformational and dynamic changes in SecA. This network forms the foundation of the allosteric mechanochemistry that efficiently harnesses the chemical energy stored in ATP to drive complex mechanical processes.
Collapse
Affiliation(s)
- Dorothy M. Kim
- Department of Biological Sciences and Northeast Structural Genomics Consortium, 702A Fairchild Center, MC2434, Columbia University, New York, NY 10027, USA
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey. Piscataway, New Jersey 08854
| | - Yuanpeng J. Huang
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey. Piscataway, New Jersey 08854
| | - John F. Hunt
- Department of Biological Sciences and Northeast Structural Genomics Consortium, 702A Fairchild Center, MC2434, Columbia University, New York, NY 10027, USA
| |
Collapse
|
24
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
25
|
Abstract
The conserved general secretion (Sec) pathway carries out most protein export in bacteria and is powered by the essential ATPase SecA. Interestingly, mycobacteria and some Gram-positive bacteria possess two SecA proteins: SecA1 and SecA2. In these species, SecA1 is responsible for exporting most proteins, whereas SecA2 exports only a subset of substrates and is implicated in virulence. However, despite the impressive body of knowledge about the canonical SecA1, less is known concerning SecA2 function. Here, we review our current understanding of the different types of SecA2 systems and outline future directions for their study.
Collapse
Affiliation(s)
- Meghan E Feltcher
- Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-27290, USA
| | | |
Collapse
|
26
|
Structural and Functional Characterization of RecG Helicase under Dilute and Molecular Crowding Conditions. J Nucleic Acids 2012; 2012:392039. [PMID: 22919464 PMCID: PMC3420092 DOI: 10.1155/2012/392039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/30/2012] [Indexed: 12/04/2022] Open
Abstract
In an ATP-dependent reaction, the Escherichia coli RecG helicase unwinds DNA junctions in vitro. We present evidence of a unique protein conformational change in the RecG helicase from an α-helix to a β-strand upon an ATP binding under dilute conditions using circular dichroism (CD) spectroscopy. In contrast, under molecular crowding conditions, the α-helical conformation was stable even upon an ATP binding. These distinct conformational behaviors were observed to be independent of Na+ and Mg2+. Interestingly, CD measurements demonstrated that the spectra of a frayed duplex decreased with increasing of the RecG concentration both under dilute and molecular crowding conditions in the presence of ATP, suggesting that RecG unwound the frayed duplex. Our findings raise the possibility that the α-helix and β-strand forms of RecG are a preactive and an active structure with the helicase activity, respectively.
Collapse
|
27
|
Accurate protein structure modeling using sparse NMR data and homologous structure information. Proc Natl Acad Sci U S A 2012; 109:9875-80. [PMID: 22665781 DOI: 10.1073/pnas.1202485109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.
Collapse
|
28
|
The variable subdomain of Escherichia coli SecA functions to regulate SecA ATPase activity and ADP release. J Bacteriol 2012; 194:2205-13. [PMID: 22389482 DOI: 10.1128/jb.00039-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial SecA proteins can be categorized by the presence or absence of a variable subdomain (VAR) located within nucleotide-binding domain II of the SecA DEAD motor. Here we show that VAR is dispensable for SecA function, since the VAR deletion mutant secAΔ519-547 displayed a wild-type rate of cellular growth and protein export. Loss or gain of VAR is extremely rare in the history of bacterial evolution, indicating that it appears to contribute to secA function within the relevant species in their natural environments. VAR removal also results in additional secA phenotypes: azide resistance (Azi(r)) and suppression of signal sequence defects (PrlD). The SecAΔ(519-547) protein was found to be modestly hyperactive for SecA ATPase activities and displayed an accelerated rate of ADP release, consistent with the biochemical basis of azide resistance. Based on our findings, we discuss models whereby VAR allosterically regulates SecA DEAD motor function at SecYEG.
Collapse
|
29
|
Maki JL, Krishnan B, Gierasch LM. Using a low denaturant model to explore the conformational features of translocation-active SecA. Biochemistry 2012; 51:1369-79. [PMID: 22304380 DOI: 10.1021/bi201793e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The SecA molecular nanomachine in bacteria uses energy from ATP hydrolysis to drive post-translational secretion of preproteins through the SecYEG translocon. Cytosolic SecA exists in a dimeric, "closed" state with relatively low ATPase activity. After binding to the translocon, SecA undergoes major conformational rearrangement, leading to a state that is structurally more "open", has elevated ATPase activity, and is active in translocation. The structural details underlying this conformational change in SecA remain incompletely defined. Most SecA crystal structures report on the cytosolic form; only one structure sheds light on a form of SecA that has engaged the translocon. We have used mild destabilization of SecA to trigger conformational changes that mimic those in translocation-active SecA and thus study its structural changes in a simplified, soluble system. Results from circular dichroism, tryptophan fluorescence, and limited proteolysis demonstrate that the SecA conformational reorganization involves disruption of several domain-domain interfaces, partial unfolding of the second nucleotide binding fold (NBF) II, partial dissociation of the helical scaffold domain (HSD) from NBF I and II, and restructuring of the 30 kDa C-terminal region. These changes account for the observed high translocation SecA ATPase activity because they lead to the release of an inhibitory C-terminal segment (called intramolecular regulator of ATPase 1, or IRA1) and of constraints on NBF II (or IRA2) that allow it to stimulate ATPase activity. The observed conformational changes thus position SecA for productive interaction with the SecYEG translocon and for transfer of segments of its passenger protein across the translocon.
Collapse
Affiliation(s)
- Jenny L Maki
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|
30
|
Abstract
Allostery is a fundamental process by which distant sites within a protein system sense each other. Allosteric regulation is such an efficient mechanism that it is used to control protein activity in most biological processes, including signal transduction, metabolism, catalysis, and gene regulation. Over recent years, our view and understanding of the fundamental principles underlying allostery have been enriched and often utterly reshaped. This has been especially so for powerful techniques such as nuclear magnetic resonance spectroscopy, which offers an atomic view of the intrinsic motions of proteins. Here, I discuss recent results on the catabolite activator protein (CAP) that have drastically revised our view about how allosteric interactions are modulated. CAP has provided the first experimentally identified system showing that (i) allostery can be mediated through changes in protein motions, in the absence of changes in the mean structure of the protein, and (ii) favorable changes in protein motions may activate allosteric proteins that are otherwise structurally inactive.
Collapse
Affiliation(s)
- Charalampos G Kalodimos
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
31
|
Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. ACTA ACUST UNITED AC 2011; 18:685-98. [PMID: 21700205 DOI: 10.1016/j.chembiol.2011.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/20/2022]
Abstract
The rapid rise of drug-resistant bacteria is one of the most serious unmet medical needs facing the world. Despite this increasing problem of antibiotic resistance, the number of different antibiotics available for the treatment of serious infections is dwindling. Therefore, there is an urgent need for new antibacterial drugs, preferably with novel modes of action to potentially avoid cross-resistance with existing antibacterial agents. In recent years, increasing attention has been paid to bacterial protein secretion as a potential antibacterial target. Among the different protein secretion pathways that are present in bacterial pathogens, the general protein secretory (Sec) pathway is widely considered as an attractive target for antibacterial therapy. One of the key components of the Sec pathway is the peripheral membrane ATPase SecA, which provides the energy for the translocation of preproteins across the bacterial cytoplasmic membrane. In this review, we will provide an overview of research efforts on the discovery and development of small-molecule SecA inhibitors. Furthermore, recent advances on the structure and function of SecA and their potential impact on antibacterial drug discovery will be discussed.
Collapse
|
32
|
Minde DP, Anvarian Z, Rüdiger SG, Maurice MM. Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer? Mol Cancer 2011; 10:101. [PMID: 21859464 PMCID: PMC3170638 DOI: 10.1186/1476-4598-10-101] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/22/2011] [Indexed: 02/07/2023] Open
Affiliation(s)
- David P Minde
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
33
|
SecA, a remarkable nanomachine. Cell Mol Life Sci 2011; 68:2053-66. [PMID: 21479870 PMCID: PMC3101351 DOI: 10.1007/s00018-011-0681-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 01/03/2023]
Abstract
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.
Collapse
|
34
|
Kalodimos CG. NMR reveals novel mechanisms of protein activity regulation. Protein Sci 2011; 20:773-82. [PMID: 21404360 DOI: 10.1002/pro.614] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/16/2011] [Accepted: 02/21/2011] [Indexed: 11/06/2022]
Abstract
NMR spectroscopy is one of the most powerful tools for the characterization of biomolecular systems. A unique aspect of NMR is its capacity to provide an integrated insight into both the structure and intrinsic dynamics of biomolecules. In addition, NMR can provide site-resolved information about the conformation entropy of binding, as well as about energetically excited conformational states. Recent advances have enabled the application of NMR for the characterization of supramolecular systems. A summary of mechanisms underpinning protein activity regulation revealed by the application of NMR spectroscopy in a number of biological systems studied in the lab is provided.
Collapse
Affiliation(s)
- Charalampos G Kalodimos
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
35
|
Segers K, Klaassen H, Economou A, Chaltin P, Anné J. Development of a high-throughput screening assay for the discovery of small-molecule SecA inhibitors. Anal Biochem 2011; 413:90-6. [PMID: 21338570 DOI: 10.1016/j.ab.2011.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/08/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
A major pathway for bacterial preprotein translocation is provided by the Sec-dependent preprotein translocation pathway. Proteins destined for Sec-dependent translocation are synthesized as preproteins with an N-terminal signal peptide, which targets them to the SecYEG translocase channel. The driving force for the translocation reaction is provided by the peripheral membrane ATPase SecA, which couples the hydrolysis of ATP to the stepwise transport of unfolded preproteins across the bacterial membrane. Since SecA is essential, highly conserved among bacterial species, and has no close human homologues, it represents a promising target for antibacterial chemotherapy. However, high-throughput screening (HTS) campaigns to identify SecA inhibitors are hampered by the low intrinsic ATPase activity of SecA and the requirement of hydrophobic membranes for measuring the membrane or translocation ATPase activity of SecA. To address this issue, we have developed a colorimetric high-throughput screening assay in a 384-well format, employing an Escherichia coli (E. coli) SecA mutant with elevated intrinsic ATPase activity. The assay was applied for screening of a chemical library consisting of ~27,000 compounds and proved to be highly reliable (average Z' factor of 0.89). In conclusion, a robust HTS assay has been established that will facilitate the search for novel SecA inhibitors.
Collapse
Affiliation(s)
- Kenneth Segers
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroederstraat 10, 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
36
|
Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat Struct Mol Biol 2011; 18:288-94. [PMID: 21278754 DOI: 10.1038/nsmb.1978] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/16/2010] [Indexed: 11/08/2022]
Abstract
Allostery has been studied for many decades, yet it remains challenging to determine experimentally how it occurs at a molecular level. We have developed an approach combining isothermal titration calorimetry, circular dichroism and nuclear magnetic resonance spectroscopy to quantify allostery in terms of protein thermodynamics, structure and dynamics. This strategy was applied to study the interaction between aminoglycoside N-(6')-acetyltransferase-Ii and one of its substrates, acetyl coenzyme A. It was found that homotropic allostery between the two active sites of the homodimeric enzyme is modulated by opposing mechanisms. One follows a classical Koshland-Némethy-Filmer (KNF) paradigm, whereas the other follows a recently proposed mechanism in which partial unfolding of the subunits is coupled to ligand binding. Competition between folding, binding and conformational changes represents a new way to govern energetic communication between binding sites.
Collapse
|
37
|
Wallnoefer HG, Lingott T, Gutiérrez JM, Merfort I, Liedl KR. Backbone flexibility controls the activity and specificity of a protein-protein interface: specificity in snake venom metalloproteases. J Am Chem Soc 2010; 132:10330-7. [PMID: 20617834 DOI: 10.1021/ja909908y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interfaces have crucial functions in many biological processes. The large interaction areas of such interfaces show complex interaction motifs. Even more challenging is the understanding of (multi)specificity in protein-protein binding. Many proteins can bind several partners to mediate their function. A perfect paradigm to study such multispecific protein-protein interfaces are snake venom metalloproteases (SVMPs). Inherently, they bind to a variety of basement membrane proteins of capillaries, hydrolyze them, and induce profuse bleeding. However, despite having a high sequence homology, some SVMPs show a strong hemorrhagic activity, while others are (almost) inactive. We present computer simulations indicating that the activity to induce hemorrhage, and thus the capability to bind the potential reaction partners, is related to the backbone flexibility in a certain surface region. A subtle interplay between flexibility and rigidity of two loops seems to be the prerequisite for the proteins to carry out their damaging function. Presumably, a significant alteration in the backbone dynamics makes the difference between SVMPs that induce hemorrhage and the inactive ones.
Collapse
Affiliation(s)
- Hannes G Wallnoefer
- Institute of General, Inorganic and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
38
|
Tzeng SR, Kalodimos CG. Protein dynamics and allostery: an NMR view. Curr Opin Struct Biol 2010; 21:62-7. [PMID: 21109422 DOI: 10.1016/j.sbi.2010.10.007] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 10/24/2010] [Indexed: 11/19/2022]
Abstract
Allostery, the process by which distant sites within a protein system are energetically coupled, is an efficient and ubiquitous mechanism for activity regulation. A purely mechanical view of allostery invoking only structural changes has developed over the decades as the classical view of the phenomenon. However, a fast growing list of examples illustrate the intimate link between internal motions over a wide range of time scales and function in protein-ligand interactions. Proteins respond to perturbations by redistributing their motions and they use fluctuating conformational states for binding and conformational entropy as a carrier of allosteric energy to modulate association with ligands. In several cases allosteric interactions proceed with minimal or no structural changes. We discuss emerging paradigms for the central role of protein dynamics in allostery.
Collapse
Affiliation(s)
- Shiou-Ru Tzeng
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
39
|
Overlap between folding and functional energy landscapes for adenylate kinase conformational change. Nat Commun 2010; 1:111. [DOI: 10.1038/ncomms1106] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/05/2010] [Indexed: 11/09/2022] Open
|
40
|
Wang M, Prorok M, Castellino FJ. NMR backbone dynamics of VEK-30 bound to the human plasminogen kringle 2 domain. Biophys J 2010; 99:302-12. [PMID: 20655859 PMCID: PMC2895381 DOI: 10.1016/j.bpj.2010.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/12/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022] Open
Abstract
To gain insights into the mechanisms for the tight and highly specific interaction of the kringle 2 domain of human plasminogen (K2(Pg)) with a 30-residue internal peptide (VEK-30) from a group A streptococcal M-like protein, the dynamic properties of free and bound K2(Pg) and VEK-30 were investigated using backbone amide (15)N-NMR relaxation measurements. Dynamic parameters, namely the generalized order parameter, S(2), the local correlation time, tau(e), and the conformational exchange contribution, R(ex), were obtained for this complex by Lipari-Szabo model-free analysis. The results show that VEK-30 displays distinctly different dynamic behavior as a consequence of binding to K2(Pg), manifest by decreased backbone flexibility, particularly at the binding region of the peptide. In contrast, the backbone dynamics parameters of K2(Pg) displayed similar patterns in the free and bound forms, but, nonetheless, showed interesting differences. Based on our previous structure-function studies of this interaction, we also made comparisons of the VEK-30/K2(Pg) dynamics results from different kringle modules complexed with small lysine analogs. The differences in dynamics observed for kringles with different ligands provide what we believe to be new insights into the interactions responsible for protein-ligand recognition and a better understanding of the differences in binding affinity and binding specificity of kringle domains with various ligands.
Collapse
Affiliation(s)
| | | | - Francis J. Castellino
- W. M. Keck Center for Transgene and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
41
|
|
42
|
Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 2010; 5:789-96. [PMID: 19841628 DOI: 10.1038/nchembio.232] [Citation(s) in RCA: 1462] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular recognition is central to all biological processes. For the past 50 years, Koshland's 'induced fit' hypothesis has been the textbook explanation for molecular recognition events. However, recent experimental evidence supports an alternative mechanism. 'Conformational selection' postulates that all protein conformations pre-exist, and the ligand selects the most favored conformation. Following binding the ensemble undergoes a population shift, redistributing the conformational states. Both conformational selection and induced fit appear to play roles. Following binding by a primary conformational selection event, optimization of side chain and backbone interactions is likely to proceed by an induced fit mechanism. Conformational selection has been observed for protein-ligand, protein-protein, protein-DNA, protein-RNA and RNA-ligand interactions. These data support a new molecular recognition paradigm for processes as diverse as signaling, catalysis, gene regulation and protein aggregation in disease, which has the potential to significantly impact our views and strategies in drug design, biomolecular engineering and molecular evolution.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | |
Collapse
|
43
|
Jordan F, Arjunan P, Kale S, Nemeria NS, Furey W. Multiple roles of mobile active center loops in the E1 component of the Escherichia coli pyruvate dehydrogenase complex - Linkage of protein dynamics to catalysis. JOURNAL OF MOLECULAR CATALYSIS. B, ENZYMATIC 2009; 61:14-22. [PMID: 20160956 PMCID: PMC2759092 DOI: 10.1016/j.molcatb.2009.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The region encompassing residues 401-413 on the E1 component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli comprises a loop (the inner loop) which was not seen in the X-ray structure in the presence of thiamin diphosphate, the required cofactor for the enzyme. This loop is seen in the presence of a stable analogue of the pre-decarboxylation intermediate, the covalent adduct between the substrate analogue methyl acetylphosphonate and thiamin diphosphate, C2α-phosphonolactylthiamin diphosphate. It has been shown that the residue H407 and several other residues on this loop are required to reduce the mobility of the loop so electron density corresponding to it can be seen once the pre-decarboxylation intermediate is formed. Concomitantly, the loop encompassing residues 541-557 (the outer loop) appears to work in tandem with the inner loop and there is a hydrogen bond between the two loops ensuring their correlated motion. The inner loop was shown to: a) sequester the active center from carboligase side reactions; b) assist the interaction between the E1 and the E2 components, thereby affecting the overall reaction rate of the entire multienzyme complex; c) control substrate access to the active center. Using viscosity effects on kinetics it was shown that formation of the pre-decarboxylation intermediate is specifically affected by loop movement. A cysteine-less variant was created for the E1 component, onto which cysteines were substituted at selected loop positions. Introducing an electron spin resonance spin label and an (19)F NMR label onto these engineered cysteines, the loop mobility was examined: a) both methods suggested that in the absence of ligand, the loop exists in two conformations; b) line-shape analysis of the NMR signal at different temperatures, enabled estimation of the rate constant for loop movement, and this rate constant was found to be of the same order of magnitude as the turnover number for the enzyme under the same conditions. Furthermore, this analysis gave important insights into rate-limiting thermal loop dynamics. Overall, the results suggest that the dynamic properties correlate with catalytic events on the E1 component of the pyruvate dehydrogenase complex.
Collapse
Affiliation(s)
- Frank Jordan
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Palaniappa Arjunan
- Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | - Sachin Kale
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | | | - William Furey
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
44
|
Nithianantham S, Shilton BH. Analysis of the isolated SecA DEAD motor suggests a mechanism for chemical-mechanical coupling. J Mol Biol 2008; 383:380-9. [PMID: 18761349 DOI: 10.1016/j.jmb.2008.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/07/2008] [Accepted: 08/11/2008] [Indexed: 11/18/2022]
Abstract
The preprotein cross-linking domain and C-terminal domains of Escherichia coli SecA were removed to create a minimal DEAD motor, SecA-DM. SecA-DM hydrolyzes ATP and has the same affinity for ADP as full-length SecA. The crystal structure of SecA-DM in complex with ADP was solved and shows the DEAD motor in a closed conformation. Comparison with the structure of the E. coli DEAD motor in an open conformation (Protein Data Bank ID 2FSI) indicates main-chain conformational changes in two critical sequences corresponding to Motif III and Motif V of the DEAD helicase family. The structures that the Motif III and Motif V sequences adopt in the DEAD motor open conformation are incompatible with the closed conformation. Therefore, when the DEAD motor makes the transition from open to closed, Motif III and Motif V are forced to change their conformations, which likely functions to regulate passage through the transition state for ATP hydrolysis. The transition state for ATP hydrolysis for the SecA DEAD motor was modeled based on the conformation of the Vasa helicase in complex with adenylyl imidodiphosphate and RNA (Protein Data Bank ID 2DB3). A mechanism for chemical-mechanical coupling emerges, where passage through the transition state for ATP hydrolysis is hindered by the conformational changes required in Motif III and Motif V, and may be promoted by binding interactions with the preprotein substrate and/or other translocase domains and subunits.
Collapse
Affiliation(s)
- Stanley Nithianantham
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
45
|
Karamanou S, Bariami V, Papanikou E, Kalodimos CG, Economou A. Assembly of the translocase motor onto the preprotein-conducting channel. Mol Microbiol 2008; 70:311-22. [PMID: 18761620 DOI: 10.1111/j.1365-2958.2008.06402.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial protein secretion is catalysed by the SecYEG protein-conducting channel complexed with the SecA ATPase motor. To gain insight into the SecA-SecYEG interaction we used peptide arrays, thermodynamic quantification, mutagenesis and functional assays. Our data reveal that: (i) SecA binds with low affinity on several, peripheral, exposed SecYEG sites. This largely electrostatic association is modulated by temperature and nucleotides. (ii) Binding sites cluster in five major binding 'regions': three that are exclusively cytoplasmic and two that reach the periplasm. (iii) Both the N-terminal and c-terminal regions of SecA participate in binding interactions and share some sites. (iv) Several of these sites are essential for translocase catalysis. Our data provide residue-level dissection of the SecYEG-SecA interaction. Two models of assembly of SecA on dimeric SecYEG are discussed.
Collapse
Affiliation(s)
- Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology-FoRTH, PO Box 1385, Iraklio, Crete, Greece
| | | | | | | | | |
Collapse
|
46
|
Clérico EM, Maki JL, Gierasch LM. Use of synthetic signal sequences to explore the protein export machinery. Biopolymers 2008; 90:307-19. [PMID: 17918185 DOI: 10.1002/bip.20856] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The information for correct localization of newly synthesized proteins in both prokaryotes and eukaryotes resides in self-contained, often transportable targeting sequences. Of these, signal sequences specify that a protein should be secreted from a cell or incorporated into the cytoplasmic membrane. A central puzzle is presented by the lack of primary structural homology among signal sequences, although they share common features in their sequences. Synthetic signal peptides have enabled a wide range of studies of how these "zipcodes" for protein secretion are decoded and used to target proteins to the protein machinery that facilitates their translocation across and integration into membranes. We review research on how the information in signal sequences enables their passenger proteins to be correctly and efficiently localized. Synthetic signal peptides have made possible binding and crosslinking studies to explore how selectivity is achieved in recognition by the signal sequence-binding receptors, signal recognition particle, or SRP, which functions in all organisms, and SecA, which functions in prokaryotes and some organelles of prokaryotic origins. While progress has been made, the absence of atomic resolution structures for complexes of signal peptides and their receptors has definitely left many questions to be answered in the future.
Collapse
Affiliation(s)
- Eugenia M Clérico
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
47
|
SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J Mol Biol 2008; 382:74-87. [PMID: 18602400 DOI: 10.1016/j.jmb.2008.06.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/22/2022]
Abstract
In all living cells, regulated passage across membranes of specific proteins occurs through a universally conserved secretory channel. In bacteria and chloroplasts, the energy for the mechanical work of moving polypeptides through that channel is provided by SecA, a regulated ATPase. Here, we use site-directed spin labeling and electron paramagnetic resonance spectroscopy to identify the interactive surface used by SecA for each of the diverse binding partners encountered during the dynamic cycle of export. Although the binding sites overlap, resolution at the level of aminoacyl side chains allows us to identify contacts that are unique to each partner. Patterns of constraint and mobilization of residues on that interactive surface suggest a conformational change that may underlie the coupling of ATP hydrolysis to precursor translocation.
Collapse
|
48
|
Affiliation(s)
- Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| | - Nico Nouwen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| |
Collapse
|
49
|
Laine O, Streaker ED, Nabavi M, Fenselau CC, Beckett D. Allosteric signaling in the biotin repressor occurs via local folding coupled to global dampening of protein dynamics. J Mol Biol 2008; 381:89-101. [PMID: 18586268 DOI: 10.1016/j.jmb.2008.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/09/2008] [Accepted: 05/10/2008] [Indexed: 11/18/2022]
Abstract
The biotin repressor is an allosterically regulated, site-specific DNA-binding protein. Binding of the small ligand bio-5'-AMP activates repressor dimerization, which is a prerequisite to DNA binding. Multiple disorder-to-order transitions, some of which are known to be important for the functional allosteric response, occur in the vicinity of the ligand-binding site concomitant with effector binding to the repressor monomer. In this work, the extent to which these local changes are coupled to additional changes in the structure/dynamics of the repressor was investigated using hydrogen/deuterium exchange coupled to mass spectrometry. Measurements were performed on the apo-protein and on complexes of the protein bound to four different effectors that elicit a range of thermodynamic responses in the repressor. Global exchange measurements indicate that binding of any effector to the intact protein is accompanied by protection from exchange. Mass spectrometric analysis of pepsin-cleavage products generated from the exchanged complexes reveals that the protection is distributed throughout the protein. Furthermore, the magnitude of the level of protection in each peptide from hydrogen/deuterium exchange correlates with the magnitude of the functional allosteric response elicited by a ligand. These results indicate that local structural changes in the binding site that occur concomitant with effector binding nucleate global dampening of dynamics. Moreover, the magnitude of dampening of repressor dynamics tracks with the magnitude of the functional response to effector binding.
Collapse
Affiliation(s)
- Olli Laine
- Department of Chemistry and Biochemistry and Center for Biological Structure and Organization, College of Chemical and Life Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
50
|
Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 2008; 131:756-69. [PMID: 18022369 DOI: 10.1016/j.cell.2007.09.039] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/30/2007] [Accepted: 09/28/2007] [Indexed: 11/21/2022]
Abstract
Recognition of signal sequences by cognate receptors controls the entry of virtually all proteins to export pathways. Despite its importance, this process remains poorly understood. Here, we present the solution structure of a signal peptide bound to SecA, the 204 kDa ATPase motor of the Sec translocase. Upon encounter, the signal peptide forms an alpha-helix that inserts into a flexible and elongated groove in SecA. The mode of binding is bimodal, with both hydrophobic and electrostatic interactions mediating recognition. The same groove is used by SecA to recognize a diverse set of signal sequences. Impairment of the signal-peptide binding to SecA results in significant translocation defects. The C-terminal tail of SecA occludes the groove and inhibits signal-peptide binding, but autoinhibition is relieved by the SecB chaperone. Finally, it is shown that SecA interconverts between two conformations in solution, suggesting a simple mechanism for polypeptide translocation.
Collapse
|