1
|
Choi T, Li Z, Song G, Chen HF. Comprehensive Comparison and Critical Assessment of RNA-Specific Force Fields. J Chem Theory Comput 2024; 20:2676-2688. [PMID: 38447040 DOI: 10.1021/acs.jctc.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Molecular dynamics simulations play a pivotal role in elucidating the dynamic behaviors of RNA structures, offering a valuable complement to traditional methods such as nuclear magnetic resonance or X-ray. Despite this, the current precision of RNA force fields lags behind that of protein force fields. In this work, we systematically compared the performance of four RNA force fields (ff99bsc0χOL3, AMBERDES, ff99OL3_CMAP1, AMBERMaxEnt) across diverse RNA structures. Our findings highlight significant challenges in maintaining stability, particularly with regard to cross-strand and cross-loop hydrogen bonds. Furthermore, we observed the limitations in accurately describing the conformations of nonhelical structural motif, terminal nucleotides, and also base pairing and base stacking interactions by the tested RNA force fields. The identified deficiencies in existing RNA force fields provide valuable insights for subsequent force field development. Concurrently, these findings offer recommendations for selecting appropriate force fields in RNA simulations.
Collapse
Affiliation(s)
- Taeyoung Choi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Pechlaner M, Dominguez-Martin A, Sigel RKO. Influence of pH and Mg(ii) on the catalytic core domain 5 of a bacterial group II intron. Dalton Trans 2018; 46:3989-3995. [PMID: 28265619 DOI: 10.1039/c6dt04784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA molecules fold into complex structures that allow them to perform specific functions. To compensate the relative lack of diversity of functional groups within nucleotides, metal ions work as crucial co-factors. In addition, shifted pKas are observed in RNA, enabling acid-base reactions at ambient pH. The central catalytic domain 5 (D5) hairpin of the Azotobacter vinelandii group II intron undergoes both metal ion binding and pH dependence, presumably playing an important functional role in the ribozyme's reaction. By NMR spectroscopy we have here characterized the metal ion binding sites and affinities for the hairpin's internal G-A mismatch, bulge, and pentaloop. The influence of Mg(ii) and pH on the local conformation of the catalytically crucial region is also explored by fluorescence spectroscopy.
Collapse
Affiliation(s)
- M Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - A Dominguez-Martin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - R K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| |
Collapse
|
3
|
Hadzic MCAS, Börner R, König SLB, Kowerko D, Sigel RKO. Reliable State Identification and State Transition Detection in Fluorescence Intensity-Based Single-Molecule Förster Resonance Energy-Transfer Data. J Phys Chem B 2018; 122:6134-6147. [PMID: 29737844 DOI: 10.1021/acs.jpcb.7b12483] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique to probe biomolecular structure and dynamics. A popular implementation of smFRET consists of recording fluorescence intensity time traces of surface-immobilized, chromophore-tagged molecules. This approach generates large and complex data sets, the analysis of which is to date not standardized. Here, we address a key challenge in smFRET data analysis: the generation of thermodynamic and kinetic models that describe with statistical rigor the behavior of FRET trajectories recorded from surface-tethered biomolecules in terms of the number of FRET states, the corresponding mean FRET values, and the kinetic rates at which they interconvert. For this purpose, we first perform Monte Carlo simulations to generate smFRET trajectories, in which a relevant space of experimental parameters is explored. Then, we provide an account on current strategies to achieve such model selection, as well as a quantitative assessment of their performances. Specifically, we evaluate the performance of each algorithm (change-point analysis, STaSI, HaMMy, vbFRET, and ebFRET) with respect to accuracy, reproducibility, and computing time, which yields a range of algorithm-specific referential benchmarks for various data qualities. Data simulation and analysis were performed with our MATLAB-based multifunctional analysis software for handling smFRET data (MASH-FRET).
Collapse
Affiliation(s)
| | | | | | - Danny Kowerko
- Department of Computer Science , Chemnitz University of Technology , 09111 Chemnitz , Germany
| | | |
Collapse
|
4
|
Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding. J Biol Inorg Chem 2017; 23:167-177. [DOI: 10.1007/s00775-017-1519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
5
|
Bartova S, Alberti E, Sigel RK, Donghi D. Metal ion binding to an RNA internal loop. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zhao C, Pyle AM. Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol 2016; 23:558-65. [PMID: 27136328 PMCID: PMC4899126 DOI: 10.1038/nsmb.3224] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/06/2016] [Indexed: 12/17/2022]
Abstract
Group II introns are self-splicing ribozymes that are essential in many organisms, and they have been hypothesized to share a common evolutionary ancestor with the spliceosome. Although structural similarity of RNA components supports this connection, it is of interest to determine whether associated protein factors also share an evolutionary heritage. Here we present the crystal structures of reverse transcriptase (RT) domains from two group II intron-encoded proteins (maturases) from Roseburia intestinalis and Eubacterium rectale, obtained at 1.2-Å and 2.1-Å resolution, respectively. These domains are more similar in architecture to the spliceosomal Prp8 RT-like domain than to any other RTs, and they share substantial similarity with flaviviral RNA polymerases. The RT domain itself is sufficient for binding intron RNA with high affinity and specificity, and it is contained within an active RT enzyme. These studies provide a foundation for understanding structure-function relationships within group II intron-maturase complexes.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
7
|
Bartova S, Pechlaner M, Donghi D, Sigel RKO. Studying metal ion binding properties of a three-way junction RNA by heteronuclear NMR. J Biol Inorg Chem 2016; 21:319-28. [PMID: 26880094 DOI: 10.1007/s00775-016-1341-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Self-splicing group II introns are highly structured RNA molecules, containing a characteristic secondary and catalytically active tertiary structure, which is formed only in the presence of Mg(II). Mg(II) initiates the first folding step governed by the κζ element within domain 1 (D1κζ). We recently solved the NMR structure of D1κζ derived from the mitochondrial group II intron ribozyme Sc.ai5γ and demonstrated that Mg(II) is essential for its stabilization. Here, we performed a detailed multinuclear NMR study of metal ion interactions with D1κζ, using Cd(II) and cobalt(III)hexammine to probe inner- and outer-sphere coordination of Mg(II) and thus to better characterize its binding sites. Accordingly, we mapped (1)H, (15)N, (13)C, and (31)P spectral changes upon addition of different amounts of the metal ions. Our NMR data reveal a Cd(II)-assisted macrochelate formation at the 5'-end triphosphate, a preferential Cd(II) binding to guanines in a helical context, an electrostatic interaction in the ζ tetraloop receptor and various metal ion interactions in the GAAA tetraloop and κ element. These results together with our recently published data on Mg(II) interaction provide a much better understanding of Mg(II) binding to D1κζ, and reveal how intricate and complex metal ion interactions can be.
Collapse
Affiliation(s)
- Simona Bartova
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Maria Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Daniela Donghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Abstract
In recent years a wide variety of RNA molecules regulating fundamental cellular processes has been discovered. Therefore, RNA structure determination is experiencing a boost and many more RNA structures are likely to be determined in the years to come. The broader availability of experimentally determined RNA structures implies that molecular replacement (MR) will be used more and more frequently as a method for phasing future crystallographic structures. In this report we describe various aspects relative to RNA structure determination by MR. First, we describe how to select and create MR search models for nucleic acids. Second, we describe how to perform MR searches on RNA using available crystallographic software. Finally, we describe how to refine and interpret the successful MR solutions. These protocols are applicable to determine novel RNA structures as well as to establish structural-functional relationships on existing RNA structures.
Collapse
|
9
|
Inactivation of group II intron RmInt1 in the Sinorhizobium meliloti genome. Sci Rep 2015; 5:12036. [PMID: 26156864 PMCID: PMC4496777 DOI: 10.1038/srep12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/15/2015] [Indexed: 11/10/2022] Open
Abstract
Group II introns are self-splicing catalytic RNAs that probably originated in bacteria and act as mobile retroelements. The dispersal and dynamics of group II intron spread within a bacterial genome are thought to follow a selection-driven extinction model. Likewise, various studies on the evolution of group II introns have suggested that they are evolving toward an inactive form by fragmentation, with the loss of the intron 3′-terminus, but with some intron fragments remaining and continuing to evolve in the genome. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti, but some strains of this species have no RmInt1 introns. We studied the splicing ability and mobility of the three full-length RmInt1 copies harbored by S. meliloti 1021, and obtained evidence suggesting that specific mutations may lead to the impairment of intron splicing and retrohoming. Our data suggest that the RmInt1 copies in this strain are undergoing a process of inactivation.
Collapse
|
10
|
Pechlaner M, Donghi D, Zelenay V, Sigel RKO. Protonation-Dependent Base Flipping at Neutral pH in the Catalytic Triad of a Self-Splicing Bacterial Group II Intron. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Pechlaner M, Donghi D, Zelenay V, Sigel RKO. Protonation-Dependent Base Flipping at Neutral pH in the Catalytic Triad of a Self-Splicing Bacterial Group II Intron. Angew Chem Int Ed Engl 2015; 54:9687-90. [PMID: 26119804 DOI: 10.1002/anie.201504014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Indexed: 11/05/2022]
Abstract
NMR spectroscopy has revealed pH-dependent structural changes in the highly conserved catalytic domain 5 of a bacterial group II intron. Two adenines with pK(a) values close to neutral pH were identified in the catalytic triad and the bulge. Protonation of the adenine opposite to the catalytic triad is stabilized within a G(syn)-AH(+) (anti) base pair. The pH-dependent anti-to-syn flipping of this G in the catalytic triad modulates the known interaction with the linker region between domains 2 and 3 (J23) and simultaneously the binding of the catalytic Mg(2+) ion to its backbone. Hence, this here identified shifted pK(a) value controls the conformational change between the two steps of splicing.
Collapse
Affiliation(s)
- Maria Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna
| | - Daniela Donghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna
| | - Veronika Zelenay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna.
| |
Collapse
|
12
|
Torchia DA. NMR studies of dynamic biomolecular conformational ensembles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 84-85:14-32. [PMID: 25669739 PMCID: PMC4325279 DOI: 10.1016/j.pnmrs.2014.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 05/06/2023]
Abstract
Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: "Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?" This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA.
Collapse
Affiliation(s)
- Dennis A Torchia
- National Institutes of Health (NIH), 5 Memorial Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Valadkhan S. The role of snRNAs in spliceosomal catalysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:195-228. [PMID: 24156945 DOI: 10.1016/b978-0-12-381286-5.00006-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The spliceosomes, large ribonucleoprotein (RNP) assemblies that remove the intervening sequences from pre-mRNAs, contain a large number of proteins and five small nuclear RNAs (snRNAs). One snRNA, U6, contains highly conserved sequences that are thought to be the functional counterparts of the RNA elements that form the active site of self-splicing group II intron ribozymes. An in vitro-assembled, protein-free complex of U6 with U2, the base-pairing partner in the spliceosomal catalytic core, can catalyze a two-step splicing reaction in the absence of all other spliceosomal factors, suggesting that the two snRNAs may form all or a large share of the spliceosomal active site. On the other hand, several spliceosomal proteins are thought to help in the formation of functionally required RNA-RNA interactions in the catalytic core. Whether they also contribute functional groups to the spliceosomal active site, and thus whether the spliceosomes are RNA or RNP enzymes remain uncertain.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Solution structure and metal ion binding sites of the human CPEB3 ribozyme's P4 domain. J Biol Inorg Chem 2014; 19:903-12. [PMID: 24652468 DOI: 10.1007/s00775-014-1125-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/05/2014] [Indexed: 01/18/2023]
Abstract
Three ribozymes are known to occur in humans, the CPEB3 ribozyme, the CoTC ribozyme, and the hammerhead ribozyme. Here, we present the NMR solution structure of a well-conserved motif within the CPEB3 ribozyme, the P4 domain. In addition, we discuss the binding sites and impact of Mg(2+) and [Co(NH3)6](3+), a spectroscopic probe for [Mg(H2O)6](2+), on the structure. The well-defined P4 region is a hairpin closed with a UGGU tetraloop that shows a distinct electrostatic surface potential and a characteristic, strongly curved backbone trajectory. The P4 hairpin contains two specific Mg(2+) binding sites: one outer-sphere binding site close to the proposed CPEB3 ribozyme active site with potential relevance for maintaining a compact fold of the ribozyme core, and one inner-sphere binding site, probably stabilizing the tetraloop structure. The structure of the tetraloop resembles an RNase III recognition structure, as previously described for an AGUU tetraloop. The detailed knowledge of the P4 domain and its metal ion binding preferences thus brings us closer to understanding the importance of Mg(2+) binding for the CPEB3 ribozyme's fold and function in the cell.
Collapse
|
15
|
Kruschel D, Skilandat M, Sigel RK. NMR structure of the 5' splice site in the group IIB intron Sc.ai5γ--conformational requirements for exon-intron recognition. RNA (NEW YORK, N.Y.) 2014; 20:295-307. [PMID: 24448450 PMCID: PMC3923125 DOI: 10.1261/rna.041137.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A crucial step of the self-splicing reaction of group II intron ribozymes is the recognition of the 5' exon by the intron. This recognition is achieved by two regions in domain 1 of the intron, the exon-binding sites EBS1 and EBS2 forming base pairs with the intron-binding sites IBS1 and IBS2 located at the end of the 5' exon. The complementarity of the EBS1•IBS1 contact is most important for ensuring site-specific cleavage of the phosphodiester bond between the 5' exon and the intron. Here, we present the NMR solution structures of the d3' hairpin including EBS1 free in solution and bound to the IBS1 7-mer. In the unbound state, EBS1 is part of a flexible 11-nucleotide (nt) loop. Binding of IBS1 restructures and freezes the entire loop region. Mg(2+) ions are bound near the termini of the EBS1•IBS1 helix, stabilizing the interaction. Formation of the 7-bp EBS1•IBS1 helix within a loop of only 11 nt forces the loop backbone to form a sharp turn opposite of the splice site, thereby presenting the scissile phosphate in a position that is structurally unique.
Collapse
|
16
|
Jiang J, Aduri R, Chow CS, SantaLucia J. Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations. Nucleic Acids Res 2013; 42:3971-81. [PMID: 24371282 PMCID: PMC3973299 DOI: 10.1093/nar/gkt1329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson-Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
17
|
Marcia M, Humphris-Narayanan E, Keating KS, Somarowthu S, Rajashankar K, Pyle AM. Solving nucleic acid structures by molecular replacement: examples from group II intron studies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2174-85. [PMID: 24189228 PMCID: PMC3817690 DOI: 10.1107/s0907444913013218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/14/2013] [Indexed: 12/17/2022]
Abstract
Structured RNA molecules are key players in ensuring cellular viability. It is now emerging that, like proteins, the functions of many nucleic acids are dictated by their tertiary folds. At the same time, the number of known crystal structures of nucleic acids is also increasing rapidly. In this context, molecular replacement will become an increasingly useful technique for phasing nucleic acid crystallographic data in the near future. Here, strategies to select, create and refine molecular-replacement search models for nucleic acids are discussed. Using examples taken primarily from research on group II introns, it is shown that nucleic acids are amenable to different and potentially more flexible and sophisticated molecular-replacement searches than proteins. These observations specifically aim to encourage future crystallographic studies on the newly discovered repertoire of noncoding transcripts.
Collapse
Affiliation(s)
- Marco Marcia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | - Kevin S. Keating
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Srinivas Somarowthu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Kanagalaghatta Rajashankar
- The Northeastern Collaborative Access Team (NE-CAT), Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
18
|
Pechlaner M, Sigel RKO, van Gunsteren WF, Dolenc J. Structure and Conformational Dynamics of the Domain 5 RNA Hairpin of a Bacterial Group II Intron Revealed by Solution Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Biochemistry 2013; 52:7099-113. [DOI: 10.1021/bi400784r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Maria Pechlaner
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roland K. O. Sigel
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Jožica Dolenc
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| |
Collapse
|
19
|
Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core. Proc Natl Acad Sci U S A 2013; 110:E3800-9. [PMID: 24043808 DOI: 10.1073/pnas.1315742110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mobile group II introns are bacterial retrotransposons thought to be evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of a catalytically active intron RNA ("ribozyme") and an intron-encoded reverse transcriptase, which function together to promote RNA splicing and intron mobility via reverse splicing of the intron RNA into new DNA sites ("retrohoming"). Although group II introns are active in bacteria, their natural hosts, they function inefficiently in eukaryotes, where lower free Mg(2+) concentrations decrease their ribozyme activity and constitute a natural barrier to group II intron proliferation within nuclear genomes. Here, we show that retrohoming of the Ll.LtrB group II intron is strongly inhibited in an Escherichia coli mutant lacking the Mg(2+) transporter MgtA, and we use this system to select mutations in catalytic core domain V (DV) that partially rescue retrohoming at low Mg(2+) concentrations. We thus identified mutations in the distal stem of DV that increase retrohoming efficiency in the MgtA mutant up to 22-fold. Biochemical assays of splicing and reverse splicing indicate that the mutations increase the fraction of intron RNA that folds into an active conformation at low Mg(2+) concentrations, and terbium-cleavage assays suggest that this increase is due to enhanced Mg(2+) binding to the distal stem of DV. Our findings indicate that DV is involved in a critical Mg(2+)-dependent RNA folding step in group II introns and demonstrate the feasibility of selecting intron variants that function more efficiently at low Mg(2+) concentrations, with implications for evolution and potential applications in gene targeting.
Collapse
|
20
|
Salmon L, Bascom G, Andricioaei I, Al-Hashimi HM. A general method for constructing atomic-resolution RNA ensembles using NMR residual dipolar couplings: the basis for interhelical motions revealed. J Am Chem Soc 2013; 135:5457-66. [PMID: 23473378 DOI: 10.1021/ja400920w] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to modulate alignment and measure multiple independent sets of NMR residual dipolar couplings (RDCs) has made it possible to characterize internal motions in proteins at atomic resolution and with time scale sensitivity ranging from picoseconds up to milliseconds. The application of such methods to the study of RNA dynamics, however, remains fundamentally limited by the inability to modulate alignment and by strong couplings between internal and overall motions that complicate the quantitative interpretation of RDCs. Here, we address this problem by showing that RNA alignment can be generally modulated, in a controlled manner, by variable elongation of A-form helices and that the information contained within the measured RDCs can be extracted even in the presence of strong couplings between motions and overall alignment via structure-based prediction of alignment. Using this approach, four RDC data sets, and a broad conformational pool obtained from a 8.2 μs molecular dynamics simulation, we successfully construct and validate an atomic resolution ensemble of human immunodeficiency virus type I transactivation response element RNA. This ensemble reveals local motions in and around the bulge involving changes in stacking and hydrogen-bonding interactions, which are undetectable by traditional spin relaxation and drive global changes in interhelical orientation. This new approach broadens the scope of using RDCs in characterizing the dynamics of nucleic acids.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
21
|
Korth MMT, Sigel RKO. Unusually high-affinity Mg(2+) binding at the AU-rich sequence within the antiterminator hairpin of a Mg(2+) riboswitch. Chem Biodivers 2013; 9:2035-49. [PMID: 22976989 DOI: 10.1002/cbdv.201200031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mg(2+)-Responsive riboswitches represent a fascinating example of bifunctional RNAs that sense Mg(2+) ions with high selectivity and autonomously regulate the expression of Mg(2+)-transporter proteins. The mechanism of the mgtA riboswitch is scarcely understood, and a detailed structural analysis is called for to study how this RNA can selectively recognize Mg(2+) and respond by switching between two alternative stem loop structures. In this work, we investigated the structure and Mg(2+)-binding properties of the lower part of the antiterminator loop C from the mgtA riboswitch of Yersinia enterocolitica by solution NMR and report a discrete Mg(2+)-binding site embedded in the AU-rich sequence. At the position of Mg(2+) binding, the helical axis exhibits a distinct kink accompanied by a widening of the major groove, which accommodates the Mg(2+)-binding pocket. An unusually large overlap between two adenine residues on the opposite strands suggests that the bending may be sequence-induced by strong stacking interactions, enabling Mg(2+) to bind at this so-far not described metal-ion binding site.
Collapse
Affiliation(s)
- Maximiliane M T Korth
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (phone: +41 44 635 4652; fax: +41 44 635 6802)
| | | |
Collapse
|
22
|
Donghi D, Pechlaner M, Finazzo C, Knobloch B, Sigel RKO. The structural stabilization of the κ three-way junction by Mg(II) represents the first step in the folding of a group II intron. Nucleic Acids Res 2012; 41:2489-504. [PMID: 23275550 PMCID: PMC3575829 DOI: 10.1093/nar/gks1179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Folding of group II introns is characterized by a first slow compaction of domain 1 (D1) followed by the rapid docking of other domains to this scaffold. D1 compaction initiates in a small subregion encompassing the κ and ζ elements. These two tertiary elements are also the major interaction sites with domain 5 to form the catalytic core. Here, we provide the first characterization of the structure adopted at an early folding step and show that the folding control element can be narrowed down to the three-way junction with the κ motif. In our nuclear magnetic resonance studies of this substructure derived from the yeast mitochondrial group II intron Sc.ai5γ, we show that a high affinity Mg(II) ion stabilizes the κ element and enables coaxial stacking between helices d′ and d′′, favoring a rigid duplex across the three-way junction. The κ-element folds into a stable GAAA-tetraloop motif and engages in A-minor interactions with helix d′. The addition of cobalt(III)hexammine reveals three distinct binding sites. The Mg(II)-promoted structural rearrangement and rigidification of the D1 core can be identified as the first micro-step of D1 folding.
Collapse
Affiliation(s)
- Daniela Donghi
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Schmitzová J, Pena V. Emerging views about the molecular structure of the spliceosomal catalytic center. RNA Biol 2012; 9:1311-8. [PMID: 23064115 DOI: 10.4161/rna.22359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA splicing occurs in two chemical steps that are catalyzed by a large, dynamic RNA-protein complex called the spliceosome. Initially assembled in a catalytically inactive form, the spliceosome undergoes massive compositional and conformational remodeling, through which disparate RNA elements are re-configured and juxtaposed into a functional catalytic center. The intricate construction of the catalytic center requires the assistance of spliceosomal proteins. Recent structure-function analyses have demonstrated that the yeast-splicing factor Cwc2 is a main player that contacts and shapes the catalytic center of the spliceosome into a functional conformation. With this advance, corroborated by the atomic structure of the evolutionarily related group IIC introns, our understanding of the organization and formation of the spliceosomal catalytic center has progressed to a new level.
Collapse
Affiliation(s)
- Jana Schmitzová
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical, Macromolecular Crystallography Group, Göttingen, Germany
| | | |
Collapse
|
24
|
Henriksen NM, Davis DR, Cheatham TE. Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure. JOURNAL OF BIOMOLECULAR NMR 2012; 53:321-39. [PMID: 22714631 PMCID: PMC3405240 DOI: 10.1007/s10858-012-9642-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utility-using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterions-by re-investigating the solution structures of two RNA hairpins that had previously been refined using conventional techniques. The structures, both domain 5 group II intron ribozymes from yeast ai5γ and Pylaiella littoralis, share a nearly identical primary sequence yet the published 3D structures appear quite different. Relatively long restrained MD simulations using the original NMR restraint data identified the presence of a small set of violated distance restraints in one structure and a possibly incorrect trapped bulge nucleotide conformation in the other structure. The removal of problematic distance restraints and the addition of a heating step yielded representative ensembles with very similar 3D structures and much lower pairwise RMSD values. Analysis of ion density during the restrained simulations helped to explain chemical shift perturbation data published previously. These results suggest that restrained MD simulations, with proper caution, can be used to "update" older structures or aid in the refinement of new structures that lack sufficient experimental data to produce a high quality result. Notable cautions include the need for sufficient sampling, awareness of potential force field bias (such as small angle deviations with the current AMBER force fields), and a proper balance between the various restraint weights.
Collapse
Affiliation(s)
- Niel M Henriksen
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 201, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
25
|
Abstract
Metal ions are indispensable for ribonucleic acids (RNAs) folding and activity. First they act as charge neutralization agents, allowing the RNA molecule to attain the complex active three dimensional structure. Second, metal ions are eventually directly involved in function. Nuclear magnetic resonance (NMR) spectroscopy offers several ways to study the RNA-metal ion interactions at an atomic level. Here, we first focus on special requirements for NMR sample preparation for this kind of experiments: the practical aspects of in vitro transcription and purification of small (<50 nt) RNA fragments are described, as well as the precautions that must be taken into account when a sample for metal ion titration experiments is prepared. Subsequently, we discuss the NMR techniques to accurately locate and characterize metal ion binding sites in a large RNA. For example, (2) J-[(1)H,(15)N]-HSQC (heteronuclear single quantum coherence) experiments are described to qualitatively distinguish between different modes of interaction. Finally, part of the last section is devoted to data analysis; this is how to calculate intrinsic affinity constants.
Collapse
|
26
|
Abstract
Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
27
|
Erat MC, Coles J, Finazzo C, Knobloch B, Sigel RK. Accurate analysis of Mg2+ binding to RNA: From classical methods to a novel iterative calculation procedure. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Lambowitz AM, Zimmerly S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 2011; 3:a003616. [PMID: 20463000 DOI: 10.1101/cshperspect.a003616] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Group II introns are mobile ribozymes that self-splice from precursor RNAs to yield excised intron lariat RNAs, which then invade new genomic DNA sites by reverse splicing. The introns encode a reverse transcriptase that stabilizes the catalytically active RNA structure for forward and reverse splicing, and afterwards converts the integrated intron RNA back into DNA. The characteristics of group II introns suggest that they or their close relatives were evolutionary ancestors of spliceosomal introns, the spliceosome, and retrotransposons in eukaryotes. Further, their ribozyme-based DNA integration mechanism enabled the development of group II introns into gene targeting vectors ("targetrons"), which have the unique feature of readily programmable DNA target specificity.
Collapse
Affiliation(s)
- Alan M Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
29
|
Abstract
Unlike proteins, the RNA backbone has numerous degrees of freedom (eight, if one counts the sugar pucker), making RNA modeling, structure building and prediction a multidimensional problem of exceptionally high complexity. And yet RNA tertiary structures are not infinite in their structural morphology; rather, they are built from a limited set of discrete units. In order to reduce the dimensionality of the RNA backbone in a physically reasonable way, a shorthand notation was created that reduced the RNA backbone torsion angles to two (η and θ, analogous to φ and ψ in proteins). When these torsion angles are calculated for nucleotides in a crystallographic database and plotted against one another, one obtains a plot analogous to a Ramachandran plot (the η/θ plot), with highly populated and unpopulated regions. Nucleotides that occupy proximal positions on the plot have identical structures and are found in the same units of tertiary structure. In this review, we describe the statistical validation of the η/θ formalism and the exploration of features within the η/θ plot. We also describe the application of the η/θ formalism in RNA motif discovery, structural comparison, RNA structure building and tertiary structure prediction. More than a tool, however, the η/θ formalism has provided new insights into RNA structure itself, revealing its fundamental components and the factors underlying RNA architectural form.
Collapse
|
30
|
Chen Y, Eldho NV, Dayie TK, Carey PR. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V. Biochemistry 2010; 49:3427-35. [PMID: 20225830 DOI: 10.1021/bi902117w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates with the differences in hydration radii. These subtle differences in electrostatic interactions may be related to observed variations in catalytic activity. For a reconstructed ribozyme comprising domains 1-3 (D123) connected in cis plus domain 5 (D5) supplied in trans, cleavage of spliced exon substrates in the presence of magnesium and K(+) or Cs(+) is more efficient than that in the presence of magnesium with Na(+) or Li(+).
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
31
|
Erat MC, Kovacs H, Sigel RKO. Metal ion-N7 coordination in a ribozyme branch domain by NMR. J Inorg Biochem 2010; 104:611-3. [PMID: 20170966 DOI: 10.1016/j.jinorgbio.2010.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 11/17/2022]
Abstract
The N7 of purine nucleotides presents one of the most dominant metal ion binding sites in nucleic acids. However, the interactions between kinetically labile metal ions like Mg(2+) and these nitrogen atoms are inherently difficult to observe in large RNAs. Rather than using the insensitive direct (15)N detection, here we have used (2)J-[(1)H,(15)N]-HSQC (Heteronuclear Single Quantum Coherence) NMR experiments as a fast and efficient method to specifically observe and characterize such interactions within larger RNA constructs. Using the 27 nucleotides long branch domain of the yeast-mitochondrial group II intron ribozyme Sc.ai5gamma as an example, we show that direct N7 coordination of a Mg(2+) ion takes place in a tetraloop nucleotide. A second Mg(2+) ion, located in the major groove at the catalytic branch site, coordinates mainly in an outer-sphere fashion to the highly conserved flanking GU wobble pairs but not to N7 of the sandwiched branch adenosine.
Collapse
Affiliation(s)
- Michèle C Erat
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Keating KS, Toor N, Perlman PS, Pyle AM. A structural analysis of the group II intron active site and implications for the spliceosome. RNA (NEW YORK, N.Y.) 2010; 16:1-9. [PMID: 19948765 PMCID: PMC2802019 DOI: 10.1261/rna.1791310] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/12/2009] [Indexed: 05/20/2023]
Abstract
Group II introns are self-splicing, mobile genetic elements that have fundamentally influenced the organization of terrestrial genomes. These large ribozymes remain important for gene expression in almost all forms of bacteria and eukaryotes and they are believed to share a common ancestry with the eukaryotic spliceosome that is required for processing all nuclear pre-mRNAs. The three-dimensional structure of a group IIC intron was recently determined by X-ray crystallography, making it possible to visualize the active site and the elaborate network of tertiary interactions that stabilize the molecule. Here we describe the molecular features of the active site in detail and evaluate their correspondence with prior biochemical, genetic, and phylogenetic analyses on group II introns. In addition, we evaluate the structural significance of RNA motifs within the intron core, such as the major-groove triple helix and the domain 5 bulge. Having combined what is known about the group II intron core, we then compare it with known structural features of U6 snRNA in the eukaryotic spliceosome. This analysis leads to a set of predictions for the molecular structure of the spliceosomal active site.
Collapse
Affiliation(s)
- Kevin S Keating
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
33
|
Ritchie DB, Schellenberg MJ, MacMillan AM. Spliceosome structure: piece by piece. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:624-33. [PMID: 19733268 DOI: 10.1016/j.bbagrm.2009.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/22/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
Processing of pre-mRNAs by RNA splicing is an essential step in the maturation of protein coding RNAs in eukaryotes. Structural studies of the cellular splicing machinery, the spliceosome, are a major challenge in structural biology due to the size and complexity of the splicing ensemble. Specifically, the structural details of splice site recognition and the architecture of the spliceosome active site are poorly understood. X-ray and NMR techniques have been successfully used to address these questions defining the structure of individual domains, isolated splicing proteins, spliceosomal RNA fragments and recently the U1 snRNP multiprotein.RNA complex. These results combined with extant biochemical and genetic data have yielded important insights as well as posing fresh questions with respect to the regulation and mechanism of this critical gene regulatory process.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
34
|
Toor N, Keating KS, Pyle AM. Structural insights into RNA splicing. Curr Opin Struct Biol 2009; 19:260-6. [PMID: 19443210 DOI: 10.1016/j.sbi.2009.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/07/2009] [Indexed: 11/16/2022]
Abstract
Intron splicing is a fundamental biological process whereby noncoding sequences are removed from precursor RNAs. Recent work has provided new insights into the structural features and reaction mechanisms of two introns that catalyze their own splicing from precursor RNA: the group I and II introns. In addition, there is an increasing amount of structural information on the spliceosome, which is a ribonucleoprotein machine that catalyzes nuclear pre-mRNA splicing in eukaryotes. Here, we compare structures and catalytic mechanisms of self-splicing RNAs and we discuss the possible implications for spliceosomal reaction mechanisms.
Collapse
Affiliation(s)
- Navtej Toor
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
35
|
The ribozyme core of group II introns: a structure in want of partners. Trends Biochem Sci 2009; 34:189-99. [DOI: 10.1016/j.tibs.2008.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 11/23/2022]
|
36
|
Furler M, Knobloch B, Sigel RK. Influence of decreased solvent permittivity on the structure and magnesium(II)-binding properties of the catalytic domain 5 of a group II intron ribozyme. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.03.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Kim HK, Li J, Nagraj N, Lu Y. Probing metal binding in the 8-17 DNAzyme by TbIII luminescence spectroscopy. Chemistry 2008; 14:8696-703. [PMID: 18688837 DOI: 10.1002/chem.200701789] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metal-dependent cleavage activities of the 8-17 DNAzyme were found to be inhibited by Tb(III) ions, and the apparent inhibition constant in the presence of 100 microM of Zn(II) was measured to be 3.3+/-0.3 microM. The apparent inhibition constants increased linearly with increasing Zn(II) concentration, and the inhibition effect could be fully rescued with addition of active metal ions, indicating that Tb(III) is a competitive inhibitor and that the effect is completely reversible. The sensitized Tb(III) luminescence at 543 nm was dramatically enhanced when Tb(III) was added to the DNAzyme-substrate complex. With an inactive DNAzyme in which the GT wobble pair was replaced with a GC Watson-Crick base pair, the luminescence enhancement was slightly decreased. In addition, when the DNAzyme strand was replaced with a complete complementary strand to the substrate, no significant luminescence enhancement was observed. These observations suggest that Tb(III) may bind to an unpaired region of the DNAzyme, with the GT wobble pair playing a role. Luminescence lifetime measurements in D(2)O and H(2)O suggested that Tb(III) bound to DNAzyme is coordinated by 6.7+/-0.2 water molecules and two or three functional groups from the DNAzyme. Divalent metal ions competed for the Tb(III) binding site(s) in the order Co(II)>Zn(II)>Mn(II)>Pb(II)>Ca(II) approximately Mg(II). This order closely follows the order of DNAzyme activity, with the exception of Pb(II). These results indicate that Pb(II), the most active metal ion, competes for Tb(III) binding differently from other metal ions such as Zn(II), suggesting that Pb(II) may bind to a different site from that for the other metal ions including Zn(II) and Tb(III).
Collapse
Affiliation(s)
- Hee-Kyung Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
38
|
Dayie KT, Padgett RA. A glimpse into the active site of a group II intron and maybe the spliceosome, too. RNA (NEW YORK, N.Y.) 2008; 14:1697-703. [PMID: 18658120 PMCID: PMC2525965 DOI: 10.1261/rna.1154408] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The X-ray crystal structure of an excised group II self-splicing intron was recently solved by the Pyle group. Here we review some of the notable features of this structure and what they may tell us about the catalytic active site of the group II ribozyme and potentially the spliceosome. The new structure validates the central role of domain V in both the structure and catalytic function of the ribozyme and resolves several outstanding puzzles raised by previous biochemical, genetic and structural studies. While lacking both exons as well as the cleavage sites and nucleophiles, the structure reveals how a network of tertiary interactions can position two divalent metal ions in a configuration that is ideal for catalysis.
Collapse
Affiliation(s)
- Kwaku T Dayie
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
39
|
Divalent metal ions promote the formation of the 5'-splice site recognition complex in a self-splicing group II intron. J Inorg Biochem 2008; 102:2147-54. [PMID: 18842303 DOI: 10.1016/j.jinorgbio.2008.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/07/2008] [Accepted: 08/13/2008] [Indexed: 11/21/2022]
Abstract
Group II introns are ribozymes occurring in genes of plants, fungi, lower eukaryotes, and bacteria. These large RNA molecular machines, ranging in length from 400 to 2500 nucleotides, are able to catalyze their own excision from pre-mRNA, as well as to reinsert themselves into RNA or sometimes even DNA. The intronic domain 1 contains two sequences (exon binding sites 1 and 2, EBS1 and EBS2) that pair with their complementary regions at the 3'-end of the 5'-exon (intron binding sites 1 and 2, IBS1 and IBS2) such defining the 5'-splice site. The correct recognition of the 5'-splice site stands at the beginning of the two steps of splicing and is thus crucial for catalysis. It is known that metal ions play an important role in folding and catalysis of ribozymes in general. Here, we characterize the specific metal ion requirements for the formation of the 5'-splice site recognition complex from the mitochondrial yeast group II intron Sc.ai5gamma. Circular dichroism studies reveal that the formation of the EBS1.IBS1 duplex does not necessarily require divalent metal ions, as large amounts of monovalent metal ions also promote the duplex, albeit at a 5000 times higher concentration. Nevertheless, micromolar amounts of divalent metal ions, e.g. Mg2+ or Cd2+, strongly promote the formation of the 5'-splice site. These observations illustrate that a high charge density independent of the nature of the ion is needed for binding EBS1 to IBS1, but divalent metal ions are presumably the better players.
Collapse
|
40
|
Yajima R, Proctor DJ, Kierzek R, Kierzek E, Bevilacqua PC. A conformationally restricted guanosine analog reveals the catalytic relevance of three structures of an RNA enzyme. ACTA ACUST UNITED AC 2008; 14:23-30. [PMID: 17254949 DOI: 10.1016/j.chembiol.2006.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/26/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022]
Abstract
Recent studies indicate that RNA function can be enhanced by the incorporation of conformationally restricted nucleotides. Herein, we use 8-bromoguanosine, a nucleotide analog with an enforced syn conformation, to elucidate the catalytic relevance of ribozyme structures. We chose to study the lead-dependent ribozyme (leadzyme) because structural models derived from NMR, crystal, and computational (MC-Sym) studies differ in which of the three active site guanosines (G7, G9, or G24) have a syn glycosidic torsion angle. Kinetic assays were carried out on 8BrG variants at these three guanosine positions. These data indicate that an 8BrG24 leadzyme is hyperactive, while 8BrG7 and 8BrG9 leadzymes have reduced activity. These findings support the computational model of the leadzyme, rather than the NMR and crystal structures, as being the most relevant to phosphodiester bond cleavage.
Collapse
Affiliation(s)
- Rieko Yajima
- Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
41
|
Divalent metal ions tune the self-splicing reaction of the yeast mitochondrial group II intron Sc.ai5γ. J Biol Inorg Chem 2008; 13:1025-36. [DOI: 10.1007/s00775-008-0390-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/14/2008] [Indexed: 11/25/2022]
|
42
|
Schlatterer JC, Greenbaum NL. Specificity of Mg2+ binding at the Group II intron branch site. Biophys Chem 2008; 136:96-100. [PMID: 18555583 DOI: 10.1016/j.bpc.2008.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 11/15/2022]
Abstract
Metal ions play a crucial role in the conformation and splicing activity of Group II introns. Results from 2-aminopurine fluorescence and solution NMR studies suggest that metal ion binding within the branch site region of native D6 of the Group II intron is specific for alkaline earth metal ions and involves inner sphere coordination. Although Mg(2+) and Ca(2+) still bind to a mutant stem loop sequence from which the internal loop had been deleted, ion binding to the mutant RNA results in decreased, rather than increased, exposure of the branch site residue to solvent. These data further support the role of the internal loop in defining branch site conformation of the Group II intron. The specific bound Mg(2+) may play a bivalent role: facilitates the extrahelical conformation of the branch site and has the potential to act as a Lewis acid during splicing.
Collapse
Affiliation(s)
- Jörg C Schlatterer
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, United States
| | | |
Collapse
|
43
|
Abstract
Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.
Collapse
Affiliation(s)
- Navtej Toor
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, Bass Building, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology and Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
45
|
Knobloch B, Nawrot B, Okruszek A, Sigel RKO. Discrimination in metal-ion binding to RNA dinucleotides with a non-bridging oxygen or sulfur in the phosphate diester link. Chemistry 2008; 14:3100-9. [PMID: 18270983 DOI: 10.1002/chem.200701491] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replacement of a non-bridging oxygen in the phosphate diester bond by a sulfur has become quite popular in nucleic acid research and is often used as a probe, for example, in ribozymes, where the normally essential Mg(2+) is partly replaced by a thiophilic metal ion to reactivate the system. Despite these widely applied rescue experiments no detailed studies exist quantifying the affinity of metal ions to such terminal sulfur atoms. Therefore, we performed potentiometric pH titrations to determine the binding properties of pUp((S))U(3-) towards Mg(2+), Mn(2+), Zn(2+), Cd(2+), and Pb(2+), and compared these data with those previously obtained for the corresponding pUpU(3-) complexes. The primary binding site in both dinucleotides is the terminal phosphate group. Theoretically, also the formation of 10-membered chelates involving the terminal oxygen or sulfur atoms of the (thio)phosphate bridge is possible with both ligands. The results show that Mg(2+) and Mn(2+) exist as open (op) isomers binding to both dinucleotides only at the terminal phosphate group. Whereas Cd(pUpU)(-) only exists as Cd(pUpU)(-)(op), Cd(pUp((S))U)(-) is present to about 64 % as the S-coordinated macrochelate, Cd(pUp((S))U)(-)(cl/PS). Zn(2+) forms with pUp((S))U(3-) three isomeric species, that is, Zn(pUp((S))U)(-)(op), Zn(pUp((S))U)(-)(cl/PO), and Zn(pUp((S))U)(-)(cl/PS), which occur to about 33, 12 (O-bound), and 55 %, respectively. Pb(2+) forms the 10-membered chelate with both nucleotides involving only the terminal oxygen atoms of the (thio)phosphate bridge, that is, no indication of S binding was discovered in this case. Hence, Zn(2+) and Cd(2+) show pronounced thiophilic properties, whereas Mg(2+), Mn(2+), and Pb(2+) coordinate to the oxygen, macrochelate formation being of relevance with Pb(2+) only.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
46
|
Erat MC, Zerbe O, Fox T, Sigel RKO. Solution structure of domain 6 from a self-splicing group II intron ribozyme: a Mg(2+) binding site is located close to the stacked branch adenosine. Chembiochem 2008; 8:306-14. [PMID: 17200997 DOI: 10.1002/cbic.200600459] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Group II intron self-splicing is essential for the correct expression of organellar genes in plants, fungi, and yeast, as well as of bacterial genes. Self-excision of these autocatalytic introns from the primary RNA transcript is achieved in a two-step mechanism that is apparently analogous to that of the eukaryotic spliceosome. The 2'-OH of a conserved adenosine (the branch point) located within domain 6 (D6) acts as the nucleophile in the first step of splicing. Despite the biological importance of group II introns, little is known about their structural organization and usage of metal ions in catalysis. Here we report the first solution structure of a catalytically active D6 construct encompassing the branch point and the neighboring helical regions from the mitochondrial yeast intron ai5gamma. The branch adenosine is the single unpaired nucleotide, and, in contrast to the spliceosomal branch site, resides within the helix, being partially stacked between two flanking GU wobble pairs. We identified a novel prominent Mg(2+) binding site in the major groove of the branch site. Importantly, Mg(2+) addition does not impair the stacking of the branch adenosine, rather it strengthens the interaction with the flanking uridines, as shown by NMR and fluorescence studies. This means that domain 6 presents the branch adenosine in a stacked fashion to the core of group II introns upon folding to the active conformation.
Collapse
Affiliation(s)
- Michèle C Erat
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
47
|
Johannsen S, Paulus S, Düpre N, Müller J, Sigel RKO. Using in vitro transcription to construct scaffolds for one-dimensional arrays of mercuric ions. J Inorg Biochem 2008; 102:1141-51. [PMID: 18289686 DOI: 10.1016/j.jinorgbio.2007.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/22/2007] [Accepted: 12/23/2007] [Indexed: 10/22/2022]
Abstract
In vitro transcription by T7 RNA polymerase can be used to construct scaffolds for the one-dimensional arrangement of mercury(II) ions. In these constructs, the metal ions are located inside of RNA double helices. By replacing the amide protons of two oppositely located uracil residues of complementary strands, mercury(II) becomes coordinated in a linear fashion to form metal-ion mediated base pairs, analogous to the well-known thymine-Hg-thymine base pair in DNA. This is shown here by a combination of various experimental techniques, including NMR spectroscopy, dynamic light scattering, as well as UV and CD spectroscopy. A total of five different double helices, including both palindromic and non-palindromic RNA sequences and between two and twenty consecutive uracil residues, have been synthesized and shown to be able to incorporate mercury(II). The synthesis of r(GGAGU 20CUCC) demonstrates that T7 polymerase is capable of handling long continuous stretches of identical nucleotides, albeit at the cost of an increasing number of abortion products and longer oligonucleotide strands that need to be separated by polyacrylamide gel electrophoresis. This work introduces RNA into the group of nucleic acids that can form metal ion mediated base pairs. The use of such metal-modified nucleic acids has been envisaged in various fields of research, including the generation of molecular wires.
Collapse
Affiliation(s)
- Silke Johannsen
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
48
|
de Lencastre A, Pyle AM. Three essential and conserved regions of the group II intron are proximal to the 5'-splice site. RNA (NEW YORK, N.Y.) 2008; 14:11-24. [PMID: 18039742 PMCID: PMC2151037 DOI: 10.1261/rna.774008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/05/2007] [Indexed: 05/21/2023]
Abstract
Despite the central role of group II introns in eukaryotic gene expression and their importance as biophysical and evolutionary model systems, group II intron tertiary structure is not well understood. In order to characterize the architectural organization of intron ai5gamma, we incorporated the photoreactive nucleotides s(4)U and s(6)dG at specific locations within the intron core and monitored the formation of cross-links in folded complexes. The resulting data reveal the locations for many of the most conserved, catalytically important regions of the intron (i.e., the J2/3 linker region, the IC1(i-ii) bulge in domain 1, the bulge of D5, and the 5'-splice site), showing that all of these elements are closely colocalized. In addition, we show by nucleotide analog interference mapping (NAIM) that a specific functional group in J2/3 plays a role in first-step catalysis, which is consistent with its apparent proximity to other first-step components. These results extend our understanding of active-site architecture during the first step of group II intron self-splicing and they provide a structural basis for spliceosomal comparison.
Collapse
Affiliation(s)
- Alexandre de Lencastre
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
49
|
Tang CF, Shafer RH. Engineering the quadruplex fold: nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes. J Am Chem Soc 2007; 128:5966-73. [PMID: 16637665 PMCID: PMC2597528 DOI: 10.1021/ja0603958] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid quadruplexes, based on the guanine quartet, can arise from one or several strands, depending on the sequence. Those consisting of a single strand are usually folded in one of two principal topologies: antiparallel, in which all or half of the guanine stretches are antiparallel to each other, or parallel, in which all guanine stretches are parallel to each other. In the latter, all guanine nucleosides possess the anti conformation about the glycosidic bond, while in the former, half possess the anti conformation, and half possess the syn conformation. While antiparallel is the more common fold, examples of biologically important, parallel quadruplexes are becoming increasingly common. Thus, it is of interest to understand the forces that determine the quadruplex fold. Here, we examine the influence of individual nucleoside conformation on the overall folding topology by selective substitution of rG for dG. We can reverse the antiparallel fold of the thrombin binding aptamer (TBA) by this approach. Additionally, this substitution converts a unimolecular quadruplex into a bimolecular one. Similar reverse substitutions in the all-RNA analogue of TBA result in a parallel to antiparallel change in topology and alter the strand configuration from bimolecular to unimolecular. On the basis of the specific substitutions made, we conclude that the strong preference of guanine ribonucleosides for the anti conformation is the driving force for the change in topology. These results demonstrate how conformational properties of guanine nucleosides govern not only the quadruplex folding topology but also impact quadruplex molecularity and provide a means to control these properties.
Collapse
Affiliation(s)
- Chung-Fei Tang
- Department of Pharmaceutical Chemistry, School of Pharmacy and Graduate Group in Chemistry and Chemical Biology, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
50
|
Das R, Baker D. Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci U S A 2007; 104:14664-9. [PMID: 17726102 PMCID: PMC1955458 DOI: 10.1073/pnas.0703836104] [Citation(s) in RCA: 332] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Indexed: 11/18/2022] Open
Abstract
RNA tertiary structure prediction has been based almost entirely on base-pairing constraints derived from phylogenetic covariation analysis. We describe here a complementary approach, inspired by the Rosetta low-resolution protein structure prediction method, that seeks the lowest energy tertiary structure for a given RNA sequence without using evolutionary information. In a benchmark test of 20 RNA sequences with known structure and lengths of approximately 30 nt, the new method reproduces better than 90% of Watson-Crick base pairs, comparable with the accuracy of secondary structure prediction methods. In more than half the cases, at least one of the top five models agrees with the native structure to better than 4 A rmsd over the backbone. Most importantly, the method recapitulates more than one-third of non-Watson-Crick base pairs seen in the native structures. Tandem stacks of "sheared" base pairs, base triplets, and pseudoknots are among the noncanonical features reproduced in the models. In the cases in which none of the top five models were native-like, higher energy conformations similar to the native structures are still sampled frequently but not assigned low energies. These results suggest that modest improvements in the energy function, together with the incorporation of information from phylogenetic covariance, may allow confident and accurate structure prediction for larger and more complex RNA chains.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Box 357350, Seattle, WA 98195
| | - David Baker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Box 357350, Seattle, WA 98195
| |
Collapse
|