1
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
2
|
Jang Y, Elsayed Z, Eki R, He S, Du KP, Abbas T, Kai M. Intrinsically disordered protein RBM14 plays a role in generation of RNA:DNA hybrids at double-strand break sites. Proc Natl Acad Sci U S A 2020; 117:5329-5338. [PMID: 32094185 PMCID: PMC7071921 DOI: 10.1073/pnas.1913280117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence suggests participation of RNA-binding proteins with intrinsically disordered domains (IDPs) in the DNA damage response (DDR). These IDPs form liquid compartments at DNA damage sites in a poly(ADP ribose) (PAR)-dependent manner. However, it is greatly unknown how the IDPs are involved in DDR. We have shown previously that one of the IDPs RBM14 is required for the canonical nonhomologous end joining (cNHEJ). Here we show that RBM14 is recruited to DNA damage sites in a PARP- and RNA polymerase II (RNAPII)-dependent manner. Both KU and RBM14 are required for RNAPII-dependent generation of RNA:DNA hybrids at DNA damage sites. In fact, RBM14 binds to RNA:DNA hybrids. Furthermore, RNA:DNA hybrids and RNAPII are detected at gene-coding as well as at intergenic areas when double-strand breaks (DSBs) are induced. We propose that the cNHEJ pathway utilizes damage-induced transcription and intrinsically disordered protein RBM14 for efficient repair of DSBs.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Zeinab Elsayed
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Shuaixin He
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231;
| |
Collapse
|
3
|
Liu C, Gross N, Li Y, Li G, Wang Z, Zhong S, Li Y, Hu G. PARP inhibitor Olaparib increases the sensitization to radiotherapy in FaDu cells. J Cell Mol Med 2020; 24:2444-2450. [PMID: 31957270 PMCID: PMC7028864 DOI: 10.1111/jcmm.14929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 01/02/2023] Open
Abstract
Radioresistance causes a major problem for improvement of outcomes of patients treated with radiation. Targeting for DNA repair deficient mechanisms is a hallmark of sensitization to resistance. We tested whether Olaparib, a (poly) ADP‐ribose polymerase (PARP) inhibitor, can sensitize the radioresistant FaDu cells to radiotherapy. Radioresistant FaDu cells, called FaDu‐RR cells, were used as the radioresistant hypopharyngeal cancer models. The expression of PARP1 was detected in both FaDu and FaDu‐RR cells. The role of Olaparib in radiosensitization was analysed with several assays including clonogenic cell survival, cell proliferation and cell cycle, and radioresistant xenograft. High expression of PARP1 had a significant effect on enhancing radioresistance in FaDu‐RR cells compared with FaDu cells. After treatment of Olaparib, FaDu‐RR cells showed significantly less and smaller surviving colonies, lower proliferation ability and G2/M arrest than those in the group without treatment. Moreover, Olaparib significantly reduced growth of tumours in FaDu‐RR cell xenografts treated with ionizing radiation. Olaparib can significantly inhibit PARP1 expression and consequently has significant effects on radiosensitization in FaDu‐RR cells. These results indicate that Olaparib may help individualize treatment and improve their outcomes of hypopharyngeal cancer patients treated with radiation.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Neil Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanshi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihai Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shixun Zhong
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Nebenzahl-Sharon K, Sharf R, Amer J, Shalata H, Khoury-Haddad H, Sohn SY, Ayoub N, Hearing P, Kleinberger T. An Interaction with PARP-1 and Inhibition of Parylation Contribute to Attenuation of DNA Damage Signaling by the Adenovirus E4orf4 Protein. J Virol 2019; 93:e02253-18. [PMID: 31315986 PMCID: PMC6744226 DOI: 10.1128/jvi.02253-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/02/2019] [Indexed: 01/27/2023] Open
Abstract
The adenovirus (Ad) E4orf4 protein was reported to contribute to inhibition of ATM- and ATR-regulated DNA damage signaling during Ad infection and following treatment with DNA-damaging drugs. Inhibition of these pathways improved Ad replication, and when expressed alone, E4orf4 sensitized transformed cells to drug-induced toxicity. However, the mechanisms utilized were not identified. Here, we show that E4orf4 associates with the DNA damage sensor poly(ADP-ribose) polymerase 1 (PARP-1) and that the association requires PARP activity. During Ad infection, PARP is activated, but its activity is not required for recruitment of either E4orf4 or PARP-1 to virus replication centers, suggesting that their association occurs following recruitment. Inhibition of PARP-1 assists E4orf4 in reducing DNA damage signaling during infection, and E4orf4 attenuates virus- and DNA damage-induced parylation. Furthermore, E4orf4 reduces PARP-1 phosphorylation on serine residues, which likely contributes to PARP-1 inhibition as phosphorylation of this enzyme was reported to enhance its activity. PARP-1 inhibition is important to Ad infection since treatment with a PARP inhibitor enhances replication efficiency. When E4orf4 is expressed alone, it associates with poly(ADP-ribose) (PAR) chains and is recruited to DNA damage sites in a PARP-1-dependent manner. This recruitment is required for inhibition of drug-induced ATR signaling by E4orf4 and for E4orf4-induced cancer cell death. Thus, the results presented here demonstrate a novel mechanism by which E4orf4 targets and inhibits DNA damage signaling through an association with PARP-1 for the benefit of the virus and impacting E4orf4-induced cancer cell death.IMPORTANCE Replication intermediates and ends of viral DNA genomes can be recognized by the cellular DNA damage response (DDR) network as DNA damage whose repair may lead to inhibition of virus replication. Therefore, many viruses evolved mechanisms to inhibit the DDR network. We have previously shown that the adenovirus (Ad) E4orf4 protein inhibits DDR signaling, but the mechanisms were not identified. Here, we describe an association of E4orf4 with the DNA damage sensor poly(ADP-ribose) polymerase 1 (PARP-1). E4orf4 reduces phosphorylation of this enzyme and inhibits its activity. PARP-1 inhibition assists E4orf4 in reducing Ad-induced DDR signaling and improves the efficiency of virus replication. Furthermore, the ability of E4orf4, when expressed alone, to accumulate at DNA damage sites and to kill cancer cells is attenuated by chemical inhibition of PARP-1. Our results indicate that the E4orf4-PARP-1 interaction has an important role in Ad replication and in promotion of E4orf4-induced cancer-selective cell death.
Collapse
Affiliation(s)
- Keren Nebenzahl-Sharon
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rakefet Sharf
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jana Amer
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hassan Shalata
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Sook-Young Sohn
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nabieh Ayoub
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Tamar Kleinberger
- Department of Molecular Microbiology, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Schuhwerk H, Atteya R, Siniuk K, Wang ZQ. PARPing for balance in the homeostasis of poly(ADP-ribosyl)ation. Semin Cell Dev Biol 2016; 63:81-91. [PMID: 27664469 DOI: 10.1016/j.semcdb.2016.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022]
Abstract
Despite more than 50 years of research, the vast majority of the biology of poly(ADP-ribosyl)ation (PARylation) still remains a gross mystery. Originally described to be a part of the DNA repair machinery, poly(ADP-ribose) (PAR) is synthesized immediately by poly(ADP-ribose) polymerases (PARPs, also known as ARTDs) upon DNA damage and then rapidly removed by degrading enzymes. PAR provides a delicate and spatiotemporal interaction scaffold for numerous target proteins. Thus, the multifaceted PARylation system, consisting of PAR itself and its synthesizers and erasers, plays diverse roles in the DNA damage response (DDR), in DNA repair, transcription, replication, chromatin remodelling, metabolism and cell death. In this review, we summarize the current understanding of the biology of PARylation, focusing on the functionality and the activities of the PARPs' founding member PARP1/ARTD1, which is modulated by a variety of posttranslational modifications. We also discuss the homeostasis of PAR - a process which is maintained by the balance of PAR synthesizers and erasers. We aim to sensitize the scientific community to the complexity of PAR homeostasis. Finally, we provide some perspective on how future research could try to disentangle the biology of PARylation - perhaps the most sophisticated, but still intricate posttranslational modification described to date.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Reham Atteya
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Kanstantsin Siniuk
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany; Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany.
| |
Collapse
|
6
|
Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, Begum R. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif 2016; 49:421-37. [PMID: 27329285 DOI: 10.1111/cpr.12268] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
PARP family members can be found spread across all domains and continue to be essential molecules from lower to higher eukaryotes. Poly (ADP-ribose) polymerase 1 (PARP-1), newly termed ADP-ribosyltransferase D-type 1 (ARTD1), is a ubiquitously expressed ADP-ribosyltransferase (ART) enzyme involved in key cellular processes such as DNA repair and cell death. This review assesses current developments in PARP-1 biology and activation signals for PARP-1, other than conventional DNA damage activation. Moreover, many essential functions of PARP-1 still remain elusive. PARP-1 is found to be involved in a myriad of cellular events via conservation of genomic integrity, chromatin dynamics and transcriptional regulation. This article briefly focuses on its other equally important overlooked functions during growth, metabolic regulation, spermatogenesis, embryogenesis, epigenetics and differentiation. Understanding the role of PARP-1, its multidimensional regulatory mechanisms in the cell and its dysregulation resulting in diseased states, will help in harnessing its true therapeutic potential.
Collapse
Affiliation(s)
- T Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - M Jariwala
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Bhatt
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Sutariya
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A R Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - R Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
7
|
Adenovirus-mediated FIR demonstrated TP53-independent cell-killing effect and enhanced antitumor activity of carbon-ion beams. Gene Ther 2015; 23:50-6. [PMID: 26241176 DOI: 10.1038/gt.2015.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/27/2015] [Accepted: 06/18/2015] [Indexed: 12/16/2022]
Abstract
Combination therapy of carbon-ion beam with the far upstream element-binding protein (FBP)-interacting repressor, FIR, which interferes with DNA damage repair proteins, was proposed as an approach for esophageal cancer treatment with low side effects regardless of TP53 status. In vivo therapeutic antitumor efficacy of replication-defective adenovirus (E1 and E3 deleted adenovirus serotype 5) encoding human FIR cDNA (Ad-FIR) was demonstrated in the tumor xenograft model of human esophageal squamous cancer cells, TE-2. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. The authors reported that Ad-FIR involved in the BLM-induced DNA damage repair response and thus applicable for other DNA damaging agents. To examine the effect of Ad-FIR on DNA damage repair, BLM, X-ray and carbon-ion irradiation were used as DNA damaging agents. The biological effects of high linear energy transfer (LET) radiotherapy used with carbon-ion irradiation are more expansive than low-LET conventional radiotherapy, such as X-rays or γ rays. High LET radiotherapy is suitable for the local control of tumors because of its high relative biological effectiveness. Ad-FIR enhanced BLM-induced DNA damage indicated by γH2AX in vitro. BLM treatment increased endogenous nuclear FIR expression in TE-2 cells, and P27Kip1 expression was suppressed by TP53 siRNA and BLM treatment. Further, Ad-FIRΔexon2, a dominant-negative form of FIR that lacks exon2 transcriptional repression domain, decreased Ku86 expression. The combination of Ad-FIR and BLM in TP53 siRNA increased DNA damage. Additionally, Ad-FIR showed synergistic cell toxicity with X-ray in vitro and significantly increased the antitumor efficacy of carbon-ion irradiation in the xenograft mouse model of TE-2 cells (P=0.03, Mann-Whitney's U-test) and was synergistic with the sensitization enhancement ratio (SER) value of 1.15. Therefore, Ad-FIR increased the cell-killing activity of the carbon-ion beam that avoids late-phase severe adverse effects independently of the TP53 status in vitro. Our findings indicated the feasibility of the combination of Ad-FIR with DNA damaging agents for future esophageal cancer treatment.
Collapse
|
8
|
Rahmutulla B, Matsushita K, Satoh M, Seimiya M, Tsuchida S, Kubo S, Shimada H, Ohtsuka M, Miyazaki M, Nomura F. Alternative splicing of FBP-interacting repressor coordinates c-Myc, P27Kip1/cyclinE and Ku86/XRCC5 expression as a molecular sensor for bleomycin-induced DNA damage pathway. Oncotarget 2015; 5:2404-17. [PMID: 24811221 PMCID: PMC4058014 DOI: 10.18632/oncotarget.1650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The far-upstream element-binding protein-interacting repressor (FIR) is a c-myc transcriptional suppressor. FIR is alternatively spliced to lack the transcriptional repression domain within exon 2 (FIRΔexon2) in colorectal cancers. FIR and FIRΔexon2 form homo- or heterodimers that complex with SAP155. SAP155, a subunit of the essential splicing factor 3b subcomplex in the spliceosome, is required for proper P27Kip1 pre-mRNA splicing, and P27Kip1 arrests cells at G1. In contrast, FIR was co-immunoprecipitated with Ku86 and DNA-PKcs. siRNA against Ku86/Ku70 decreased FIR and P27Kip1 expression, whereas siRNA against FIR decreased Ku86/XRCC5 and P27Kip1 expression. Thus the mechanical interaction of FIR/FIRΔexon2/SAP155 bridges c-myc and P27Kip1 expression, potentially integrates cell-cycle progression and c-myc transcription in cell. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. Because DNA breaks generate the recruitment of Ku86/Ku70 to bind to the broken DNA ends, the possible involvement of FIR and Ku86/Ku70 interaction in the BLM-induced DNA damage repair response was investigated in this study. First, BLM treatment reduced SAP155 expression and increased FIR and FIRΔexon2 mRNA expression as well as the ratio of FIRΔexon2:FIR in hepatoblastoma cells (HLE and HLF). Second, FIR or FIRΔexon2 adenovirus vectors (Ad-FIR or Ad-FIRΔexon2) increased Ku86/Ku70 and P27Kip1 expression in vitro. Third, BLM decreased P27Kip1 protein expression, whereas increased P27Kip1 and γH2AX expression with Ad-FIRΔexon2. Together, the interaction of FIR/SAP155 modulates FIR splicing and involves in cell-cycle control or cell fate via P27Kip1 and c-myc in BLM-induced DNA damage pathway. This novel function of FIR splicing will contribute to clinical studies of cancer management through elucidating the mechanical interaction of FIR/FIRΔexon2/SAP155 as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Bahityar Rahmutulla
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wu Y, Lin JC, Piluso LG, Dhahbi JM, Bobadilla S, Spindler SR, Liu X. Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response. Mol Cell 2013; 53:63-74. [PMID: 24289924 DOI: 10.1016/j.molcel.2013.10.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 10/01/2013] [Accepted: 10/25/2013] [Indexed: 01/23/2023]
Abstract
While p53 activation has long been studied, the mechanisms by which its targets genes are restored to their preactivation state are less clear. We report here that TAF1 phosphorylates p53 at Thr55, leading to dissociation of p53 from the p21 promoter and inactivation of transcription late in the DNA damage response. We further show that cellular ATP level might act as a molecular switch for Thr55 phosphorylation on the p21 promoter, indicating that TAF1 is a cellular ATP sensor. Upon DNA damage, cells undergo PARP-1-dependent ATP depletion, which is correlated with reduced TAF1 kinase activity and Thr55 phosphorylation, resulting in p21 activation. As cellular ATP levels recover, TAF1 is able to phosphorylate p53 on Thr55, which leads to dissociation of p53 from the p21 promoter. ChIP-sequencing analysis reveals p53 dissociates from promoters genome wide as cells recover from DNA damage, suggesting the general nature of this mechanism.
Collapse
Affiliation(s)
- Yong Wu
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Joy C Lin
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Landon G Piluso
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Joseph M Dhahbi
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Selene Bobadilla
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Stephen R Spindler
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Xuan Liu
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
10
|
Robert I, Karicheva O, Reina San Martin B, Schreiber V, Dantzer F. Functional aspects of PARylation in induced and programmed DNA repair processes: preserving genome integrity and modulating physiological events. Mol Aspects Med 2013; 34:1138-52. [PMID: 23454615 DOI: 10.1016/j.mam.2013.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 12/24/2022]
Abstract
To cope with the devastating insults constantly inflicted to their genome by intrinsic and extrinsic DNA damaging sources, cells have evolved a sophisticated network of interconnected DNA caretaking mechanisms that will detect, signal and repair the lesions. Among the underlying molecular mechanisms that regulate these events, PARylation catalyzed by Poly(ADP-ribose) polymerases (PARPs), appears as one of the earliest post-translational modification at the site of the lesion that is known to elicit recruitment and regulation of many DNA damage response proteins. In this review we discuss how the complex PAR molecule operates in stress-induced DNA damage signaling and genome maintenance but also in various physiological settings initiated by developmentally programmed DNA breakage. To illustrate the latter, particular emphasis will be placed on the emerging contribution of PARPs to B cell receptor assembly and diversification.
Collapse
Affiliation(s)
- Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), Centre National de Recherche Scientifique (CNRS), UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
11
|
Ko HL, Ren EC. Functional Aspects of PARP1 in DNA Repair and Transcription. Biomolecules 2012; 2:524-48. [PMID: 24970148 PMCID: PMC4030864 DOI: 10.3390/biom2040524] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/24/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is an ADP-ribosylating enzyme essential for initiating various forms of DNA repair. Inhibiting its enzyme activity with small molecules thus achieves synthetic lethality by preventing unwanted DNA repair in the treatment of cancers. Through enzyme-dependent chromatin remodeling and enzyme-independent motif recognition, PARP1 also plays important roles in regulating gene expression. Besides presenting current findings on how each process is individually controlled by PARP1, we shall discuss how transcription and DNA repair are so intricately linked that disturbance by PARP1 enzymatic inhibition, enzyme hyperactivation in diseases, and viral replication can favor one function while suppressing the other.
Collapse
Affiliation(s)
- Hui Ling Ko
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore.
| | - Ee Chee Ren
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore.
| |
Collapse
|
12
|
Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH. Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res 2012; 40:4168-77. [PMID: 22223246 PMCID: PMC3351162 DOI: 10.1093/nar/gkr1231] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) and Poly(ADP-ribose) polymerase-1 (PARP1) are critical enzymes that reduce genomic damage caused by DNA lesions. They are both activated by DNA strand breaks generated by physiological and environmental factors, and they have been shown to interact. Here, we report in vivo evidence that DNA-PK and PARP1 are equally necessary for rapid repair. We purified a DNA-PK/PARP1 complex loaded on DNA and performed electron microscopy and single particle analysis on its tetrameric and dimer-of-tetramers forms. By comparison with the DNA-PK holoenzyme and fitting crystallographic structures, we see that the PARP1 density is in close contact with the Ku subunit. Crucially, PARP1 binding elicits substantial conformational changes in the DNA-PK synaptic dimer assembly. Taken together, our data support a functional, in-pathway role for DNA-PK and PARP1 in double-strand break (DSB) repair. We also propose a NHEJ model where protein-protein interactions alter substantially the architecture of DNA-PK dimers at DSBs, to trigger subsequent interactions or enzymatic reactions.
Collapse
Affiliation(s)
- Laura Spagnolo
- Cancer Research UK DNA Repair Enzymes Group, The Institute of Cancer Research, London SW3 6JB, UK.
| | | | | | | | | |
Collapse
|
13
|
Lee DH, Chowdhury D. What goes on must come off: phosphatases gate-crash the DNA damage response. Trends Biochem Sci 2011; 36:569-77. [PMID: 21930385 DOI: 10.1016/j.tibs.2011.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/24/2022]
Abstract
DNA-damage-induced phospho-signaling has been studied for decades, with a focus mainly on initiation of the signaling cascade, and the kinases activated by DNA lesions. It is widely accepted that the balance of phosphorylation needs to be restored and/or maintained by phosphatases, yet there have only been sporadic efforts to investigate the impact of phosphatases on DNA repair. Recent advances in phosphoproteomic strategies and implementation of large genetic screens indicate that these enzymes play pivotal roles in these signaling networks. Dephosphorylation of repair proteins is crucial for efficient DNA repair, and the recommencement of cell division post-repair. Here, we focus on serine/threonine phosphatases implicated in dephosphorylation of DNA repair factors, summarizing recent findings and speculating on untested roles of phosphatases in the DNA damage response.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|