1
|
Pospíšilová J, Heger T, Kurka O, Kvasnicová M, Chládková A, Nemec I, Rárová L, Cankař P. Atropisomeric 1-phenylbenzimidazoles affecting microtubule organization: influence of axial chirality. Org Biomol Chem 2024; 22:6966-6980. [PMID: 38988246 DOI: 10.1039/d4ob00863d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Benzimidazoles are frequently used in medicinal chemistry. Their anticancer effect is among the most prominent biological activities exhibited by this scaffold. Although numerous benzimidazole derivatives have been synthesized, possible atropisomerism of ortho-substituted 1-phenylbenzimidazoles has been largely overlooked. The aim of this research was to synthesize a small library of novel atropisomeric benzimidazole derivatives and explore their biological activity in various cancer and normal human cell lines. The new unique structural motif provides an interesting 3D architecture with axial chirality, which further contributes to molecular complexity and specificity. Racemates and their separated atropisomers arrested the cell cycle, caused apoptosis, and affected microtubule organization in cancer cells in vitro at different intensities. Moreover, this phenomenon was also verified by the inhibition of endothelial cell migration. These results showed that (+)-atropisomers, especially 5n, exhibit a stronger effect and show promise as agents for cancer therapy.
Collapse
Affiliation(s)
- Jana Pospíšilová
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 77900 Olomouc, Czech Republic.
| | - Tomáš Heger
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic.
| | - Ondřej Kurka
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science, Palacký University, Slechtitelu 27, Olomouc CZ-77900, Czech Republic
| | - Marie Kvasnicová
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Palacký University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Anna Chládková
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 77900 Olomouc, Czech Republic.
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 77900 Olomouc, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Palacký University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Petr Cankař
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 77900 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Pan-cancer antagonistic inhibition pattern of ATM-driven G2/M checkpoint pathway vs other DNA repair pathways. DNA Repair (Amst) 2023; 123:103448. [PMID: 36657260 DOI: 10.1016/j.dnarep.2023.103448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.
Collapse
|
3
|
Sazonova EV, Petrichuk SV, Kopeina GS, Zhivotovsky B. A link between mitotic defects and mitotic catastrophe: detection and cell fate. Biol Direct 2021; 16:25. [PMID: 34886882 PMCID: PMC8656038 DOI: 10.1186/s13062-021-00313-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of mitotic catastrophe was first described more than 80 years ago, only recently has this term been used to explain a mechanism of cell death linked to delayed mitosis. Several mechanisms have been suggested for mitotic catastrophe development and cell fate. Depending on molecular perturbations, mitotic catastrophe can end in three types of cell death, namely apoptosis, necrosis, or autophagy. Moreover, mitotic catastrophe can be associated with different types of cell aging, the development of which negatively affects tumor elimination and, consequently, reduces the therapeutic effect. The effective triggering of mitotic catastrophe in clinical practice requires induction of DNA damage as well as inhibition of the molecular pathways that regulate cell cycle arrest and DNA repair. Here we discuss various methods to detect mitotic catastrophe, the mechanisms of its development, and the attempts to use this phenomenon in cancer treatment.
Collapse
Affiliation(s)
- Elena V Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Svetlana V Petrichuk
- Federal State Autonomous Institution "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia, 119296
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
4
|
Zhao F, Xu Y, Gao S, Qin L, Austria Q, Siedlak SL, Pajdzik K, Dai Q, He C, Wang W, O'Donnell JM, Tang B, Zhu X. METTL3-dependent RNA m 6A dysregulation contributes to neurodegeneration in Alzheimer's disease through aberrant cell cycle events. Mol Neurodegener 2021; 16:70. [PMID: 34593014 PMCID: PMC8482683 DOI: 10.1186/s13024-021-00484-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Background N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism and m6A dysregulation is implicated in various human diseases. In this study, we explored the potential role of RNA m6A modification in the pathogenesis of Alzheimer disease (AD). Methods We investigated the m6A modification and the expression of m6A regulators in the brain tissues of AD patients and determined the impact and underlying mechanism of manipulated expression of m6A levels on AD-related deficits both in vitro and in vivo. Results We found decreased neuronal m6A levels along with significantly reduced expression of m6A methyltransferase like 3 (METTL3) in AD brains. Interestingly, reduced neuronal m6A modification in the hippocampus caused by METTL3 knockdown led to significant memory deficits, accompanied by extensive synaptic loss and neuronal death along with multiple AD-related cellular alterations including oxidative stress and aberrant cell cycle events in vivo. Inhibition of oxidative stress or cell cycle alleviated shMettl3-induced apoptotic activation and neuronal damage in primary neurons. Restored m6A modification by inhibiting its demethylation in vitro rescued abnormal cell cycle events, neuronal deficits and death induced by METTL3 knockdown. Soluble Aβ oligomers caused reduced METTL3 expression and METTL3 knockdown exacerbated while METTL3 overexpression rescued Aβ-induced synaptic PSD95 loss in vitro. Importantly, METTL3 overexpression rescued Aβ-induced synaptic damage and cognitive impairment in vivo. Conclusions Collectively, these data suggested that METTL3 reduction-mediated m6A dysregulation likely contributes to neurodegeneration in AD which may be a therapeutic target for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00484-x.
Collapse
Affiliation(s)
- Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, 14214, USA
| | - Shichao Gao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, 14214, USA
| | - Lixia Qin
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quillan Austria
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Kinga Pajdzik
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, 14214, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Girling KD, Demers MJ, Laine J, Zhang S, Wang YT, Graham RK. Activation of caspase-6 and cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity. J Neurosci Res 2017; 96:391-406. [DOI: 10.1002/jnr.24153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Kimberly D. Girling
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Marie-Josee Demers
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Jean Laine
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Shu Zhang
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Yu Tian Wang
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Rona K. Graham
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| |
Collapse
|
6
|
He LC, Li PH, Ma X, Sui SP, Gao S, Kim SW, Gu YQ, Huang Y, Ding NS, Huang RH. Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs. Anim Genet 2016; 48:48-54. [PMID: 27615062 DOI: 10.1111/age.12492] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 01/08/2023]
Abstract
The Chinese Erhualian pig has the highest record for litter size in the world. However, the genetic mechanism of its high prolificacy remains poorly understood. In our study, large phenotypic variations in litter size were found among Erhualian sows. Significant differences in total number born (TNB) and corpora lutea numbers were observed between sows with high and low estimated breeding values (EBVs) for TNB. To identify single nucleotide polymorphisms (SNPs) associated with TNB, a selective genomic scan was conducted on 18 sows representing the top 10% and 18 sows representing the bottom 10% of EBVs of 177 sows using Illumina Porcine SNP60 genotype data. Genome-wide fixation coefficient (FST ) values were calculated for each SNP between the high- and low-EBV groups. A total of 154 SNPs were significantly differentiated loci between the two groups. Of the top 10 highest FST SNPs, rs81399474, rs81400131 and rs81405013 on SSC8 and rs81434499 and rs81434489 on SSC 12 corresponded to previously reported QTL for litter size. The other five SNPs, rs81367039 on SSC2, rs80891106 on SSC7, rs81477883 on SSC12 and rs80938898 and rs80971725 on SSC14, appeared to be novel QTL for TNB. Significant associations between rs81399474 on SSC8 and TNB were confirmed in 313 Erhualian sows. Forty genes were identified around the top 10 highest FST SNPs, of which UCHL1, adjacent to rs81399474, and RPS6KB1 and CLTC, adjacent to rs81434499, have been reported to affect the ovulation rate in pig. The findings can advance understanding of the genetic variations in litter size of pigs.
Collapse
Affiliation(s)
- L C He
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - P H Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - X Ma
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - S P Sui
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - S Gao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - S W Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Y Q Gu
- Changzhou Jiaoxi Cooperatives of Erhualian pigs, Changzhou, 213116, China
| | - Y Huang
- Changzhou Jiaoxi Cooperatives of Erhualian pigs, Changzhou, 213116, China
| | - N S Ding
- College of Animal Science and Veterinary Medicine, Jiangxi Agricultural University, Nanchang, 330045, China
| | - R H Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Age-dependent differential expression of death-associated protein 6 (Daxx) in various peripheral tissues and different brain regions of C57BL/6 male mice. Biogerontology 2016; 17:817-828. [PMID: 27465500 DOI: 10.1007/s10522-016-9651-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
Death-associated protein 6 (DAXX) is a ubiquitous protein implicated in various cellular processes such as apoptosis, tumorigenesis, development and transcription. The role of DAXX is however ambiguous and many contradictory results regarding its function in apoptosis upon various cellular stresses are described in the literature. In order to have a better understanding of the role of DAXX throughout the entire organism under physiological stress conditions, we have characterized the mRNA levels, protein expression and the proteolytic processing of DAXX in the normal aging process in peripheral organs and brain regions in C57BL/6 male mice. Overall, Daxx mRNA expression decreases with aging in the liver, kidney, heart, cortex and cerebellum. In contrast, an increase is observed in the striatum. The protein expression of DAXX and of its proteolytic fragments increases with aging in the kidney, heart and cortex. In liver and spleen, no changes are observed while in the striatum and cerebellum, certain forms increase and others decrease with age, suggesting that the functions of DAXX may be cell type dependent. This study provides important details regarding the expression and post-translational modifications of DAXX in aging in the entire organism and provides reference data for the deregulation observed in age-associated diseases.
Collapse
|
8
|
Riechers SP, Butland S, Deng Y, Skotte N, Ehrnhoefer DE, Russ J, Laine J, Laroche M, Pouladi MA, Wanker EE, Hayden MR, Graham RK. Interactome network analysis identifies multiple caspase-6 interactors involved in the pathogenesis of HD. Hum Mol Genet 2016; 25:1600-18. [DOI: 10.1093/hmg/ddw036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/05/2016] [Indexed: 11/14/2022] Open
|
9
|
Turner RL, Groitl P, Dobner T, Ornelles DA. Adenovirus replaces mitotic checkpoint controls. J Virol 2015; 89:5083-96. [PMID: 25694601 PMCID: PMC4403466 DOI: 10.1128/jvi.00213-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Infection with adenovirus triggers the cellular DNA damage response, elements of which include cell death and cell cycle arrest. Early adenoviral proteins, including the E1B-55K and E4orf3 proteins, inhibit signaling in response to DNA damage. A fraction of cells infected with an adenovirus mutant unable to express the E1B-55K and E4orf3 genes appeared to arrest in a mitotic-like state. Cells infected early in G1 of the cell cycle were predisposed to arrest in this state at late times of infection. This arrested state, which displays hallmarks of mitotic catastrophe, was prevented by expression of either the E1B-55K or the E4orf3 genes. However, E1B-55K mutant virus-infected cells became trapped in a mitotic-like state in the presence of the microtubule poison colcemid, suggesting that the two viral proteins restrict entry into mitosis or facilitate exit from mitosis in order to prevent infected cells from arresting in mitosis. The E1B-55K protein appeared to prevent inappropriate entry into mitosis through its interaction with the cellular tumor suppressor protein p53. The E4orf3 protein facilitated exit from mitosis by possibly mislocalizing and functionally inactivating cyclin B1. When expressed in noninfected cells, E4orf3 overcame the mitotic arrest caused by the degradation-resistant R42A cyclin B1 variant. IMPORTANCE Cells that are infected with adenovirus type 5 early in G1 of the cell cycle are predisposed to arrest in a mitotic-like state in a p53-dependent manner. The adenoviral E1B-55K protein prevents entry into mitosis. This newly described activity for the E1B-55K protein appears to depend on the interaction between the E1B-55K protein and the tumor suppressor p53. The adenoviral E4orf3 protein facilitates exit from mitosis, possibly by altering the intracellular distribution of cyclin B1. By preventing entry into mitosis and by promoting exit from mitosis, these adenoviral proteins act to prevent the infected cell from arresting in a mitotic-like state.
Collapse
Affiliation(s)
- Roberta L Turner
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Lanz HL, Zimmerman RME, Brouwer J, Noteborn MHM, Backendorf C. Mitotic catastrophe triggered in human cancer cells by the viral protein apoptin. Cell Death Dis 2013; 4:e487. [PMID: 23392175 PMCID: PMC3734808 DOI: 10.1038/cddis.2013.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitotic catastrophe is an oncosuppressive mechanism that senses mitotic failure leading to cell death or senescence. As such, it protects against aneuploidy and genetic instability, and its induction in cancer cells by exogenous agents is currently seen as a promising therapeutic end point. Apoptin, a small protein from Chicken Anemia Virus (CAV), is known for its ability to selectively induce cell death in human tumor cells. Here, we show that apoptin triggers p53-independent abnormal spindle formation in osteosarcoma cells. Approximately 50% of apoptin-positive cells displayed non-bipolar spindles, a 10-fold increase as compared to control cells. Besides, tumor cells expressing apoptin are greatly limited in their progress through anaphase and telophase, and a significant drop in mitotic cells past the meta-to-anaphase transition is observed. Time-lapse microscopy showed that mitotic osteosarcoma cells expressing apoptin displayed aberrant mitotic figures and/or had a prolonged cycling time during mitosis. Importantly, all dividing cells expressing apoptin eventually underwent cell death either during mitosis or during the following interphase. We infer that apoptin can efficiently trigger cell death in dividing human tumor cells through induction of mitotic catastrophe. However, the killing activity of apoptin is not only confined to dividing cells, as the CAV-derived protein is also able to trigger caspase-3 activation and apoptosis in non-mitotic cancer cells.
Collapse
Affiliation(s)
- H L Lanz
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Chow JPH, Poon RYC. The CDK1 inhibitory kinase MYT1 in DNA damage checkpoint recovery. Oncogene 2012; 32:4778-88. [PMID: 23146904 DOI: 10.1038/onc.2012.504] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 02/07/2023]
Abstract
Inhibition of cyclin-dependent kinase 1 (CDK1) by phosphorylation is a key regulatory mechanism for both the unperturbed cell cycle and the DNA damage checkpoint. Although both WEE1 and MYT1 can phosphorylate CDK1, little is known about the contribution of MYT1. We found that in contrast to WEE1, MYT1 was not important for the normal cell cycle or checkpoint activation. Time-lapse microscopy indicated that MYT1 did, however, have a rate-determining role during checkpoint recovery. Depletion of MYT1 induced precocious mitotic entry when the checkpoint was abrogated with inhibitors of either CHK1 or WEE1, indicating that MYT1 contributes to checkpoint recovery independently of WEE1. The acceleration of checkpoint recovery in MYT1-depleted cells was due to a lowering of threshold for CDK1 activation. The kinase activity of MYT1 was high during checkpoint activation and reduced during checkpoint recovery. Importantly, although depletion of MYT1 alone did not affect long-term cell growth, it potentiated with DNA damage to inhibit cell growth in clonogenic survival and tumor xenograft models. These results reveal the functions of MYT1 in checkpoint recovery and highlight the potential of MYT1 as a target for anti-cancer therapies.
Collapse
Affiliation(s)
- J P H Chow
- Division of Life Science and Center for Cancer Research, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | | |
Collapse
|
12
|
Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci 2011; 34:646-56. [DOI: 10.1016/j.tins.2011.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 01/10/2023]
|
13
|
Chebotareva T, Taylor J, Mullins JJ, Wilmut I. Rat eggs cannot wait: Spontaneous exit from meiotic metaphase-II arrest. Mol Reprod Dev 2011; 78:795-807. [PMID: 21910153 DOI: 10.1002/mrd.21385] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 11/06/2022]
Abstract
Mammalian eggs await fertilisation while arrested at the second metaphase stage of meiotic division. A network of signalling pathways enables the establishment and maintenance of this metaphase-II arrest. In the absence of fertilisation, mammalian eggs can spontaneously exit metaphase II when parthenogenetically stimulated, or sometimes without any obvious stimulation. Ovulated rat eggs abortively release from metaphase-II arrest once removed from egg donors. Spontaneously activated rat eggs extrude the second polar body and proceed to the so-called metaphase III-'like' stage, with clumps of condensed chromatin scattered in the egg cytoplasm. It is still unclear what makes rat eggs susceptible to spontaneous activation; however, a vague picture of the signalling pathways involved in the process of spontaneous activation is beginning to emerge. Such cell cycle instability is one of the major reasons why it is more difficult to establish nuclear transfer in the rat. This review examines the known predisposing factors and biochemical mechanisms involved in spontaneous activation. The strategies used to prevent spontaneous metaphase-II release in rat eggs will also be discussed.
Collapse
Affiliation(s)
- Tatiana Chebotareva
- MRC Centre for Regenerative Medicine, Edinburgh University, Edinburgh, Scotland, UK.
| | | | | | | |
Collapse
|
14
|
Puliyappadamba VT, Wu W, Bevis D, Zhang L, Polin L, Kilkuskie R, Finley RL, Larsen SD, Levi E, Miller FR, Wali A, Rishi AK. Antagonists of anaphase-promoting complex (APC)-2-cell cycle and apoptosis regulatory protein (CARP)-1 interaction are novel regulators of cell growth and apoptosis. J Biol Chem 2011; 286:38000-38017. [PMID: 21903591 DOI: 10.1074/jbc.m111.222398] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CARP-1/CCAR1, a perinuclear phosphoprotein, is a regulator of cell growth and apoptosis signaling. Although CARP-1 is a regulator of chemotherapy-dependent apoptosis, it is also a part of the NF-κB proteome and a co-activator of steroid/thyroid nuclear receptors as well as β-catenin signaling. Our yeast two-hybrid screen revealed CARP-1 binding with the anaphase-promoting complex/cyclosome E3 ubiquitin ligase component APC-2 protein. CARP-1 also binds with anaphase-promoting complex/cyclosome co-activators Cdc20 and Cdh1. Following mapping of the minimal epitopes involved in CARP-1 binding with APC-2, a fluorescence polarization assay was established that indicated a dissociation constant (K(d)) of 480 nm for CARP-1/APC-2 binding. Fluorescence polarization assay-based high throughput screening of a chemical library yielded several small molecule antagonists of CARP-1/APC-2 binding, termed CARP-1 functional mimetics. CFM-4 (1(2-chlorobenzyl)-5'-phenyl-3'H-spiro[indoline-3,2'-[1,3,4]thiadiazol]-2-one), a lead compound, binds with and stimulates CARP-1 expression. CFM-4 prevents CARP-1 binding with APC-2, causes G(2)M cell cycle arrest, and induces apoptosis with an IC(50) range of 10-15 μm. Apoptosis signaling by CFM-4 involves activation of caspase-8 and -9 and caspase-mediated ubiquitin-proteasome pathway-independent loss of cyclin B1 and Cdc20 proteins. Depletion of CARP-1, however, interferes with CFM-4-dependent cell growth inhibition, activation of caspases, and apoptosis. Because CFM-4 also suppresses growth of drug-resistant human breast cancer cells without affecting the growth of human breast epithelial MCF-10A cells, elevating CARP-1 by CFM-4 and consequent apoptosis could in principle be exploited to further elucidate, and perhaps effectively target, often deregulated cell cycle pathways in pathological conditions, including cancer.
Collapse
Affiliation(s)
| | - Wenjuan Wu
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Debra Bevis
- Michigan High-throughput Screening Center, Kalamazoo Valley Community College, Kalamazoo, Michigan 49003
| | - Liyue Zhang
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201; John D. Dingell Veterans Affairs Medical Center, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Lisa Polin
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201; Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Robert Kilkuskie
- Michigan High-throughput Screening Center, Kalamazoo Valley Community College, Kalamazoo, Michigan 49003
| | - Russell L Finley
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Scott D Larsen
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | - Edi Levi
- John D. Dingell Veterans Affairs Medical Center, Wayne State University School of Medicine, Detroit, Michigan 48201; Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Fred R Miller
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201; Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201; Breast Cancer Program, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Anil Wali
- John D. Dingell Veterans Affairs Medical Center, Wayne State University School of Medicine, Detroit, Michigan 48201; Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Arun K Rishi
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201; John D. Dingell Veterans Affairs Medical Center, Wayne State University School of Medicine, Detroit, Michigan 48201; Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201; Breast Cancer Program, Wayne State University School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
15
|
On KF, Chen Y, Tang Ma H, Chow JP, Poon RY. Determinants of Mitotic Catastrophe on Abrogation of the G2 DNA Damage Checkpoint by UCN-01. Mol Cancer Ther 2011; 10:784-94. [DOI: 10.1158/1535-7163.mct-10-0809] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Compromised spindle assembly checkpoint due to altered expression of Ubch10 and Cdc20 in human papillomavirus type 16 E6- and E7-expressing keratinocytes. J Virol 2010; 84:10956-64. [PMID: 20739533 DOI: 10.1128/jvi.00259-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cells expressing human papillomavirus type 16 (HPV-16) E6 and E7 proteins exhibit deregulation of G2/M genes, allowing bypass of DNA damage arrest signals. Normally, cells with DNA damage that override the G2 damage checkpoint would precociously enter mitosis and ultimately face mitotic catastrophe and apoptotic cell death. However, E6/E7-expressing cells (E6/E7 cells) have the ability to enter and exit mitosis in the presence of DNA damage and continue with the next round of the cell cycle. Little is known about the mechanism that allows these cells to gain entry into and exit from mitosis. Here, we show that in the presence of DNA damage, E6/E7 cells have elevated levels of cyclin B, which would allow entry into mitosis. Also, as required for exit from mitosis, cyclin B is degraded in these cells, permitting initiation of the next round of DNA synthesis and cell cycle progression. Proteasomal degradation of cyclin B by anaphase-promoting complex/cyclosome (APC/C) is, in part, due to elevated levels of the E2-conjugating enzyme, Ubch10, and the substrate recognition protein, Cdc20, of APC/C. Also, in E6/E7 cells with DNA damage, while Cdc20 is complexed with BubR1, indicating an active checkpoint, it is also present in complexes free of BubR1, presumably allowing APC/C activity and slippage through the checkpoint.
Collapse
|