1
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Mohammadi M, Hashemzadeh MS. Zinc Oxide Nanoparticles and Cancer Chemotherapy: Helpful Tools for Enhancing Chemo-sensitivity and Reducing Side Effects? Biol Trace Elem Res 2024; 202:1878-1900. [PMID: 37639166 DOI: 10.1007/s12011-023-03803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
Cancer chemotherapy is still a serious challenge. Chemo-resistance and destructive side effects of chemotherapy drugs are the most critical limitations of chemotherapy. Chemo-resistance is the leading cause of chemotherapy failure. Chemo-resistance, which refers to the resistance of cancer cells to the anticancer effects of chemotherapy drugs, is caused by various reasons. Among the most important of these reasons is the increase in the efflux of chemotherapy drugs due to the rise in the expression and activity of ABC transporters, the weakening of apoptosis, and the strengthening of stemness. In the last decade, a significant number of studies focused on the application of nanotechnology in cancer treatment. Considering the anti-cancer properties of zinc, zinc oxide nanoparticles have received much attention in recent years. Some studies have indicated that zinc oxide nanoparticles can target the critical mechanisms of cancer chemo-resistance and enhance the effectiveness of chemotherapy drugs. These studies have shown that zinc oxide nanoparticles can reduce the activity of ABC transporters, increase DNA damage and apoptosis, and attenuate stemness in cancer cells, leading to enhanced chemo-sensitivity. Some other studies have also shown that zinc oxide nanoparticles in low doses can be helpful in minimizing the harmful side effects of chemotherapy drugs. In this article, after a brief overview of the mechanisms of chemo-resistance and anticancer effects of zinc, we will review all these studies in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Živanović M, Gazdić Janković M, Ramović Hamzagić A, Virijević K, Milivojević N, Pecić K, Šeklić D, Jovanović M, Kastratović N, Mirić A, Đukić T, Petrović I, Jurišić V, Ljujić B, Filipović N. Combined Biological and Numerical Modeling Approach for Better Understanding of the Cancer Viability and Apoptosis. Pharmaceutics 2023; 15:1628. [PMID: 37376076 DOI: 10.3390/pharmaceutics15061628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, biomedicine is a multidisciplinary science that requires a very broad approach to the study and analysis of various phenomena essential for a better understanding of human health. This study deals with the use of numerical simulations to better understand the processes of cancer viability and apoptosis in treatment with commercial chemotherapeutics. Starting from many experiments examining cell viability in real-time, determining the type of cell death and genetic factors that control these processes, a lot of numerical results were obtained. These in vitro test results were used to create a numerical model that gives us a new angle of observation of the proposed problem. Model systems of colon and breast cancer cell lines (HCT-116 and MDA-MB-231), as well as a healthy lung fibroblast cell line (MRC-5), were treated with commercial chemotherapeutics in this study. The results indicate a decrease in viability and the appearance of predominantly late apoptosis in the treatment, a strong correlation between parameters. A mathematical model was created and employed for a better understanding of investigated processes. Such an approach is capable of accurately simulating the behavior of cancer cells and reliably predicting the growth of these cells.
Collapse
Affiliation(s)
- Marko Živanović
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marina Gazdić Janković
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Amra Ramović Hamzagić
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Katarina Virijević
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena Milivojević
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Katarina Pecić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dragana Šeklić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Milena Jovanović
- Faculty of Sciences, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nikolina Kastratović
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Ana Mirić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Tijana Đukić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Ivica Petrović
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Biljana Ljujić
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Nenad Filipović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Prvoslava Stojanovica 6, 34000 Kragujevac, Serbia
| |
Collapse
|
3
|
Kladova OA, Tyugashev TE, Mikushina ES, Soloviev NO, Kuznetsov NA, Novopashina DS, Kuznetsova AA. Human Polβ Natural Polymorphic Variants G118V and R149I Affects Substate Binding and Catalysis. Int J Mol Sci 2023; 24:ijms24065892. [PMID: 36982964 PMCID: PMC10051265 DOI: 10.3390/ijms24065892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
DNA polymerase β (Polβ) expression is essential for the cell's response to DNA damage that occurs during natural cellular processes. Polβ is considered the main reparative DNA polymerase, whose role is to fill the DNA gaps arising in the base excision repair pathway. Mutations in Polβ can lead to cancer, neurodegenerative diseases, or premature aging. Many single-nucleotide polymorphisms have been identified in the POLB gene, but the consequences of these polymorphisms are not always clear. It is known that some polymorphic variants in the Polβ sequence reduce the efficiency of DNA repair, thereby raising the frequency of mutations in the genome. In the current work, we studied two polymorphic variants (G118V and R149I separately) of human Polβ that affect its DNA-binding region. It was found that each amino acid substitution alters Polβ's affinity for gapped DNA. Each polymorphic variant also weakens its binding affinity for dATP. The G118V variant was found to greatly affect Polβ's ability to fill gapped DNA and slowed the catalytic rate as compared to the wild-type enzyme. Thus, these polymorphic variants seem to decrease the ability of Polβ to maintain base excision repair efficiency.
Collapse
Affiliation(s)
- Olga A Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Timofey E Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena S Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita O Soloviev
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Daria S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Forgie BN, Prakash R, Telleria CM. Revisiting the Anti-Cancer Toxicity of Clinically Approved Platinating Derivatives. Int J Mol Sci 2022; 23:15410. [PMID: 36499737 PMCID: PMC9793759 DOI: 10.3390/ijms232315410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (CDDP), carboplatin (CP), and oxaliplatin (OXP) are three platinating agents clinically approved worldwide for use against a variety of cancers. They are canonically known as DNA damage inducers; however, that is only one of their mechanisms of cytotoxicity. CDDP mediates its effects through DNA damage-induced transcription inhibition and apoptotic signalling. In addition, CDDP targets the endoplasmic reticulum (ER) to induce ER stress, the mitochondria via mitochondrial DNA damage leading to ROS production, and the plasma membrane and cytoskeletal components. CP acts in a similar fashion to CDDP by inducing DNA damage, mitochondrial damage, and ER stress. Additionally, CP is also able to upregulate micro-RNA activity, enhancing intrinsic apoptosis. OXP, on the other hand, at first induces damage to all the same targets as CDDP and CP, yet it is also capable of inducing immunogenic cell death via ER stress and can decrease ribosome biogenesis through its nucleolar effects. In this comprehensive review, we provide detailed mechanisms of action for the three platinating agents, going beyond their nuclear effects to include their cytoplasmic impact within cancer cells. In addition, we cover their current clinical use and limitations, including side effects and mechanisms of resistance.
Collapse
Affiliation(s)
- Benjamin N. Forgie
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rewati Prakash
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Polβ modulates the expression of type I interferon via STING pathway. Biochem Biophys Res Commun 2022; 621:137-143. [DOI: 10.1016/j.bbrc.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022]
|
6
|
Vickridge E, Faraco CCF, Nepveu A. Base excision repair accessory factors in senescence avoidance and resistance to treatments. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:703-720. [PMID: 36176767 PMCID: PMC9511810 DOI: 10.20517/cdr.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Cancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism. Some rare cancer cells, however, manage to adapt to avoid senescence and continue to proliferate. One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the KEAP1 tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor. In this review, we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS: the increased activity of the base excision repair (BER) pathway, achieved through the enhanced expression of BER enzymes and DNA repair accessory factors. These proteins, exemplified here by the CUT domain proteins CUX1, CUX2, and SATB1, stimulate the activity of BER enzymes. The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels. As a by-product of this adaptation, these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation, temozolomide, and cisplatin. Moreover, considering the intrinsic error rate associated with DNA repair and translesion synthesis, the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population, thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance, a major obstacle to clinical treatment.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Camila C. F. Faraco
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Medicine, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Oncology, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
| |
Collapse
|
7
|
The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Int J Mol Sci 2022; 23:ijms23042390. [PMID: 35216513 PMCID: PMC8877055 DOI: 10.3390/ijms23042390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein-protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein-protein interactions is an urgent scientific task.
Collapse
|
8
|
Li H, Wang C, Lan L, Wu W, Evans I, Ruiz EJ, Yan L, Zhou Z, Oliveira JM, Reis RL, Hu Z, Chen W, Behrens A, He Y, Zhang C. PARP1 Inhibitor Combined With Oxaliplatin Efficiently Suppresses Oxaliplatin Resistance in Gastric Cancer-Derived Organoids via Homologous Recombination and the Base Excision Repair Pathway. Front Cell Dev Biol 2021; 9:719192. [PMID: 34497808 PMCID: PMC8419238 DOI: 10.3389/fcell.2021.719192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Oxaliplatin (OXA) resistance in the treatment of different types of cancer is an important and complex problem. The culture of tumor organoids derived from gastric cancer can help us to provide a deeper understanding of the underlying mechanisms that lead to OXA resistance. In this study, our purpose was to understand the mechanisms that lead to OXA resistance, and to provide survival benefits to patients with OXA through targeted combination therapies. Using sequence analysis of OXA-resistant and non-OXA-resistant organoids, we found that PARP1 is an important gene that mediates OXA resistance. Through the patients’ follow-up data, it was observed that the expression level of PARP1 was significantly correlated with OXA resistance. This was confirmed by genetic manipulation of PARP1 expression in OXA-resistant organoids used in subcutaneous tumor formation. Results further showed that PARP1 mediated OXA resistance by inhibiting the base excision repair pathway. OXA also inhibited homologous recombination by CDK1 activity and importantly made cancers with normal BRCA1 function sensitive to PARP inhibition. As a result, combination of OXA and Olaparib (PARP-1/2/3 inhibitor), inhibited in vivo and in vitro OXA resistant organoid growth and viability.
Collapse
Affiliation(s)
- Huafu Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunming Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linxiang Lan
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Wenhui Wu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ian Evans
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - E Josue Ruiz
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Leping Yan
- Center of Scientific Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Zhenran Hu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Wei Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
9
|
Significance of base excision repair to human health. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:163-193. [PMID: 34507783 DOI: 10.1016/bs.ircmb.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative and alkylating DNA damage occurs under normal physiological conditions and exogenous exposure to DNA damaging agents. To counteract DNA base damage, cells have evolved several defense mechanisms that act at different levels to prevent or repair DNA base damage. Cells combat genomic lesions like these including base modifications, abasic sites, as well as single-strand breaks, via the base excision repair (BER) pathway. In general, the core BER process involves well-coordinated five-step reactions to correct DNA base damage. In this review, we will uncover the current understanding of BER mechanisms to maintain genomic stability and the biological consequences of its failure due to repair gene mutations. The malfunction of BER can often lead to BER intermediate accumulation, which is genotoxic and can lead to different types of human disease. Finally, we will address the use of BER intermediates for targeted cancer therapy.
Collapse
|
10
|
Molecular disruption of DNA polymerase β for platinum sensitisation and synthetic lethality in epithelial ovarian cancers. Oncogene 2021; 40:2496-2508. [PMID: 33674744 PMCID: PMC8032555 DOI: 10.1038/s41388-021-01710-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
Targeting PARP1 [Poly(ADP-Ribose) Polymerase 1] for synthetic lethality is a new strategy for BRCA germ-line mutated or platinum sensitive ovarian cancers. However, not all patients respond due to intrinsic or acquired resistance to PARP1 inhibitor. Development of alternative synthetic lethality approaches is a high priority. DNA polymerase β (Polβ), a critical player in base excision repair (BER), interacts with PARP1 during DNA repair. Here we show that polβ deficiency is a predictor of platinum sensitivity in human ovarian tumours. Polβ depletion not only increased platinum sensitivity but also reduced invasion, migration and impaired EMT (epithelial to mesenchymal transition) of ovarian cancer cells. Polβ small molecular inhibitors (Pamoic acid and NSC666719) were selectively toxic to BRCA2 deficient cells and associated with double-strand breaks (DSB) accumulation, cell cycle arrest and increased apoptosis. Interestingly, PARG [Poly(ADP-Ribose) Glycohydrolase] inhibitor (PDD00017273) [but not PARP1 inhibitor (Olaparib)] was synthetically lethal in polβ deficient cells. Selective toxicity to PDD00017273 was associated with poly (ADP-ribose) accumulation, reduced nicotinamide adenine dinucleotide (NAD+) level, DSB accumulation, cell cycle arrest and increased apoptosis. In human tumours, polβ-PARG co-expression adversely impacted survival in patients. Our data provide evidence that polβ targeting is a novel strategy and warrants further pharmaceutical development in epithelial ovarian cancers.
Collapse
|
11
|
Stovbun SV, Vedenkin AS, Bukhvostov AA, Koroleva LS, Silnikov VN, Kuznetsov DA. L, D-Polydeoxyribonucleotides to provide an essential inhibitory effect on DNA polymerase β of human myeloid leukemia HL60 cells. Biochem Biophys Rep 2020; 24:100835. [PMID: 33195826 PMCID: PMC7644855 DOI: 10.1016/j.bbrep.2020.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022] Open
Abstract
The inhibitory effect of D and L-polynucleotides of a given length (40-50n) on the catalytic activity of DNA polymerase β isolated from chromatin cells of acute myeloid leukemia HL-60 was evaluated. The synthesized L enantiomer was found to have a higher inhibitory activity than the synthesized and isolated D enantiomers of polynucleotides. The work also proposes a biophysical model that describes this effect. The inhibitory activity of L, D-polydeoxyribonucleotides of various compositions was evaluated. Inhibition of DNA polymerase β is due to a nonspecific interaction between the enzyme and the substrate. L-polynucleotide exhibits the highest inhibiting activity, compared to the D-enantiomers.
Collapse
Affiliation(s)
- S V Stovbun
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St., 4, Moscow, 119991, Russia
| | - A S Vedenkin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St., 4, Moscow, 119991, Russia
| | - A A Bukhvostov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St., 4, Moscow, 119991, Russia.,N.I. Pirogov Russian National Research Medical University, Russian Federal Ministry of Health, Ostrovityanov St., 1, Moscow, 117997, Russia
| | - L S Koroleva
- Institute of Chemical Biology & Fundamental Medicine, Siberian Branch of the RAS, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - V N Silnikov
- Institute of Chemical Biology & Fundamental Medicine, Siberian Branch of the RAS, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - D A Kuznetsov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St., 4, Moscow, 119991, Russia.,N.I. Pirogov Russian National Research Medical University, Russian Federal Ministry of Health, Ostrovityanov St., 1, Moscow, 117997, Russia
| |
Collapse
|
12
|
Daskalova SM, Eisenhauer BM, Gao M, Feng X, Ji X, Cheng Q, Fahmi N, Khdour OM, Chen S, Hecht SM. An assay for DNA polymerase β lyase inhibitors that engage the catalytic nucleophile for binding. Bioorg Med Chem 2020; 28:115642. [PMID: 32773093 DOI: 10.1016/j.bmc.2020.115642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 11/16/2022]
Abstract
DNA polymerase β (Pol β) repairs cellular DNA damage. When such damage is inflicted upon the DNA in tumor cells treated with DNA targeted antitumor agents, Pol β thus diminishes their efficacy. Accordingly, this enzyme has long been a target for antitumor therapy. Although numerous inhibitors of the lyase activity of the enzyme have been reported, none has yet proven adequate for development as a therapeutic agent. In the present study, we developed a new strategy to identify lyase inhibitors that critically engage the lyase active site primary nucleophile Lys72 as part of the binding interface. This involves a parallel evaluation of the effect of the inhibitors on the wild-type DNA polymerase β (Pol β) and Pol β modified with a lysine analogue at position 72. A model panel of five structurally diverse lyase inhibitors identified in our previous studies (only one of which has been published) with unknown modes of binding were used for testing, and one compound, cis-9,10-epoxyoctadecanoic acid, was found to have the desired characteristics. This finding was further corroborated by in silico docking, demonstrating that the predominant mode of binding of the inhibitor involves an important electrostatic interaction between the oxygen atom of the epoxy group and Nε of the main catalytic nucleophile, Lys72. The strategy, which is designed to identify compounds that engage certain structural elements of the target enzyme, could find broader application for identification of ligands with predetermined sites of binding.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Brian M Eisenhauer
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, United States
| | - Mingxuan Gao
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Xizhi Feng
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, United States
| | - Xun Ji
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Qi Cheng
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - NourEddine Fahmi
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, United States
| | - Omar M Khdour
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Shengxi Chen
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States; Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
13
|
Guffanti F, Alvisi MF, Caiola E, Ricci F, De Maglie M, Soldati S, Ganzinelli M, Decio A, Giavazzi R, Rulli E, Damia G. Impact of ERCC1, XPF and DNA Polymerase β Expression on Platinum Response in Patient-Derived Ovarian Cancer Xenografts. Cancers (Basel) 2020; 12:cancers12092398. [PMID: 32847049 PMCID: PMC7564949 DOI: 10.3390/cancers12092398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Platinum resistance is an unmet medical need in ovarian carcinoma. Molecular biomarkers to predict the response to platinum-based therapy could allow patient stratification and alternative therapeutic strategies early in clinical management. Sensitivity and resistance to platinum therapy are partially determined by the tumor’s intrinsic DNA repair activities, including nucleotide excision repair (NER) and base excision repair (BER). We investigated the role of the NER proteins—ERCC1, XPF, ERCC1/XPF complex—and of the BER protein DNA polymerase β, as possible biomarkers of cisplatin (DDP) response in a platform of recently established patient-derived ovarian carcinoma xenografts (OC-PDXs). ERCC1 and DNA polymerase β protein expressions were measured by immunohistochemistry, the ERCC1/XPF foci number was detected by proximity ligation assay (PLA) and their mRNA levels by real-time PCR. We then correlated the proteins, gene expression and ERCC1/XPF complexes with OC-PDXs’ response to platinum. To the best of our knowledge, this is the first investigation of the role of the ERCC1/XPF complex, detected by PLA, in relation to the response to DDP in ovarian carcinoma. None of the proteins in the BER and NER pathways studied predicted platinum activity in this panel of OC-PDXs, nor did the ERCC1/XPF foci number. These results were partially explained by the experimental evidence that the ERCC1/XPF complex increases after DDP treatment and this possibly better associates with the cancer cells’ abilities to activate the NER pathway to repair platinum-induced damage than its basal level. Our findings highlight the need for DNA functional assays to predict the response to platinum-based therapy.
Collapse
Affiliation(s)
- Federica Guffanti
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
| | - Maria Francesca Alvisi
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.F.A.); (E.R.)
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
| | - Francesca Ricci
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
| | - Marcella De Maglie
- Mouse and Animal Pathology Lab (MAPLab), Filarete Foundation, Department of Veterinary Medicine, University of Milan, 20139 Milan, Italy;
| | - Sabina Soldati
- Department of Veterinary Pathology, University of Milan, 20133 Milan, Italy;
| | - Monica Ganzinelli
- Unit of Thoracic Oncology, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Alessandra Decio
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (A.D.); (R.G.)
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (A.D.); (R.G.)
| | - Eliana Rulli
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.F.A.); (E.R.)
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
- Correspondence: ; Tel.: +39-0239014234
| |
Collapse
|
14
|
Malfatti MC, Gerratana L, Dalla E, Isola M, Damante G, Di Loreto C, Puglisi F, Tell G. APE1 and NPM1 protect cancer cells from platinum compounds cytotoxicity and their expression pattern has a prognostic value in TNBC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:309. [PMID: 31307523 PMCID: PMC6631760 DOI: 10.1186/s13046-019-1294-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Background Triple negative breast cancer (TNBC) is a breast cancer subgroup characterized by a lack of hormone receptors’ expression and no HER2 overexpression. These molecular features both drastically reduce treatment options and confer poor prognosis. Platinum (Pt)-salts are being investigated as a new therapeutic strategy. The base excision repair (BER) pathway is important for resistance to Pt-based therapies. Overexpression of APE1, a pivotal enzyme of the BER pathway, as well as the expression of NPM1, a functional regulator of APE1, are associated with poor outcome and resistance to Pt-based therapies. Methods We evaluated the role of NPM1, APE1 and altered NPM1/APE1 interaction in the response to Pt-salts treatment in different cell lines: APE1 knockout (KO) cells, NPM1 KO cells, cell line models having an altered APE1/NPM1 interaction and HCC70 and HCC1937 TNBC cell lines, having different levels of APE1/NPM1. We evaluated the TNBC cells response to new chemotherapeutic small molecules targeting the endonuclease activity of APE1 or the APE1/NPM1 interaction, in combination with Pt-salts treatments. Expression levels’ correlation between APE1 and NPM1 and their impact on prognosis was analyzed in a cohort of TNBC patients through immunohistochemistry. Bioinformatics analysis, using TCGA datasets, was performed to predict a molecular signature of cancers based on APE1 and NPM1 expression. Results APE1 and NPM1, and their interaction as well, protect from the cytotoxicity induced by Pt-salts treatment. HCC1937 cells, having higher levels of APE1/NPM1 proteins, are more resistant to Pt-salts treatment compared to the HCC70 cells. A sensitization effect by APE1 inhibitors to Pt-compounds was observed. The association of NPM1/APE1 with cancer gene signatures highlighted alterations concerning cell-cycle dependent proteins. Conclusions APE1 and NPM1 protect cancer cells from Pt-compounds cytotoxicity, suggesting a possible improvement of the activity of Pt-based therapy for TNBC, using the NPM1 and APE1 proteins as secondary therapeutic targets. Based on positive or negative correlation with APE1 and NPM1 gene expression levels, we finally propose several TNBC gene signatures that should deserve further attention for their potential impact on TNBC precision medicine approaches. Electronic supplementary material The online version of this article (10.1186/s13046-019-1294-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lorenzo Gerratana
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy.,Department of Oncology, ASUI Udine SMM University Hospital Udine, Udine, Italy
| | - Emiliano Dalla
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy
| | - Miriam Isola
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy
| | - Giuseppe Damante
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy
| | - Carla Di Loreto
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy.,Department of Pathology, ASUI Udine SMM University Hospital Udine, Udine, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Gianluca Tell
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
15
|
Garutti M, Pelizzari G, Bartoletti M, Malfatti MC, Gerratana L, Tell G, Puglisi F. Platinum Salts in Patients with Breast Cancer: A Focus on Predictive Factors. Int J Mol Sci 2019; 20:E3390. [PMID: 31295913 PMCID: PMC6678596 DOI: 10.3390/ijms20143390] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most frequent oncologic cause of death among women and the improvement of its treatments is compelling. Platinum salts (e.g., carboplatin, cisplatin, and oxaliplatin) are old drugs still used to treat BC, especially the triple-negative subgroup. However, only a subset of patients see a concrete benefit from these drugs, raising the question of how to select them properly. Therefore, predictive biomarkers for platinum salts in BC still represent an unmet clinical need. Here, we review clinical and preclinical works in order to summarize the current evidence about predictive or putative platinum salt biomarkers in BC. The association between BRCA1/2 gene mutations and platinum sensitivity has been largely described. However, beyond the mutations of these two genes, several other proteins belonging to the homologous recombination pathways have been linked to platinum response, defining the concept of BRCAness. Several works, here reviewed, have tried to capture BRCAness through different strategies, such as homologous recombination deficiency (HRD) score and genetic signatures. Moreover, p53 and its family members (p63 and p73) might also be used as predictors of platinum response. Finally, we describe the mounting preclinical evidence regarding base excision repair deficiency as a possible new platinum biomarker.
Collapse
Affiliation(s)
- Mattia Garutti
- U.O.C Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Giacomo Pelizzari
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | | | - Lorenzo Gerratana
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gianluca Tell
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy.
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| |
Collapse
|
16
|
Slyskova J, Sabatella M, Ribeiro-Silva C, Stok C, Theil AF, Vermeulen W, Lans H. Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage. Nucleic Acids Res 2019; 46:9537-9549. [PMID: 30137419 PMCID: PMC6182164 DOI: 10.1093/nar/gky764] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Sensitivity and resistance of cells to platinum drug chemotherapy are to a large extent determined by activity of the DNA damage response (DDR). Combining chemotherapy with inhibition of specific DDR pathways could therefore improve treatment efficacy. Multiple DDR pathways have been implicated in removal of platinum-DNA lesions, but it is unclear which exact pathways are most important to cellular platinum drug resistance. Here, we used CRISPR/Cas9 screening to identify DDR proteins that protect colorectal cancer cells against the clinically applied platinum drug oxaliplatin. We find that besides the expected homologous recombination, Fanconi anemia and translesion synthesis pathways, in particular also transcription-coupled nucleotide excision repair (TC-NER) and base excision repair (BER) protect against platinum-induced cytotoxicity. Both repair pathways are required to overcome oxaliplatin- and cisplatin-induced transcription arrest. In addition to the generation of DNA crosslinks, exposure to platinum drugs leads to reactive oxygen species production that induces oxidative DNA lesions, explaining the requirement for BER. Our findings highlight the importance of transcriptional integrity in cells exposed to platinum drugs and suggest that both TC-NER and BER should be considered as targets for novel combinatorial treatment strategies.
Collapse
Affiliation(s)
- Jana Slyskova
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Mariangela Sabatella
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Colin Stok
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- To whom correspondence should be addressed. Tel: +31 10 7038169; Fax: +31 10 7044743;
| |
Collapse
|
17
|
Kumar M, Shukla VK, Misra PK, Raman MJ. Dysregulated Expression and Subcellular Localization of Base Excision Repair (BER) Pathway Enzymes in Gallbladder Cancer. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:119-132. [PMID: 30276167 PMCID: PMC6148499 DOI: 10.22088/ijmcm.bums.7.2.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023]
Abstract
Base excision repair (BER) pathway is one of the repair systems that has an impact on radiotherapy and chemotherapy for cancer patients. The molecular pathogenesis of gallbladder cancer is not known extensively. In the present study we investigated whether the expression of AP endonuclease 1 (APE1) and DNA polymerase β (DNA pol β), key enzymes of BER pathway has any clinical significance with gallbladder carcinogenesis. 41 gallbladder cancer, 27 chronic cholecystitis, and 3 normal gallbladder specimens were analyzed for the expression of APE1 and DNA polymerase β by western blotting, and subcellular localization studied by immunohistochemistry. The enzymatic activity of APE1 was also studied. The correlations with expression of the above proteins with clinical-pathological characteristics of gallbladder cancer patients were analyzed. The integrated density value ratio (relative expression) of total APE1 (37 kDa + 35 kDa variant) analyzed in the three groups of tissues, was 0.76±0.03 in normal gallbladder, 0.91±0.08 in chronic cholecystitis, and 1.12±0.05 in gallbladder cancer. APE1 was found to be up-regulated in 80% of gallbladder carcinoma samples (P = 0.01). A positive trend of APE1 expression with tumor stage and lymph node positivity was observed. The enzymatic activity of APE1 was found higher in gallbladder cancer samples in comparison with chronic cholecystitis. The integrated density value ratio of DNA polymerase β for normal gallbladder, chronic cholecystitis and gallbladder cancer tissue samples were 0.46±0.03, 0.7±0.06 and 1.33±0.1, respectively. DNA polymerase β was found to be upregulated in almost all gallbladder carcinoma samples (P =0.0001), and its expression was negatively correlated with age (P=0.02). DNA polymerase β expression showed a positive trend with tumor stage and nuclear differentiation of gallbladder cancer. It may be concluded that alteration of these BER pathway proteins may be the causal factors for carcinogenesis of gallbladder, and has targeted therapeutic potential.
Collapse
Affiliation(s)
- Manoj Kumar
- Cytogenetics laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India.,School of Biological and Environmental Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Pravas Kumar Misra
- Departments of Pathology and Surgery, Indian Railways Cancer Institute and Research Centre, Varanasi, Uttar Pradesh, India
| | - Mercy Jacob Raman
- Cytogenetics laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
Kou Y, Koag MC, Lee S. Structural and Kinetic Studies of the Effect of Guanine N7 Alkylation and Metal Cofactors on DNA Replication. Biochemistry 2018; 57:5105-5116. [PMID: 29957995 DOI: 10.1021/acs.biochem.8b00331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide variety of endogenous and exogenous alkylating agents attack DNA to preferentially generate N7-alkylguanine (N7-alkylG) adducts. Studies of the effect of N7-alkylG lesions on biological processes have been difficult in part because of complications arising from the chemical lability of the positively charged N7-alkylG, which can readily produce secondary lesions. To assess the effect of bulky N7-alkylG on DNA replication, we prepared chemically stable N7-benzylguanine (N7bnG)-containing DNA and evaluated nucleotide incorporation opposite the lesion by human DNA polymerase β (polβ), a model enzyme for high-fidelity DNA polymerases. Kinetic studies showed that the N7-benzyl-G lesion greatly inhibited dCTP incorporation by polβ. The crystal structure of polβ incorporating dCTP opposite N7bnG showed a Watson-Crick N7bnG:dCTP structure. The polβ-N7bnG:dCTP structure showed an open protein conformation, a relatively disordered dCTP, and a lack of catalytic metal, which explained the inefficient nucleotide incorporation opposite N7bnG. This indicates that polβ is sensitive to major groove adducts in the templating base side and deters nucleotide incorporation opposite bulky N7-alkylG adducts by adopting a catalytically incompetent conformation. Substituting Mg2+ for Mn2+ induced an open-to-closed conformational change due to the presence of catalytic metal and stably bound dCTP and increased the catalytic efficiency by ∼10-fold, highlighting the effect of binding of the incoming nucleotide and catalytic metal on protein conformation and nucleotidyl transfer reaction. Overall, these results suggest that, although bulky alkyl groups at guanine-N7 may not alter base pairing properties of guanine, the major groove-positioned lesions in the template could impede nucleotidyl transfer by some DNA polymerases.
Collapse
Affiliation(s)
- Yi Kou
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Myong-Chul Koag
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
19
|
Mima S, Kakinuma C, Higuchi T, Saeki K, Yamada T, Uematsu R, Ishino M, Kito N, Nishikawa H, Kuniyoshi H, Matsumoto T, Fujiwara H, Paradiso LJ, Shimada Y, Iwamura H. FF-10502, an Antimetabolite with Novel Activity on Dormant Cells, Is Superior to Gemcitabine for Targeting Pancreatic Cancer Cells. J Pharmacol Exp Ther 2018; 366:125-135. [PMID: 29653962 DOI: 10.1124/jpet.118.248740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
In this paper, we report that 1-(2-deoxy-2-fluoro-4-thio-β-d-arabinofuranosyl) cytosine (FF-10502), a pyrimidine nucleoside antimetabolite with a chemical structure similar to gemcitabine, shows beneficial anticancer activity via a novel mechanism of action on dormant cells. The growth inhibition of pancreatic cancer cell lines by FF-10502 (IC50, 60-330 nM) was moderately weaker than that by gemcitabine in vitro. In contrast, an in vivo orthotopic implantation model in mice with established human pancreatic cancer cell line, SUIT-2, revealed no mortality with FF-10502 intravenous treatment, which was related to regression of implanted tumor and little metastasis, whereas 75% of the mice treated with gemcitabine died by day 128. Two in vivo patient-derived xenograft models with gemcitabine-resistant pancreatic cancer cells also demonstrated complete tumor growth suppression with FF-10502, but only partial inhibition with gemcitabine. We also investigated the mechanism of action of FF-10502 by using dormant cancer cells, which are reportedly involved in the development of resistance to chemotherapy. In vitro serum starvation-induced dormant SUIT-2 cells developed resistance to gemcitabine even in combination with DNA damage inducers (DDIs; H2O2, cisplatin, and temozolomide). Interestingly, FF-10502 in combination with DDIs significantly induced concentration-dependent cell death in accordance with enhanced DNA damage. FF-10502 was far more potent than gemcitabine in inhibiting DNA polymerase β, which may explain the difference in dormant cell injury, although further investigations for direct evidences are necessary. In conclusion, our study demonstrated the beneficial antitumor effects of FF-10502 in clinically relevant in vivo models, and suggests the importance of preventing DNA repair unlike gemcitabine.
Collapse
Affiliation(s)
- Shinji Mima
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Chihaya Kakinuma
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Tamami Higuchi
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Kazunori Saeki
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Takayuki Yamada
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Rena Uematsu
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Miki Ishino
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Nobuko Kito
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hiroki Nishikawa
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hidenobu Kuniyoshi
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Takuya Matsumoto
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hideyasu Fujiwara
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Linda J Paradiso
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Yasuhiro Shimada
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hiroyuki Iwamura
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| |
Collapse
|
20
|
Shen S, Lim G, You Z, Ding W, Huang P, Ran C, Doheny J, Caravan P, Tate S, Hu K, Kim H, McCabe M, Huang B, Xie Z, Kwon D, Chen L, Mao J. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci 2017; 20:1213-1216. [PMID: 28714953 PMCID: PMC5575957 DOI: 10.1038/nn.4606] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced pain is a dose-limiting condition that affects 30% of patients undergoing chemotherapy. We found that gut microbiota promotes the development of chemotherapy-induced mechanical hyperalgesia. Oxaliplatin-induced mechanical hyperalgesia was reduced in germ-free mice and in mice pretreated with antibiotics. Restoring the microbiota of germ-free mice abrogated this protection. These effects appear to be mediated, in part, by TLR4 expressed on hematopoietic cells, including macrophages.
Collapse
Affiliation(s)
- Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Grewo Lim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Weihua Ding
- Department of Anesthesia and Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peigen Huang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chongzhao Ran
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Doheny
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Caravan
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Tate
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun Hu
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hyangin Kim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael McCabe
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Huang
- Basic Sciences Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Douglas Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
22
|
Simonelli V, Leuzzi G, Basile G, D'Errico M, Fortini P, Franchitto A, Viti V, Brown AR, Parlanti E, Pascucci B, Palli D, Giuliani A, Palombo F, Sobol RW, Dogliotti E. Crosstalk between mismatch repair and base excision repair in human gastric cancer. Oncotarget 2016; 8:84827-84840. [PMID: 29156686 PMCID: PMC5689576 DOI: 10.18632/oncotarget.10185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/23/2016] [Indexed: 12/05/2022] Open
Abstract
DNA repair gene expression in a set of gastric cancers suggested an inverse association between the expression of the mismatch repair (MMR) gene MLH1 and that of the base excision repair (BER) gene DNA polymerase β (Polβ). To gain insight into possible crosstalk of these two repair pathways in cancer, we analysed human gastric adenocarcinoma AGS cells over-expressing Polβ or Polβ active site mutants, alone or in combination with MLH1 silencing. Next, we investigated the cellular response to the alkylating agent methyl methanesulfonate (MMS) and the purine analogue 6-thioguanine (6-TG), agents that induce lesions that are substrates for BER and/or MMR. AGS cells over-expressing Polβ were resistant to 6-TG to a similar extent as when MLH1 was inactivated while inhibition of O6-methylguanine-DNA methyltransferase (MGMT) was required to detect resistance to MMS. Upon either treatment, the association with MLH1 down-regulation further amplified the resistant phenotype. Moreover, AGS cells mutated in Polβ were hypersensitive to both 6-TG and MMS killing and their sensitivity was partially rescued by MLH1 silencing. We provide evidence that the critical lethal lesions in this new pathway are double strand breaks that are exacerbated when Polβ is defective and relieved when MLH1 is silenced. In conclusion, we provide evidence of crosstalk between MLH1 and Polβ that modulates the response to alkylation damage. These studies suggest that the Polβ/MLH1 status should be taken into consideration when designing chemotherapeutic approaches for gastric cancer.
Collapse
Affiliation(s)
- Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Leuzzi
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgia Basile
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Annapaola Franchitto
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Viti
- Istituto di Ricerche Biologia Molecolare P. Angeletti (IRBM), Pomezia (Rome), Italy
| | - Ashley R Brown
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Cristallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, Rome, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, CSPO, Scientific Institute of Tuscany, Florence, Italy
| | - Alessandro Giuliani
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | | | - Robert W Sobol
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Zhao J, Ma J, Lu J, Jiang Y, Zhang Y, Zhang X, Zhao J, Yang H, Huang Y, Zhao M, Liu K, Dong Z. Involvement of p38MAPK-ATF2 signaling pathway in alternariol induced DNA polymerase β expression. Oncol Lett 2016; 12:675-679. [PMID: 27347199 DOI: 10.3892/ol.2016.4662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/10/2016] [Indexed: 11/06/2022] Open
Abstract
Base excision repair (BER) systems are important for maintaining the integrity of genomes in mammalian cells. Aberrant DNA bases or broken single strands can be repaired by BER. Consequently, DNA lesions, which may be caused by cancer and aging, have a close association with BER procedure. DNA polymerase β (polβ) is a critical BER enzyme that can excise 5'-sugar phosphate prior to adding a nucleotide in the gap by its function as a DNA polymerase in the BER process. However, DNA polβ is an error-prone DNA polymerase, and overexpressing polβ increases the cellular spontaneous mutation rate. DNA polβ overexpression has been identified in various human tumors, which implies that DNA polβ overexpression has a close association with tumorigenesis. The present study showed that alternariol (AOH), a secondary product of a fungus that is found in grains and fruits, could cause DNA damage to NIH3T3 cells in a single cell gel electrophoresis, and that 2, 10 and 20 µM AOH induced DNA polβ overexpression in a dose-dependent manner. In the process, the level of phosphorylation of mitogen-activated protein kinase 14 (p38) mitogen-activated protein kinase (MAPK) and activating transcription factor 2 (ATF2) was increased. In addition, SB203580, a p38MAPK inhibitor, resulted in decreased DNA polβ expression. Small hairpin RNA-p38MAPK had the same effect; notably, DNA polβ expression was downregulated in p38MAPK knockdown cells. These data suggest that the p38MAPK-ATF2 signaling pathway may be involved in DNA polβ expression induced by AOH.
Collapse
Affiliation(s)
- Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Junfen Ma
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yanyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jun Zhao
- Department of Medical Oncology, Changzhi People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Hongyan Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Youtian Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Mingyao Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
24
|
Perego P, Robert J. Oxaliplatin in the era of personalized medicine: from mechanistic studies to clinical efficacy. Cancer Chemother Pharmacol 2015; 77:5-18. [PMID: 26589793 DOI: 10.1007/s00280-015-2901-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022]
Abstract
Oxaliplatin is a third-generation platinum compound approved for clinical use relatively recently as compared to other drugs of the same class. Its main cellular target is DNA, where similarly to cisplatin and carboplatin it forms cross-links. However, due to a unique indication for colorectal cancer, synergistic interaction with fluoropyrimidines and peculiar toxicity profile, oxaliplatin is different from those compounds. Multiple lines of evidence indicate differences in transport and metabolism, consequences of DNA platination, as well as DNA repair and transduction of DNA damage. Here, we explore the preclinical features that may explain the unique properties of oxaliplatin in the clinics. Among them, the capability to accumulate in tumor cells via organic cation transporters, to kill KRAS mutant cells and to activate immunogenic cell death appears helpful to explain in part its clinical behavior. The continuous investigation of the molecular pharmacology of oxaliplatin is expected to provide clues to the definitions of predictors of drug activity and toxicity to translate to the clinical setting.
Collapse
Affiliation(s)
- Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Jacques Robert
- INSERM U916, Institut Bergonié, University of Bordeaux, 229 Cours de l'Argonne, 33000, Bordeaux, France
| |
Collapse
|
25
|
Martinez-Balibrea E, Martínez-Cardús A, Ginés A, Ruiz de Porras V, Moutinho C, Layos L, Manzano JL, Bugés C, Bystrup S, Esteller M, Abad A. Tumor-Related Molecular Mechanisms of Oxaliplatin Resistance. Mol Cancer Ther 2015; 14:1767-76. [PMID: 26184483 DOI: 10.1158/1535-7163.mct-14-0636] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023]
Abstract
Oxaliplatin was the first platinum drug with proven activity against colorectal tumors, becoming a standard in the management of this malignancy. It is also considered for the treatment of pancreatic and gastric cancers. However, a major reason for treatment failure still is the existence of tumor intrinsic or acquired resistance. Consequently, it is important to understand the molecular mechanisms underlying the appearance of this phenomenon to find ways of circumventing it and to improve and optimize treatments. This review will be focused on recent discoveries about oxaliplatin tumor-related resistance mechanisms, including alterations in transport, detoxification, DNA damage response and repair, cell death (apoptotic and nonapoptotic), and epigenetic mechanisms.
Collapse
Affiliation(s)
- Eva Martinez-Balibrea
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain.
| | - Anna Martínez-Cardús
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Alba Ginés
- Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain
| | - Vicenç Ruiz de Porras
- Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain
| | - Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Laura Layos
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain
| | - José Luis Manzano
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain
| | - Cristina Bugés
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain. Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain. Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain. Oncology Unit, Hospital CIMA Sanitas, Barcelona, Catalonia, Spain
| | - Sara Bystrup
- Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain. Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Albert Abad
- Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. Health Sciences Research Institute of the Germans Trias i Pujol Foundation (IGTP). Badalona, Catalonia, Spain. Oncology Unit, Hospital CIMA Sanitas, Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Sutton PA, Jones RP, Evans JP, Kitteringham N, Goldring C, Palmer DH, Vimalachandran D, Malik HZ. Predicting response to treatment for colorectal cancer: a review of relevant mechanisms and potential biomarkers. COLORECTAL CANCER 2015. [DOI: 10.2217/crc.15.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Neoadjuvant therapy for colorectal cancer offers potential oncological benefits but is associated with increased surgical risk. Predictive biomarkers would allow the personalization of this risk/benefit balance, with treatment stratified by likely response. Although current clinical application of predictive biomarkers is limited, a number of potential targets have been proposed. This review summarizes some of the approaches being used to develop predictive biomarkers for the personalization of colorectal cancer management.
Collapse
Affiliation(s)
- Paul A Sutton
- Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
- Department of Colorectal Surgery, Countess of Chester Hospital NHS Foundation Trust, Chester, Cheshire, CH2 1UL, UK
| | - Rob P Jones
- Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Longmoor Lane, Liverpool, Merseyside, L9 7AL, UK
| | - Jonathan P Evans
- Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Neil Kitteringham
- Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Chris Goldring
- Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Dan H Palmer
- Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
- Clatterbridge Cancer Centre, Bebington, Wirral, Merseyside, CH63 4JY, UK
| | - Dale Vimalachandran
- Department of Colorectal Surgery, Countess of Chester Hospital NHS Foundation Trust, Chester, Cheshire, CH2 1UL, UK
| | - Hassan Z Malik
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Longmoor Lane, Liverpool, Merseyside, L9 7AL, UK
| |
Collapse
|
27
|
Sharbeen G, McCarroll J, Goldstein D, Phillips PA. Exploiting base excision repair to improve therapeutic approaches for pancreatic cancer. Front Nutr 2015; 2:10. [PMID: 25988138 PMCID: PMC4428371 DOI: 10.3389/fnut.2015.00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly chemoresistant and metastatic disease with a dismal 5-year survival rate of 6%. More effective therapeutic targets and approaches are urgently needed to tackle this devastating disease. The base excision repair (BER) pathway has been identified as a predictor of therapeutic response, prognostic factor, and therapeutic target in a variety of cancers. This review will discuss our current understanding of BER in PDA and its potential to improve PDA treatment.
Collapse
Affiliation(s)
- George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| | - Joshua McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia , Sydney, NSW , Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| |
Collapse
|
28
|
Abdel-Fatah TMA, Russell R, Agarwal D, Moseley P, Abayomi MA, Perry C, Albarakati N, Ball G, Chan S, Caldas C, Ellis IO, Madhusudan S. DNA polymerase β deficiency is linked to aggressive breast cancer: a comprehensive analysis of gene copy number, mRNA and protein expression in multiple cohorts. Mol Oncol 2014; 8:520-32. [PMID: 24462520 PMCID: PMC5528629 DOI: 10.1016/j.molonc.2014.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 12/21/2022] Open
Abstract
Short arm of chromosome 8 is a hot spot for chromosomal breaks, losses and amplifications in breast cancer. Although such genetic changes may have phenotypic consequences, the identity of candidate gene(s) remains to be clearly defined. Pol β gene is localized to chromosome 8p12-p11 and encodes a key DNA base excision repair protein. Pol β may be a tumour suppressor and involved in breast cancer pathogenesis. We conducted the first and the largest study to comprehensively evaluate pol β in breast cancer. We investigated pol β gene copy number changes in two cohorts (n = 128 &n = 1952), pol β mRNA expression in two cohorts (n = 249 &n = 1952) and pol β protein expression in two cohorts (n = 1406 &n = 252). Artificial neural network analysis for pol β interacting genes was performed in 249 tumours. For mechanistic insights, pol β gene copy number changes, mRNA and protein levels were investigated together in 128 tumours and validated in 1952 tumours. Low pol β mRNA expression as well as low pol β protein expression was associated high grade, lymph node positivity, pleomorphism, triple negative, basal-like phenotypes and poor survival (ps < 0.001). In oestrogen receptor (ER) positive sub-group that received tamoxifen, low pol β protein remains associated with aggressive phenotype and poor survival (ps < 0.001). Artificial neural network analysis revealed ER as a top pol β interacting gene. Mechanistically, there was strong positive correlation between pol β gene copy number changes and pol β mRNA expression (p < 0.0000001) and between pol β mRNA and pol β protein expression (p < 0.0000001). This is the first study to provide evidence that pol β deficiency is linked to aggressive breast cancer and may have prognostic and predictive significance in patients.
Collapse
Affiliation(s)
| | - Roslin Russell
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | | | - Christina Perry
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Nada Albarakati
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Carlos Caldas
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ian O Ellis
- Division of Pathology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK; Division of Oncology, School of Medicine, University of Nottingham, Nottingham NG51PB, UK.
| |
Collapse
|
29
|
Schermerhorn KM, Delaney S. A chemical and kinetic perspective on base excision repair of DNA. Acc Chem Res 2014; 47:1238-46. [PMID: 24646203 PMCID: PMC3993943 DOI: 10.1021/ar400275a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Our cellular genome is continuously exposed to a wide spectrum of exogenous and endogenous DNA damaging agents. These agents can lead to formation of an extensive array of DNA lesions including single- and double-stranded breaks, inter- and intrastrand cross-links, abasic sites, and modification of DNA nucleobases. Persistence of these DNA lesions can be both mutagenic and cytotoxic, and can cause altered gene expression and cellular apoptosis leading to aging, cancer, and various neurological disorders. To combat the deleterious effects of DNA lesions, cells have a variety of DNA repair pathways responsible for restoring damaged DNA to its canonical form. Here we examine one of those repair pathways, the base excision repair (BER) pathway, a highly regulated network of enzymes responsible for repair of modified nucleobase and abasic site lesions. The enzymes required to reconstitute BER in vitro have been identified, and the repair event can be considered to occur in two parts: (1) excision of the modified nucleobase by a DNA glycosylase, and (2) filling the resulting "hole" with an undamaged nucleobase by a series of downstream enzymes. DNA glycosylases, which initiate a BER event, recognize and remove specific modified nucleobases and yield an abasic site as the product. The abasic site, a highly reactive BER intermediate, is further processed by AP endonuclease 1 (APE1), which cleaves the DNA backbone 5' to the abasic site, generating a nick in the DNA backbone. After action of APE1, BER can follow one of two subpathways, the short-patch (SP) or long-patch (LP) version, which differ based on the number of nucleotides a polymerase incorporates at the nick site. DNA ligase is responsible for sealing the nick in the backbone and regenerating undamaged duplex. Not surprisingly, and consistent with the idea that BER maintains genetic stability, deficiency and/or inactivity of BER enzymes can be detrimental and result in cancer. Intriguingly, this DNA repair pathway has also been implicated in causing genetic instability by contributing to the trinucleotide repeat expansion associated with several neurological disorders. Within this Account, we outline the chemistry of the human BER pathway with a mechanistic focus on the DNA glycosylases that initiate the repair event. Furthermore, we describe kinetic studies of many BER enzymes as a means to understand the complex coordination that occurs during this highly regulated event. Finally, we examine the pitfalls associated with deficiency in BER activity, as well as instances when BER goes awry.
Collapse
Affiliation(s)
- Kelly M. Schermerhorn
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
30
|
Chen J, Solomides C, Simpkins H. Sensitization of mesothelioma cells to platinum-based chemotherapy by GSTπ knockdown. Biochem Biophys Res Commun 2014; 447:77-82. [PMID: 24690178 DOI: 10.1016/j.bbrc.2014.03.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/13/2023]
Abstract
It is predicted that the incidence of mesothelioma will increase and thus it is important to find new ways to treat this chemoresistant tumor. Glutathione-S-Transferase π (GSTπ) is found at significant levels in mesotheliomas and thus attenuating its intracellular levels may provide a means of sensitizing mesothelioma cells to chemotherapy. GSTπ knockdowns were therefore prepared with shRNA (less off-target effects) employing two cell lines (211H, H2452) that were typed by immunohistochemistry to be of mesothelial origin. The knockdowns exhibited a decrease in both total GST enzyme activity and GSTπ protein levels as well as an increase in both glutathione levels and sensitivity to cis and oxaliplatin. Cisplatin treatment of the knockdowns increased ROS levels significantly (as compared to the parental cells) and produced activation of the JNK/p38 pathways and activating transcription factor (ATF2). The degree of activation and increase in ROS appeared to correlate with the cell line's sensitivity to cisplatin. Treatment with N-Acetyl Cysteine decreased ROS production and JNK/p38 phosphorylation but had minimal affect on ATF2 suggesting a direct interaction of GTPπ with this transcription factor. Oxaliplatin treatment produced only minimal changes in ROS levels and activation of the JNK/p38 pathway. Recently, new methods of siRNA delivery (nanoparticles) have been shown to be effective in decreasing the levels of target proteins in humans including candidate genes involved in drug resistance - thus this approach may have promise in sensitizing cisplatin-resistant tumors to chemotherapy.
Collapse
Affiliation(s)
- Jianli Chen
- The Feinstein Institute for Medical Research, NS-LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA; Department of Pathology and Laboratory Medicine at Staten Island University Hospital, 475 Seaview Avenue, Staten Island, NY 10305, USA.
| | - Charalambos Solomides
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Jefferson Medical College, 132 S. 10th Street, 260E Main, Philadelphia, PA 19107, USA.
| | - Henry Simpkins
- The Feinstein Institute for Medical Research, NS-LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA; Department of Pathology and Laboratory Medicine at Staten Island University Hospital, 475 Seaview Avenue, Staten Island, NY 10305, USA.
| |
Collapse
|
31
|
Mapping genetic alterations causing chemoresistance in cancer: identifying the roads by tracking the drivers. Oncogene 2013; 32:5315-30. [PMID: 23474753 DOI: 10.1038/onc.2013.48] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Although new agents are implemented to cancer therapy, we lack fundamental understandings of the mechanisms of chemoresistance, the main obstacle to cure in cancer. Here we review clinical evidence linking molecular defects to drug resistance across different tumour forms and discuss contemporary experimental evidence exploring these mechanisms. Although evidence, in general, is sparse and fragmentary, merging knowledge links drug resistance, and also sensitivity, to defects in functional pathways having a key role in cell growth arrest or death and DNA repair. As these pathways may act in concert, there is a need to explore multiple mechanisms in parallel. Taking advantage of massive parallel sequencing and other novel high-throughput technologies and base research on biological hypotheses, we now have the possibility to characterize functional defects related to these key pathways and to design a new generation of studies identifying the mechanisms controlling resistance to different treatment regimens in different tumour forms.
Collapse
|
32
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
33
|
Kothandapani A, Patrick SM. Evidence for base excision repair processing of DNA interstrand crosslinks. Mutat Res 2012; 743-744:44-52. [PMID: 23219605 DOI: 10.1016/j.mrfmmm.2012.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 12/30/2022]
Abstract
Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| | - Steve M Patrick
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
34
|
Network insights on oxaliplatin anti-cancer mechanisms. Clin Transl Med 2012; 1:26. [PMID: 23369220 PMCID: PMC3560997 DOI: 10.1186/2001-1326-1-26] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/22/2012] [Indexed: 12/25/2022] Open
Abstract
Oxaliplatin has been a crucial component of combination therapies since admission into the clinic causing modest gains in survival across multiple malignancies. However, oxaliplatin functions in a non-targeted manner, posing a difficulty in ascertaining precise efficacy mechanisms. While previously thought to only affect DNA repair mechanisms, Platinum-protein adducts (Pt-Protein) far outnumber Pt-DNA adducts leaving a big part of oxaliplatin function unknown. Through preliminary network modeling of high throughput data, this article critically reviews the efficacy of oxaliplatin as well as proposes a better model for enhanced efficacy based on a network approach. In our study, not only oxaliplatin’s function in interrupting DNA-replication was confirmed, but also its role in initiating or intensifying tumorigenesis pathways was uncovered. From our data we present a novel picture of competing signaling networks that collectively provide a plausible explanation of chemotherapeutic resistance, cancer stem cell survival, as well as invasiveness and metastases. Here we highlight oxaliplatin signaling networks, their significance and the clinical implications of these interactions that verifies the importance of network modeling in rational drug design.
Collapse
|
35
|
Makridakis NM, Reichardt JKV. Translesion DNA polymerases and cancer. Front Genet 2012; 3:174. [PMID: 22973298 PMCID: PMC3434439 DOI: 10.3389/fgene.2012.00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022] Open
Abstract
DNA repair has been regarded as an important barrier to carcinogenesis. The newly discovered field of translesion synthesis (TLS) has made it apparent that mammalian cells need distinct polymerases to efficiently and accurately bypass DNA lesions. Perturbation of TLS polymerase activity by mutation, loss of expression, etc. is expected to result in the accumulation of mutations in cells exposed to specific carcinogens. Furthermore, several TLS polymerases can modulate cellular sensitivity to chemotherapeutic agents. TLS genes and TLS gene variations may thus be attractive pharmacologic and/or pharmacogenetic targets. We review herein current data with regards to the potential contribution of the primary TLS polymerase genes to cancer, their interaction with pharmacologic agents, and identify areas of interest for further research.
Collapse
Affiliation(s)
- Nick M Makridakis
- Tulane Cancer Center and Department of Epidemiology, Tulane University New Orleans, LA, USA
| | | |
Collapse
|
36
|
|
37
|
Wang S, Wu X, Chen Y, Zhang J, Ding J, Zhou Y, He S, Tan Y, Qiang F, Bai J, Zeng J, Gong Z, Li A, Li G, Røe OD, Zhou J. Prognostic and predictive role of JWA and XRCC1 expressions in gastric cancer. Clin Cancer Res 2012; 18:2987-96. [PMID: 22452940 DOI: 10.1158/1078-0432.ccr-11-2863] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the expression pattern and significance of DNA repair genes JWA and X-ray repair cross complement group 1 (XRCC1) in gastric cancer. EXPERIMENTAL DESIGN Expressions of JWA and XRCC1 were assessed by immunohistochemistry in a training cohort and they went into a second testing cohort and finally to a validating cohort. Prognostic and predictive role of JWA and XRCC1 expression status in cases treated with surgery alone or combined with adjuvant chemotherapy was evaluated, respectively. RESULTS JWA and XRCC1 protein levels were significantly downregulated in gastric cancer lesions compared with adjacent noncancerous tissues. Low tumoral JWA or XRCC1 expression significantly correlated with shorter overall survival (OS), as well as with clinicopathologic characteristics in patients without adjuvant treatment. Multivariate regression analysis showed that low JWA and XRCC1 expressions, separately and together, were independent negative markers of OS. Adjuvant fluorouracil-leucovorin-oxaliplatin (FLO) significantly improved OS compared with surgery alone (log-rank test, P = 0.01). However, this effect was evident only in the JWA or XRCC1 low expression group (HR = 0.44; 95% CI: 0.26-0.73; P = 0.002, and HR = 0.44, 95% CI: 0.26-0.75; P = 0.002, respectively); Adjuvant fluorouracil-leucovorin-platinol (FLP) did not improve OS, except in the patients with low JWA and XRCC1 expressions (P = 0.010 for JWA and 0.024 for XRCC1, respectively). CONCLUSIONS JWA and XRCC1 protein expressions in tumor are novel candidate prognostic markers and predictive factors for benefit from adjuvant platinum-based chemotherapy (FLO or FLP) in resectable human gastric carcinoma.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center; School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang XL, Hu AB, Cui SZ, Wei HB. Thermotherapy enhances oxaliplatin-induced cytotoxicity in human colon carcinoma cells. World J Gastroenterol 2012; 18:646-53. [PMID: 22363135 PMCID: PMC3281221 DOI: 10.3748/wjg.v18.i7.646] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/28/2011] [Accepted: 10/05/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the synergistic effects of hyperthermia in oxaliplatin-induced cytotoxicity in human colon adenocarcinoma Lovo cells.
METHODS: The human colon adenocarcinoma cell line Lovo was obtained from Sun Yat-Sen University. Cells were sealed with parafilm and placed in a circulating water bath, and was maintained within 0.01 °C of the desired temperature (37 °C, 39 °C, 41 °C, 43 °C and 45 °C). Thermal therapy was given alone to the negative control group while oxaliplatin was administered to the treatment group at doses of 12.5 μg/mL and 50 μg/mL. Identification of morphological changes, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and Western blotting were used to investigate the effect of thermochemotherapy on human colon adenocarcinoma Lovo cells, including changes in the signal pathway related to apoptosis.
RESULTS: A temperature-dependent inhibition of cell growth was observed after oxaliplatin exposure, while a synergistic interaction was detected preferentially with sequential combination. Thermochemotherapy changed the morphology of Lovo cells, increased the inhibition rate of the Lovo cells (P < 0.05) and enhanced cellular population in the G0/G1 phase (16.7% ± 4.8 % in phase S plus 3.7% ± 2.4 % in phase G2/M, P < 0.05). Thermochemotherapy increased apoptosis through upregulating p53, Bax and downregulating Bcl-2. Protein levels were elevated in p53, Bax/Bcl-2 in thermochemotherapy group as compared with the control group (P < 0.05).
CONCLUSION: Thermochemotherapy may play an important role in apoptosis via the activation of p53, Bax and the repression of Bcl-2 in Lovo cells.
Collapse
|
39
|
Hill EJ, Nicolay NH, Middleton MR, Sharma RA. Oxaliplatin as a radiosensitiser for upper and lower gastrointestinal tract malignancies: what have we learned from a decade of translational research? Crit Rev Oncol Hematol 2012; 83:353-87. [PMID: 22309673 DOI: 10.1016/j.critrevonc.2011.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/14/2011] [Accepted: 12/28/2011] [Indexed: 01/08/2023] Open
Abstract
Some of the greatest advances in the treatment of solid malignancies have resulted from the combination of chemotherapy and radiotherapy treatments. This article comprehensively reviews the current clinical evidence for oxaliplatin-based chemo-radiotherapy that may improve local control and survival. In order to understand how clinical studies should be designed, the pre-clinical evidence for the use of oxaliplatin chemotherapy as a radiosensitising agent is appraised. Particular focus is placed on oxaliplatin's biological mechanisms of action, including cell cycle effects, the formation of DNA adducts and interstrand cross-links and the role of DNA repair proteins. At a clinical level, there is currently no evidence to suggest that oxaliplatin provides an additional benefit to concurrent chemo-radiation regimes that utilise fluoropyrimidines; we evaluate the reasons for this observation, the limitations of clinical trial design and the opportunities that currently exist to design clinical trials which are underpinned by an understanding of the basic biology.
Collapse
Affiliation(s)
- Esme J Hill
- Gray Institute of Radiation Oncology and Biology, Oncology Department, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | | | | | | |
Collapse
|
40
|
Crespan E, Garbelli A, Amoroso A, Maga G. Exploiting the nucleotide substrate specificity of repair DNA polymerases to develop novel anticancer agents. Molecules 2011; 16:7994-8019. [PMID: 21926946 PMCID: PMC6264456 DOI: 10.3390/molecules16097994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/26/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022] Open
Abstract
The genome is constantly exposed to mutations that can originate during replication or as a result of the action of both endogenous and/or exogenous damaging agents [such as reactive oxygen species (ROS), UV light, genotoxic environmental compounds, etc.]. Cells have developed a set of specialized mechanisms to counteract this mutational burden. Many cancer cells have defects in one or more DNA repair pathways, hence they rely on a narrower set of specialized DNA repair mechanisms than normal cells. Inhibiting one of these pathways in the context of an already DNA repair-deficient genetic background, will be more toxic to cancer cells than to normal cells, a concept recently exploited in cancer chemotherapy by the synthetic lethality approach. Essential to all DNA repair pathways are the DNA pols. Thus, these enzymes are being regarded as attractive targets for the development of specific inhibitors of DNA repair in cancer cells. In this review we examine the current state-of-the-art in the development of nucleotide analogs as inhibitors of repair DNA polymerases.
Collapse
Affiliation(s)
- Emmanuele Crespan
- DNA Enzymology & Molecular Virology, Insititute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy.
| | | | | | | |
Collapse
|
41
|
Abstract
There are 15 different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells, and at least one DNA polymerase, Pol ζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes might be viable targets for therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Richard D. Wood
- Correspondence to: 1808 Park Road 1C, P.O. Box 389, Smithville, TX, USA, 78957 Tel: (512) 237-9431 Fax: (512) 237-6532
| |
Collapse
|
42
|
Kashiwagi E, Izumi H, Yasuniwa Y, Baba R, Doi Y, Kidani A, Arao T, Nishio K, Naito S, Kohno K. Enhanced expression of nuclear factor I/B in oxaliplatin-resistant human cancer cell lines. Cancer Sci 2010; 102:382-6. [PMID: 21087353 DOI: 10.1111/j.1349-7006.2010.01784.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oxaliplatin is a third-generation platinum drug that has favorable activity in cisplatin-resistant cells. However, the molecular mechanisms underlying oxaliplatin resistance are not well understood. To investigate the molecular mechanisms involved, resistant cell lines were independently derived from colon cancer (DLD1) and bladder cancer (T24) cells. Oxaliplatin-resistant DLD1 OX1 and DLD1 OX2 cell lines were approximately 16.3-fold and 17.8-fold more resistant to oxaliplatin than the parent cell lines, respectively, and had 1.7- and 2.2-fold higher cross-resistance to cisplatin, respectively. Oxaliplatin-resistant T24 OX2 and T24 OX3 cell lines were approximately 5.0-fold more resistant to oxaliplatin than the parent cell line and had 1.9-fold higher cross-resistance to cisplatin. One hundred and fifty-eight genes commonly upregulated in both DLD1 OX1 and DLD1 OX2 were identified by microarray analysis. These genes were mainly involved in the function of transcriptional regulators (14.6%), metabolic molecules (14.6%), and transporters (9.5%). Of these, nuclear factor I/B (NFIB) was upregulated in all oxaliplatin-resistant cells. Downregulation of NFIB rendered cells sensitive to oxaliplatin, but not to cisplatin. Forced expression of NFIB induced resistance to oxaliplatin, but not to cisplatin. Taken together, these results suggest that NFIB is a novel and specific biomarker for oxaliplatin resistance in human cancers.
Collapse
Affiliation(s)
- Eiji Kashiwagi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vens C, Begg AC. Targeting Base Excision Repair as a Sensitization Strategy in Radiotherapy. Semin Radiat Oncol 2010; 20:241-9. [DOI: 10.1016/j.semradonc.2010.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Ang WH, Myint M, Lippard SJ. Transcription inhibition by platinum-DNA cross-links in live mammalian cells. J Am Chem Soc 2010; 132:7429-35. [PMID: 20443565 DOI: 10.1021/ja101495v] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have investigated the processing of site-specific Pt-DNA cross-links in live mammalian cells to enhance our understanding of the mechanism of action of platinum-based anticancer drugs. The activity of platinum drugs against cancer is mediated by a combination of processes including cell entry, drug activation, DNA-binding, and transcription inhibition. These drugs bind nuclear DNA to form Pt-DNA cross-links, which arrest key cellular functions, including transcription, and trigger a variety of responses, such as repair. Mechanistic investigations into the processing of specific Pt-DNA cross-links are critical for understanding the effects of platinum-DNA damage, but conventional in vitro techniques do not adequately account for the complex and intricate environment within a live cell. With this limitation in mind, we developed a strategy to study platinum cross-links on plasmid DNAs transfected into live mammalian cells based on luciferase reporter vectors containing defined platinum-DNA lesions that are either globally or site-specifically incorporated. Using cells with either competent or deficient nucleotide excision repair systems, we demonstrate that Pt-DNA cross-links impede transcription by blocking passage of the RNA polymerase complex and that nucleotide excision repair can remove the block and restore transcription. Results are presented for approximately 3800-base pair plasmids that are either globally platinated or carry a single 1,2-d(GpG) or 1,3-d(GpTpG) intrastrand cross-link formed by either cis-{Pt(NH(3))(2)}(2+) or cis-{Pt(R,R-dach)}(2+), where {Pt(NH(3))(2)}(2+) is the platinum unit conveyed by cisplatin and carboplatin and R,R-dach is the oxaliplatin ligand, R,R-1,2-diaminocyclohexane.
Collapse
Affiliation(s)
- Wee Han Ang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
45
|
Liu S, Wu M, Zhang Z. Involvement of DNA polymerase beta in repairing oxidative damages induced by antitumor drug adriamycin. Toxicol Appl Pharmacol 2010; 246:163-70. [DOI: 10.1016/j.taap.2010.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/26/2022]
|
46
|
Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E. Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer 2010; 46:2788-98. [PMID: 20627535 DOI: 10.1016/j.ejca.2010.05.009] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/04/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND METHODS We have reviewed and pooled data from published studies to evaluate the relationship between microsatellite instability (MSI) and colorectal cancer (CRC) prognosis. Thirty-one eligible studies reporting survival in 12782 patients characterised for MSI were pooled using a fixed- or random-effects model. RESULTS The summary odds ratio (OR) estimate for overall survival (OS) associated with MSI was 0.6 (95%CI 0.53-0.69, p<0.0001), with no evidence of heterogeneity. The effect was similar for disease-free survival (DFS) (OR=0.58, 95%CI 0.47-0.72, p<0.0001). In a subset of patients treated with 5-fluorouracil (5-FU)-based chemotherapy a significant improved prognosis was found for microsatellite stable (MSS) tumours (OR=0.52, 95%CI 0.4-0.6, p<0.0001) with no heterogeneity (p=0.53; I(2)=0%). By contrast a large heterogeneity characterised the data relative to 396 patients with MSI tumours (OR=0.69, 95%CI 0.3-1.5, p=0.1; heterogeneity: p=0.03; I(2)=58%). CONCLUSIONS This study confirmed the association between MSI and favourable prognosis as determined by both OS and DFS of CRC patients. A significant beneficial effect of 5-FU therapy was found for MSS tumours whilst no clear conclusion was reached for MSI tumours due to the high inter-study heterogeneity. We propose that this inconclusive result is due to the use of a single marker, such as MSI, that cannot account alone for the complexity of the mechanisms underlying 5-FU cytotoxicity. Future studies to predict response to 5-FU chemotherapy should include additional genome stability markers.
Collapse
Affiliation(s)
- Cecilia Guastadisegni
- Department of Environment and Primary Prevention, Molecular Epidemiology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|