1
|
Tang Q, Gulkis M, McKenna R, Çağlayan M. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair. Nat Commun 2022; 13:3860. [PMID: 35790757 PMCID: PMC9256674 DOI: 10.1038/s41467-022-31585-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
DNA ligase I (LIG1) catalyzes the ligation of the nick repair intermediate after gap filling by DNA polymerase (pol) β during downstream steps of the base excision repair (BER) pathway. However, how LIG1 discriminates against the mutagenic 3'-mismatches incorporated by polβ at atomic resolution remains undefined. Here, we determine the X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncover the ligase strategies that favor or deter the ligation of base substitution errors. Our structures reveal that the LIG1 active site can accommodate a G:T mismatch in the wobble conformation, where an adenylate (AMP) is transferred to the 5'-phosphate of a nick (DNA-AMP), while it stays in the LIG1-AMP intermediate during the initial step of the ligation reaction in the presence of an A:C mismatch at the 3'-strand. Moreover, we show mutagenic ligation and aberrant nick sealing of dG:T and dA:C mismatches, respectively. Finally, we demonstrate that AP-endonuclease 1 (APE1), as a compensatory proofreading enzyme, removes the mismatched bases and interacts with LIG1 at the final BER steps. Our overall findings provide the features of accurate versus mutagenic outcomes coordinated by a multiprotein complex including polβ, LIG1, and APE1 to maintain efficient repair.
Collapse
Affiliation(s)
- Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Abstract
B-family DNA polymerases (PolBs) of different groups are widespread in Archaea, and different PolBs often coexist in the same organism. Many of these PolB enzymes remain to be investigated. One of the main groups that is poorly characterized is PolB2, whose members occur in many archaea but are predicted to be inactivated forms of DNA polymerase. Here, Sulfolobus islandicus DNA polymerase 2 (Dpo2), a PolB2 enzyme, was expressed in its native host and purified. Characterization of the purified enzyme revealed that the polymerase possesses a robust nucleotide incorporation activity but is devoid of the 3'-5' exonuclease activity. Enzyme kinetics analyses showed that Dpo2 replicates undamaged DNA templates with high fidelity, which is consistent with its inefficient nucleotide insertion activity opposite different DNA lesions. Strikingly, the polymerase is highly efficient in extending mismatches and mispaired primer termini once a nucleotide is placed opposite a damaged site. This extender polymerase represents a novel type of prokaryotic PolB specialized for DNA damage repair in Archaea. IMPORTANCE In this work, we report that Sulfolobus islandicus Dpo2, a B-family DNA polymerase once predicted to be an inactive form, is a bona fide DNA polymerase functioning in translesion synthesis. S. islandicus Dpo2 is a member of a large group of B-family DNA polymerases (PolB2) that are present in many archaea and some bacteria, and they carry variations in well-conserved amino acids in the functional domains responsible for polymerization and proofreading. However, we found that this prokaryotic B-family DNA polymerase not only replicates undamaged DNA with high fidelity but also extends mismatch and DNA lesion-containing substrates with high efficiencies. With these data, we propose this enzyme functions as an extender polymerase, the first prokaryotic enzyme of this type. Our data also suggest this PolB2 enzyme represents a functional counterpart of the eukaryotic DNA polymerase Pol zeta, an enzyme that is devoted to DNA damage repair.
Collapse
|
3
|
Feng X, Zhang B, Xu R, Gao Z, Liu X, Yuan G, Ishino S, Feng M, Shen Y, Ishino Y, She Q. Enzymatic Switching Between Archaeal DNA Polymerases Facilitates Abasic Site Bypass. Front Microbiol 2021; 12:802670. [PMID: 34987494 PMCID: PMC8721586 DOI: 10.3389/fmicb.2021.802670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Abasic sites are among the most abundant DNA lesions encountered by cells. Their replication requires actions of specialized DNA polymerases. Herein, two archaeal specialized DNA polymerases were examined for their capability to perform translesion DNA synthesis (TLS) on the lesion, including Sulfolobuss islandicus Dpo2 of B-family, and Dpo4 of Y-family. We found neither Dpo2 nor Dpo4 is efficient to complete abasic sites bypass alone, but their sequential actions promote lesion bypass. Enzyme kinetics studies further revealed that the Dpo4's activity is significantly inhibited at +1 to +3 site past the lesion, at which Dpo2 efficiently extends the primer termini. Furthermore, their activities are inhibited upon synthesis of 5-6 nt TLS patches. Once handed over to Dpo1, these substrates basically inactivate its exonuclease, enabling the transition from proofreading to polymerization of the replicase. Collectively, by functioning as an "extender" to catalyze further DNA synthesis past the lesion, Dpo2 bridges the activity gap between Dpo4 and Dpo1 in the archaeal TLS process, thus achieving more efficient lesion bypass.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Baochang Zhang
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruyi Xu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhe Gao
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaotong Liu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guanhua Yuan
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mingxia Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Sugimoto N, Endoh T, Takahashi S, Tateishi-Karimata H. Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: “To B or Not To B, That Is the Question”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4. Biochem J 2021; 477:2859-2871. [PMID: 32686822 DOI: 10.1042/bcj20200449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/28/2023]
Abstract
Reactive oxygen species induced by ionizing radiation and metabolic pathways generate 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as two major forms of oxidative damage. The mutagenicity of oxoG, which promotes G to T transversions, is attributed to the lesion's conformational flexibility that enables Hoogsteen base pairing with dATP in the confines of DNA polymerases. The mutagenesis mechanism of oxoA, which preferentially causes A to C transversions, remains poorly characterized. While structures for oxoA bypass by human DNA polymerases are available, that of prokaryotic DNA polymerases have not been reported. Herein, we report kinetic and structural characterizations of Sulfolobus solfataricus Dpo4 incorporating a nucleotide opposite oxoA. Our kinetic studies show oxoA at the templating position reduces the replication fidelity by ∼560-fold. The catalytic efficiency of the oxoA:dGTP insertion is ∼300-fold greater than that of the dA:dGTP insertion, highlighting the promutagenic nature of oxoA. The relative efficiency of the oxoA:dGTP misincorporation is ∼5-fold greater than that of the oxoG:dATP misincorporation, suggesting the mutagenicity of oxoA is comparable to that of oxoG. In the Dpo4 replicating base pair site, oxoA in the anti-conformation forms a Watson-Crick base pair with an incoming dTTP, while oxoA in the syn-conformation assumes Hoogsteen base pairing with an incoming dGTP, displaying the dual coding potential of the lesion. Within the Dpo4 active site, the oxoA:dGTP base pair adopts a Watson-Crick-like geometry, indicating Dpo4 influences the oxoA:dGTP base pair conformation. Overall, the results reported here provide insights into the miscoding properties of the major oxidative adenine lesion during translesion synthesis.
Collapse
|
6
|
Berroyer A, Alvarado G, Larson ED. Response of Sulfolobus solfataricus Dpo4 polymerase in vitro to a DNA G-quadruplex. Mutagenesis 2020; 34:289-297. [PMID: 31169295 DOI: 10.1093/mutage/gez010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Repetitive DNA sequences support the formation of structures that can interrupt replication and repair, leading to breaks and mutagenesis. One particularly stable structure is G-quadruplex (G4) DNA, which is four-stranded and formed from tandemly repetitive guanine bases. When folded within a template, G4 interferes with DNA synthesis. Similar to non-duplex structures, DNA base lesions can also halt an advancing replication fork, but the Y-family polymerases solve this problem by bypassing the damage. In order to better understand how guanine-rich DNA is replicated, we have investigated the activity of the model Y-family polymerase, Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), on guanine-rich templates in vitro. We find that Dpo4 progression on templates containing either a single GC-rich hairpin or a G4 DNA structure is greatly reduced and synthesis stalls at the structure. Human polymerase eta (hPol eta) showed the same pattern of stalling at G4; however, and in contrast to Klenow, hPol eta and Dpo4 partially synthesise into the guanine repeat. Substitution of the nucleotide selectivity residue in Dpo4 with alanine permitted ribonucleotide incorporation on unstructured templates, but this further reduced the ability of Dpo4 to synthesise across from the guanine repeats. The advancement of Dpo4 on G4 templates was highest when the reaction was supplied with only deoxycytidine triphosphate, suggesting that high-fidelity synthesis is favoured over misincorporation. Our results are consistent with a model where the Y-family polymerases pause upon encountering G4 structures but have an ability to negotiate some synthesis through tetrad-associated guanines. This suggests that the Y-family polymerases reduce mutagenesis by catalysing the accurate replication of repetitive DNA sequences, but most likely in concert with additional replication and structure resolution activities.
Collapse
Affiliation(s)
- Alexandra Berroyer
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Gloria Alvarado
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
7
|
Lai CT, Schatz GC. Free-Energy Profiles for A-/B-DNA Conformational Transitions in Isolated and Aggregated States from All-Atom Molecular Dynamics Simulation. J Phys Chem B 2018; 122:7990-7996. [PMID: 30067905 DOI: 10.1021/acs.jpcb.8b04573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In ordinary aqueous solution, B-DNA is the major structural form of DNA. After the addition of ethanol, DNA is thought to be aggregated/condensed in the A-form structure. However, there is uncertainty as to whether the B-to-A conformational change is connected to the aggregation/condensation steps. In this study, we performed all-atom molecular dynamics simulations and calculated the free-energy surface involved in the A/B conformational transition for isolated and aggregated Dickerson-Drew dodecamers (DDDs) in water and 85% ethanol environments. We found in the case of an isolated DDD, the overall free-energy profile is entirely downhill to give the B-DNA conformation in both water and 85% ethanol. However, in the aggregated state and 85% ethanol environment, there is a free-energy minimum associated with the A-DNA region in addition to the global B-DNA minimum, and there is a ∼3 kcal/mol free-energy barrier to the A-to-B conformational change. The molecular dynamics results suggest that aggregation of DNA is essential for forming A-DNA.
Collapse
Affiliation(s)
- Cheng-Tsung Lai
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - George C Schatz
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
| |
Collapse
|
8
|
Raper AT, Reed AJ, Suo Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem Rev 2018; 118:6000-6025. [DOI: 10.1021/acs.chemrev.7b00685] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Austin T. Raper
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew J. Reed
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Amini SK. Relative Populations of Some Tautomeric Forms of 2'-Deoxyguanosine-5-Fluorouridine Mismatch. J Phys Chem B 2018; 122:4433-4444. [PMID: 29608855 DOI: 10.1021/acs.jpcb.8b00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The importance of the 2'-deoxyguanosine-uridine mispair as the most occurring mismatch in transcriptional studies of RNAs from DNAs is multiplied when 5-halo-substituted uridine species cause a serious increase in the probability of its occurrence. Many studies relate this higher probability to the existence of possible tautomeric and ionic forms of its constituent bases. According to these statements, relative populations of mismatches between 5-fluorouridine and both keto and enol forms of 2'-deoxyguanosine are computed by using a conformational search. In order to have a complete scan of all of the highly probable conformers in a moderate computational time, an extensive conformational search methodology is employed here, which benefits from the advantages of both the molecular dynamics simulations and quantum mechanics calculations. The population of an enolic tautomer of normal wobble orientation is about 0.057% of that of its keto tautomer, whereas the population of an enolic tautomer of reverse wobble orientation is about 0.0054% of that of its keto tautomer. Totally, the reverse wobble orientation is about six times more populated than the normal wobble orientation. Calculated populations are in good agreement with experimental populations of closely related compounds. The reliability of the applied methodology is certified, in part, by a good agreement obtained between some experimental data and corresponding Boltzmann-weighted average data of most probable conformers such as NMR parameters. The validation of this methodology is certified with high accuracy by applying it on the substituted diuridine pairs, where experimental populations are available. Not only are the calculated populations and NMR parameters of this test in very good agreement with the experimental data, but also they are free of the ambiguities mentioned by experimentalists.
Collapse
Affiliation(s)
- Saeed K Amini
- Chemistry and Chemical Engineering Research Center of Iran , Tehran , Iran
| |
Collapse
|
10
|
Tateishi-Karimata H, Sugimoto N. Biological and nanotechnological applications using interactions between ionic liquids and nucleic acids. Biophys Rev 2018; 10:931-940. [PMID: 29687271 DOI: 10.1007/s12551-018-0422-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/08/2018] [Indexed: 12/23/2022] Open
Abstract
Nucleic acids have emerged as powerful biological and nanotechnological tools. In biological and nanotechnological experiments, methods of extracting and purifying nucleic acids from various types of cells and their storage are critical for obtaining reproducible experimental results. In nanotechnological experiments, methods for regulating the conformational polymorphism of nucleic acids and increasing sequence selectivity for base pairing of nucleic acids are important for developing nucleic acid-based nanomaterials. However, dearth of media that foster favourable behaviour of nucleic acids has been a bottleneck for promoting the biology and nanotechnology using the nucleic acids. Ionic liquids (ILs) are solvents that may be potentially used for controlling the properties of the nucleic acids. Here, we review researches regarding the behaviour of nucleic acids in ILs. The efficiency of extraction and purification of nucleic acids from biological samples is increased by IL addition. Moreover, nucleic acids in ILs show long-term stability, which maintains their structures and enhances nuclease resistance. Nucleic acids in ILs can be used directly in polymerase chain reaction and gene expression analysis with high efficiency. Moreover, the stabilities of the nucleic acids for duplex, triplex, and quadruplex (G-quadruplex and i-motif) structures change drastically with IL cation-nucleic acid interactions. Highly sensitive DNA sensors have been developed based on the unique changes in the stability of nucleic acids in ILs. The behaviours of nucleic acids in ILs detailed here should be useful in the design of nucleic acids to use as biological and nanotechnological tools.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe, 650-0047, Japan. .,Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
11
|
Hintze BJ, Richardson JS, Richardson DC. Mismodeled purines: implicit alternates and hidden Hoogsteens. Acta Crystallogr D Struct Biol 2017; 73:852-859. [PMID: 28994414 PMCID: PMC5633910 DOI: 10.1107/s2059798317013729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Hoogsteen base pairs are seen in DNA crystal structures, but only rarely. This study tests whether Hoogsteens or other syn purines are either under-modeled or over-modeled, which are known problems for rare conformations. Candidate purines needing a syn/anti 180° flip were identified by diagnostic patterns of difference electron-density peaks. Manual inspection narrowed 105 flip candidates to 20 convincing cases, all at ≤2.7 Å resolution. Rebuilding and refinement confirmed that 14 of these were authentic purine flips. Seven examples are modeled as Watson-Crick base pairs but should be Hoogsteens (commonest at duplex termini), and three had the opposite issue. Syn/anti flips were also needed for some single-stranded purines. Five of the 20 convincing cases arose from an unmodeled alternate duplex running in the opposite direction. These are in semi-palindromic DNA sequences bound by a homodimeric protein and show flipped-purine-like difference peaks at residues where the palindrome is imperfect. This study documents types of incorrect modeling which are worth avoiding. However, the primary conclusions are that such mistakes are infrequent, the bias towards fitting anti purines is very slight, and the occurrence rate of Hoogsteen base pairs in DNA crystal structures remains unchanged from earlier estimates at ∼0.3%.
Collapse
|
12
|
Shearer CJ, Yu L, Fenati R, Sibley AJ, Quinton JS, Gibson CT, Ellis AV, Andersson GG, Shapter JG. Adsorption and Desorption of Single‐Stranded DNA from Single‐Walled Carbon Nanotubes. Chem Asian J 2017; 12:1625-1634. [DOI: 10.1002/asia.201700446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Cameron J. Shearer
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - LePing Yu
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Renzo Fenati
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
- Present Address: School of Chemical and Biomolecular Engineering University of Melbourne, Parkville Victoria 3010 Australia
| | - Alexander J. Sibley
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Jamie S. Quinton
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Christopher T. Gibson
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Amanda V. Ellis
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
- Present Address: School of Chemical and Biomolecular Engineering University of Melbourne, Parkville Victoria 3010 Australia
| | - Gunther G. Andersson
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Joseph G. Shapter
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| |
Collapse
|
13
|
Structures of DNA Polymerase Mispaired DNA Termini Transitioning to Pre-catalytic Complexes Support an Induced-Fit Fidelity Mechanism. Structure 2016; 24:1863-1875. [PMID: 27642161 DOI: 10.1016/j.str.2016.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022]
Abstract
High-fidelity DNA synthesis requires that polymerases display a strong preference for right nucleotide insertion. When the wrong nucleotide is inserted, the polymerase deters extension from the mismatched DNA terminus. Twenty-three crystallographic structures of DNA polymerase β with terminal template-primer mismatches were determined as binary DNA and ternary pre-catalytic substrate complexes. These structures indicate that the mismatched termini adopt various distorted conformations that attempt to satisfy stacking and hydrogen-bonding interactions. The binary complex structures indicate an induced strain in the mismatched template nucleotide. Addition of a non-hydrolyzable incoming nucleotide stabilizes the templating nucleotide with concomitant strain in the primer terminus. Several dead-end ternary complex structures suggest that DNA synthesis might occur as the enzyme transitions from an open to a closed complex. The structures are consistent with an induced-fit mechanism where a mismatched terminus is misaligned relative to the correct incoming nucleotide to deter or delay further DNA synthesis.
Collapse
|
14
|
Gahlon HL, Boby ML, Sturla SJ. O6-alkylguanine postlesion DNA synthesis is correct with the right complement of hydrogen bonding. ACS Chem Biol 2014; 9:2807-14. [PMID: 25259614 DOI: 10.1021/cb500415q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability of a DNA polymerase to replicate DNA beyond a mismatch containing a DNA lesion during postlesion DNA synthesis (PLS) can be a contributing factor to mutagenesis. In this study, we investigate the ability of Dpo4, a Y-family DNA polymerase from Sulfolobus solfataricus, to perform PLS beyond the pro-mutagenic DNA adducts O(6)-benzylguanine (O(6)-BnG) and O(6)-methylguanine (O(6)-MeG). Here, O(6)-BnG and O(6)-MeG were paired opposite artificial nucleosides that were structurally altered to systematically test the influence of hydrogen bonding and base pair size and shape on O(6)-alkylguanine PLS. Dpo4-mediated PLS was more efficient past pairs containing Benzi than pairs containing the other artificial nucleoside probes. Based on steady-state kinetic analysis, frequencies of mismatch extension were 7.4 × 10(-3) and 1.5 × 10(-3) for Benzi:O(6)-MeG and Benzi:O(6)-BnG pairs, respectively. Correct extension was observed when O(6)-BnG and O(6)-MeG were paired opposite the smaller nucleoside probes Benzi and BIM; conversely, Dpo4 did not extend past the larger nucleoside probes, Peri and Per, placed opposite O(6)-BnG and O(6)-MeG. Interestingly, Benzi was extended with high fidelity by Dpo4 when it was paired opposite O(6)-BnG and O(6)-MeG but not opposite G. These results indicate that hydrogen bonding is an important noncovalent interaction that influences the fidelity and efficiency of Dpo4 to perform high-fidelity O(6)-alkylguanine PLS.
Collapse
Affiliation(s)
- Hailey L. Gahlon
- Department of Health Sciences
and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Melissa L. Boby
- Department of Health Sciences
and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shana J. Sturla
- Department of Health Sciences
and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Tateishi-Karimata H, Sugimoto N. Structure, stability and behaviour of nucleic acids in ionic liquids. Nucleic Acids Res 2014; 42:8831-44. [PMID: 25013178 PMCID: PMC4132699 DOI: 10.1093/nar/gku499] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are 'green' solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A-T base pairs are more stable than G-C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson-Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan
| |
Collapse
|
16
|
Abstract
![]()
This review will summarize our structural
and kinetic studies of
RB69 DNA polymerase (RB69pol) as well as selected variants of the
wild-type enzyme that were undertaken to obtain a deeper understanding
of the exquisitely high fidelity of B family replicative DNA polymerases.
We discuss how the structures of the various RB69pol ternary complexes
can be used to rationalize the results obtained from pre-steady-state
kinetic assays. Our main findings can be summarized as follows. (i)
Interbase hydrogen bond interactions can increase catalytic efficiency
by 5000-fold; meanwhile, base selectivity is not solely determined
by the number of hydrogen bonds between the incoming dNTP and the
templating base. (ii) Minor-groove hydrogen bond interactions at positions n – 1 and n – 2 of the primer
strand and position n – 1 of the template
strand in RB69pol ternary complexes are essential for efficient primer
extension and base selectivity. (iii) Partial charge interactions
among the incoming dNTP, the penultimate base pair, and the hydration
shell surrounding the incoming dNTP modulate nucleotide insertion
efficiency and base selectivity. (iv) Steric clashes between mismatched
incoming dNTPs and templating bases with amino acid side chains in
the nascent base pair binding pocket (NBP) as well as weak interactions
and large gaps between the incoming dNTPs and the templating base
are some of the reasons that incorrect dNTPs are incorporated so inefficiently
by wild-type RB69pol. In addition, we developed a tC°–tCnitro Förster resonance energy transfer assay to monitor
partitioning of the primer terminus between the polymerase and exonuclease
subdomains.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8024, United States
| | | |
Collapse
|
17
|
Maxwell BA, Xu C, Suo Z. Conformational dynamics of a Y-family DNA polymerase during substrate binding and catalysis as revealed by interdomain Förster resonance energy transfer. Biochemistry 2014; 53:1768-78. [PMID: 24568554 PMCID: PMC3985488 DOI: 10.1021/bi5000146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Numerous kinetic, structural, and
theoretical studies have established
that DNA polymerases adjust their domain structures to enclose nucleotides
in their active sites and then rearrange critical active site residues
and substrates for catalysis, with the latter conformational change
acting to kinetically limit the correct nucleotide incorporation rate.
Additionally, structural studies have revealed a large conformational
change between the apoprotein and the DNA–protein binary state
for Y-family DNA polymerases. In previous studies [Xu, C., Maxwell,
B. A., Brown, J. A., Zhang, L., and Suo, Z. (2009) PLoS Biol.7, e1000225], a real-time Förster resonance
energy transfer (FRET) method was developed to monitor the global
conformational transitions of DNA polymerase IV from Sulfolobus
solfataricus (Dpo4), a prototype Y-family enzyme, during
nucleotide binding and incorporation by measuring changes in distance
between locations on the enzyme and the DNA substrate. To elucidate
further details of the conformational transitions of Dpo4 during substrate
binding and catalysis, in this study, the real-time FRET technique
was used to monitor changes in distance between various pairs of locations
in the protein itself. In addition to providing new insight into the
conformational changes as revealed in previous studies, the results
here show that the previously described conformational change between
the apo and DNA-bound states of Dpo4 occurs in a mechanistic step
distinct from initial formation or dissociation of the binary complex
of Dpo4 and DNA.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
18
|
Comparable stability of Hoogsteen and Watson-Crick base pairs in ionic liquid choline dihydrogen phosphate. Sci Rep 2014; 4:3593. [PMID: 24399194 PMCID: PMC3884231 DOI: 10.1038/srep03593] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson-Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo.
Collapse
|
19
|
Gahlon HL, Schweizer WB, Sturla SJ. Tolerance of base pair size and shape in postlesion DNA synthesis. J Am Chem Soc 2013; 135:6384-7. [PMID: 23560524 DOI: 10.1021/ja311434s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The influence of base pair size and shape on the fidelity of DNA polymerase-mediated extension past lesion-containing mispairs was examined. Primer extension analysis was performed with synthetic nucleosides paired opposite the pro-mutagenic DNA lesion O(6)-benzylguanine (O(6)-BnG). These data indicate that the error-prone DNA polymerase IV (Dpo4) inefficiently extended past the larger Peri:O(6)-BnG base pair, and in contrast, error-free extension was observed for the smaller BIM:O(6)-BnG base pair. Steady-state kinetic analysis revealed that Dpo4 catalytic efficiency was strongly influenced by the primer:template base pair. Compared to the C:G pair, a 1.9- and 79,000-fold reduction in Dpo4 efficiency was observed for terminal C:O(6)-BnG and BIM:G base pairs respectively. These results demonstrate the impact of geometrical size and shape on polymerase-mediated mispair extension.
Collapse
Affiliation(s)
- Hailey L Gahlon
- Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
20
|
Xia S, Wang J, Konigsberg WH. DNA mismatch synthesis complexes provide insights into base selectivity of a B family DNA polymerase. J Am Chem Soc 2012; 135:193-202. [PMID: 23214497 DOI: 10.1021/ja3079048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Current hypotheses that attempt to rationalize the high degree of base selectivity exhibited by replicative DNA polymerases (pols) concur that ternary complexes formed with incorrect dNTPs are destabilized. Knowing what accounts for this destabilization is likely to be the key to understanding base discrimination. To address this issue, we have determined crystal structures of ternary complexes with all 12 mismatches using an engineered RB69 pol quadruple mutant (qm, L415A/L561A/S565G/Y567A) that enabled us to capture nascent mispaired dNTPs. These structures show that mismatches in the nascent base-pair binding pocket (NBP) of the qm pol differ markedly from mismatches embedded in binary pol-DNA complexes. Surprisingly, only 3 of 12 mismatches clash with the NBP when they are modeled into the wild-type (wt) pol. The remaining can fit into a wt pol ternary complex but deviate from normal Watson-Crick base-pairs. Repositioning of the templating nucleotide residue and the enlarged NBP in qm ternary complex play important roles in accommodating incorrect incoming dNTPs. From these structures, we propose additional reasons as to why incorrect dNTPs are incorporated so inefficiently by wt RB69 pol: (i) steric clashes with side chains in the NBP after Fingers closing; (ii) weak interactions or large gaps between the incoming dNTP and the templating base; and (iii) burying a protonated base in the hydrophobic environment of the NBP. All of these possibilities would be expected to destabilize the closed ternary complex so that incorporation of incorrect dNTP would be a rare event.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
21
|
MsDpo4-a DinB Homolog from Mycobacterium smegmatis-Is an Error-Prone DNA Polymerase That Can Promote G:T and T:G Mismatches. J Nucleic Acids 2012; 2012:285481. [PMID: 22523658 PMCID: PMC3317225 DOI: 10.1155/2012/285481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 12/09/2011] [Indexed: 11/17/2022] Open
Abstract
Error-prone DNA synthesis in prokaryotes imparts plasticity to the genome to allow for evolution in unfavorable environmental conditions, and this phenomenon is termed adaptive mutagenesis. At a molecular level, adaptive mutagenesis is mediated by upregulating the expression of specialized error-prone DNA polymerases that generally belong to the Y-family, such as the polypeptide product of the dinB gene in case of E. coli. However, unlike E. coli, it has been seen that expression of the homologs of dinB in Mycobacterium tuberculosis are not upregulated under conditions of stress. These studies suggest that DinB homologs in Mycobacteria might not be able to promote mismatches and participate in adaptive mutagenesis. We show that a representative homolog from Mycobacterium smegmatis (MsDpo4) can carry out template-dependent nucleotide incorporation and therefore is a DNA polymerase. In addition, it is seen that MsDpo4 is also capable of misincorporation with a significant ability to promote G:T and T:G mismatches. The frequency of misincorporation for these two mismatches is similar to that exhibited by archaeal and prokaryotic homologs. Overall, our data show that MsDpo4 has the capacity to facilitate transition mutations and can potentially impart plasticity to the genome.
Collapse
|
22
|
Rechkoblit O, Delaney JC, Essigmann JM, Patel DJ. Implications for damage recognition during Dpo4-mediated mutagenic bypass of m1G and m3C lesions. Structure 2011; 19:821-32. [PMID: 21645853 DOI: 10.1016/j.str.2011.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/16/2011] [Accepted: 03/22/2011] [Indexed: 01/23/2023]
Abstract
DNA is susceptible to alkylation damage by a number of environmental agents that modify the Watson-Crick edge of the bases. Such lesions, if not repaired, may be bypassed by Y-family DNA polymerases. The bypass polymerase Dpo4 is strongly inhibited by 1-methylguanine (m1G) and 3-methylcytosine (m3C), with nucleotide incorporation opposite these lesions being predominantly mutagenic. Further, extension after insertion of both correct and incorrect bases, introduces additional base substitution and deletion errors. Crystal structures of the Dpo4 ternary extension complexes with correct and mismatched 3'-terminal primer bases opposite the lesions reveal that both m1G and m3C remain positioned within the DNA template/primer helix. However, both correct and incorrect pairing partners exhibit pronounced primer terminal nucleotide distortion, being primarily evicted from the DNA helix when opposite m1G or misaligned when pairing with m3C. Our studies provide insights into mechanisms related to hindered and mutagenic bypass of methylated lesions and models associated with damage recognition by repair demethylases.
Collapse
Affiliation(s)
- Olga Rechkoblit
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
23
|
Xie P. A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases. Theor Biol Med Model 2011; 8:22. [PMID: 21699732 PMCID: PMC3138451 DOI: 10.1186/1742-4682-8-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/24/2011] [Indexed: 02/06/2023] Open
Abstract
Y-family DNA polymerases are characterized by low-fidelity synthesis on undamaged DNA and ability to catalyze translesion synthesis over the damaged DNA. Their translocation along the DNA template is an important event during processive DNA synthesis. In this work we present a Brownian ratchet model for this translocation, where the directed translocation is rectified by the nucleotide binding to the polymerase. Using the model, different features of the available structures for Dpo4, Dbh and polymerase ι in binary and ternary forms can be easily explained. Other dynamic properties of the Y-family polymerases such as the fast translocation event upon dNTP binding for Dpo4 and the considerable variations of the processivity among the polymerases can also be well explained by using the model. In addition, some predicted results of the DNA synthesis rate versus the external force acting on Dpo4 and Dbh polymerases are presented. Moreover, we compare the effect of the external force on the DNA synthesis rate of the Y-family polymerase with that of the replicative DNA polymerase.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
24
|
Jezewska MJ, Szymanski MR, Bujalowski W. Kinetic mechanism of the ssDNA recognition by the polymerase X from African Swine Fever Virus. Dynamics and energetics of intermediate formations. Biophys Chem 2011; 158:9-20. [PMID: 21605932 DOI: 10.1016/j.bpc.2011.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 11/16/2022]
Abstract
Kinetic mechanism of the ssDNA recognition by the polymerase X of African Swine Fever Virus (ASFV) and energetics of intermediate formations have been examined, using the fluorescence stopped-flow method. The association is a minimum three-step process PolX + ssDNA k(1) <-- --> k(-1) (P-ssDNA)(1) k(2) <-- --> k(-2) (P-ssDNA)(2) k(3) <-- --> k(-3) (P-ssDNA)(3). The nucleic acid makes the initial contact through the C-terminal domain, which generates most of the overall ΔG°. In the second step the nucleic acid engages the N-terminal domain, assuming the bent structure. In equilibrium, the complex exists in at least two different states. Apparent enthalpy and entropy changes, characterizing formations of intermediates, reflect association of the DNA with the C-terminal domain and gradual engagement of the catalytic domain by the nucleic acid. The intrinsic DNA-binding steps are entropy-driven processes accompanied by the net release of water molecules. The final conformational transition of the complex does not involve any large changes of the DNA topology, or the net release of the water molecules.
Collapse
Affiliation(s)
- Maria J Jezewska
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, 77555-1053, United States
| | | | | |
Collapse
|
25
|
Interactions of the DNA polymerase X from African Swine Fever Virus with the ssDNA. Properties of the total DNA-binding site and the strong DNA-binding subsite. Biophys Chem 2011; 158:26-37. [PMID: 21601347 DOI: 10.1016/j.bpc.2011.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/08/2011] [Accepted: 04/18/2011] [Indexed: 01/24/2023]
Abstract
Interactions of the polymerase X from the African Swine Fever Virus with the ssDNA have been studied, using quantitative fluorescence titration and fluorescence resonance energy transfer techniques. The primary DNA-binding subsite of the enzyme, independent of the DNA conformation, is located on the C-terminal domain. Association of the bound DNA with the catalytic N-terminal domain finalizes the engagement of the total DNA-binding site of the enzyme and induces a large topological change in the structure of the bound ssDNA. The free energy of binding includes a conformational transition of the protein. Large positive enthalpy changes accompanying the ASFV pol X-ssDNA association indicate that conformational changes of the complex are induced by the engagement of the N-terminal domain. The enthalpy changes are offset by large entropy changes accompanying the DNA binding to the C-terminal domain and the total DNA-binding site, predominantly resulting from the release of water molecules.
Collapse
|
26
|
Irimia A, Loukachevitch LV, Eoff RL, Guengerich FP, Egli M. Metal-ion dependence of the active-site conformation of the translesion DNA polymerase Dpo4 from Sulfolobus solfataricus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1013-8. [PMID: 20823515 PMCID: PMC2935216 DOI: 10.1107/s1744309110029374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/23/2010] [Indexed: 11/10/2022]
Abstract
Crystal structures of a binary Mg2+-form Dpo4-DNA complex with 1,N2-etheno-dG in the template strand as well as of ternary Mg2+-form Dpo4-DNA-dCTP/dGTP complexes with 8-oxoG in the template strand have been determined. Comparison of their conformations and active-site geometries with those of the corresponding Ca2+-form complexes revealed that the DNA and polymerase undergo subtle changes as a result of the catalytically more active Mg2+ occupying both the A and B sites.
Collapse
Affiliation(s)
- Adriana Irimia
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, USA
| | - Lioudmila V. Loukachevitch
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert L. Eoff
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, USA
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, USA
| | - Martin Egli
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
27
|
Pata JD. Structural diversity of the Y-family DNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1124-35. [PMID: 20123134 DOI: 10.1016/j.bbapap.2010.01.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/11/2009] [Accepted: 01/25/2010] [Indexed: 11/17/2022]
Abstract
The Y-family translesion DNA polymerases enable cells to tolerate many forms of DNA damage, yet these enzymes have the potential to create genetic mutations at high rates. Although this polymerase family was defined less than a decade ago, more than 90 structures have already been determined so far. These structures show that the individual family members bypass damage and replicate DNA with either error-free or mutagenic outcomes, depending on the polymerase, the lesion and the sequence context. Here, these structures are reviewed and implications for polymerase function are discussed.
Collapse
Affiliation(s)
- Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| |
Collapse
|
28
|
Jain R, Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Replication across template T/U by human DNA polymerase-iota. Structure 2009; 17:974-80. [PMID: 19604477 DOI: 10.1016/j.str.2009.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/21/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
Human DNA polymerase-iota (Poliota) incorporates correct nucleotides opposite template purines with a much higher efficiency and fidelity than opposite template pyrimidines. In fact, the fidelity opposite template T is so poor that Poliota inserts an incorrect dGTP approximately 10 times better than it inserts the correct dATP. We determine here how a template T/U is accommodated in the Poliota active site and why a G is incorporated more efficiently than an A. We show that in the absence of incoming dATP or dGTP (binary complex), template T/U exists in both syn and anti conformations, but in the presence of dATP or dGTP (ternary complexes), template T/U is predominantly in the anti conformation. We also show that dATP and dGTP insert differently opposite template T/U, and that the basis of selection of dGTP over dATP is a hydrogen bond between the N2 amino group of dGTP and Gln59 of Poliota.
Collapse
Affiliation(s)
- Rinku Jain
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
29
|
Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases. Structure 2009; 17:725-36. [PMID: 19446528 DOI: 10.1016/j.str.2009.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 11/22/2022]
Abstract
7,8-Dihydro-8-oxoguanine (oxoG), the predominant oxidative DNA damage lesion, is processed differently by high-fidelity and Y-family lesion bypass polymerases. Although high-fidelity polymerases extend predominantly from an A base opposite an oxoG, the Y-family polymerases Dpo4 and human Pol eta preferentially extend from the oxoG*C base pair. We have determined crystal structures of extension Dpo4 ternary complexes with oxoG opposite C, A, G, or T and the next nascent base pair. We demonstrate that neither template backbone nor the architecture of the active site is perturbed by the oxoG(anti)*C and oxoG*A pairs. However, the latter manifest conformational heterogeneity, adopting both oxoG(syn)*A(anti) and oxoG(anti)*A(syn) alignment. Hence, the observed reduced primer extension from the dynamically flexible 3'-terminal primer base A is explained. Because of homology between Dpo4 and Pol eta, such a dynamic screening mechanism might be utilized by Dpo4 and Pol eta to regulate error-free versus error-prone bypass of oxoG and other lesions.
Collapse
|
30
|
Zhang H, Eoff RL, Kozekov ID, Rizzo CJ, Egli M, Guengerich FP. Structure-function relationships in miscoding by Sulfolobus solfataricus DNA polymerase Dpo4: guanine N2,N2-dimethyl substitution produces inactive and miscoding polymerase complexes. J Biol Chem 2009; 284:17687-99. [PMID: 19542237 DOI: 10.1074/jbc.m109014274] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous work has shown that Y-family DNA polymerases tolerate large DNA adducts, but a substantial decrease in catalytic efficiency and fidelity occurs during bypass of N2,N2-dimethyl (Me2)-substituted guanine (N2,N2-Me2G), in contrast to a single methyl substitution. Therefore, it is unclear why the addition of two methyl groups is so disruptive. The presence of N2,N2-Me2G lowered the catalytic efficiency of the model enzyme Sulfolobus solfataricus Dpo4 16,000-fold. Dpo4 inserted dNTPs almost at random during bypass of N2,N2-Me2G, and much of the enzyme was kinetically trapped by an inactive ternary complex when N2,N2-Me2G was present, as judged by a reduced burst amplitude (5% of total enzyme) and kinetic modeling. One crystal structure of Dpo4 with a primer having a 3'-terminal dideoxycytosine (Cdd) opposite template N2,N2-Me2G in a post-insertion position showed Cdd folded back into the minor groove, as a catalytically incompetent complex. A second crystal had two unique orientations for the primer terminal Cdd as follows: (i) flipped into the minor groove and (ii) a long pairing with N2,N2-Me2G in which one hydrogen bond exists between the O-2 atom of Cdd and the N-1 atom of N2,N2-Me2G, with a second water-mediated hydrogen bond between the N-3 atom of Cdd and the O-6 atom of N2,N2-Me2G. A crystal structure of Dpo4 with dTTP opposite template N2,N2-Me2G revealed a wobble orientation. Collectively, these results explain, in a detailed manner, the basis for the reduced efficiency and fidelity of Dpo4-catalyzed bypass of N2,N2-Me2G compared with mono-substituted N2-alkyl G adducts.
Collapse
Affiliation(s)
- Huidong Zhang
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
31
|
Xu P, Oum L, Lee YC, Geacintov NE, Broyde S. Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N2-dG lesion in a Y-family DNA polymerase. Biochemistry 2009; 48:4677-90. [PMID: 19364137 DOI: 10.1021/bi802363f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Understanding how DNA polymerases process lesions remains fundamental to determining the molecular origins of mutagenic translesion bypass. We have investigated how a benzo[a]pyrene-derived N(2)-dG adduct, 10S-(+)-trans-anti-[BP]-N(2)-dG ([BP]G*), is processed in Dpo4, the well-characterized Y-family bypass DNA polymerase. This polymerase has a slippage-prone spacious active site region. Experimental results in a 5'-C[BP]G*G-3' sequence context reveal significant selectivity for dGTP insertion that predominantly yields -1 deletion extension products. A less pronounced error-prone nonslippage pathway that leads to full extension products with insertion of A > C > G opposite the lesion is also observed. Molecular modeling and dynamics simulations follow the bypass of [BP]G* through an entire replication cycle for the first time in Dpo4, providing structural interpretations for the experimental observations. The preference for dGTP insertion is explained by a 5'-slippage pattern in which the unmodified G rather than G* is skipped, the incoming dGTP pairs with the C on the 5'-side of G*, and the -1 deletion is produced upon further primer extension which is more facile than nucleotide insertion. In addition, the simulations suggest that the [BP]G* may undergo an anti/syn conformational rearrangement during the stages of the replication cycle. In the minor nonslippage pathway, the nucleotide insertion preferences opposite the lesion are explained by relative distortions to the active site region. These structural insights, provided by the modeling and dynamics studies, augment kinetic and limited available crystallographic investigations with bulky lesions, by providing molecular explanations for lesion bypass activities over an entire replication cycle.
Collapse
Affiliation(s)
- Pingna Xu
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, New York 10003, USA
| | | | | | | | | |
Collapse
|
32
|
Zhang H, Bren U, Kozekov ID, Rizzo CJ, Stec DF, Guengerich FP. Steric and electrostatic effects at the C2 atom substituent influence replication and miscoding of the DNA deamination product deoxyxanthosine and analogs by DNA polymerases. J Mol Biol 2009; 392:251-69. [PMID: 19607842 DOI: 10.1016/j.jmb.2009.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 12/22/2022]
Abstract
Deoxyinosine (dI) and deoxyxanthosine (dX) are both formed in DNA at appreciable levels in vivo by deamination of deoxyadenosine (dA) and deoxyguanosine (dG), respectively, and can miscode. Structure-activity relationships for dA pairing have been examined extensively using analogs but relatively few studies have probed the roles of the individual hydrogen-bonding atoms of dG in DNA replication. The replicative bacteriophage T7 DNA polymerase/exonuclease and the translesion DNA polymerase Sulfolobus solfataricus pol IV were used as models to discern the mechanisms of miscoding by DNA polymerases. Removal of the 2-amino group from the template dG (i.e., dI) had little impact on the catalytic efficiency of either polymerase, as judged by either steady-state or pre-steady-state kinetic analysis, although the misincorporation frequency was increased by an order of magnitude. dX was highly miscoding with both polymerases, and incorporation of several bases was observed. The addition of an electronegative fluorine atom at the 2-position of dI lowered the oligonucleotide T(m) and strongly inhibited incorporation of dCTP. The addition of bromine or oxygen (dX) at C2 lowered the T(m) further, strongly inhibited both polymerases, and increased the frequency of misincorporation. Linear activity models show the effects of oxygen (dX) and the halogens at C2 on both DNA polymerases as mainly due to a combination of both steric and electrostatic factors, producing a clash with the paired cytosine O2 atom, as opposed to either bulk or perturbation of purine ring electron density alone.
Collapse
Affiliation(s)
- Huidong Zhang
- Department of Biochemistry Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
33
|
Zhang H, Eoff RL, Kozekov ID, Rizzo CJ, Egli M, Guengerich FP. Structure-Function Relationships in Miscoding by Sulfolobus solfataricus DNA Polymerase Dpo4. J Biol Chem 2009. [DOI: 10.1074/jbc.m109.014274] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Zhang H, Eoff RL, Kozekov ID, Rizzo CJ, Egli M, Guengerich FP. Versatility of Y-family Sulfolobus solfataricus DNA polymerase Dpo4 in translesion synthesis past bulky N2-alkylguanine adducts. J Biol Chem 2008; 284:3563-76. [PMID: 19059910 DOI: 10.1074/jbc.m807778200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to replicative DNA polymerases, Sulfolobus solfataricus Dpo4 showed a limited decrease in catalytic efficiency (k(cat)/Km) for insertion of dCTP opposite a series of N2-alkylguanine templates of increasing size from (methyl (Me) to (9-anthracenyl)-Me (Anth)). Fidelity was maintained with increasing size up to (2-naphthyl)-Me (Naph). The catalytic efficiency increased slightly going from the N2-NaphG to the N2-AnthG substrate, at the cost of fidelity. Pre-steady-state kinetic bursts were observed for dCTP incorporation throughout the series (N2-MeG to N2-AnthG), with a decrease in the burst amplitude and k(pol), the rate of single-turnover incorporation. The pre-steady-state kinetic courses with G and all of the six N2-alkyl G adducts could be fit to a general DNA polymerase scheme to which was added an inactive complex in equilibrium with the active ternary Dpo4.DNA.dNTP complex, and only the rates of equilibrium with the inactive complex and phosphodiester bond formation were altered. Two crystal structures of Dpo4 with a template N2-NaphG (in a post-insertion register opposite a 3'-terminal C in the primer) were solved. One showed N2-NaphG in a syn conformation, with the naphthyl group located between the template and the Dpo4 "little finger" domain. The Hoogsteen face was within hydrogen bonding distance of the N4 atoms of the cytosine opposite N2-NaphG and the cytosine at the -2 position. The second structure showed N2-Naph G in an anti conformation with the primer terminus largely disordered. Collectively these results explain the versatility of Dpo4 in bypassing bulky G lesions.
Collapse
Affiliation(s)
- Huidong Zhang
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
35
|
Roettger MP, Bakhtina M, Tsai MD. Mismatched and matched dNTP incorporation by DNA polymerase beta proceed via analogous kinetic pathways. Biochemistry 2008; 47:9718-27. [PMID: 18717589 PMCID: PMC2646765 DOI: 10.1021/bi800689d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While matched nucleotide incorporation by DNA polymerase beta (Pol beta) has been well-studied, a true understanding of polymerase fidelity requires comparison of both matched and mismatched dNTP incorporation pathways. Here we examine the mechanism of misincorporation for wild-type (WT) Pol beta and an error-prone I260Q variant using stopped-flow fluorescence assays and steady-state fluorescence spectroscopy. In stopped-flow, a biphasic fluorescence trace is observed for both enzymes during mismatched dNTP incorporation. The fluorescence transitions are in the same direction as that observed for matched dNTP, albeit with lower amplitude. Assignments of the fast and slow fluorescence phases are designated to the same mechanistic steps previously determined for matched dNTP incorporation. For both WT and I260Q mismatched dNTP incorporation, the rate of the fast phase, reflecting subdomain closing, is comparable to that induced by correct dNTP. Pre-steady-state kinetic evaluation reveals that both enzymes display similar correct dNTP insertion profiles, and the lower fidelity intrinsic to the I260Q mutant results from enhanced efficiency of mismatched incorporation. Notably, in comparison to WT, I260Q demonstrates enhanced intensity of fluorescence emission upon mismatched ternary complex formation. Both kinetic and steady-state fluorescence data suggest that relaxed discrimination against incorrect dNTP by I260Q is a consequence of a loss in ability to destabilize the mismatched ternary complex. Overall, our results provide first direct evidence that mismatched and matched dNTP incorporations proceed via analogous kinetic pathways, and support our standing hypothesis that the fidelity of Pol beta originates from destabilization of the mismatched closed ternary complex and chemical transition state.
Collapse
Affiliation(s)
- Michelle P Roettger
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
36
|
Di Pasquale F, Fischer D, Grohmann D, Restle T, Geyer A, Marx A. Opposed steric constraints in human DNA polymerase beta and E. coli DNA polymerase I. J Am Chem Soc 2008; 130:10748-57. [PMID: 18627154 DOI: 10.1021/ja8028284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA polymerase selectivity is crucial for the survival of any living species, yet varies significantly among different DNA polymerases. Errors within DNA polymerase-catalyzed DNA synthesis result from the insertion of noncanonical nucleotides and extension of misaligned DNA substrates. The substrate binding characteristics among DNA polymerases are believed to vary in properties such as shape and tightness of the binding pocket, which might account for the observed differences in fidelity. Here, we employed 4'-alkylated nucleotides and primer strands bearing 4'-alkylated nucleotides at the 3'-terminal position as steric probes to investigate differential active site properties of human DNA polymerase beta (Pol beta) and the 3'-->5'-exonuclease-deficient Klenow fragment of E. coli DNA polymerase I (KF(exo-)). Transient kinetic measurements indicate that both enzymes vary significantly in active site tightness at both positions. While small 4'-methyl and -ethyl modifications of the nucleoside triphosphate perturb Pol beta catalysis, extension of modified primer strands is only marginally affected. Just the opposite was observed for KF(exo-). Here, incorporation of the modified nucleotides is only slightly reduced, whereas size augmentation of the 3'-terminal nucleotide in the primer reduces the catalytic efficiency by more than 7000- and 260,000-fold, respectively. NMR studies support the notion that the observed effects derive from enzyme substrate interactions rather than inherent properties of the modified substrates. These findings are consistent with the observed differential capability of the investigated DNA polymerases in fidelity such as processing misaligned DNA substrates. The results presented provide direct evidence for the involvement of varied steric effects among different DNA polymerases on their fidelity.
Collapse
Affiliation(s)
- Francesca Di Pasquale
- Fachbereich Chemie, Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
37
|
DeCarlo L, Gowda ASP, Suo Z, Spratt TE. Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV. Biochemistry 2008; 47:8157-64. [PMID: 18616289 DOI: 10.1021/bi800820m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA damage that stalls replicative polymerases can be bypassed with the Y-family polymerases. These polymerases have more open active sites that can accommodate modified nucleotides. The lack of protein-DNA interactions that select for Watson-Crick base pairs correlate with the lowered fidelity of replication. Interstrand hydrogen bonds appear to play a larger role in dNTP selectivity. The mechanism by which purine-purine mispairs are formed and extended was examined with Solfolobus solfataricus DNA polymerase IV, a member of the RAD30A subfamily of the Y-family polymerases, as is pol eta. The structures of the purine-purine mispairs were examined by comparing the kinetics of mispair formation with adenine versus 1-deaza- and 7-deazaadenine and guanine versus 7-deazaguanine at four positions in the DNA, the incoming dNTP, the template base, and both positions of the terminal base pair. The time course of insertion of a single dNTP was examined with a polymerase concentration of 50 nM and a DNA concentration of 25 nM with various concentrations of dNTP. The time courses were fitted to a first-order equation, and the first-order rate constants were plotted against the dNTP concentration to produce k pol and K d (dNTP) values. A decrease in k pol/ K d (dNTP) associated with the deazapurine substitution would indicate that the position is involved in a crucial hydrogen bond. During correct base pair formation, the adenine to 1-deazaadenine substitution in both the incoming dNTP and template base resulted in a >1000-fold decrease in k pol/ K d (dNTP), indicating that interstrand hydrogen bonds are important in correcting base pair formation. During formation of purine-purine mispairs, the k pol/ K d (dNTP) values for the insertion of dATP and dGTP opposite 7-deazaadenine and 7-deazaguanine were decreased >10-fold with respect to those of the unmodified nucleotides. In addition, the rate of incorporation of 1-deaza-dATP opposite guanine was decreased 5-fold. These results suggest that during mispair formation the newly forming base pair is in a Hoogsteen geometry with the incoming dNTP in the anti conformation and the template base in the syn conformation. These results indicate that Dpo4 holds the incoming dNTP in the normal anti conformation while allowing the template nucleotide to change conformations to allow reaction to occur. This result may be functionally relevant in the replication of damaged DNA in that the polymerase may allow the template to adopt multiple configurations.
Collapse
Affiliation(s)
- Lindsey DeCarlo
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
38
|
Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. Trends Biochem Sci 2008; 33:209-19. [PMID: 18407502 DOI: 10.1016/j.tibs.2008.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 12/18/2022]
Abstract
When a high-fidelity DNA polymerase encounters certain DNA-damage sites, its progress can be stalled and one or more lesion-bypass polymerases are recruited to transit the lesion. Here, we consider two representative types of lesions: (i) 7,8-dihydro-8-oxoguanine (8-oxoG), a small, highly prevalent lesion caused by oxidative damage; and (ii) bulky lesions derived from the environmental pre-carcinogen benzo[a]pyrene, in the high-fidelity DNA polymerase Bacillus fragment (BF) from Bacillus stearothermophilus and in the lesion-bypass DNA polymerase IV (Dpo4) from Sulfolobus solfataricus. The tight fit of the BF polymerase around the nascent base pair contrasts with the more spacious, solvent-exposed active site of Dpo4, and these differences in architecture result in distinctions in their respective functions: one-step versus stepwise polymerase translocation, mutagenic versus accurate bypass of 8-oxoG, and polymerase stalling versus mutagenic bypass at bulky benzo[a]pyrene-derived lesions.
Collapse
|
39
|
Tang KH, Niebuhr M, Tung CS, Chan HC, Chou CC, Tsai MD. Mismatched dNTP incorporation by DNA polymerase beta does not proceed via globally different conformational pathways. Nucleic Acids Res 2008; 36:2948-57. [PMID: 18385153 PMCID: PMC2396427 DOI: 10.1093/nar/gkn138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Understanding how DNA polymerases control fidelity requires elucidation of the mechanisms of matched and mismatched dNTP incorporations. Little is known about the latter because mismatched complexes do not crystallize readily. In this report, we employed small-angle X-ray scattering (SAXS) and structural modeling to probe the conformations of different intermediate states of mammalian DNA polymerase β (Pol β) in its wild-type and an error-prone variant, I260Q. Our structural results indicate that the mismatched ternary complex lies in-between the open and the closed forms, but more closely resembles the open form for WT and the closed form for I260Q. On the basis of molecular modeling, this over-stabilization of mismatched ternary complex of I260Q is likely caused by formation of a hydrogen bonding network between the side chains of Gln260, Tyr296, Glu295 and Arg258, freeing up Asp192 to coordinate MgdNTP. These results argue against recent reports suggesting that mismatched dNTP incorporations follow a conformational path distinctly different from that of matched dNTP incorporation, or that its conformational closing is a major contributor to fidelity.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
40
|
Xu P, Oum L, Geacintov NE, Broyde S. Nucleotide selectivity opposite a benzo[a]pyrene-derived N2-dG adduct in a Y-family DNA polymerase: a 5'-slippage mechanism. Biochemistry 2008; 47:2701-9. [PMID: 18260644 DOI: 10.1021/bi701839q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Y-family DNA polymerase Dpo4, from the archaeon bacterium Sulfolobus solfataricus, is a member of the DinB family, which also contains human Pol kappa. It has a spacious active site that can accommodate two templating bases simultaneously, with one of them skipped by the incoming dNTP. Assays of single dNTP insertion opposite a benzo[ a]pyrene-derived N (2)-dG adduct, 10 S(+)- trans- anti-[BP]- N (2)-dG ([BP]G*), reveal that an incoming dATP is significantly preferred over the other three dNTPs in the TG 1*G 2 sequence context. Molecular modeling and dynamics simulations were carried out to interpret this experimental observation on a molecular level. Modeling studies suggest that the significant preference for dATP insertion observed experimentally can result from two possible dATP incorporation modes. The dATP can be inserted opposite the T on the 5' side of the adduct G 1*, using an unusual 5'-slippage pattern, in which the unadducted G 2, rather than G 1*, is skipped, to produce a -1 deletion. In addition, the dATP can be misincorporated opposite the adduct. The 5'-slippage pattern may be generally facilitated in cases where the base 3' to the lesion is the same as the adducted base.
Collapse
Affiliation(s)
- Pingna Xu
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York City, New York 10003, USA
| | | | | | | |
Collapse
|
41
|
Broyde S, Wang L, Zhang L, Rechkoblit O, Geacintov NE, Patel DJ. DNA adduct structure-function relationships: comparing solution with polymerase structures. Chem Res Toxicol 2007; 21:45-52. [PMID: 18052109 DOI: 10.1021/tx700193x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has now been nearly two decades since the first solution structures of DNA duplexes covalently damaged by metabolically activated polycyclic aromatic hydrocarbons and amines were determined by NMR. Dozens of such high-resolution structures are now available, and some broad structural themes have been uncovered. It has been hypothesized that the solution structures are relevant to the biochemical processing of the adducts. The structural features of the adducts are considered to determine their mutational properties in DNA polymerases and their repair susceptibilities. In recent years, a number of crystal structures of DNA adducts of interest to our work have been determined in DNA polymerases. Accordingly, it is now timely to consider how NMR solution structures relate to structures within DNA polymerases. The NMR solution structural themes for polycyclic aromatic adducts are often observed in polymerase crystal structures. While the polymerase interactions can on occasion override the solution preferences, intrinsic adduct conformations favored in solution are often manifested within polymerases and likely play a significant role in lesion processing.
Collapse
Affiliation(s)
- Suse Broyde
- Department of Biology, New York University, New York NY 10003, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Irimia A, Eoff RL, Pallan PS, Guengerich FP, Egli M. Structure and activity of Y-class DNA polymerase DPO4 from Sulfolobus solfataricus with templates containing the hydrophobic thymine analog 2,4-difluorotoluene. J Biol Chem 2007; 282:36421-33. [PMID: 17951245 DOI: 10.1074/jbc.m707267200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 2,4-difluorotoluene (DFT) analog of thymine has been used extensively to probe the relative importance of shape and hydrogen bonding for correct nucleotide insertion by DNA polymerases. As far as high fidelity (A-class) polymerases are concerned, shape is considered by some as key to incorporation of A(T) opposite T(A) and G(C) opposite C(G). We have carried out a detailed kinetic analysis of in vitro primer extension opposite DFT-containing templates by the trans-lesion (Y-class) DNA polymerase Dpo4 from Sulfolobus solfataricus. Although full-length product formation was observed, steady-state kinetic data show that dATP insertion opposite DFT is greatly inhibited relative to insertion opposite T (approximately 5,000-fold). No products were observed in the pre-steady-state. Furthermore, it is noteworthy that Dpo4 strongly prefers dATP opposite DFT over dGTP (approximately 200-fold) and that the polymerase is able to extend an A:DFT but not a G:DFT pair. We present crystal structures of Dpo4 in complex with DNA duplexes containing the DFT analog, the first for any DNA polymerase. In the structures, template-DFT is either positioned opposite primer-A or -G at the -1 site or is unopposed by a primer base and followed by a dGTP:A mismatch pair at the active site, representative of a -1 frameshift. The three structures provide insight into the discrimination by Dpo4 between dATP and dGTP opposite DFT and its inability to extend beyond a G:DFT pair. Although hydrogen bonding is clearly important for error-free replication by this Y-class DNA polymerase, our work demonstrates that Dpo4 also relies on shape and electrostatics to distinguish between correct and incorrect incoming nucleotide.
Collapse
Affiliation(s)
- Adriana Irimia
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | |
Collapse
|
43
|
Batra VK, Beard WA, Shock DD, Pedersen LC, Wilson SH. Nucleotide-induced DNA polymerase active site motions accommodating a mutagenic DNA intermediate. Structure 2007; 13:1225-33. [PMID: 16084394 DOI: 10.1016/j.str.2005.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/04/2005] [Accepted: 05/05/2005] [Indexed: 01/10/2023]
Abstract
DNA polymerases occasionally insert the wrong nucleotide. For this error to become a mutation, the mispair must be extended. We report a structure of DNA polymerase beta (pol beta) with a DNA mismatch at the boundary of the polymerase active site. The structure of this complex indicates that the templating adenine of the mispair stacks with the primer terminus adenine while the templating (coding) cytosine is flipped out of the DNA helix. Soaking the crystals of the binary complex with dGTP resulted in crystals of a ternary substrate complex. In this case, the templating cytosine is observed within the DNA helix and forms Watson-Crick hydrogen bonds with the incoming dGTP. The adenine at the primer terminus has rotated into a syn-conformation to interact with the opposite adenine in a planar configuration. Yet, the 3'-hydroxyl on the primer terminus is out of position for efficient nucleotide insertion.
Collapse
Affiliation(s)
- Vinod K Batra
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
44
|
Jezewska MJ, Bujalowski PJ, Bujalowski W. Interactions of the DNA polymerase X of African swine fever virus with double-stranded DNA. Functional structure of the complex. J Mol Biol 2007; 373:75-95. [PMID: 17765921 DOI: 10.1016/j.jmb.2007.06.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Interactions of the polymerase X of African swine fever virus with the double-stranded DNA (dsDNA) have been studied with fluorescent dsDNA oligomers, using quantitative fluorescence titrations, analytical ultracentrifugation, and fluorescence energy transfer techniques. Studies with unmodified dsDNAs were performed, using competition titration method. ASV pol X binds the dsDNA with a site-size of n=10(+/-2) base-pairs, which is significantly shorter than the total site-size of 16(+/-2) nucleotides of the enzyme-ssDNA complex. The small site size indicates that the enzyme binds the dsDNA exclusively using the proper DNA-binding subsite. Fluorescence energy transfer studies between the tryptophan residue W92 and the acceptor, located at the 5' or 3' end of the dsDNA, suggest strongly that the proper DNA-binding subsite is located on the non-catalytic C-terminal domain. Moreover, intrinsic interactions with the dsDNA 10-mer or 20-mer are accompanied by the same net number of ions released, independent of the length of the DNA, indicating the same length of the DNA engaged in the complex. The dsDNA intrinsic affinity is about two orders of magnitude higher than the ssDNA affinity, indicating that the proper DNA-binding subsite is, in fact, the specific dsDNA-binding site. Surprisingly, ASFV pol X binds the dsDNA with significant positive cooperativity, which results from protein-protein interactions. Cooperative interactions are accompanied by the net ion release, with anions participating in the ion-exchange process. The significance of these results for ASFV pol X activity in the recognition of damaged DNA is discussed.
Collapse
Affiliation(s)
- Maria J Jezewska
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA
| | | | | |
Collapse
|
45
|
Lone S, Townson SA, Uljon SN, Johnson RE, Brahma A, Nair DT, Prakash S, Prakash L, Aggarwal AK. Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell 2007; 25:601-14. [PMID: 17317631 DOI: 10.1016/j.molcel.2007.01.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/22/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Human DNA polymerase kappa (Pol kappa) is a proficient extender of mispaired primer termini on undamaged DNAs and is implicated in the extension step of lesion bypass. We present here the structure of Pol kappa catalytic core in ternary complex with DNA and an incoming nucleotide. The structure reveals encirclement of the DNA by a unique "N-clasp" at the N terminus of Pol kappa, which augments the conventional right-handed grip on the DNA by the palm, fingers, and thumb domains and the PAD and provides additional thermodynamic stability. The structure also reveals an active-site cleft that is constrained by the close apposition of the N-clasp and the fingers domain, and therefore can accommodate only a single Watson-Crick base pair. Together, DNA encirclement and other structural features help explain Pol kappa's ability to extend mismatches and to promote replication through various minor groove DNA lesions, by extending from the nucleotide incorporated opposite the lesion by another polymerase.
Collapse
Affiliation(s)
- Samer Lone
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chandani S, Loechler EL. Molecular modeling benzo[a]pyrene N2-dG adducts in the two overlapping active sites of the Y-family DNA polymerase Dpo4. J Mol Graph Model 2007; 25:658-70. [PMID: 16782374 DOI: 10.1016/j.jmgm.2006.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 11/18/2022]
Abstract
The potent, ubiquitous environmental mutagen/carcinogen benzo[a]pyrene (B[a]P) induces a single major adduct [+ta]-B[a]P-N2-dG, whose bypass in most cases results in either no mutation (dCTP insertion) or a G-->T mutation (dATP insertion). Translesion synthesis (TLS) of [+ta]-B[a]P-N2-dG generally requires DNA polymerases (DNAPs) in the Y-family, which exist in cells to bypass DNA damage caused by chemicals and radiation. A molecular dynamics (MD) study is described with dCTP opposite [+ta]-B[a]P-N2-dG in Dpo4, which is the best studied Y-family DNAP from a structural point of view. Two orientations of B[a]P-N2-dG (BPmi5 and BPmi3) are considered, along with two orientations of the dCTP (AS1 and AS2), as outlined next. Based on NMR studies, the pyrene moiety of B[a]P-N2-dG is in the minor groove, when paired with dC, and can point toward either the base on the 5'-side (BPmi5) or the 3'-side (BPmi3). Based on published X-ray structures, Dpo4 appears to have two partially overlapping active sites. The architecture of active site 1 (AS1) is similar to all other families of DNAPs (e.g., the shape of the dNTP). Active site 2 (AS2), however, is non-canonical (e.g., the beta- and gamma-phosphates in AS2 are approximately where the alpha- and beta-phosphates are in AS1). In the Dpo4 models generated herein, using the BPmi3 orientation the pyrene moiety of [+ta]-B[a]P-N2-dG points toward the duplex region of the DNA, and is accommodated without distortions in AS1, but with distortions in AS2. Considering the BPmi5 orientation, the pyrene moiety points toward the ss-region of DNA in Dpo4, and sits in a hole defined by the fingers and little fingers domain ("chimney"); BPmi5 is accommodated in AS2 without significant distortions, but poorly in AS1. In summary, when dCTP is paired with [+ta]-B[a]P-N2-dG in the two overlapping active sites in Dpo4, the pyrene in the BPmi3 orientation is accommodated better in active site 1 (AS1), while the pyrene in the BPmi5 orientation is accommodated better in AS2. Finally, we discuss why Y-family DNAPs might have two catalytic active sites.
Collapse
Affiliation(s)
- Sushil Chandani
- Biology Department, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
47
|
Fiala KA, Brown JA, Ling H, Kshetry AK, Zhang J, Taylor JS, Yang W, Suo Z. Mechanism of template-independent nucleotide incorporation catalyzed by a template-dependent DNA polymerase. J Mol Biol 2006; 365:590-602. [PMID: 17095011 PMCID: PMC1866274 DOI: 10.1016/j.jmb.2006.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 09/29/2006] [Accepted: 10/02/2006] [Indexed: 11/21/2022]
Abstract
Numerous template-dependent DNA polymerases are capable of catalyzing template-independent nucleotide additions onto blunt-end DNA. Such non-canonical activity has been hypothesized to increase the genomic hypermutability of retroviruses including human immunodeficiency viruses. Here, we employed pre-steady state kinetics and X-ray crystallography to establish a mechanism for blunt-end additions catalyzed by Sulfolobus solfataricus Dpo4. Our kinetic studies indicated that the first blunt-end dATP incorporation was 80-fold more efficient than the second, and among natural deoxynucleotides, dATP was the preferred substrate due to its stronger intrahelical base-stacking ability. Such base-stacking contributions are supported by the 41-fold higher ground-state binding affinity of a nucleotide analog, pyrene nucleoside 5'-triphosphate, which lacks hydrogen bonding ability but possesses four conjugated aromatic rings. A 2.05 A resolution structure of Dpo4*(blunt-end DNA)*ddATP revealed that the base and sugar of the incoming ddATP, respectively, stack against the 5'-base of the opposite strand and the 3'-base of the elongating strand. This unprecedented base-stacking pattern can be applied to subsequent blunt-end additions only if all incorporated dAMPs are extrahelical, leading to predominantly single non-templated dATP incorporation.
Collapse
Affiliation(s)
- Kevin A. Fiala
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jessica A. Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hong Ling
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Ajay K. Kshetry
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jun Zhang
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zucai Suo
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- *Corresponding author, E-mail address of the corresponding author:
| |
Collapse
|
48
|
Zhang L, Rechkoblit O, Wang L, Patel DJ, Shapiro R, Broyde S. Mutagenic nucleotide incorporation and hindered translocation by a food carcinogen C8-dG adduct in Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): modeling and dynamics studies. Nucleic Acids Res 2006; 34:3326-37. [PMID: 16820532 PMCID: PMC1500869 DOI: 10.1093/nar/gkl425] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bulky carcinogen-DNA adducts commonly cause replicative polymerases to stall, leading to a switch to bypass polymerases. We have investigated nucleotide incorporation opposite the major adduct of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the DinB family polymerase, Dpo4, using molecular modeling and molecular dynamics (MD) simulations. PhIP, the most prevalent heterocyclic aromatic amine formed by cooking of proteinaceous food, is mutagenic in mammalian cells and is implicated in mammary and colon tumors. Our results show that the dG-C8-PhIP adduct can be accommodated in the spacious major groove Dpo4 open pocket, with Dpo4 capable of incorporating dCTP, dTTP or dATP opposite the adduct reasonably well. However, the PhIP ring system on the minor groove side would seriously disturb the active site, regardless of the presence and identity of dNTP. Furthermore, the simulations indicate that dATP and dTTP are better incorporated in the damaged system than in their respective mismatched but unmodified controls, suggesting that the PhIP adduct enhances incorporation of these mismatches. Finally, bulky C8-dG adducts, situated in the major groove, are likely to impede translocation in this polymerase (Rechkoblit et al. (2006), PLoS Biol., 4, e11). However, N2-dG adducts, which can reside on the minor groove side, appear to cause less hindrance when in this position.
Collapse
Affiliation(s)
| | - Olga Rechkoblit
- Structural Biology Program, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Lihua Wang
- Department of Biology, New York UniversityNew York, NY, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | | | - Suse Broyde
- Department of Biology, New York UniversityNew York, NY, USA
- To whom correspondence should be addressed. Tel: +1 212 998 8231; Fax: +1 212 995 4015;
| |
Collapse
|
49
|
Showalter AK, Lamarche BJ, Bakhtina M, Su MI, Tang KH, Tsai MD. Mechanistic comparison of high-fidelity and error-prone DNA polymerases and ligases involved in DNA repair. Chem Rev 2006; 106:340-60. [PMID: 16464009 DOI: 10.1021/cr040487k] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| |
Collapse
|