1
|
Jiang H, Miller BD, Viennet T, Kim H, Lee K, Arthanari H, Cole PA. Protein semisynthesis reveals plasticity in HECT E3 ubiquitin ligase mechanisms. Nat Chem 2024; 16:1894-1905. [PMID: 39030419 DOI: 10.1038/s41557-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
Lys ubiquitination is catalysed by E3 ubiquitin ligases and is central to the regulation of protein stability and cell signalling in normal and disease states. There are gaps in our understanding of E3 mechanisms, and here we use protein semisynthesis, chemical rescue, microscale thermophoresis and other biochemical approaches to dissect the role of catalytic base/acid function and conformational interconversion in HECT-domain E3 catalysis. We demonstrate that there is plasticity in the use of the terminal side chain or backbone carboxylate for proton transfer in HECT E3 ubiquitin ligase reactions, with yeast Rsp5 orthologues appearing to be possible evolutionary intermediates. We also show that the HECT-domain ubiquitin covalent intermediate appears to eject the E2 conjugating enzyme, promoting catalytic turnover. These findings provide key mechanistic insights into how protein ubiquitination occurs and provide a framework for understanding E3 functions and regulation.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bryant D Miller
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Thibault Viennet
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Hyojeon Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ohashi K, Otomo T. Structural Analyses of a GABARAP~ATG3 Conjugate Uncover a Novel Non-covalent Ubl-E2 Backside Interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607425. [PMID: 39185234 PMCID: PMC11343110 DOI: 10.1101/2024.08.14.607425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Members of the ATG8 family of ubiquitin-like proteins (Ubls) are conjugated to phosphatidylethanolamine (PE) in the autophagosomal membrane, where they recruit degradation substrates and facilitate membrane biogenesis. Despite this well-characterized function, the mechanisms underlying the lipidation process, including the action of the E2 enzyme ATG3, remain incompletely understood. Here, we report the crystal structure of human ATG3 conjugated to the mammalian ATG8 protein GABARAP via an isopeptide bond, mimicking the Ubl~E2 thioester intermediate. In this structure, the GABARAP~ATG3 conjugate adopts an open configuration with minimal contacts between the two proteins. Notably, the crystal lattice reveals non-covalent contacts between GABARAP and the backside of ATG3's E2 catalytic center, resulting in the formation of a helical filament of the GABARAP~ATG3 conjugate. While similar filament formations have been observed with canonical Ub~E2 conjugates, the E2 backside-binding interface of GABARAP is distinct from those of Ub/Ubl proteins and overlaps with the binding site for LC3 interacting region (LIR) peptides. NMR analysis confirms the presence of this non-covalent interaction in solution, and mutagenesis experiments demonstrate the involvement of the E2 backside in PE conjugation. These findings highlight the critical role of the E2 backside in the lipidation process and suggest evolutionary adaptations in the unique E2 enzyme ATG3.
Collapse
Affiliation(s)
- Kazuto Ohashi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
- Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA 92121, USA
| |
Collapse
|
3
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
4
|
Basu B, Kal S, Karmakar S, Basu M, Ghosh MK. E3 ubiquitin ligases in lung cancer: Emerging insights and therapeutic opportunities. Life Sci 2024; 336:122333. [PMID: 38061537 DOI: 10.1016/j.lfs.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Aim In this review, we have attempted to provide the readers with an updated account of the role of a family of proteins known as E3 ligases in different aspects of lung cancer progression, along with insights into the deregulation of expression of these proteins during lung cancer. A detailed account of the therapeutic strategies involving E3 ligases that have been developed or currently under development has also been provided in this review. MATERIALS AND METHODS: The review article employs extensive literature search, along with differential gene expression analysis of lung cancer associated E3 ligases using the DESeq2 package in R, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/). Protein expression analysis of CPTAC lung cancer samples was carried out using the UALCAN webtool (https://ualcan.path.uab.edu/index.html). Assessment of patient overall survival (OS) in response to high and low expression of selected E3 ligases was performed using the online Kaplan-Meier plotter (https://kmplot.com/analysis/index.php?p=background). KEY FINDINGS: SIGNIFICANCE: The review provides an in-depth understanding of the role of E3 ligases in lung cancer progression and an up-to-date account of the different therapeutic strategies targeting oncogenic E3 ligases for improved lung cancer management.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN -743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
5
|
Zhou X, Mahdizadeh SJ, Le Gallo M, Eriksson LA, Chevet E, Lafont E. UFMylation: a ubiquitin-like modification. Trends Biochem Sci 2024; 49:52-67. [PMID: 37945409 DOI: 10.1016/j.tibs.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Post-translational modifications (PTMs) add a major degree of complexity to the proteome and are essential controllers of protein homeostasis. Amongst the hundreds of PTMs identified, ubiquitin and ubiquitin-like (UBL) modifications are recognized as key regulators of cellular processes through their ability to affect protein-protein interactions, protein stability, and thus the functions of their protein targets. Here, we focus on the most recently identified UBL, ubiquitin-fold modifier 1 (UFM1), and the machinery responsible for its transfer to substrates (UFMylation) or its removal (deUFMylation). We first highlight the biochemical peculiarities of these processes, then we develop on how UFMylation and its machinery control various intertwined cellular processes and we highlight some of the outstanding research questions in this emerging field.
Collapse
Affiliation(s)
- Xingchen Zhou
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Sayyed J Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Elodie Lafont
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
6
|
Banerjee S, Varga JK, Kumar M, Zoltsman G, Rotem‐Bamberger S, Cohen‐Kfir E, Isupov MN, Rosenzweig R, Schueler‐Furman O, Wiener R. Structural study of UFL1-UFC1 interaction uncovers the role of UFL1 N-terminal helix in ufmylation. EMBO Rep 2023; 24:e56920. [PMID: 37988244 PMCID: PMC10702826 DOI: 10.15252/embr.202356920] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
Ufmylation plays a crucial role in various cellular processes including DNA damage response, protein translation, and ER homeostasis. To date, little is known about how the enzymes responsible for ufmylation coordinate their action. Here, we study the details of UFL1 (E3) activity, its binding to UFC1 (E2), and its relation to UBA5 (E1), using a combination of structural modeling, X-ray crystallography, NMR, and biochemical assays. Guided by Alphafold2 models, we generate an active UFL1 fusion construct that includes its partner DDRGK1 and solve the crystal structure of this critical interaction. This fusion construct also unveiled the importance of the UFL1 N-terminal helix for binding to UFC1. The binding site suggested by our UFL1-UFC1 model reveals a conserved interface, and competition between UFL1 and UBA5 for binding to UFC1. This competition changes in the favor of UFL1 following UFM1 charging of UFC1. Altogether, our study reveals a novel, terminal helix-mediated regulatory mechanism, which coordinates the cascade of E1-E2-E3-mediated transfer of UFM1 to its substrate and provides new leads to target this modification.
Collapse
Affiliation(s)
- Sayanika Banerjee
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Julia K Varga
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Manoj Kumar
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Guy Zoltsman
- Department of Chemical and Structural BiologyWeizmann Institute of SciencesRehovotIsrael
| | - Shahar Rotem‐Bamberger
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Einav Cohen‐Kfir
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, BiosciencesUniversity of ExeterExeterUK
| | - Rina Rosenzweig
- Department of Chemical and Structural BiologyWeizmann Institute of SciencesRehovotIsrael
| | - Ora Schueler‐Furman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
7
|
Henneberg LT, Singh J, Duda DM, Baek K, Yanishevski D, Murray PJ, Mann M, Sidhu SS, Schulman BA. Activity-based profiling of cullin-RING E3 networks by conformation-specific probes. Nat Chem Biol 2023; 19:1513-1523. [PMID: 37653169 PMCID: PMC10667097 DOI: 10.1038/s41589-023-01392-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/29/2023] [Indexed: 09/02/2023]
Abstract
The cullin-RING ubiquitin ligase (CRL) network comprises over 300 unique complexes that switch from inactive to activated conformations upon site-specific cullin modification by the ubiquitin-like protein NEDD8. Assessing cellular repertoires of activated CRL complexes is critical for understanding eukaryotic regulation. However, probes surveying networks controlled by site-specific ubiquitin-like protein modifications are lacking. We developed a synthetic antibody recognizing the active conformation of NEDD8-linked cullins. Implementing the probe to profile cellular networks of activated CUL1-, CUL2-, CUL3- and CUL4-containing E3s revealed the complexes responding to stimuli. Profiling several cell types showed their baseline neddylated CRL repertoires vary, and prime efficiency of targeted protein degradation. Our probe also unveiled differential rewiring of CRL networks across distinct primary cell activation pathways. Thus, conformation-specific probes can permit nonenzymatic activity-based profiling across a system of numerous multiprotein complexes, which in the case of neddylated CRLs reveals widespread regulation and could facilitate the development of degrader drugs.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jaspal Singh
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - David M Duda
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Siduma Therapeutics, New Haven, CT, USA
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David Yanishevski
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter J Murray
- Immunoregulation, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sachdev S Sidhu
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada.
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Xie Z, Wu Y, Shen Y, Guo J, Yuan P, Ma Q, Wang S, Jie Z, Zhou H, Fan S, Chen S. USP7 Inhibits Osteoclastogenesis via Dual Effects of Attenuating TRAF6/TAK1 Axis and Stimulating STING Signaling. Aging Dis 2023; 14:2267-2283. [PMID: 37199589 PMCID: PMC10676781 DOI: 10.14336/ad.2023.0325-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/25/2023] [Indexed: 05/19/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification implicated in cell differentiation, homeostasis, and organ development. Several deubiquitinases (DUBs) decrease protein ubiquitination through the hydrolysis of ubiquitin linkages. However, the role of DUBs in bone resorption and formation is still unclear. In this study, we identified DUB ubiquitin-specific protease 7 (USP7) as a negative regulator of osteoclast formation. USP7 combines with tumor necrosis factor receptor-associated factor 6 (TRAF6) and inhibits its ubiquitination by impairing the Lys63-linked polyubiquitin chain. Such impairment leads to the suppression of receptor activator of NF-κB ligand (RANKL)-mediated nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation without affecting TRAF6 stability. USP7 also protects the stimulator of interferon genes (STING) against degradation, inducing interferon-β (IFN-β) expression in osteoclast formation, thereby inhibiting osteoclastogenesis cooperatively with the classical TRAF6 pathway. Furthermore, USP7 inhibition accelerates osteoclast differentiation and bone resorption both in vitro and in vivo. Contrarily, USP7 overexpression impairs osteoclast differentiation and bone resorption in vitro and in vivo. Additionally, in ovariectomy (OVX) mice, USP7 levels are lower than those in sham-operated mice, suggesting that USP7 plays a role in osteoporosis. Altogether, our data reveal the dual effect of USP7-mediated TRAF6 signal transduction and USP7-mediated protein degradation of STING in osteoclast formation.
Collapse
Affiliation(s)
- Ziang Xie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Yizheng Wu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Yang Shen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Jiandong Guo
- Department of Orthopedic Surgery, Ninth people’s Hospital of Hangzhou, Hangzhou, China.
| | - Putao Yuan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Qingliang Ma
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shiyu Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Zhiwei Jie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Hongyi Zhou
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shuai Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Ishimura R, Ito S, Mao G, Komatsu-Hirota S, Inada T, Noda NN, Komatsu M. Mechanistic insights into the roles of the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control. SCIENCE ADVANCES 2023; 9:eadh3635. [PMID: 37595036 PMCID: PMC10438457 DOI: 10.1126/sciadv.adh3635] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through ufmylation, similar to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control (RQC) at the ER (ER-RQC), and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here, we provide insights into the mechanism of the UFM1 E3 complex in not only ufmylation but also ER-RQC. The E3 complex consisting of UFL1 and UFBP1 interacted with UFC1, UFM1 E2, and, subsequently, CDK5RAP3, an adaptor for ufmylation of ribosomal subunit RPL26. Upon disome formation, the E3 complex associated with ufmylated RPL26 on the 60S subunit through the UFM1-interacting region of UFBP1. Loss of E3 components or disruption of the interaction between UFBP1 and ufmylated RPL26 attenuated ER-RQC. These results provide insights into not only the molecular basis of the ufmylation but also its role in proteostasis.
Collapse
Affiliation(s)
- Ryosuke Ishimura
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sota Ito
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Gaoxin Mao
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoko Komatsu-Hirota
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
10
|
Henneberg LT, Singh J, Duda DM, Baek K, Yanishevski D, Murray PJ, Mann M, Sidhu SS, Schulman B. Activity-based profiling of cullin-RING ligase networks by conformation-specific probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.14.524048. [PMID: 36711970 PMCID: PMC9882101 DOI: 10.1101/2023.01.14.524048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cullin-RING E3 ligase (CRL) network comprises over 300 unique complexes that switch from inactive to activated conformations upon site-specific cullin modification by the ubiquitin-like protein NEDD8. Assessing cellular repertoires of activated CRL complexes is critical for understanding eukaryotic regulation. However, probes surveying networks controlled by site-specific ubiquitin-like protein modifications are lacking. We report development of a synthetic antibody recognizing the active conformation of a NEDD8-linked cullin. We established a pipeline probing cellular networks of activated CUL1-, CUL2-, CUL3- and CUL4-containing CRLs, revealing the CRL complexes responding to stimuli. Profiling several cell types showed their baseline neddylated CRL repertoires vary, prime efficiency of targeted protein degradation, and are differentially rewired across distinct primary cell activation pathways. Thus, conformation-specific probes can permit nonenzymatic activity-based profiling across a system of numerous multiprotein complexes, which in the case of neddylated CRLs reveals widespread regulation and could facilitate development of degrader drugs.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jaspal Singh
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - David M Duda
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Present address: The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David Yanishevski
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter J Murray
- Immunoregulation, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sachdev S Sidhu
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- The Anvil Institute, Kitchener, Ontario, Canada, School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Brenda Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
11
|
E2 ubiquitin-conjugating enzymes (UBCs): drivers of ubiquitin signalling in plants. Essays Biochem 2022; 66:99-110. [PMID: 35766526 DOI: 10.1042/ebc20210093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Most research in the field of ubiquitination has focused on E3 ubiquitin ligases because they are the specificity determinants of the ubiquitination process. Nevertheless, E2s are responsible for the catalysis during ubiquitin transfer, and are therefore, at the heart of the ubiquitination process. Arabidopsis has 37 ubiquitin E2s with additional ones mediating the attachment of ubiquitin-like proteins (e.g. SUMO, Nedd8 and ATG8). Importantly, E2s largely determine the type of ubiquitin chain built, and therefore, the type of signal that decides over the fate of the modified protein, such as degradation by the proteasome (Lys48-linked ubiquitin chains) or relocalization (Lys63-linked ubiquitin chains). Moreover, new regulatory layers impinging on E2s activity, including post-translational modifications or cofactors, are emerging that highlight the importance of E2s.
Collapse
|
12
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
13
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
14
|
Hewitt CS, Krabill AD, Das C, Flaherty DP. Development of Ubiquitin Variants with Selectivity for Ubiquitin C-Terminal Hydrolase Deubiquitinases. Biochemistry 2020; 59:3447-3462. [PMID: 32865982 DOI: 10.1021/acs.biochem.9b01076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ubiquitin (Ub) is a highly conserved protein that is covalently attached to substrate proteins as a post-translational modification to regulate signaling pathways such as proteasomal degradation and cell cycle/transcriptional regulation in the eukaryotic cellular environment. Ub signaling is regulated by the homeostasis of substrate protein ubiquitination/deubiquitination by E3 ligases and deubiquitinating enzymes (DUBs) in healthy eukaryotic systems. One such DUB, ubiquitin C-terminal hydrolase L1 (UCHL1), is endogenously expressed in the central nervous system under normal physiological conditions, but overexpression and/or mutation has been linked to various cancers and neurodegenerative diseases. The lack of UCHL1 probing strategies suggests development of a selective Ub variant (UbV) for probing UCHL1's role in these disease states would be beneficial. We describe a computational design approach to investigate UbVs that lend selectivity, both binding and inhibition, to UCHL1 over the close structural homologue UCHL3 and members of other DUB families. A number of UbVs, mainly those containing Thr9 mutations, displayed appreciable binding and inhibition selectivity for UCHL1 over UCHL3, compared to wild-type Ub in in vitro assays. By appending reactive electrophiles to the C-terminus of the UbVs, we created the first activity-based probe (ABP) with demonstrated reaction selectivity for UCH family DUBs over other families in cell lysates. Further kinetic analysis of covalent inhibition by the UbV-ABP with UCHL1 and UCHL3 offers insight into the future design of UCHL1 selective UbV-ABP. These studies serve as a proof of concept of the viability of the in silico design of ubiquitin variants for UCH family DUBs as a step toward the development of macromolecular UCHL1 inhibitors.
Collapse
Affiliation(s)
- Chad S Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Department of Chemistry, College of Science, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Pharmacol Rev 2020; 72:380-413. [PMID: 32107274 PMCID: PMC7047443 DOI: 10.1124/pr.118.015651] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.
Collapse
Affiliation(s)
- Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yien Che Tsai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bufan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yiyang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Han Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Tomaya Carpenter
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Allan M Weissman
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Jun Yin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| |
Collapse
|
16
|
Zhang S, Sun Y. Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:261-283. [DOI: 10.1007/978-981-15-1025-0_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Biancospino M, Buel GR, Niño CA, Maspero E, Scotto di Perrotolo R, Raimondi A, Redlingshöfer L, Weber J, Brodsky FM, Walters KJ, Polo S. Clathrin light chain A drives selective myosin VI recruitment to clathrin-coated pits under membrane tension. Nat Commun 2019; 10:4974. [PMID: 31672988 PMCID: PMC6823378 DOI: 10.1038/s41467-019-12855-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
Clathrin light chains (CLCa and CLCb) are major constituents of clathrin-coated vesicles. Unique functions for these evolutionary conserved paralogs remain elusive, and their role in clathrin-mediated endocytosis in mammalian cells is debated. Here, we find and structurally characterize a direct and selective interaction between CLCa and the long isoform of the actin motor protein myosin VI, which is expressed exclusively in highly polarized tissues. Using genetically-reconstituted Caco-2 cysts as proxy for polarized epithelia, we provide evidence for coordinated action of myosin VI and CLCa at the apical surface where these proteins are essential for fission of clathrin-coated pits. We further find that myosin VI and Huntingtin-interacting protein 1-related protein (Hip1R) are mutually exclusive interactors with CLCa, and suggest a model for the sequential function of myosin VI and Hip1R in actin-mediated clathrin-coated vesicle budding.
Collapse
Affiliation(s)
- Matteo Biancospino
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Gwen R Buel
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Carlos A Niño
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | | | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Lisa Redlingshöfer
- Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Janine Weber
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Frances M Brodsky
- Division of Biosciences, University College London, London, WC1E 6BT, UK.
| | - Kylie J Walters
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy.
- Dipartimento di Oncologia ed Emato-oncologia, Universita' degli Studi di Milano, 20122, Milan, Italy.
| |
Collapse
|
18
|
Gundogdu M, Walden H. Structural basis of generic versus specific E2-RING E3 interactions in protein ubiquitination. Protein Sci 2019; 28:1758-1770. [PMID: 31340062 DOI: 10.1002/pro.3690] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Protein ubiquitination is a fundamental regulatory component in eukaryotic cell biology, where a cascade of ubiquitin activating (E1), conjugating (E2), and ligating (E3) enzymes assemble distinct ubiquitin signals on target proteins. E2s specify the type of ubiquitin signal generated, while E3s associate with the E2~Ub conjugate and select the substrate for ubiquitination. Thus, producing the right ubiquitin signal on the right target requires the right E2-E3 pair. The question of how over 600 E3s evolved to discriminate between 38 structurally related E2s has therefore been an area of intensive research, and with over 50 E2-E3 complex structures generated to date, the answer is beginning to emerge. The following review discusses the structural basis of generic E2-RING E3 interactions, contrasted with emerging themes that reveal how specificity can be achieved.
Collapse
Affiliation(s)
- Mehmet Gundogdu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Deol KK, Lorenz S, Strieter ER. Enzymatic Logic of Ubiquitin Chain Assembly. Front Physiol 2019; 10:835. [PMID: 31333493 PMCID: PMC6624479 DOI: 10.3389/fphys.2019.00835] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
20
|
Rayner SL, Morsch M, Molloy MP, Shi B, Chung R, Lee A. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases. Cell Mol Life Sci 2019; 76:2499-2510. [PMID: 30919022 PMCID: PMC11105231 DOI: 10.1007/s00018-019-03082-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Ubiquitin ligases play an integral role in fine-tuning signaling cascades necessary for normal cell function. Aberrant regulation of ubiquitin ligases has been implicated in several neurodegenerative diseases, generally, due to mutations within the E3 ligase itself. Several proteomic-based methods have recently emerged to facilitate the rapid identification of ligase-substrate pairs-a previously challenging feat due to the transient nature of ligase-substrate interactions. These novel methods complement standard immunoprecipitations (IPs) and include proximity-dependent biotin identification (BioID), ubiquitin ligase-substrate trapping, tandem ubiquitin-binding entities (TUBEs), and a molecular trapping unit known as the NEDDylator. The implementation of these techniques is expected to facilitate the rapid identification of novel substrates of E3 ubiquitin ligases, a process that is likely to enhance our understanding of neurodegenerative diseases and highlight novel therapeutic targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephanie L Rayner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Mark P Molloy
- Faculty of Medicine and Health, Sydney School of Medicine, Royal North Shore Hospital, Pacific Hwy, St Leonards, Sydney, NSW, 2065, Australia
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia.
| |
Collapse
|
21
|
Using In Vitro Ubiquitylation Assays to Estimate the Affinities of Ubiquitin-Conjugating Enzymes for Their Ubiquitin Ligase Partners. Methods Mol Biol 2019. [PMID: 30242702 DOI: 10.1007/978-1-4939-8706-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Ubiquitin ligases (E3s) function by binding to both a protein substrate and to ubiquitin-conjugating enzymes (E2s) bound to ubiquitin. E3s facilitate the transfer of ubiquitin from the E2 active site to an E3-bound substrate. Thus, the affinity of the interaction of an E2 with its E3 partner is of considerable interest. The purpose of this work is to (1) provide protocols for the purification of the human E2 Cdc34, as well as for some additional protein components needed for the assays described here whose purification protocols haven't been described elsewhere in detail; (2) provide the researcher with critical information regarding the proper long-term storage of these enzymes to retain maximal activity; (3) provide a protocol to benchmark Cdc34 activity with previously described activity levels in the literature; and (4) provide a simple and rapid means of measuring E2 affinity for an E3.
Collapse
|
22
|
Sluimer J, Distel B. Regulating the human HECT E3 ligases. Cell Mol Life Sci 2018; 75:3121-3141. [PMID: 29858610 PMCID: PMC6063350 DOI: 10.1007/s00018-018-2848-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/09/2023]
Abstract
Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein-protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.
Collapse
Affiliation(s)
- Jasper Sluimer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus Medical Center, Wijtemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Lorenz S. Structural mechanisms of HECT-type ubiquitin ligases. Biol Chem 2018; 399:127-145. [PMID: 29016349 DOI: 10.1515/hsz-2017-0184] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Ubiquitin ligases (E3 enzymes) transfer ubiquitin from ubiquitin-conjugating (E2) enzymes to target proteins. By determining the selection of target proteins, modification sites on those target proteins, and the types of ubiquitin modifications that are formed, E3 enzymes are key specificity factors in ubiquitin signaling. Here, I summarize our knowledge of the structural mechanisms in the HECT E3 subfamily, many members of which play important roles in human disease. I discuss interactions of the conserved HECT domain with E2 enzymes, ubiquitin and target proteins, as well as macromolecular interactions with regulatory functions. While we understand individual steps in the catalytic cycle of HECT E3 enzymes on a structural level, this review also highlights key aspects that have yet to be elucidated. For instance, it remains unclear how diverse target proteins are presented to the catalytic center and how certain HECT E3 enzymes achieve specificity in ubiquitin linkage formation. The structural and functional properties of the N-terminal regions of HECT E3 enzymes that likely act as signaling hubs are also largely unknown. Structural insights into these aspects may open up routes for a therapeutic intervention with specific HECT E3 functions in distinct pathophysiological settings.
Collapse
Affiliation(s)
- Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| |
Collapse
|
24
|
Kobayashi F, Nishiuchi T, Takaki K, Konno H. Ubiquitin chain specificities of E6AP E3 ligase and its HECT domain. Biochem Biophys Res Commun 2017; 496:686-692. [PMID: 29288669 DOI: 10.1016/j.bbrc.2017.12.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023]
Abstract
Ubiquitination of target proteins is accomplished by isopeptide bond formation between the carboxy group of the C-terminal glycine (Gly) residue of ubiquitin (Ub) and the ɛ-amino group of lysine (Lys) on the target proteins. The formation of an isopeptide bond between Ubs that gives rise to a poly-Ub chain on the target proteins and the types of poly-Ub chains formed depend on which of the seven Lys residues or N-terminal methionine (Met) residue on Ub is used for chain elongation. To understand the linkage specificity mechanism of Ub chains on E3, the previous study established an assay to monitor the formation of a free diubiquitin chain (Ub2 chain synthesis assay) by HECT type E3 ligase. In this study, we investigated Ub2 chain specificity using E6AP HECT domain. We here demonstrate the importance of the N-terminal domain of full length E6AP for Ub2 chain specificity.
Collapse
Affiliation(s)
- Fuminori Kobayashi
- Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takumi Nishiuchi
- Institute for Gene Research Center, Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kento Takaki
- Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroki Konno
- Institute for Gene Research Center, Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
25
|
Hu L, Xu J, Xie X, Zhou Y, Tao P, Li H, Han X, Wang C, Liu J, Xu P, Neculai D, Xia Z. Oligomerization-primed coiled-coil domain interaction with Ubc13 confers processivity to TRAF6 ubiquitin ligase activity. Nat Commun 2017; 8:814. [PMID: 28993672 PMCID: PMC5634496 DOI: 10.1038/s41467-017-01290-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022] Open
Abstract
Ubiquitin ligase TRAF6, together with ubiquitin-conjugating enzyme Ubc13/Uev1, catalyzes processive assembly of unanchored K63-linked polyubiquitin chains for TAK1 activation in the IL-1R/TLR pathways. However, what domain and how it functions to enable TRAF6’s processivity are largely uncharacterized. Here, we find TRAF6 coiled-coil (CC) domain is crucial to enable its processivity. The CC domain mediates TRAF6 oligomerization to ensure efficient long polyubiquitin chain assembly. Mutating or deleting the CC domain impairs TRAF6 oligomerization and processive polyubiquitin chain assembly. Fusion of the CC domain to the E3 ubiquitin ligase CHIP/STUB1 renders the latter capable of NF-κB activation. Moreover, the CC domain, after oligomerization, interacts with Ubc13/Ub~Ubc13, which further contributes to TRAF6 processivity. Point mutations within the CC domain that weaken TRAF6 interaction with Ubc13/Ub~Ubc13 diminish TRAF6 processivity. Our results reveal that the CC oligomerization primes its interaction with Ubc13/Ub~Ubc13 to confer processivity to TRAF6 ubiquitin ligase activity. Ubiquitin ligase TRAF6 catalyzes assembly of free polyubiquitin chains for TAK1 activation in the IL-1R/TLR pathways, but the mechanism underlying its processivity is unclear. Here, the authors show that TRAF6 coiled-coil oligomerization domain primes its interaction with Ubc13/Ub~Ubc13 to confer processivity.
Collapse
Affiliation(s)
- Lin Hu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jiafeng Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaomei Xie
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yiwen Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Panfeng Tao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Haidong Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xu Han
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chong Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jian Liu
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Dante Neculai
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zongping Xia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
26
|
Todaro DR, Augustus-Wallace AC, Klein JM, Haas AL. The mechanism of neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2)/NEDD4L-catalyzed polyubiquitin chain assembly. J Biol Chem 2017; 292:19521-19536. [PMID: 28972136 DOI: 10.1074/jbc.m117.817882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 11/06/2022] Open
Abstract
The mechanism of Nedd4-2 has been quantitatively explored for the first time using biochemically defined kinetic assays examining rates of 125I-polyubiquitin chain assembly as a functional readout. We demonstrate that Nedd4-2 exhibits broad specificity for E2 paralogs of the Ubc4/5 clade to assemble Lys63-linked polyubiquitin chains. Full-length Nedd4-2 catalyzes free 125I-polyubiquitin chain assembly by hyperbolic Michaelis-Menten kinetics with respect to Ubc5B∼ubiquitin thioester concentration (Km = 44 ± 6 nm; kcat = 0.020 ± 0.007 s-1) and substrate inhibition above 0.5 μm (Ki = 2.5 ± 1.3 μm) that tends to zero velocity, requiring ordered binding at two functionally distinct E2∼ubiquitin-binding sites. The Ubc5BC85A product analog non-competitively inhibits Nedd4-2 (Ki = 2.0 ± 0.5 μm), consistent with the presence of the second E2-binding site. In contrast, the isosteric Ubc5BC85S-ubiquitin oxyester substrate analog exhibits competitive inhibition at the high-affinity Site 1 (Ki = 720 ± 340 nm) and non-essential activation at the lower-affinity Site 2 (Kact = 750 ± 260 nm). Additional studies utilizing Ubc5BF62A, defective in binding the canonical E2 site, demonstrate that the cryptic Site 1 is associated with thioester formation, whereas binding at the canonical site (Site 2) is associated with polyubiquitin chain elongation. Finally, previously described Ca2+-dependent C2 domain-mediated autoinhibition of Nedd4-2 is not observed under our reported experimental conditions. These studies collectively demonstrate that Nedd4-2 catalyzes polyubiquitin chain assembly by an ordered two-step mechanism requiring two dynamically linked E2∼ubiquitin-binding sites analogous to that recently reported for E6AP, the founding member of the Hect ligase family.
Collapse
Affiliation(s)
- Dustin R Todaro
- From the Department of Biochemistry and Molecular Biology and
| | | | | | - Arthur L Haas
- From the Department of Biochemistry and Molecular Biology and .,the Stanley S. Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
27
|
Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem J 2017; 473:3401-3419. [PMID: 27729585 PMCID: PMC5095918 DOI: 10.1042/bcj20160028] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Ubiquitin signalling is a fundamental eukaryotic regulatory system, controlling diverse cellular functions. A cascade of E1, E2, and E3 enzymes is required for assembly of distinct signals, whereas an array of deubiquitinases and ubiquitin-binding modules edit, remove, and translate the signals. In the centre of this cascade sits the E2-conjugating enzyme, relaying activated ubiquitin from the E1 activating enzyme to the substrate, usually via an E3 ubiquitin ligase. Many disease states are associated with dysfunction of ubiquitin signalling, with the E3s being a particular focus. However, recent evidence demonstrates that mutations or impairment of the E2s can lead to severe disease states, including chromosome instability syndromes, cancer predisposition, and immunological disorders. Given their relevance to diseases, E2s may represent an important class of therapeutic targets. In the present study, we review the current understanding of the mechanism of this important family of enzymes, and the role of selected E2s in disease.
Collapse
|
28
|
Paiva SL, da Silva SR, de Araujo ED, Gunning PT. Regulating the Master Regulator: Controlling Ubiquitination by Thinking Outside the Active Site. J Med Chem 2017; 61:405-421. [DOI: 10.1021/acs.jmedchem.6b01346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Stacey-Lynn Paiva
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Sara R. da Silva
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elvin D. de Araujo
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Patrick T. Gunning
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
29
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
30
|
Abstract
Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process. Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals can be generated depending on the specificity and catalytic activity of the enzymes required for attachment of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity of ubiquitin conjugation.
Collapse
|
31
|
Regulation of the CUL3 Ubiquitin Ligase by a Calcium-Dependent Co-adaptor. Cell 2016; 167:525-538.e14. [DOI: 10.1016/j.cell.2016.09.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/13/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022]
|
32
|
A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes. Nat Commun 2016; 7:12580. [PMID: 27550514 PMCID: PMC4996978 DOI: 10.1038/ncomms12580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2∼Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s. Regulators of the important ubiquitylation cascade are not well studied. Here, the authors report the crystal structure of a prenylated membrane-anchored ubiquitin-fold protein from Arabidopsis bound to an E2 protein and conclude that it is an example of selective activation between E2 enzymes.
Collapse
|
33
|
Neddylation requires glycyl-tRNA synthetase to protect activated E2. Nat Struct Mol Biol 2016; 23:730-7. [PMID: 27348078 PMCID: PMC4972647 DOI: 10.1038/nsmb.3250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022]
Abstract
Neddylation is a post-translational modification that controls cell cycle and proliferation by conjugating the ubiquitin-like protein NEDD8 to specific targets. Here we report that glycyl-tRNA synthetase (GlyRS), an essential enzyme for protein synthesis, also plays a critical role in neddylation. In human cells, knockdown of GlyRS, but not a different tRNA synthetase, decreases the global level of neddylation and causes cell cycle abnormality. This function of GlyRS is achieved through direct interactions with multiple components of the neddylation pathway, including NEDD8, E1, and E2 (Ubc12). Using various structural and functional approaches, we show that GlyRS binds to the APPBP1 subunit of E1 to capture and protect the activated E2 (NEDD8-conjugated Ubc12) before it reaches a downstream target. Therefore, GlyRS functions as a chaperone to critically support neddylation. This function is likely to be conserved in all eukaryotic GlyRS, and may contribute to the strong association of GlyRS with cancer progression.
Collapse
|
34
|
Abstract
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.
Collapse
|
35
|
He F, Wollscheid HP, Nowicka U, Biancospino M, Valentini E, Ehlinger A, Acconcia F, Magistrati E, Polo S, Walters KJ. Myosin VI Contains a Compact Structural Motif that Binds to Ubiquitin Chains. Cell Rep 2016; 14:2683-94. [PMID: 26971995 DOI: 10.1016/j.celrep.2016.01.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/24/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Myosin VI is critical for cargo trafficking and sorting during early endocytosis and autophagosome maturation, and abnormalities in these processes are linked to cancers, neurodegeneration, deafness, and hypertropic cardiomyopathy. We identify a structured domain in myosin VI, myosin VI ubiquitin-binding domain (MyUb), that binds to ubiquitin chains, especially those linked via K63, K11, and K29. Herein, we solve the solution structure of MyUb and MyUb:K63-linked diubiquitin. MyUb folds as a compact helix-turn-helix-like motif and nestles between the ubiquitins of K63-linked diubiquitin, interacting with distinct surfaces of each. A nine-amino-acid extension at the C-terminal helix (Helix2) of MyUb is required for myosin VI interaction with endocytic and autophagic adaptors. Structure-guided mutations revealed that a functional MyUb is necessary for optineurin interaction. In addition, we found that an isoform-specific helix restricts MyUb binding to ubiquitin chains. This work provides fundamental insights into myosin VI interaction with ubiquitinated cargo and functional adaptors.
Collapse
Affiliation(s)
- Fahu He
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Hans-Peter Wollscheid
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Urszula Nowicka
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Matteo Biancospino
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Eleonora Valentini
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Aaron Ehlinger
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Filippo Acconcia
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Elisa Magistrati
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy; DIPO, Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via di Rudinì 8, 20122 Milan, Italy.
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
36
|
Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation. Proc Natl Acad Sci U S A 2016; 113:1540-5. [PMID: 26811472 DOI: 10.1073/pnas.1522423113] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most metazoan E3 ligases contain a signature RING domain that promotes the transfer of ubiquitin from the active site of E2 conjugating enzymes to lysine residues in substrates. Although these RING-E3s depend on E2 enzymes for catalysis, how they turn on their E2s at the right time and place remains poorly understood. Here we report a phosphorylation-dependent mechanism that ensures timely activation of the E2 Ube2S by its RING-E3, the anaphase-promoting complex (APC/C); while phosphorylation of a specific serine residue in the APC/C coactivator Cdc20 prevents delivery of Ube2S to the APC/C, removal of this mark by PP2A(B56) allows Ube2S to bind the APC/C and catalyze ubiquitin chain elongation. PP2A(B56) also stabilizes kinetochore-microtubule attachments to shut off the spindle checkpoint, suggesting that cells regulate the E2-E3 interplay to coordinate ubiquitination with critical events during cell division.
Collapse
|
37
|
Jarvis MA, Brown NG, Watson ER, VanderLinden R, Schulman BA, Peters JM. Measuring APC/C-Dependent Ubiquitylation In Vitro. Methods Mol Biol 2016; 1342:287-303. [PMID: 26254932 DOI: 10.1007/978-1-4939-2957-3_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a 1.2 MDa ubiquitin ligase complex with important functions in both proliferating and post-mitotic differentiated cells. In proliferating cells, APC/C controls cell cycle progression by targeting inhibitors of chromosome segregation and mitotic exit for degradation by the 26S proteasome. To understand how APC/C recruits and ubiquitylates its substrate proteins and how these processes are controlled, it is essential to analyze APC/C activity in vitro. In the past, such experiments have been limited by the fact that large quantities of purified APC/C were difficult to obtain and that mutated versions of the APC/C could not be easily generated. In this chapter we review recent advances in generating and purifying recombinant forms of the human APC/C and its co-activators, using methods that are scalable and compatible with mutagenesis. We also describe a method that allows the quantitative analysis of APC/C activity using fluorescently labeled substrate proteins.
Collapse
Affiliation(s)
- Marc A Jarvis
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohrgasse 7, 1030, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Numerous authors, including contributors to this volume, have described methods to detect protein-protein interactions. Many of these approaches are now accessible to the inexperienced investigator thanks to core facilities and/or affordable instrumentation. This chapter discusses some common design considerations that are necessary to obtain valid measurements, as well as the assumptions and analytical methods that are relevant to the quantitation of these interactions.
Collapse
|
39
|
Qiu Y, Hofmann K, Coats JE, Schulman BA, Kaiser SE. Binding to E1 and E3 is mutually exclusive for the human autophagy E2 Atg3. Protein Sci 2015; 22:1691-7. [PMID: 24186333 DOI: 10.1002/pro.2381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ubiquitin-like proteins (UBLs) are activated, transferred and conjugated by E1-E2-E3 enzyme cascades. E2 enzymes for canonical UBLs such as ubiquitin, SUMO, and NEDD8 typically use common surfaces to bind to E1 and E3 enzymes. Thus, canonical E2s are required to disengage from E1 prior to E3-mediated UBL ligation. However, E1, E2, and E3 enzymes in the autophagy pathway are structurally and functionally distinct from canonical enzymes, and it has not been possible to predict whether autophagy UBL cascades are organized according to the same principles. Here, we address this question for the pathway mediating lipidation of the human autophagy UBL, LC3. We utilized bioinformatic and experimental approaches to identify a distinctive region in the autophagy E2, Atg3, that binds to the autophagy E3, Atg12∼Atg5-Atg16. Short peptides corresponding to this Atg3 sequence inhibit LC3 lipidation in vitro. Notably, the E3-binding site on Atg3 overlaps with the binding site for the E1, Atg7. Accordingly, the E3 competes with Atg7 for binding to Atg3, implying that Atg3 likely cycles back and forth between binding to Atg7 for loading with the UBL LC3 and binding to E3 to promote LC3 lipidation. The results show that common organizational principles underlie canonical and noncanonical UBL transfer cascades, but are established through distinct structural features.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | | | | |
Collapse
|
40
|
Li S, Liang YH, Mariano J, Metzger MB, Stringer DK, Hristova VA, Li J, Randazzo PA, Tsai YC, Ji X, Weissman AM. Insights into Ubiquitination from the Unique Clamp-like Binding of the RING E3 AO7 to the E2 UbcH5B. J Biol Chem 2015; 290:30225-39. [PMID: 26475854 DOI: 10.1074/jbc.m115.685867] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface.
Collapse
Affiliation(s)
- Shengjian Li
- From the Laboratory of Protein Dynamics and Signaling
| | - Yu-He Liang
- Macromolecular Crystallography Laboratory, and
| | | | | | | | | | - Jess Li
- Structural Biophysics Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702 and
| | - Paul A Randazzo
- the Laboratory of Cell and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yien Che Tsai
- From the Laboratory of Protein Dynamics and Signaling
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, and
| | | |
Collapse
|
41
|
Abstract
NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin-RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here, we re-evaluate studies of non-cullin targets of NEDD8 in light of the current understanding of the neddylation pathway, and suggest criteria for identifying genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights.
Collapse
|
42
|
Callis J. The ubiquitination machinery of the ubiquitin system. THE ARABIDOPSIS BOOK 2014; 12:e0174. [PMID: 25320573 PMCID: PMC4196676 DOI: 10.1199/tab.0174] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's β-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery "half" of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s.
Collapse
Affiliation(s)
- Judy Callis
- Department of Molecular and Cellular Biology, University of California-Davis, Davis CA 95616
| |
Collapse
|
43
|
Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations. PLoS One 2014; 9:e101663. [PMID: 25003393 PMCID: PMC4086935 DOI: 10.1371/journal.pone.0101663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.
Collapse
|
44
|
New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 2014; 21:301-7. [PMID: 24699078 DOI: 10.1038/nsmb.2780] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/28/2014] [Indexed: 12/12/2022]
Abstract
E3 ligases carry out the final step in the ubiquitination cascade, catalyzing transfer of ubiquitin from an E2 enzyme to form a covalent bond with a substrate lysine. Three distinct classes of E3 ligases have been identified that stimulate transfer of ubiquitin and ubiquitin-like proteins through either a direct or an indirect mechanism. Only recently have the catalytic mechanisms of E3 ligases begun to be elucidated.
Collapse
|
45
|
Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, Chai N, Wu J, Deng H, Wang HR, Cao Y, Zhao F, Cui Y, Wang J, He F, Zhang L. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun 2014; 5:3733. [DOI: 10.1038/ncomms4733] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/25/2014] [Indexed: 02/06/2023] Open
|
46
|
Jacobson AD, MacFadden A, Wu Z, Peng J, Liu CW. Autoregulation of the 26S proteasome by in situ ubiquitination. Mol Biol Cell 2014; 25:1824-35. [PMID: 24743594 PMCID: PMC4055262 DOI: 10.1091/mbc.e13-10-0585] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 26S proteasome degrades ubiquitinated proteins, and proteasomal degradation controls various cellular events. Here we report that the human 26S proteasome is ubiquitinated, by which the ubiquitin receptors Adrm1 and S5a, the ATPase subunit Rpt5, and the deubiquitinating enzyme Uch37 are ubiquitinated in situ by proteasome-associating ubiquitination enzymes. Ubiquitination of these subunits significantly impairs the 26S proteasome's ability to bind, deubiquitinate, and degrade ubiquitinated proteins. Moreover, ubiquitination of the 26S proteasome can be antagonized by proteasome-residing deubiquitinating enzymes, by the binding of polyubiquitin chains, and by certain cellular stress, indicating that proteasome ubiquitination is dynamic and regulated in cells. We propose that in situ ubiquitination of the 26S proteasome regulates its activity, which could function to adjust proteasomal activity in response to the alteration of cellular ubiquitination levels.
Collapse
Affiliation(s)
- Andrew D Jacobson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Zhiping Wu
- Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Junmin Peng
- Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
47
|
Abstract
Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson's disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating the synaptic activity.
Collapse
|
48
|
Liu W, Shang Y, Zeng Y, Liu C, Li Y, Zhai L, Wang P, Lou J, Xu P, Ye Y, Li W. Dimeric Ube2g2 simultaneously engages donor and acceptor ubiquitins to form Lys48-linked ubiquitin chains. EMBO J 2013; 33:46-61. [PMID: 24366945 DOI: 10.1002/embj.201385315] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular adaptation to proteotoxic stress at the endoplasmic reticulum (ER) depends on Lys48-linked polyubiquitination by ER-associated ubiquitin ligases (E3s) and subsequent elimination of ubiquitinated retrotranslocation products by the proteasome. The ER-associated E3 gp78 ubiquitinates misfolded proteins by transferring preformed Lys48-linked ubiquitin chains from the cognate E2 Ube2g2 to substrates. Here we demonstrate that Ube2g2 synthesizes linkage specific ubiquitin chains by forming an unprecedented homodimer: The dimerization of Ube2g2, mediated primarily by electrostatic interactions between two Ube2g2s, is also facilitated by the charged ubiquitin molecules. Mutagenesis studies show that Ube2g2 dimerization is required for ER-associated degradation (ERAD). In addition to E2 dimerization, we show that a highly conserved arginine residue in the donor Ube2g2 senses the presence of an aspartate in the acceptor ubiquitin to position only Lys48 of ubiquitin in proximity to the donor E2 active site. These results reveal an unanticipated mode of E2 self-association that allows the E2 to effectively engage two ubiquitins to specifically synthesize Lys48-linked ubiquitin chains.
Collapse
Affiliation(s)
- Weixiao Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Qiao Y, Zhang Y, Wang J. Ubiquitin E3 ligase SCFβ-TRCP regulates TRIB2 stability in liver cancer cells. Biochem Biophys Res Commun 2013; 441:555-9. [DOI: 10.1016/j.bbrc.2013.10.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/22/2013] [Indexed: 11/17/2022]
|
50
|
Devine T, Dai MS. Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr Pharm Des 2013; 19:3248-62. [PMID: 23151129 DOI: 10.2174/1381612811319180009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 02/08/2023]
Abstract
Within the past decade, there has been a revolution in the types of drugs developed to treat cancer. Therapies that selectively target cancer-specific aberrations, such as kinase inhibitors, have made a dramatic impact on a subset of patients. In spite of these successes, there is still a dearth of treatment options for the vast majority of patients. Therefore, there is a need to design therapies with broader efficacy. The p53 tumor suppressor pathway is one of the most frequently altered in human cancers. However, about half of all cancers retain wild-type p53, yet through various mechanisms, the p53 pathway is otherwise inactivated. Targeting this pathway for reactivation truly represents the "holy grail" in cancer treatment. Most commonly, destabilization of p53 by various components of ubiquitin- proteasome system, notably the ubiquitin ligase MDM2 and its partner MDMX as well as various deubiquitinating enzymes (DUBs), render p53 inert and unresponsive to stress signals. Reinstating its function in cancer has been a long sought-after goal. Towards this end, a great deal of work has been devoted to the development of compounds that either interfere with the p53-MDM2 and p53- MDMX interactions, inhibit MDM2 E3 activity, or target individual DUBs. Here we review the current progress that has been made in the field, with a special emphasis on both MDM2 and DUB inhibitors. Developing inhibitors targeting the upstream of the p53 ubiquitination pathway will likely also be a valuable option.
Collapse
Affiliation(s)
- Tiffany Devine
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|