1
|
Brown AD, Vergunst KL, Branch M, Blair CM, Dupré DJ, Baillie GS, Langelaan DN. Structural basis of CBP/p300 recruitment by the microphthalmia-associated transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119520. [PMID: 37353163 DOI: 10.1016/j.bbamcr.2023.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The microphthalmia-associated transcription factor (MITF) is a master regulator of the melanocyte cell lineage. Aberrant MITF activity can lead to multiple malignancies including skin cancer, where it modulates the progression and invasiveness of melanoma. MITF-regulated gene expression requires recruitment of the transcriptional co-regulator CBP/p300, but details of this process are not fully defined. In this study, we investigate the structural and functional interaction between the MITF N-terminal transactivation domain (MITFTAD) and CBP/p300. Using pulldown assays and nuclear magnetic resonance spectroscopy we determined that MITFTAD is intrinsically disordered and binds to the TAZ1 and TAZ2 domains of CBP/p300 with moderate affinity. The solution-state structure of the MITFTAD:TAZ2 complex reveals that MITF interacts with a hydrophobic surface of TAZ2, while remaining somewhat dynamic. Peptide array and mutagenesis experiments determined that an acidic motif is integral to the MITFTAD:TAZ2 interaction and is necessary for transcriptional activity of MITF. Peptides that bind to the same surface of TAZ2 as MITFTAD, such as the adenoviral protein E1A, are capable of displacing MITF from TAZ2 and inhibiting transactivation. These findings provide insight into co-activator recruitment by MITF that are fundamental to our understanding of MITF targeted gene regulation and melanoma biology.
Collapse
Affiliation(s)
- Alexandra D Brown
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kathleen L Vergunst
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Makenzie Branch
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Connor M Blair
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - George S Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
2
|
Geng Q, Kong Y, Li W, Zhang J, Ma H, Zhang Y, Da L, Zhao Y, Du H. Dynamic Phosphorylation of G9a Regulates its Repressive Activity on Chromatin Accessibility and Mitotic Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303224. [PMID: 37661576 PMCID: PMC10602519 DOI: 10.1002/advs.202303224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Indexed: 09/05/2023]
Abstract
Phosphorylation of Ser10 of histone H3 (H3S10p), together with the adjacent methylation of Lys9 (H3K9me), has been proposed to function as a 'phospho-methyl switch' to regulate mitotic chromatin architecture. Despite of immense understanding of the roles of H3S10 phosphorylation, how H3K9me2 are dynamically regulated during mitosis is poorly understood. Here, it is identified that Plk1 kinase phosphorylates the H3K9me1/2 methyltransferase G9a/EHMT2 at Thr1045 (pT1045) during early mitosis, which attenuates its catalytic activity toward H3K9me2. Cells bearing Thr1045 phosphomimic mutant of G9a (T1045E) show decreased H3K9me2 levels, increased chromatin accessibility, and delayed mitotic progression. By contrast, dephosphorylation of pT1045 during late mitosis by the protein phosphatase PPP2CB reactivates G9a activity and upregulates H3K9me2 levels, correlated with decreased levels of H3S10p. Therefore, the results provide a mechanistic explanation of the essential of a 'phospho-methyl switch' and highlight the importance of Plk1 and PPP2CB-mediated dynamic regulation of G9a activity in chromatin organization and mitotic progression.
Collapse
Affiliation(s)
- Qizhi Geng
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesHubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityFrontier Science Center for Immunology and MetabolismRNA InstituteWuhan UniversityWuhan430072China
| | - Yue‐Yu Kong
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesHubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityFrontier Science Center for Immunology and MetabolismRNA InstituteWuhan UniversityWuhan430072China
| | - Weizhe Li
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesHubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityFrontier Science Center for Immunology and MetabolismRNA InstituteWuhan UniversityWuhan430072China
| | - Jianhao Zhang
- School of Life Sciences and BiotechnologyShanghai JiaoTong UniversityShanghai200240China
| | - Haoli Ma
- Hubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
| | - Yuhang Zhang
- School of Life Sciences and BiotechnologyShanghai JiaoTong UniversityShanghai200240China
| | - Lin‐Tai Da
- Shanghai Center for Systems BiomedicineShanghai JiaoTong UniversityShanghai200240China
| | - Yan Zhao
- Hubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
| | - Hai‐Ning Du
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesHubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityFrontier Science Center for Immunology and MetabolismRNA InstituteWuhan UniversityWuhan430072China
| |
Collapse
|
3
|
GLI1, a novel target of the ER stress regulator p97/VCP, promotes ATF6f-mediated activation of XBP1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194924. [PMID: 36842643 DOI: 10.1016/j.bbagrm.2023.194924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Upon accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER), the Unfolded Protein Response (UPR) is triggered to restore ER homeostasis. The induction of stress genes is a sine qua non condition for effective adaptive UPR. Although this requirement has been extensively described, the mechanisms underlying this process remain in part uncharacterized. Here, we show that p97/VCP, an AAA+ ATPase known to contribute to ER stress-induced gene expression, regulates the transcription factor GLI1, a primary effector of Hedgehog (Hh) signaling. Under basal (non-ER stress) conditions, GLI1 is repressed by a p97/VCP-HDAC1 complex while upon ER stress GLI1 is induced through a mechanism requiring both USF2 binding and increase histone acetylation at its promoter. Interestingly, the induction of GLI1 was independent of ligand-regulated Hh signaling. Further analysis showed that GLI1 cooperates with ATF6f to induce promoter activity and expression of XBP1, a key transcription factor driving UPR. Overall, our work demonstrates a novel role for GLI1 in the regulation of ER stress gene expression and defines the interplay between p97/VCP, HDAC1 and USF2 as essential players in this process.
Collapse
|
4
|
Zhao LJ, Loewenstein PM, Green M. Enhanced MYC association with the NuA4 histone acetyltransferase complex mediated by the adenovirus E1A N-terminal domain activates a subset of MYC target genes highly expressed in cancer cells. Genes Cancer 2017; 8:752-761. [PMID: 29321817 PMCID: PMC5755721 DOI: 10.18632/genesandcancer.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The proto-oncogene MYC is a transcription factor over-expressed in many cancers and required for cell survival. Its function is regulated by histone acetyltransferase (HAT) complexes, such as the GCN5 complex and the NuA4/Tip60 complex. However, the roles of the HAT complexes during MYC function in cancer have not been well characterized. We recently showed that adenovirus E1A and its N-terminal 80 aa region, E1A 1-80, interact with the NuA4 complex, through the E1A TRRAP-targeting (ET) domain, and enhance MYC association with the NuA4 complex. We show here that the ET domain mainly targets the MYC-NuA4 complex. By global gene expression analysis using E1A 1-80 and deletion mutants, we have identified a panel of genes activated by targeting the MYC-NuA4 complex and notably enriched for genes involved in ribosome biogenesis and gene expression. A second panel of genes is activated by E1A 1-80 targeting of both the MYC-NuA4 complex and p300, and is enriched for genes involved in DNA replication and cell cycle processes. Both panels of genes are highly expressed in cancer cells. Since the ET domain is essential for E1A-mediated cellular transformation, our results suggest that MYC and the NuA4 complex function cooperatively in cell transformation and cancer.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Paul M Loewenstein
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Maurice Green
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Zhao LJ, Loewenstein PM, Green M. Adenovirus E1A TRRAP-targeting domain-mediated enhancement of MYC association with the NuA4 complex activates a panel of MYC target genes enriched for gene expression and ribosome biogenesis. Virology 2017; 512:172-179. [PMID: 28965007 PMCID: PMC5790114 DOI: 10.1016/j.virol.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/21/2022]
Abstract
Cellular transformation by adenovirus E1A requires targeting TRRAP, a scaffold protein which helps assemble histone acetyltransferase complexes, including the NuA4 complex. We recently reported that E1A and E1A 1-80 (N-terminal 80 aa) promote association of the proto-oncogene product MYC with the NuA4 complex. The E1A N-terminal TRRAP-targeting (ET) domain is required for E1A 1-80 to interact with the NuA4 complex. We demonstrate that an ET-MYC fusion associates with the NuA4 complex more efficiently than does MYC alone. Because MYC regulates genes for multiple cellular pathways, we performed global RNA-sequence analysis of cells expressing MYC or ET-MYC, and identified a panel of genes (262) preferentially activated by ET-MYC and significantly enriched in genes involved in gene expression and ribosome biogenesis, suggesting that E1A enhances MYC association with the NuA4 complex to activate a set of MYC target genes likely involved in cellular proliferation and cellular transformation by E1A and by MYC.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, Rm 633, 1205 Carr Lane, St. Louis, MO 63104, USA.
| | - Paul M Loewenstein
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, Rm 633, 1205 Carr Lane, St. Louis, MO 63104, USA
| | - Maurice Green
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, Rm 633, 1205 Carr Lane, St. Louis, MO 63104, USA.
| |
Collapse
|
6
|
Zhao LJ, Loewenstein PM, Green M. Ad E1A 243R oncoprotein promotes association of proto-oncogene product MYC with the NuA4/Tip60 complex via the E1A N-terminal repression domain. Virology 2016; 499:178-184. [PMID: 27664947 DOI: 10.1016/j.virol.2016.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/25/2022]
Abstract
The adenovirus E1A 243R oncoprotein targets TRRAP, a scaffold protein that assembles histone acetyltransferase (HAT) complexes, such as the NuA4/Tip60 complex which mediates transcriptional activity of the proto-oncogene MYC and helps determine the cancer cell phenotype. How E1A transforms cells through TRRAP remains obscure. We performed proteomic analysis with the N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) and showed that E1A 1-80 interacts with TRRAP, p400, and three other members of the NuA4 complex - DMAP1, RUVBL1 and RUVBL2 - not previously shown to associate with E1A 243R. E1A 1-80 interacts with these NuA4 components and MYC through the E1A TRRAP-targeting domain. E1A 243R association with the NuA4 complex was demonstrated by co-immunoprecipitation and analysis with DMAP1, Tip60, and MYC. Significantly, E1A 243R promotes association of MYC/MAX with the NuA4/Tip60 complex, implicating the importance of the MYC/NuA4 pathway in cellular transformation by both MYC and E1A.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - Paul M Loewenstein
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - Maurice Green
- Department of Microbiology and Molecular Immunology/Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA.
| |
Collapse
|
7
|
Zhao LJ, Loewenstein PM, Green M. The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16. Genes Cancer 2016; 7:98-109. [PMID: 27382434 PMCID: PMC4918948 DOI: 10.18632/genesandcancer.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell proliferation. We have shown previously that the 80 amino acid N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) can target the histone acetyltransferase (HAT) p300 and repress HER2 in the HER2-overexpressing human breast cancer cell line SKBR3. Expression of E1A 1-80 induces death of SKBR3 and other cancer cell lines. In this study, we performed total cell RNA sequence analysis and identified MYC as the regulatory gene for cellular proliferation most strongly repressed by E1A 1-80. By RT-quantitative PCR analysis we show that repression of MYC in SKBR3 cells occurs early after expression of E1A 1-80, suggesting that MYC may be an early responder of E1A 1-80-mediated transcriptional repression. Of interest, while E1A 1-80 repression of MYC occurs in all eight human cancer cell lines examined, repression of HER2 is cell-type dependent. We demonstrate by ChIP analysis that MYC transcriptional repression by E1A 1-80 is associated with inhibition of acetylation of H3K18 and H4K16 on the MYC promoter, as well as inhibition of RNA Pol II binding to the MYC promoter. Deletion mutant analysis of E1A 1-80 suggests that both p300/CBP and TRRAP are involved in E1A 1-80 repression of MYC transcription. Further, E1A 1-80 interaction with p300/CBP and TRRAP is correlated with inhibition of H3K18 and H4K16 acetylation on the MYC promoter, respectively. Our results indicate that E1A 1-80 may target two important pathways for histone modification to repress transcription in human cancer cells.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Paul M Loewenstein
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Maurice Green
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Zhao LJ, Loewenstein PM, Green M. The adenovirus E1A oncoprotein N-terminal transcriptional repression domain enhances p300 autoacetylation and inhibits histone H3 Lys18 acetylation. Genes Cancer 2015; 6:30-7. [PMID: 25821559 PMCID: PMC4362482 DOI: 10.18632/genesandcancer.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/07/2015] [Indexed: 11/25/2022] Open
Abstract
Expression of the adenovirus E1A N-terminal transcription repression domain alone (E1A 1-80) represses transcription from specific promoters such as HER2 [1] and from reconstituted chromatin [2]. Significantly, E1A 1-80 can induce the death of human breast cancer cells over-expressing the HER2 oncogene [1] as well as other cancer cells. Here, we report that E1A 1-80 alone is sufficient to inhibit H3K18 acetylation in vivo and p300-mediated H3K18 acetylation in reconstituted chromatin. Of interest, hypoacetylation of H3K18 has been correlated with the survival of tumor cells and the poor prognosis of many cancers [3, 4]. E1A 1-80 enhances p300 autoacetylation and concurrently inhibits H3K18 acetylation in chromatin in a dose-dependent manner. Pre-acetylation of p300 by incubation with acetyl-CoA alone reduces p300's ability to acetylate H3K18 in chromatin. Additional acetylation of p300 in the presence of E1A 1-80 produces stronger inhibition of H3K18 acetylation. These findings indicate that autoacetylation of p300 greatly reduces its ability to acetylate H3K18. The results reported here combined with our previous findings suggest that E1A can repress transcription by multiple strategies, including altering the chromatin modifying activity of p300 and dissociating TFIID from the TATA box thus disrupting formation of the transcription pre-initiation complex [5, 6]
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy research Center, St. Louis, Missouri
| | - Paul M Loewenstein
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy research Center, St. Louis, Missouri
| | - Maurice Green
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy research Center, St. Louis, Missouri
| |
Collapse
|
9
|
Abstract
Intrinsically disordered proteins (IDPs) are important components of the cellular signalling machinery, allowing the same polypeptide to undertake different interactions with different consequences. IDPs are subject to combinatorial post-translational modifications and alternative splicing, adding complexity to regulatory networks and providing a mechanism for tissue-specific signalling. These proteins participate in the assembly of signalling complexes and in the dynamic self-assembly of membrane-less nuclear and cytoplasmic organelles. Experimental, computational and bioinformatic analyses combine to identify and characterize disordered regions of proteins, leading to a greater appreciation of their widespread roles in biological processes.
Collapse
|
10
|
Ferreon ACM, Ferreon JC, Wright PE, Deniz AA. Modulation of allostery by protein intrinsic disorder. Nature 2013; 498:390-4. [PMID: 23783631 PMCID: PMC3718496 DOI: 10.1038/nature12294] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/17/2013] [Indexed: 12/26/2022]
Abstract
Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.
Collapse
Affiliation(s)
- Allan Chris M Ferreon
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
11
|
Ihalainen TO, Willman SF, Niskanen EA, Paloheimo O, Smolander H, Laurila JP, Kaikkonen MU, Vihinen-Ranta M. Distribution and dynamics of transcription-associated proteins during parvovirus infection. J Virol 2012; 86:13779-84. [PMID: 23035221 PMCID: PMC3503060 DOI: 10.1128/jvi.01625-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/24/2012] [Indexed: 12/23/2022] Open
Abstract
Canine parvovirus (CPV) infection leads to reorganization of nuclear proteinaceous subcompartments. Our studies showed that virus infection causes a time-dependent increase in the amount of viral nonstructural protein NS1 mRNA. Fluorescence recovery after photobleaching showed that the recovery kinetics of nuclear transcription-associated proteins, TATA binding protein (TBP), transcription factor IIB (TFIIB), and poly(A) binding protein nuclear 1 (PABPN1) were different in infected and noninfected cells, pointing to virus-induced alterations in binding dynamics of these proteins.
Collapse
Affiliation(s)
- Teemu O. Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Department of Health Sciences and Technology, Laboratory for Biologically Oriented Materials, ETH Zurich, Zurich, Switzerland
| | - Sami F. Willman
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Einari A. Niskanen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Department of Biochemistry, Medical Genetics Cluster, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Outi Paloheimo
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Hanna Smolander
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Juha P. Laurila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- University of Turku, Turku, Finland
| | - Minna U. Kaikkonen
- AI Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maija Vihinen-Ranta
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
| |
Collapse
|
12
|
Loewenstein PM, Green M. Expression of the Adenovirus Early Gene 1A Transcription-Repression Domain Alone Downregulates HER2 and Results in the Death of Human Breast Cancer Cells Upregulated for the HER2 Proto-Oncogene. Genes Cancer 2012; 2:737-44. [PMID: 22207899 DOI: 10.1177/1947601911426570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/22/2011] [Indexed: 02/03/2023] Open
Abstract
Adenovirus (Ad) early gene 1A 243 residue protein (E1A 243R) possesses a potent transcription-repression function within the N-terminal 80 amino acids (E1A 1-80). We examined the ability of E1A 243R and E1A 1-80 to repress transcription of both an exogenous and the endogenous HER2 promoter in a human breast cancer cell line upregulated for the HER2 proto-oncogene (SK-BR-3). Both moieties repressed HER2 expression by over 90%. When E1A 1-80 was expressed from a nonreplicative Ad vector, levels of expression were lower than anticipated. Addition of nonspecific sequences to the E1A 1-80 C-terminus (E1A 1-80 C+) enhanced its expression 10- to 20-fold. Because "oncogene addiction" suggests that repression of HER2 could kill HER2 upregulated cells, we examined the ability of full-length E1A 243R and E1A 1-80 C+ delivered by an Ad vector to kill HER2 upregulated SK-BR-3 cells. Expression of both E1A 243R and E1A 1-80 C+ killed SK-BR-3 cells but not normal breast cells. E1A 1-80 C+ is a particularly effective killer of SK-BR-3 cells. At 144 h post infection, over 85% of SK-BR-3 cells were killed by a 100 moi of the Ad vector expressing E1A 1-80 C+. As controls, Ad vectors expressing E1A 243R with deletion of all known functional domains or expressing unrelated β-galactosidase had no effect. Three additional human breast cancer cells lines reported to be upregulated for HER2 or another EGF family member (EGFR) were found to be efficiently killed by expression of E1A 1-80 C+, whereas three additional "normal" cell lines (two derived from breast and one from foreskin) were not. The ability of the E1A transcription-repression domain alone to kill HER2 upregulated breast cancer cells has potential for development of therapies for treatment of aggressive human breast cancers and potentially other human cancers that overexpress HER2.
Collapse
Affiliation(s)
- Paul M Loewenstein
- Saint Louis University School of Medicine, Institute for Molecular Virology, Saint Louis, MO, USA
| | | |
Collapse
|
13
|
Loewenstein PM, Wu SY, Chiang CM, Green M. The adenovirus E1A N-terminal repression domain represses transcription from a chromatin template in vitro. Virology 2012; 428:70-5. [PMID: 22521914 DOI: 10.1016/j.virol.2012.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/03/2012] [Accepted: 03/30/2012] [Indexed: 11/17/2022]
Abstract
The adenovirus repression domain of E1A 243R at the E1A N-terminus (E1A 1-80) transcriptionally represses genes involved in differentiation and cell cycle progression. E1A 1-80 represses transcription in vitro from naked DNA templates through its interaction with p300 and TFIID. E1A 1-80 can also interact with several chromatin remodeling factors and associates with chromatin in vivo. We show here that E1A 243R and E1A 1-80 can repress transcription from a reconstituted chromatin template in vitro. Temporal analysis reveals strong repression by E1A 1-80 when added at pre-activation, activation and early transcription stages. Interestingly, E1A 1-80 can greatly enhance transcription from chromatin templates, but not from naked DNA, when added at pre-initiation complex (PIC) formation and transcription-initiation stages. These data reveal a new dimension for E1A 1-80's interface with chromatin and may reflect its interaction with key players in PIC formation, p300 and TFIID, and/or possibly a role in chromatin remodeling.
Collapse
Affiliation(s)
- Paul M Loewenstein
- St. Louis University School of Medicine, Institute for Molecular Virology, 1100 S. Grand Ave., Saint Louis, MO 63104, USA
| | | | | | | |
Collapse
|
14
|
Bates CA, Pomerantz WC, Mapp AK. Transcriptional tools: Small molecules for modulating CBP KIX-dependent transcriptional activators. Biopolymers 2011; 95:17-23. [PMID: 20882601 PMCID: PMC3535496 DOI: 10.1002/bip.21548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previously it was demonstrated that amphipathic isoxazolidines are able to functionally replace the transcriptional activation domains of endogenous transcriptional activators. In addition, in vitro binding studies suggested that a key binding partner of these molecules is the CREB Binding Protein (CBP), more specifically the KIX domain within this protein. Here we show that CBP plays an essential role in the ability of isoxazolidine transcriptional activation domains to activate transcription in cells. Consistent with this model, isoxazolidines are able to function as competitive inhibitors of the activators MLL and Jun, both of which utilize a binding interaction with KIX to up-regulate transcription. Further, modification of the N2 side chain produced three analogs with enhanced potency against Jun-mediated transcription, although increased cytotoxicity was also observed. Collectively these small KIX-binding molecules will be useful tools for dissecting the role of the KIX domain in a variety of pathological processes.
Collapse
Affiliation(s)
- Caleb A. Bates
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| | | | - Anna K. Mapp
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
15
|
Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proc Natl Acad Sci U S A 2009; 106:13260-5. [PMID: 19651603 DOI: 10.1073/pnas.0906770106] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adenovirus early region 1A (E1A) oncoprotein mediates cell transformation by deregulating host cellular processes and activating viral gene expression by recruitment of cellular proteins that include cyclic-AMP response element binding (CREB) binding protein (CBP)/p300 and the retinoblastoma protein (pRb). While E1A is capable of independent interaction with CBP/p300 or pRb, simultaneous binding of both proteins is required for maximal biological activity. To obtain insights into the mechanism by which E1A hijacks the cellular transcription machinery by competing with essential transcription factors for binding to CBP/p300, we have determined the structure of the complex between the transcriptional adaptor zinc finger-2 (TAZ2) domain of CBP and the conserved region-1 (CR1) domain of E1A. The E1A CR1 domain is unstructured in the free state and upon binding folds into a local helical structure mediated by an extensive network of intermolecular hydrophobic contacts. By NMR titrations, we show that E1A efficiently competes with the N-terminal transactivation domain of p53 for binding to TAZ2 and that pRb interacts with E1A at 2 independent sites located in CR1 and CR2. We show that pRb and the CBP TAZ2 domain can bind simultaneously to the CR1 site of E1A to form a ternary complex and propose a structural model for the pRb:E1A:CBP complex on the basis of published x-ray data for homologous binary complexes. These observations reveal the molecular basis by which E1A inhibits p53-mediated transcriptional activation and provide a rationale for the efficiency of cellular transformation by the adenoviral E1A oncoprotein.
Collapse
|
16
|
Ferrari R, Berk AJ, Kurdistani SK. Viral manipulation of the host epigenome for oncogenic transformation. Nat Rev Genet 2009; 10:290-4. [PMID: 19290008 DOI: 10.1038/nrg2539] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cancerous cellular state is associated with multiple epigenetic alterations, but elucidating the precise order of such alterations during tumorigenic progression and their contributions to the transformed phenotype remains a significant challenge in cancer biology. Here we discuss recent findings on how viral oncoproteins exploit specific epigenetic processes to coerce normal cells to replicate when they should remain quiescent - a hallmark of cancer. These findings may highlight roles of epigenetic processes in normal biology and shed light on epigenetic events occurring along the path of non-viral neoplastic transformation.
Collapse
Affiliation(s)
- Roberto Ferrari
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
17
|
Green M, Panesar NK, Loewenstein PM. Adenovirus E1A proteins are closely associated with chromatin in productively infected and transformed cells. Virology 2007; 371:1-7. [PMID: 18036630 DOI: 10.1016/j.virol.2007.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/05/2007] [Accepted: 10/16/2007] [Indexed: 11/17/2022]
Abstract
The adenovirus E1A 243R oncoprotein encodes a potent transcription-repression function within the N-terminal 80 amino acids. Our proposed model of E1A repression predicts that E1A interacts with important cellular proteins on chromatin. Consistent with this idea, we report here that E1A proteins from in vivo formaldehyde cross-linked 293 cells are closely associated with chromatin even after several stringent purification steps including double isopycnic CsCl density gradient centrifugation and size exclusion chromatography. Likewise, E1A proteins expressed from virus during productive infection of HeLa cells are closely associated with chromatin starting at early times after infection. No other adenoviral proteins are necessary for E1A 243R protein to associate with chromatin. Analyses of chromatin from HeLa cells infected with adenovirus vectors expressing E1A 243R protein with deletions in different E1A functional domains indicate that sequences within the E1A N-terminal repression domain are needed for the majority of E1A's interactions with chromatin.
Collapse
Affiliation(s)
- Maurice Green
- Institute for Molecular Virology, Saint Louis University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|