1
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Ayed A. The role of natural products versus miRNA in renal cell carcinoma: implications for disease mechanisms and diagnostic markers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6417-6437. [PMID: 38691151 DOI: 10.1007/s00210-024-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Natural products are chemical compounds produced by living organisms. They are isolated and purified to determine their function and can potentially be used as therapeutic agents. The ability of some bioactive natural products to modify the course of cancer is fascinating and promising. In the past 50 years, there have been advancements in cancer therapy that have increased survival rates for localized tumors. However, there has been little progress in treating advanced renal cell carcinoma (RCC), which is resistant to radiation and chemotherapy. Oncogenes and tumor suppressors are two roles played by microRNAs (miRNAs). They are involved in important pathogenetic mechanisms like hypoxia and epithelial-mesenchymal transition (EMT); they control apoptosis, cell growth, migration, invasion, angiogenesis, and proliferation through target proteins involved in various signaling pathways. Depending on their expression pattern, miRNAs may identify certain subtypes of RCC or distinguish tumor tissue from healthy renal tissue. As diagnostic biomarkers of RCC, circulating miRNAs show promise. There is a correlation between the expression patterns of several miRNAs and the prognosis and diagnosis of patients with RCC. Potentially high-risk primary tumors may be identified by comparing original tumor tissue with metastases. Variations in miRNA expression between treatment-sensitive and therapy-resistant patients' tissues and serum allow for the estimation of responsiveness to target therapy. Our knowledge of miRNAs' function in RCC etiology has a tremendous uptick. Finding and validating their gene targets could have an immediate effect on creating anticancer treatments based on miRNAs. Several miRNAs have the potential to be used as biomarkers for diagnosis and prognosis. This review provides an in-depth analysis of the current knowledge regarding natural compounds and their modes of action in combating cancer. Also, this study aims to give information about the diagnostic and prognostic value of miRNAs as cancer biomarkers and their involvement in the pathogenesis of RCC.
Collapse
Affiliation(s)
- Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, P.O Box 551, 61922, Bisha, Saudi Arabia.
| |
Collapse
|
3
|
de Sousa BRV, Silva AS, de Assis CS, Diniz TG, Viturino MGM, de Queiroga Evangelista IW, Cavalcante-Silva LHA, Keesen TSL, de Oliveira NFP, Persuhn DC. MiR-9-3 hypermethylation is associated with stages of diabetic retinopathy. J Diabetes Metab Disord 2024; 23:1189-1198. [PMID: 38932799 PMCID: PMC11196486 DOI: 10.1007/s40200-024-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 06/28/2024]
Abstract
Purpose To investigate the potential relation between methylation of miR-9-3 and stages of diabetic retinopathy (DR). Additionally, we explored whether miR-9-3 methylation impacts the serum levels of Vascular Endothelial Growth Factor (VEGF). Methods A cross-sectional study was conducted with 170 participants with type 2 diabetes, including a control group (n = 64) and a diabetes retinopathy group (n = 106), which was further divided into NPDR (n = 58) and PDR (n = 48) subgroups. Epidemiological, clinical, anthropometric, biochemical ELISA assay were analysed. DNA extracted from leukocytes was used to profile miR-9-3 methylation using PCR-MSP. Results MiR-9-3 hypermethylated profile was higher in the DR group (p < 0.001) and PDR subgroup compared to DM2 control group (p < 0.001). The hypermethylated profile in the PDR subgroup was also higher compared to NPDR subgroup (p < 0.001). There was no difference between DM2 control and NPDR group (p = 0.234). Logistic regression showed that miR-9-3 hypermethylation increases the odds of presenting DR (OR: 2.826; p = 0.002) and PDR (OR: 5.472; p < 0.001). In addition, hypermethylation of miR-9-3 in the DR and NPDR subgroup was associated with higher serum VEGF-A levels (p = 0.012 and p = 0.025, respectively). Conclusion The methylation profile of the miR-9-3 promoter increases the risk of developing PDR. Higher levels of VEGF-A are associated with miR-9-3 hypermethylated profile in patients in the DR and NPDR stages. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01411-9.
Collapse
Affiliation(s)
| | - Alexandre Sérgio Silva
- Department of Physical Education, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Caroline Severo de Assis
- Post-Graduate Program in Nutrition Science, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Tainá Gomes Diniz
- Post-Graduate Program in Nutrition Science, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Marina Gonçalves Monteiro Viturino
- Ophthalmology, Otolaryngology and Oral and Maxillofacial Surgery Unit, Lauro Wanderley University Hospital, Federal University of Paraiba, Paraiba, Brazil
| | | | | | | | | | - Darlene Camati Persuhn
- Post-Graduate Program in Nutrition Science, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
- Department of Molecular Biology, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| |
Collapse
|
4
|
Zhang TX, Duan XC, Cui Y, Zhang Y, Gu M, Wang ZY, Li WY. Clinical significance of miR-9-5p in NSCLC and its relationship with smoking. Front Oncol 2024; 14:1376502. [PMID: 38628672 PMCID: PMC11018953 DOI: 10.3389/fonc.2024.1376502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Dysregulated expression of microRNA (miRNAs) in lung cancer has been wildly reported. The clinicopathologic significance of miR-9-5p in non-small-cell lung cancer (NSCLC) patients and its effect on NSCLC progression were explored in this study. Patients and methods A total of 76 NSCLC patients were included. miR-9-5p expression was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Then, in vitro experiments including cell growth curve assays, colony formation assays, and transwell migration assays were performed. Further clinicopathological and prognostic values were explored using bioinformatics analysis of the TCGA database. Results miR-9-5p expression was significantly increased in tumor tissues (both P < 0.0001). miR-9-5p expression was relatively higher in larger tumors (P = 0.0327) and in lung squamous carcinoma (LUSC) (P = 0. 0143). In addition, miR-9-5p was significantly upregulated in the normal lung tissues of cigarette smokers (P = 0.0099). In vitro, miR-9-5p was correlated with cell proliferation and migration. After that, bioinformatics analysis of the TCGA database indicated that miR-9-5p was correlated with tumor size (P = 0.0022), lymphatic metastasis (P = 0.0141), LUSC (P < 0.0001), and smoking history (P < 0.0001). Finally, a prognostic study indicated high miR-9-5p expression was correlated with poor prognosis in LUAD (P = 0.0121). Conclusion Upregulation of miR-9-5p may have an oncogenic effect in NSCLC and may be related to smoking. The conclusion of this study may help find new prognostic and therapeutic targets for NSCLC and the exploration of the relationship between smoking and lung cancer.
Collapse
Affiliation(s)
- Tian-Xiang Zhang
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xin-Chun Duan
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ye Zhang
- Department of Infectious Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zi-Yu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei-Ying Li
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
5
|
Elballal MS, Sallam AAM, Elesawy AE, Shahin RK, Midan HM, Elrebehy MA, Elazazy O, El-Boghdady RM, Blasy SH, Amer NM, Farid HI, Mohammed DA, Ahmed SA, Mohamed SS, Doghish AS. miRNAs as potential game-changers in renal cell carcinoma: Future clinical and medicinal uses. Pathol Res Pract 2023; 245:154439. [PMID: 37028108 DOI: 10.1016/j.prp.2023.154439] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Renal cell carcinoma (RCC) has the highest mortality rate of all genitourinary cancers, and its prevalence has grown over time. While RCC can be surgically treated and recurrence is only probable in a tiny proportion of patients, early diagnosis is crucial. Mutations in a large number of oncogenes and tumor suppressor genes contribute to pathway dysregulation in RCC. MicroRNAs (miRNAs) have considerable promise as biomarkers for detecting cancer due to their special combination of properties. Several miRNAs have been proposed as a diagnostic or monitoring tool for RCC based on their presence in the blood or urine. Moreover, the expression profile of particular miRNAs has been associated with the response to chemotherapy, immunotherapy, or targeted therapeutic options like sunitinib. The goal of this review is to go over the development, spread, and evolution of RCC. Also, we emphasize the outcomes of studies that examined the use of miRNAs in RCC patients as biomarkers, therapeutic targets, or modulators of responsiveness to treatment modalities.
Collapse
Affiliation(s)
- Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | | | - Shaimaa Hassan Blasy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Nada Mahmoud Amer
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Hadeer Ibrahim Farid
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Dina Ashraf Mohammed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Shaymaa Adly Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Sally Samir Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
6
|
Aalami AH, Abdeahad H, Aalami F, Amirabadi A. Can microRNAs be utilized as tumor markers for recurrence following nephrectomy in renal cell carcinoma patients? A meta-analysis provides the answer. Urol Oncol 2023; 41:52.e1-52.e10. [PMID: 36280530 DOI: 10.1016/j.urolonc.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is an aggressive tumor. Many studies investigated microRNAs (miRs) as RCC prognostic biomarkers, often reporting inconsistent findings. We present a meta-analysis to identify if tissue-derived miRs can be used as a prognostic factor in patients after nephrectomy. METHODS Data were obtained from PubMed, Embase, and Web of Science. The hazard ratio with 95% confidence intervals assessed the prognostic value of microRNAs. Outcomes of interest included the prognosis role of microRNAs in overall survival (OS), recurrence-free survival (RFS), and cancer-specific survival (CSS) in nephrectomy patients. RESULTS Nine retrospective studies that evaluated microRNAs in 1,541 nephrectomy patients were collected. There were heterogeneities across studies for microRNAs in the 15 studies examining OS, RFS, and CSS (I2 = 84.51%; P < 0.01); the random-effect model was calculated (HR = 1.371; (95% CI: 0.831-2.260); P = 0.216). CONCLUSION Our study indicated that miRNAs cannot be used as a marker for recurrence in RCC patients after nephrectomy, and researchers shouldn't make the mistake that if miRs can be used as a biomarker in RCC, they cannot be used as a marker after nephrectomy in RCC. As all of these findings were from retrospective studies, further studies are needed to verify the role of microRNAs in clinical trials.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Farnoosh Aalami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir Amirabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
7
|
Lin D, Zhang Y, Cui D, Wei J, Chen Y, Chen J, Xu S, Zhao D, Chen Q. Immune regulatory effects of microRNA9-3. Blood Cells Mol Dis 2022; 97:102697. [PMID: 35872110 DOI: 10.1016/j.bcmd.2022.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 10/31/2022]
Abstract
MicroRNAs are known to regulate cell proliferation, differentiation, and apoptosis. However, the immunological mechanism and role of microRNA9-3 (miR9-3) are unknown. This study used CRISPR/cas9 technology to knock out miR9-3 to modulate its expression level. FACS results showed that the absolute number of total B cells declined in miR9-3-deficiency in the spleen (Sp), bone marrow (BM), and lymph node (LN) to different levels compared to the wild-type. Also, the absolute numbers of Fo, T1, and T2 cells decreased both in Sp and LN. The absolute numbers of total T cells in Sp and LN declined sharply; CD4+ and CD8+ T cells showed a dramatic decrease in Sp, LN, and Th (thymus) of the miR9-3- group. In BM, the cells number of immature B cells, pro-pre-B cells, pro-B cells, and pre-B cells reduced to different levels, while mature B cells were comparable to wild-type. These data illustrated that miR9-3-deficiency impaired the development of B cells in BM. Also, the development of T cells was severely impaired. In Th, the numbers of DN and DP cells were remarkably reduced in the miR9-3 mutant mice. Also, the numbers of DN-1, DN-3, and DN-4 cells decreased. The absolute number of cells in the hematopoietic stem cell (HSC) system such as LT-HSC (long-term HSC), ST-HSC (short-term HSC), MPP (multipotent progenitor), GMP (granulocyte-macrophage progenitor), CMP (common myeloid progenitors), MEP (megakaryocyte-erythroid progenitor), and CLP (common lymphoid progenitor) all were decreased in miR9-3 deficient mice. These results showed that miR9-3 deficiency initiated the damage to the entire hematopoietic system. Moreover, the absolute number of myeloid cells in both Sp and BM decreased in mutant mice. The cells number of NK cells showed a sharp reduction in Sp whereas the change was not significant in BM. The above results suggest that miR9-3 participates in the immune regulation of B cells, T cells, and the HSC system, highlighting its regulatory roles.
Collapse
Affiliation(s)
- Danfeng Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Yongguang Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Dongya Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Yawen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Jinfeng Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Dongyue Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China.
| |
Collapse
|
8
|
Shen T, Song Y, Wang X, Wang H. Characterizing the molecular heterogeneity of clear cell renal cell carcinoma subgroups classified by miRNA expression profile. Front Mol Biosci 2022; 9:967934. [PMID: 36090028 PMCID: PMC9459094 DOI: 10.3389/fmolb.2022.967934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease that is associated with poor prognosis. Recent works have revealed the significant roles of miRNA in ccRCC initiation and progression. Comprehensive characterization of ccRCC based on the prognostic miRNAs would contribute to clinicians’ early detection and targeted treatment. Here, we performed unsupervised clustering using TCGA-retrieved prognostic miRNAs expression profiles. Two ccRCC subtypes were identified after assessing principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and consensus heatmaps. We found that the two subtypes are associated with distinct clinical features, overall survivals, and molecular characteristics. C1 cluster enriched patients in relatively early stage and have better prognosis while patients in C2 cluster have poor prognosis with relatively advanced state. Mechanistically, we found the differentially expressed genes (DEGs) between the indicated subgroups dominantly enriched in biological processes related to transmembrane transport activity. In addition, we also revealed a miRNA-centered DEGs regulatory network, which severed as essential regulators in both transmembrane transport activity control and ccRCC progression. Together, our work described the molecular heterogeneity among ccRCC cancers, provided potential targets served as effective biomarkers for ccRCC diagnosis and prognosis, and paved avenues to better understand miRNA-directed regulatory network in ccRCC progression.
Collapse
Affiliation(s)
- Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- *Correspondence: Tao Shen, ; Yingdong Song,
| | - Yingdong Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- *Correspondence: Tao Shen, ; Yingdong Song,
| | - Xiangting Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Haiyang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
9
|
Bao F, Liu J, Chen H, Miao L, Xu Z, Zhang G. Diagnosis Biomarkers of Cholangiocarcinoma in Human Bile: An Evidence-Based Study. Cancers (Basel) 2022; 14:cancers14163921. [PMID: 36010914 PMCID: PMC9406189 DOI: 10.3390/cancers14163921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary A liquid biopsy has the characteristics of low trauma and easy acquisition in the diagnosis of cholangiocarcinoma. Many researchers try to find diagnostic or prognostic biomarkers of CCA through blood, urine, bile and other body fluids. Due to the close proximity of bile to the lesion and the stable nature, bile gradually comes into people’s view. The evaluation of human bile diagnostic biomarkers is not only to the benefit of screening more suitable clinical markers but also of exploring the pathological changes of the disease. Abstract Cholangiocarcinoma (CCA) is a multifactorial malignant tumor of the biliary tract, and the incidence of CCA is increasing in recent years. At present, the diagnosis of CCA mainly depends on imaging and invasive examination, with limited specificity and sensitivity and late detection. The early diagnosis of CCA always faces the dilemma of lacking specific diagnostic biomarkers. Non-invasive methods to assess the degree of CAA have been developed throughout the last decades. Among the many specimens looking for CCA biomarkers, bile has gotten a lot of attention lately. This paper mainly summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in human bile at the levels of the gene, protein, metabolite, extracellular vesicles and volatile organic compounds.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayue Liu
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Haiyang Chen
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Correspondence: (Z.X.); (G.Z.)
| | - Guixin Zhang
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- Correspondence: (Z.X.); (G.Z.)
| |
Collapse
|
10
|
Salahuddin B, Masud MK, Aziz S, Liu CH, Amiralian N, Ashok A, Hossain SMA, Park H, Wahab MA, Amin MA, Chari MA, Rowan AE, Yamauchi Y, Hossain MSA, Kaneti YV. κ-Carrageenan Gel Modified Mesoporous Gold Chronocoulometric Sensor for Ultrasensitive Detection of microRNA. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bidita Salahuddin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Shazed Aziz
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan
| | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - S. M. Azad Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hyeongyu Park
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Abdul Wahab
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - M. Adharvana Chari
- Department of Chemistry, JNT University, Kukatpally, Hyderabad 500072, India
| | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Fasanella D, Antonaci A, Esperto F, Scarpa RM, Ferro M, Schips L, Marchioni M. Potential prognostic value of miRNAs as biomarker for progression and recurrence after nephrectomy in renal cell carcinoma: a literature review. Diagnosis (Berl) 2021; 9:157-165. [PMID: 34674417 DOI: 10.1515/dx-2021-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES We provide a systematic literature review on tissue miRNAs in patients with RCC to evaluate and summarize their usefulness as prognostic markers. We undertook a systematic search for articles in English using the PubMed-Medline database from January 2010 to December 2020. Studies were identified and selected according to the PRISMA criteria and the PICO methodology. The population consisted of RCC patients undergoing nephrectomy and the main outcome of interest was recurrence-free survival (RFS). Only studies providing hazard ratios (HRs) from multivariate or univariate analyzes with corresponding 95% confidence intervals (CI) and/or area under the curve (AUC) were considered. CONTENT All nine included studies (1,541 patients) analyzed the relationship between tissue miRNA expression levels (up or downregulated) and RFS. Some of these found that the methylation status of miR-9-1, miR-9-3 and miR-124 was associated with a high risk of relapse. Moreover, miR-200b overexpression was associated with OS. MiR-210 overexpression indicated a shorter OS than those who were miR-210 negative. Finally, patients with high miR-125b expression had shorter CSS than those with low expression; similarly, patients with low miR-126 expression also had shorter CSS time. SUMMARY AND OUTLOOK Several studies tested the usefulness of specific miRNAs to predict RCC recurrence. Some of them showed a fair accuracy and strong relationship between specific miRNA over or under-expression and survival outcomes. However, results from these studies are preliminary and miRNAs use in routine clinical practice is still far to come.
Collapse
Affiliation(s)
- Daniela Fasanella
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, Urology Unit, SS Annunziata Hospital, Chieti, Italy
| | - Alessio Antonaci
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, Urology Unit, SS Annunziata Hospital, Chieti, Italy
| | - Francesco Esperto
- Department of Urology, Campus Biomedico University of Rome, Rome, Italy
| | - Roberto M Scarpa
- Department of Urology, Campus Biomedico University of Rome, Rome, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology-IRCCS, Milan, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, Urology Unit, SS Annunziata Hospital, Chieti, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, Urology Unit, SS Annunziata Hospital, Chieti, Italy
| |
Collapse
|
12
|
Pajares MJ, Alemany-Cosme E, Goñi S, Bandres E, Palanca-Ballester C, Sandoval J. Epigenetic Regulation of microRNAs in Cancer: Shortening the Distance from Bench to Bedside. Int J Mol Sci 2021; 22:ijms22147350. [PMID: 34298969 PMCID: PMC8306710 DOI: 10.3390/ijms22147350] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a complex disease involving alterations of multiple processes, with both genetic and epigenetic features contributing as core factors to the disease. In recent years, it has become evident that non-coding RNAs (ncRNAs), an epigenetic factor, play a key role in the initiation and progression of cancer. MicroRNAs, the most studied non-coding RNAs subtype, are key controllers in a myriad of cellular processes, including proliferation, differentiation, and apoptosis. Furthermore, the expression of miRNAs is controlled, concomitantly, by other epigenetic factors, such as DNA methylation and histone modifications, resulting in aberrant patterns of expression upon the occurrence of cancer. In this sense, aberrant miRNA landscape evaluation has emerged as a promising strategy for cancer management. In this review, we have focused on the regulation (biogenesis, processing, and dysregulation) of miRNAs and their role as modulators of the epigenetic machinery. We have also highlighted their potential clinical value, such as validated diagnostic and prognostic biomarkers, and their relevant role as chromatin modifiers in cancer therapy.
Collapse
Affiliation(s)
- María J. Pajares
- Biochemistry Area, Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.J.P.); (S.G.)
- IDISNA Navarra’s Health Research Institute, 31008 Pamplona, Spain;
| | - Ester Alemany-Cosme
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
| | - Saioa Goñi
- Biochemistry Area, Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.J.P.); (S.G.)
| | - Eva Bandres
- IDISNA Navarra’s Health Research Institute, 31008 Pamplona, Spain;
- Immunology Unit, Department of Hematology, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Cora Palanca-Ballester
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
- Epigenomics Core Facility, Health Research Institute la Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-961246709
| |
Collapse
|
13
|
Ewida HA, Shabayek M, Seleem M. Evaluation of miRNAs 9 and 342 expressions in sera as diagnostic and prognostic biomarkers for breast cancer. Breast Dis 2021; 40:241-250. [PMID: 34092580 DOI: 10.3233/bd-201076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Molecular markers for the detection of breast cancer and its different types, grades, and stages lack enough sensitivity and specificity. This study evaluates the expression of miRNAs 9 and 342 in sera of different types, grades, and stages of BC. Moreover, the assessment of their sensitivity, specificity, diagnostic, and prognostic role in detecting different types of BC. METHODS Blood was collected from 200 females outpatients, divided into five groups each 40 subjects: control, benign breast tumor, estrogen receptor (ER+)/progesterone receptor (PR+) BC, human epidermal growth factor receptor (HER+) BC, and triple-negative BC. BC subjects were further subdivided according to grade and stage. Expressions of miRNAs 9 and 342 were measured for all subjects by real-time polymerase chain reaction (RT-PCR). RESULTS Results showed that serum expression of both miRNAs 9 and 342 can be used for the diagnosis of different types of BC. Their expression can be used to significantly differentiate between different grades and stages of BC. MiRNAs 9 and 342 showed high sensitivity of 92.5% and specificity of (81.2 and 88.7%), respectively, for triple-negative BC. CONCLUSION The expressions of miRNAs 9 and 342 provide potential roles as serological biomarkers for the diagnosis and prognosis of different types, grades, and stages of BC.
Collapse
Affiliation(s)
- Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Marwa Shabayek
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Mae Seleem
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
14
|
Park H, Masud MK, Na J, Lim H, Phan HP, Kaneti YV, Alothman AA, Salomon C, Nguyen NT, Hossain MSA, Yamauchi Y. Mesoporous gold-silver alloy films towards amplification-free ultra-sensitive microRNA detection. J Mater Chem B 2021; 8:9512-9523. [PMID: 32996976 DOI: 10.1039/d0tb02003f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we report the preparation of mesoporous gold (Au)-silver (Ag) alloy films through the electrochemical micelle assembly process and their applications as microRNA (miRNA) sensors. Following electrochemical deposition and subsequent removal of the templates, the polymeric micelles can create uniformly sized mesoporous architectures with high surface areas. The resulting mesoporous Au-Ag alloy films show high current densities (electrocatalytic activities) towards the redox reaction between potassium ferrocyanide and potassium ferricyanide. Following magnetic isolation and purification, the target miRNA is adsorbed directly on the mesoporous Au-Ag film. Electrochemical detection is then enabled by differential pulse voltammetry (DPV) using the [Fe(CN)6]3-/4- redox system (the faradaic current for the miRNA-adsorbed Au-Ag film decreases compared to the bare film). The films demonstrate great advantages towards miRNA sensing platforms to enhance the detection limit down to attomolar levels of miR-21 (limit of detection (LOD) = 100 aM, s/n = 3). The developed enzymatic amplification-free miniaturized analytical sensor has promising potential for RNA-based diagnosis of diseases.
Collapse
Affiliation(s)
- Hyeongyu Park
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia. and Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia and Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia. and School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia. and School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
16
|
Leonardi L, Scotlandi K, Pettinari I, Benassi MS, Porcellato I, Pazzaglia L. MiRNAs in Canine and Human Osteosarcoma: A Highlight Review on Comparative Biomolecular Aspects. Cells 2021; 10:cells10020428. [PMID: 33670554 PMCID: PMC7922516 DOI: 10.3390/cells10020428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant tumor of bone in humans and animals. Comparative oncology is a field of study that examines the cancer risk and tumor progression across the species. The canine model is ideally suited for translational cancer research. The biological and clinical characteristics of human and canine OS are common to hypothesize as that several living and environmental common conditions shared between the two species can influence some etiopathogenetic mechanisms, for which the canine species represents an important model of comparison with the human species. In the canine and human species, osteosarcoma is the tumor of bone with the highest frequency, with a value of about 80–85% (in respect to all other bone tumors), a high degree of invasiveness, and a high rate of metastasis and malignancy. Humans and dogs have many genetic and biomolecular similarities such as alterations in the expression of p53 and in some types of microRNAs that our working group has already described previously in several separate works. In this paper, we report and collect new comparative biomolecular features of osteosarcoma in dogs and humans, which may represent an innovative update on the biomolecular profile of this tumor.
Collapse
Affiliation(s)
- Leonardo Leonardi
- Reparto di Patologia Generale e Anatomia Patologica Veterinaria, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (I.P.); (I.P.)
- Correspondence: ; Tel.: +39-075-585-7663
| | - Katia Scotlandi
- Laboratory of experimental Oncology, IRCCS—Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (K.S.); (M.S.B.); (L.P.)
| | - Ilaria Pettinari
- Reparto di Patologia Generale e Anatomia Patologica Veterinaria, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (I.P.); (I.P.)
| | - Maria Serena Benassi
- Laboratory of experimental Oncology, IRCCS—Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (K.S.); (M.S.B.); (L.P.)
| | - Ilaria Porcellato
- Reparto di Patologia Generale e Anatomia Patologica Veterinaria, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (I.P.); (I.P.)
| | - Laura Pazzaglia
- Laboratory of experimental Oncology, IRCCS—Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (K.S.); (M.S.B.); (L.P.)
| |
Collapse
|
17
|
In vivo effects of olive oil and trans-fatty acids on miR-134, miR-132, miR-124-1, miR-9-3 and mTORC1 gene expression in a DMBA-treated mouse model. PLoS One 2021; 16:e0246022. [PMID: 33539381 PMCID: PMC7861522 DOI: 10.1371/journal.pone.0246022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Both the intake of beneficial olive oil and of harmful trans-fatty acids (TFAs) in consumed foods are of great significance in tumor biology. In our present study we examined the effects they exert on the expression patterns of miR-134, miR-132, miR-124-1, miR-9-3 and mTOR in the liver, spleen and kidney of mice treated with 7,12-dimethylbenz [a] anthracene (DMBA). Feeding of TFA-containing diet significantly increased the expression of all studied miRs and mTORC1 in all organs examined, except the expression of mTORC1 in the spleen and kidney. Diet containing olive oil significantly reduced the expression of miR-124-1, miR-9-3 and mTORC1 in the liver and spleen. In the kidney, apart from the mTORC1 gene, the expression of all miRs examined significantly decreased compared to the DMBA control. According to our results, the cell membrane protective, antioxidant, and anti-inflammatory effects of olive oil and the cell membrane damaging, inflammatory, and carcinogenic properties of TFA suggest negative feedback regulatory mechanisms. In contrast to our expectations, mTORC1 gene expression in the kidney has not been shown to be an appropriate biomarker-presumably, because the many complex effects that regulate mTOR expression may quench each other.
Collapse
|
18
|
Guo Y, Li X, Zheng J, Fang J, Pan G, Chen Z. Identification of a novel immune-related microRNA prognostic model in clear cell renal cell carcinoma. Transl Androl Urol 2021; 10:888-899. [PMID: 33718090 PMCID: PMC7947456 DOI: 10.21037/tau-20-1495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a type of kidney cancer, and one of the most common malignant tumors. Many studies have shown that certain microRNAs (miRNAs) play an important role in the occurrence and development of ccRCC. Nevertheless, the prognosis of ccRCC patients is very rarely based on these “immuno-miRs”. Our aim was thus to determine the relationship between immune-related miRNA signatures and ccRCC. Methods We downloaded the miRNA expression data from 521 KIRC and 71 normal tissues in The Cancer Genome Atlas (TCGA). We used “limma” package and univariate Cox regression analysis to identify differentially expressed miRNAs (DEMs) that related to overall survival (OS). We applied lasso and multivariate Cox regression analyses to construct a prognostic model based on immuno-miRs. We evaluated the performance of model by using the Kaplan-Meier method. Furthermore, Cox regression analysis was used to determine independent prognostic signatures in ccRCC. Results A total of 59 significant immuno-miRs were identified. We use univariate Cox regression analysis to acquire 18 immune-related miRNAs which were markedly related to OS of ccRCC patients in the training set. We then constructed the 9-immune-related-miRNA prognostic model (miR-21, miR-342, miR-149, miR-130b, miR-223, miR-365a, miR-9-1, and miR-146b) by using lasso and multivariate Cox regression. Further analysis suggested that the immune-related prognostic model could be an independent prognostic indicator for patients with ccRCC. The prognostic performance of the 9-immune-related-miRNA prognostic model was further validated successfully in the testing set. Conclusions We established a novel immune-based prognostic model of ccRCC based on potential prognostic immune-related miRNAs. Our results indicated that the 9-miRNA signature could be a practical and reliable prognostic tool for ccRCC.
Collapse
Affiliation(s)
- Yuhe Guo
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianbin Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junbin Zheng
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Jiali Fang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guanghui Pan
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Chen
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Palmini G, Romagnoli C, Donati S, Zonefrati R, Galli G, Marini F, Iantomasi T, Aldinucci A, Leoncini G, Franchi A, Beltrami G, Campanacci DA, Capanna R, Brandi ML. Analysis of a Preliminary microRNA Expression Signature in a Human Telangiectatic Osteogenic Sarcoma Cancer Cell Line. Int J Mol Sci 2021; 22:1163. [PMID: 33503899 PMCID: PMC7866083 DOI: 10.3390/ijms22031163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression. Despite these findings, nothing has been described previously about the expression of miRNAs and the presence of CSCs in human TOS. Therefore, we have isolated/characterized a putative CSC cell line from human TOS (TOS-CSCs) and evaluated the expression levels of several miRNAs in TOS-CSCs using real-time quantitative assays. We show, for the first time, the existence of CSCs in human TOS, highlighting the in vitro establishment of this unique stabilized cell line and an identification of a preliminary expression of the miRNA profile, characteristic of TOS-CSCs. These findings represent an important step in the study of the biology of one of the most aggressive variants of OS and the role of miRNAs in TOS-CSC behavior.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Roberto Zonefrati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alessandra Aldinucci
- Central Laboratory, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Gigliola Leoncini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Giovanni Beltrami
- Ortopedia Oncologica Pediatrica, AOU Careggi-AOU Meyer, 50139 Florence, Italy
| | | | - Rodolfo Capanna
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Fondazione Italiana Ricerca sulle Malattie dell'Osso (FIRMO Onlus), 50141 Florence, Italy
| |
Collapse
|
20
|
Bian Z, Huang X, Chen Y, Meng J, Feng X, Zhang M, Zhang L, Zhou J, Liang C. Fifteen-MiRNA-Based Signature Is a Reliable Prognosis-Predicting Tool for Prostate Cancer Patients. Int J Med Sci 2021; 18:284-294. [PMID: 33390797 PMCID: PMC7738977 DOI: 10.7150/ijms.49412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/02/2020] [Indexed: 12/09/2022] Open
Abstract
Recurrence is a major problem for prostate cancer patients, thus, identifying prognosis-related markers to evaluate clinical outcomes is essential. Here, we established a fifteen-miRNA-based recurrence-free survival (RFS) predicting signature based on the miRNA expression profile extracted from The Cancer Genome Atlas (TCGA) database by the LASSO Cox regression analysis. The median risk score generated by the signature in both the TCGA training and the external Memorial Sloan-Kettering Cancer Center (MSKCC) validation cohorts was employed and the patients were subclassified into low- and high-risk subgroups. The Kaplan-Meier plot and log-rank analyses showed significant survival differences between low- and high-risk subgroups of patients (TCGA, log-rank P < 0.001 & MSKCC, log-rank P = 0.045). In addition, the receiver operating characteristic curves of both the training and external validation cohorts indicated the good performance of our model. After predicting the downstream genes of these miRNAs, the miRNA-mRNA network was visualized by Cytoscape software. In addition, pathway analyses found that the differences between two groups were mainly enriched on tumor progression and drug resistance-related pathways. Multivariate analyses revealed that the miRNA signature is an independent indicator of RFS prognosis for prostate cancer patients with or without clinicopathological features. In summary, our novel fifteen-miRNA-based prediction signature is a reliable method to evaluate the prognosis of prostate cancer patients.
Collapse
Affiliation(s)
- Zichen Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518000, China
| | - Yiding Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Xingliang Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China.,Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen 518000, People's Republic of China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| |
Collapse
|
21
|
Nanostructured mesoporous gold biosensor for microRNA detection at attomolar level. Biosens Bioelectron 2020; 168:112429. [DOI: 10.1016/j.bios.2020.112429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/22/2023]
|
22
|
Guo R, Chen Y, Borgard H, Jijiwa M, Nasu M, He M, Deng Y. The Function and Mechanism of Lipid Molecules and Their Roles in The Diagnosis and Prognosis of Breast Cancer. Molecules 2020; 25:E4864. [PMID: 33096860 PMCID: PMC7588012 DOI: 10.3390/molecules25204864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell structure and play important roles in signal transduction between cells and body metabolism. With the continuous development and innovation of lipidomics technology, many studies have shown that the relationship between lipids and cancer is steadily increasing, involving cancer occurrence, proliferation, migration, and apoptosis. Breast cancer has seriously affected the safety and quality of life of human beings worldwide and has become a significant public health problem in modern society, with an especially high incidence among women. Therefore, the issue has inspired scientific researchers to study the link between lipids and breast cancer. This article reviews the research progress of lipidomics, the biological characteristics of lipid molecules, and the relationship between some lipids and cancer drug resistance. Furthermore, this work summarizes the lipid molecules related to breast cancer diagnosis and prognosis, and then it clarifies their impact on the occurrence and development of breast cancer The discussion revolves around the current research hotspot long-chain non-coding RNAs (lncRNAs), summarizes and explains their impact on tumor lipid metabolism, and provides more scientific basis for future cancer research studies.
Collapse
Affiliation(s)
- Rui Guo
- School of Public Health, Guangxi Medical University, 22 Shuangyong Rd, Qingxiu District, Nanning 530021, China;
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Yu Chen
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa,1955 East West Road, Agricultural Sciences, Honolulu, HI 96822, USA
| | - Heather Borgard
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Masaki Nasu
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Min He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Rd, Qingxiu District, Nanning 530021, China;
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| |
Collapse
|
23
|
Liu H, Meng X, Wang J. Real time quantitative methylation detection of PAX1 gene in cervical cancer screening. Int J Gynecol Cancer 2020; 30:1488-1492. [PMID: 32616628 DOI: 10.1136/ijgc-2019-001144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION DNA methylation is currently found to be associated with the progression of cervical intraepithelial neoplasia and the development of cervical cancer. The aim of this study was to analyze the role of real time quantitative methylation detection of the PAX1 gene in cervical cancer screening. METHODS All eligible patients who underwent multiple detections for cervical cancer were assigned to the normal cervical group (n=21), cervical intraepithelial neoplasia I group (n=7), cervical intraepithelial neoplasia II+III group (n=12), or invasive cervical cancer group (n=14) based on pathological gradings. The methylation level of the PAX1 gene was detected using the real time quantitative methylation specific polymerase chain reaction assay and assessed by △Cp value. The diagnostic performance of PAX1 methylation detection was compared with folic acid receptor mediated diagnosis, the Thinprep cytology test, and human papilloma virus (HPV) testing. RESULTS The △Cp value in the invasive cervical cancer group was (6.15±4.07), significantly lower than that in the other groups (F=26.45, p<0.001). The area under the curve (AUC) of PAX1 methylation detection was 0.902 (95% confidence interval (CI) 0.817-0.986; p<0.001), and sensitivity and specificity were 92.30% and 78.60% when the cut-off value of △Cp was 13.28. The AUC of PAX1 methylation detection was notably larger compared with 0.709 for folic acid receptor mediated diagnosis (95% CI 0.568-0.849, p=0.009), 0.702 for the Thinprep cytology test (95% CI 0.559-0.844, p=0.015), and 0.655 for HPV testing (95% CI 0.508-0.802, p=0.014). CONCLUSION Through quantitative methylation specific polymerase chain reaction assay characterized by rapid screening and simple operation, the methylation detection of the PAX1 gene exhibited a higher diagnostic performance and may be a promising method for cervical cancer screening.
Collapse
Affiliation(s)
- Haifeng Liu
- The 2nd Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Xia Meng
- The 2nd Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Jingyi Wang
- The 2nd Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| |
Collapse
|
24
|
Wu F, Jiang X, Wang Q, Lu Q, He F, Li J, Li X, Jin M, Xu J. The impact of miR-9 in osteosarcoma: A study based on meta-analysis, TCGA data, and bioinformatics analysis. Medicine (Baltimore) 2020; 99:e21902. [PMID: 32871922 PMCID: PMC7458186 DOI: 10.1097/md.0000000000021902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The function of miR-9 in osteosarcoma is not well-investigated and controversial. Therefore, we conducted meta-analysis to explore the role of miR-9 in osteosarcoma, and collected relevant TCGA data to further testify the result. In addition, bioinformatics analysis was conducted to investigate the mechanism and related pathways of miR-9-3p in osteosarcoma.Literature search was operated on databases up to February 19, 2020, including PubMed, Web of Science, Science Direct, Cochrane Central Register of Controlled Trials, and Wiley Online Library, China National Knowledge Infrastructure, China Biology Medicine disc, Chongqing VIP, and Wan Fang Data. The relation of miR-9 expression with survival outcome was estimated by hazard ratio (HRs) and 95% CIs. Meta-analysis was conducted on the Stata 12.0 (Stata Corporation, TX). To further assess the function of miR-9 in osteosarcoma, relevant data from the TCGA database was collected. Three databases, miRDB, miRPathDB 2.0, and Targetscan 7.2, were used for prediction of target genes. Genes present in these 3 databases were considered as predicted target genes of miR-9-3p. Venny 2.1 were used for intersection analysis. Subsequently, GO, KEGG, and PPI network analysis were conducted based on the overlapping target genes of miR-9-3p to explore the possible molecular mechanism in osteosarcoma.Meta-analysis shown that overexpression of miR-9 was associated with worse overall survival (OS) (HR = 4.180, 95% CI: 2.880-6.066, P < .001, I = 23.5%). Based on TCGA data, osteosarcoma patients with overexpression of miR-9-3p (HR = 1.603, 95% CI: 1.028-2.499, P = .037) and miR-9-5p (HR = 1.698, 95% CI: 1.133-2.545, P = .01) also suffered poor OS. In bioinformatics analysis, 2 significant and important pathways were enriched: Wnt signaling pathway from gene ontology analysis (gene ontology:0016055, P-adjust = .008); hippo signaling pathway from Kyoto Encyclopedia of Genes and Genomes analysis (P-adjust = .007). Moreover, network analysis relevant protein-protein interaction was visualized, revealing 117 nodes and 161 edges.High miR-9 expression was associated with poor prognosis. Based on bioinformatics analysis, this study enhanced the understanding of the mechanism and related pathways of miR-9 in osteosarcoma.
Collapse
Affiliation(s)
- Fengfeng Wu
- Department of Orthopedics and Rehabilitation
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Qun Wang
- Department of Internal Medicine, Huzhou Wuxing Hospital of Integrated Traditional Chinese and Western Medicine
| | - Qian Lu
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Fengxiang He
- Department of Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Xiongfeng Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Juntao Xu
- Department of Orthopedics, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Huzhou, Zhejiang, China
| |
Collapse
|
25
|
Outeiro-Pinho G, Barros-Silva D, Correia MP, Henrique R, Jerónimo C. Renal Cell Tumors: Uncovering the Biomarker Potential of ncRNAs. Cancers (Basel) 2020; 12:cancers12082214. [PMID: 32784737 PMCID: PMC7465320 DOI: 10.3390/cancers12082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell tumors (RCT) remain as one of the most common and lethal urological tumors worldwide. Discrimination between (1) benign and malignant disease, (2) indolent and aggressive tumors, and (3) patient responsiveness to a specific therapy is of major clinical importance, allowing for a more efficient patient management. Nonetheless, currently available tools provide limited information and novel strategies are needed. Over the years, a putative role of non-coding RNAs (ncRNAs) as disease biomarkers has gained relevance and is now one of the most prolific fields in biological sciences. Herein, we extensively sought the most significant reports on ncRNAs as potential RCTs' diagnostic, prognostic, predictive, and monitoring biomarkers. We could conclude that ncRNAs, either alone or in combination with currently used clinical and pathological parameters, might represent key elements to improve patient management, potentiating the implementation of precision medicine. Nevertheless, most ncRNA biomarkers require large-scale validation studies, prior to clinical implementation.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000; Fax: +351-225084199
| |
Collapse
|
26
|
Development of MicroRNAs as Potential Therapeutics against Cancer. JOURNAL OF ONCOLOGY 2020; 2020:8029721. [PMID: 32733559 PMCID: PMC7378626 DOI: 10.1155/2020/8029721] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that function at the posttranscriptional level in the cellular regulation process. miRNA expression exerts vital effects on cell growth such as cell proliferation and survival. In cancers, miRNAs have been shown to initiate carcinogenesis, where overexpression of oncogenic miRNAs (oncomiRs) or reduced expression of tumor suppressor miRNAs has been reported. In this review, we discuss the involvement of miRNAs in tumorigenesis, the role of synthetic miRNAs as either mimics or antagomirs to overcome cancer growth, miRNA delivery, and approaches to enhance their therapeutic potentials.
Collapse
|
27
|
Downregulation of miR-9 correlates with poor prognosis in colorectal cancer. Pathol Res Pract 2020; 216:153044. [PMID: 32703504 DOI: 10.1016/j.prp.2020.153044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/16/2020] [Accepted: 05/31/2020] [Indexed: 01/28/2023]
Abstract
INTRODUCTION microRNAs (miRNAs) are frequently dysregulated in many human cancers including colorectal cancer (CRC) and are useful candidate biomarkers in liquid biopsy of cancer for their stability in the blood. METHODS We compared the expression of microRNA-9 (miR-9) in tissues (n = 357) and sera (n = 109) of CRC patients to determine whether miR-9 in serum reflects that in the cancer tissue in parallel. Also, we examined the miR-9 role in CRC by in vitro functional studies in four CRC cell lines. RESULTS On multivariate analysis of colorectal cancer tissues and sera, miR-9 low expressions were significantly associated pN stage (tissues; p < 0.01, serum; p = 0.013), and clinical stage (tissues; p < 0.01, serum; p = 0.031). Moreover, patients with low miR-9 expression had shorter survival than those with high miR-9 expression (log-rank test, tissue; p = 0.021, serum; p = 0.011). miR-9 level in serum reflects that in the tumor. The CRC cells with low miR-9 expression was significantly increased cell proliferation, migration, invasion and colony formation than cells with high miR-9 expression. CONCLUSION Serum miR-9 is an useful early detection marker in liquid biopsy of CRC and overexpression of miR-9 in CRC may be a novel prognostic marker as well.
Collapse
|
28
|
Outeiro-Pinho G, Barros-Silva D, Aznar E, Sousa AI, Vieira-Coimbra M, Oliveira J, Gonçalves CS, Costa BM, Junker K, Henrique R, Jerónimo C. MicroRNA-30a-5p me: a novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:98. [PMID: 32487203 PMCID: PMC7323611 DOI: 10.1186/s13046-020-01600-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Background The rising incidence of renal cell carcinomas (RCC) constitutes a significant challenge owing to risk of overtreatment. Because aberrant microRNA (miR) promoter methylation contributes to cancer development, we investigated whether altered miR-30a-5p expression associates with DNA promoter methylation and evaluated the usefulness as clear cell RCC (ccRCC) diagnostic and prognostic markers. Methods Genome-wide methylome and RNA sequencing data from a set of ccRCC and normal tissue samples from The Cancer Genome Atlas (TCGA) database were integrated to identify candidate CpG loci involved in cancer onset. MiR-30a-5p expression and promoter methylation were quantitatively assessed by PCR in a tissue set (Cohort #1) and urine sets (Cohorts #2 and 3) from IPOPorto and Homburg University Hospital. Non-parametric tests were used for comparing continuous variables. MiR-30a-5p promoter methylation (miR-30a-5pme) performance as diagnostic (receiver operator characteristics [ROC] - validity estimates) and prognostic [metastasis-free (MFS) and disease-specific survival (DSS)] biomarker was further validated in urine samples from ccRCC patients by Kaplan Meier curves (with log rank) and both univariable and multivariable analysis. Results Two significant hypermethylated CpG loci in TCGA ccRCC samples, correlating with miR-30a-5p transcriptional downregulation, were disclosed. MiR-30a-5pme in ccRCC tissues was confirmed in an independent patient’s cohort of IPOPorto and associated with shorter time to relapse. In urine samples, miR-30a-5pme levels identified cancer both in testing and validation cohorts, with 83% sensitivity/53% specificity and 63% sensitivity/67% specificity, respectively. Moreover, higher miR-30a-5pme levels independently predicted metastatic dissemination and survival. Conclusion To the best of our knowledge, this is the first study validating the diagnostic and prognostic potential of miR-30a-5pme for ccRCC in urine samples, providing new insights for its clinical usefulness as non-invasive cancer biomarker.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Master in Molecular Medicine and Oncology, Faculty of Medicine-University of Porto (FMUP), Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Elena Aznar
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Camino de Vera s/n, 46022, Valencia, Spain
| | - Ana-Isabel Sousa
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Márcia Vieira-Coimbra
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Saar, Germany
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| |
Collapse
|
29
|
Gang W, Tanjun W, Yong H, Jiajun Q, Yi Z, Hao H. Inhibition of miR-9 decreases osteosarcoma cell proliferation. Bosn J Basic Med Sci 2020; 20:218-225. [PMID: 31724522 PMCID: PMC7202196 DOI: 10.17305/bjbms.2019.4434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor that affects adolescents and young adults. Disruption of microRNA (miRNA) regulation is well established in the pathophysiology of different cancers, including OS. Increased expression of miR-9 in OS positively correlates with the tumor size, clinical stage, and distant metastasis. In the present study, we used two different OS cell lines, MG-63 and Saos-2, as in vitro models. miR-9 inhibitor and miR-9 mimics were used to study the function of miR-9 in these two cell lines. We determined the effect of miR-9 inhibition on cell proliferation, cell cycle, apoptosis, and the protein expression of different genes. Our results demonstrated that miR-9 inhibition in the human OS cell lines suppresses their metastatic potential, as determined by decreased cell proliferation and cell cycle arrest, decreased invasion, and increased apoptosis. The Western blot analysis showed that E-cadherin, matrix metalloproteinase 13, forkhead box O3, Bcl-2-like protein 11, and β-catenin are involved in miR-9 signaling. Moreover, miR-9 mimics rescued the effects caused by the inhibition of miR-9 in the OS cell lines. Our findings suggest that miR-9 is important for mediating OS cell migration, invasion, metastasis, and apoptosis. Inhibition of miR-9 could be further explored as a therapeutic target to treat OS.
Collapse
Affiliation(s)
- Wu Gang
- Department of Orthopedics, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Wei Tanjun
- Department of Orthopedics, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Huang Yong
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Qin Jiajun
- Department of Orthopedics, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Zhang Yi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hu Hao
- Department of Orthopedics, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China; Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
30
|
Peters I, Merseburger AS, Tezval H, Lafos M, Tabrizi PF, Mazdak M, Wolters M, Kuczyk MA, Serth J, von Klot CA. The Prognostic Value of DNA Methylation Markers in Renal Cell Cancer: A Systematic Review. KIDNEY CANCER 2020. [DOI: 10.3233/kca-190069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Inga Peters
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | | | - Hossein Tezval
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Marcel Lafos
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Pouriya Faraj Tabrizi
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Mehrdad Mazdak
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Mathias Wolters
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Markus A. Kuczyk
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Jürgen Serth
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
31
|
Tavakolian S, Goudarzi H, Torfi F, Faghihloo E. Evaluation of microRNA-9 and -192 expression levels as biomarkers in patients suffering from breast cancer. Biomed Rep 2019; 12:30-34. [PMID: 31839947 DOI: 10.3892/br.2019.1257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
Given the global outbreak of breast cancer and its debilitating effect on women's health, it is not surprising that tremendous efforts have been made with an aim of shedding more light on the mechanisms involved in the pathogenesis of this type of cancer. Among the long list of risk factors associated with this malignancy, recently, the role of microRNAs (miRNAs or miRs) has turned into a hotspot for breast cancer investigations. miRNAs approximately 20 nucleotides in length and are located in either an exon or an intron, playing a role in the regulation of gene expression. In the present study, we extracted RNA from both the serum and cancerous tissue of breast cancer patients and after synthesizing the cDNA, we performed quantitative PCR to determine the expression levels of miR-9 and miR-192. The resulting data revealed that while the mRNA expression level of miR-9 was significantly decreased in the breast cancer tissues, there was no noticeable change in the expression level of this miRNA in the serum samples. Likewise, we found that the marked downregulation of miR-192 was only restricted to the cancerous tissues, but was not found in the serum of patients. Based on the meaningful downregulation of the expression of miR-9 and miR-192, this study provides a plausible framework for these miRNAs as effective biomarkers for breast cancer patients.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Farhad Torfi
- Surgical Ward, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|
32
|
Liu T, Liu Y, Wei C, Yang Z, Chang W, Zhang X. LncRNA HULC promotes the progression of gastric cancer by regulating miR-9-5p/MYH9 axis. Biomed Pharmacother 2019; 121:109607. [PMID: 31726371 DOI: 10.1016/j.biopha.2019.109607] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) highly upregulated in liver cancer (HULC) has been identified as an oncogene involved in many human cancers. Herein, we aimed to further explore the role and molecular mechanism of HULC in gastric cancer (GC) progression. The levels of HULC, miR-9-5p and myosin heavy chain 9 (MYH9) mRNA were detected by qRT-PCR. The targeted interaction between HULC and miR-9-5p was verified by dual-luciferase reporter and RNA pull-down assays. Cell proliferation assay, cell colony formation, flow cytometry and transwell assay were used to determine cell proliferation, colony formation, apoptosis and migration and invasion, respectively. Xenograft assay was used to observe the effect of HULC on GC growth in vivo. Our results revealed that HULC was upregulated and miR-9-5p was downregulated in GC, and both were associated with clinicopathologic features of GC patients. A positive correlation was found between HULC expression and epithelial-to-mesenchymal transition (EMT) of GC tissues. Moreover, HULC repressed miR-9-5p expression by binding to miR-9-5p. The regulatory effects of HULC knockdown on GC cell proliferation, migration, invasion, EMT and apoptosis were reversed by introduction of anti-miR-9-5p. HULC regulated MYH9 expression by acting as a molecular sponge of miR-9-5p in GC cells. HULC knockdown inhibited tumor growth in vivo. In conclusion, our data demonstrated that HULC knockdown repressed GC progression at least partly by regulating miR-9-5p/MYH9 axis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chongqing Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weilong Chang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiefu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
33
|
Transcription Factor and miRNA Interplays Can Manifest the Survival of ccRCC Patients. Cancers (Basel) 2019; 11:cancers11111668. [PMID: 31661791 PMCID: PMC6895828 DOI: 10.3390/cancers11111668] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) still remains a higher mortality rate in worldwide. Obtaining promising biomakers is very crucial for improving the diagnosis and prognosis of ccRCC patients. Herein, we firstly identified eight potentially prognostic miRNAs (hsa-miR-144-5p, hsa-miR-223-3p, hsa-miR-365b-3p, hsa-miR-3613-5p, hsa-miR-9-5p, hsa-miR-183-5p, hsa-miR-335-3p, hsa-miR-1269a). Secondly, we found that a signature containing these eight miRNAs showed obviously superior to a single miRNA in the prognostic effect and credibility for predicting the survival of ccRCC patients. Thirdly, we discovered that twenty-two transcription factors (TFs) interact with these eight miRNAs, and a signature combining nine TFs (TFAP2A, KLF5, IRF1, RUNX1, RARA, GATA3, IKZF1, POU2F2, and FOXM1) could promote the prognosis of ccRCC patients. Finally, we further identified eleven genes (hsa-miR-365b-3p, hsa-miR-223-3p, hsa-miR-1269a, hsa-miR-144-5p, hsa-miR-183-5p, hsa-miR-335-3p, TFAP2A, KLF5, IRF1, MYC, IKZF1) that could combine as a signature to improve the prognosis effect of ccRCC patients, which distinctly outperformed the eight-miRNA signature and the nine-TF signature. Overall, we identified several new prognosis factors for ccRCC, and revealed a potential mechanism that TFs and miRNAs interplay cooperatively or oppositely regulate a certain number of tumor suppressors, driver genes, and oncogenes to facilitate the survival of ccRCC patients.
Collapse
|
34
|
Cardial Tobias G, Lucas Penteado Gomes J, Paula Renó Soci U, Fernandes T, Menezes de Oliveira E. A Landscape of Epigenetic Regulation by MicroRNAs to the Hallmarks of Cancer and Cachexia: Implications of Physical Activity to Tumor Regression. Epigenetics 2019. [DOI: 10.5772/intechopen.84847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
35
|
The clinical and prognostic value of miR-9 gene expression in Tunisian patients with bladder cancer. Mol Biol Rep 2019; 46:4743-4750. [DOI: 10.1007/s11033-019-04920-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/14/2019] [Indexed: 01/03/2023]
|
36
|
The significance of gene mutations across eight major cancer types. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:88-99. [PMID: 31416581 DOI: 10.1016/j.mrrev.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Mutations occur spontaneously, which can be induced by either chemicals (e.g. benzene) or biological factors (e.g. virus). Not all mutations cause noticeable changes in cellular functions. However, mutation in key cellular genes leads to developmental disorders. It is one of the main ways in which proto-oncogenes can be changed into their oncogenic state. The progressive accumulation of multiple mutations throughout life leads to cancer. In the past few decades, extensive research on cancer biology has discovered many genes and pathways having role in cancer development. In this review, we tried to summarize the current knowledge of mutational effect on different cancer types and its consequences in brief for future reference and guidance of researchers in cancer biology.
Collapse
|
37
|
Yan H, Xin S, Ma J, Wang H, Zhang H, Liu J. A three microRNA-based prognostic signature for small cell lung cancer overall survival. J Cell Biochem 2019; 120:8723-8730. [PMID: 30536412 DOI: 10.1002/jcb.28159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Small-cell lung cancer (SCLC) is one of the most aggressive cancers with mechanisms far from understood. OBJECTIVE We proposed to identify valuable prognostic signature for SCLC prognosis prediction. METHODS microRNA (miRNA) expression profiles of 42 SCLC patients were acquired from the Gene Expression Omnibus. miRNAs that significantly associated with SCLC overall survival (OS-relevant) were identified through univariate Cox regression analysis followed by random survival forest analysis for identification of more reliable miRNA signature. RESULTS Eleven OS-relevant miRNAs were obtained, and hsa-miR-194, hsa-miR-608, and hsa-miR-9 were further refined through RFS. A formula composed of the three miRNAs' expression values weighted by their multivariate Cox regression coefficients was constructed, and based on which, SCLC patients with longer OS could be well distinguished from those with shorter OS. CONCLUSIONS This study should provide a valuable clue for SCLC prognosis evaluation.
Collapse
Affiliation(s)
- Hao Yan
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Shaobin Xin
- Intensive Care Unit, Tianjin Union Medicine Center, Tianjin, China
| | - Jing Ma
- Department of Integrated Chinese and Western Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Hui Wang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Heng Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Jindong Liu
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| |
Collapse
|
38
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
39
|
Xu A, Chen J, Peng H, Han G, Cai H. Simultaneous Interrogation of Cancer Omics to Identify Subtypes With Significant Clinical Differences. Front Genet 2019; 10:236. [PMID: 30984238 PMCID: PMC6448130 DOI: 10.3389/fgene.2019.00236] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/04/2019] [Indexed: 11/21/2022] Open
Abstract
Recent advances in high-throughput sequencing have accelerated the accumulation of omics data on the same tumor tissue from multiple sources. Intensive study of multi-omics integration on tumor samples can stimulate progress in precision medicine and is promising in detecting potential biomarkers. However, current methods are restricted owing to highly unbalanced dimensions of omics data or difficulty in assigning weights between different data sources. Therefore, the appropriate approximation and constraints of integrated targets remain a major challenge. In this paper, we proposed an omics data integration method, named high-order path elucidated similarity (HOPES). HOPES fuses the similarities derived from various omics data sources to solve the dimensional discrepancy, and progressively elucidate the similarities from each type of omics data into an integrated similarity with various high-order connected paths. Through a series of incremental constraints for commonality, HOPES can take both specificity of single data and consistency between different data types into consideration. The fused similarity matrix gives global insight into patients' correlation and efficiently distinguishes subgroups. We tested the performance of HOPES on both a simulated dataset and several empirical tumor datasets. The test datasets contain three omics types including gene expression, DNA methylation, and microRNA data for five different TCGA cancer projects. Our method was shown to achieve superior accuracy and high robustness compared with several benchmark methods on simulated data. Further experiments on five cancer datasets demonstrated that HOPES achieved superior performances in cancer classification. The stratified subgroups were shown to have statistically significant differences in survival. We further located and identified the key genes, methylation sites, and microRNAs within each subgroup. They were shown to achieve high potential prognostic value and were enriched in many cancer-related biological processes or pathways.
Collapse
Affiliation(s)
- Aodan Xu
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiazhou Chen
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hong Peng
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - GuoQiang Han
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
40
|
Li Q, Chang Y, Mu L, Song Y. MicroRNA-9 enhances chemotherapy sensitivity of glioma to TMZ by suppressing TOPO II via the NF-κB signaling pathway. Oncol Lett 2019; 17:4819-4826. [PMID: 31186688 PMCID: PMC6507329 DOI: 10.3892/ol.2019.10158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS) that develops chemotherapy resistance. The microRNA (miRNA) miR-9 is a tissue-specific miRNA of the CNS that may serve a key role in the modulation of chemotherapy sensitivity. The aim of the present study was to investigate the effect of miR-9 on glioma chemotherapy sensitivity by altering the expression of miR-9 in U251 glioma cells by viral transfection and subsequently treating with gradient concentrations of temozolomide (TMZ). Cell viability, apoptosis and the cell cycle were examined, and drug resistance genes were analyzed by western blotting. The role of nuclear factor κB (NF-κB) in this regulation was also examined. The results revealed that the susceptibility of glioma cells to TMZ was enhanced by miR-9 overexpression. When miR-9 and TMZ were applied together, the apoptotic rate and percentage of cells arrested at the G2/M stage were significantly higher compared with either treatment alone. Topoisomerase II expression was suppressed by miR-9 via the NF-κB signaling pathway, which may be responsible for the sensitization. The results of the present study suggested that miR-9 may be a potential target for glioma chemotherapy.
Collapse
Affiliation(s)
- Qingla Li
- Second Department of Minimal Invasive Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yingnan Chang
- First Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Luyan Mu
- Second Department of Minimal Invasive Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuwen Song
- Second Department of Minimal Invasive Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
41
|
Roy R, Chatterjee A, Das D, Ray A, Singh R, Chattopadhyay E, Sarkar ND, Eccles M, Pal M, Maitra A, Roy B. Genome-wide miRNA methylome analysis in oral cancer: possible biomarkers associated with patient survival. Epigenomics 2019; 11:473-487. [PMID: 30875235 DOI: 10.2217/epi-2018-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM The methylome associated with miRNA loci was investigated in oral cancer to explore tobacco specific methylation and potential biomarkers for patient survival. METHODS Methylome data was generated from 16 pairs of cancer-normal tissues by reduced representation bisulfite sequencing method. Differentially methylated regions were identified using the DMAP pipeline. In silico validation and Kaplan-Meier survival analyses were performed on The Cancer Genome Atlas data based on our miRNA methylome data. RESULTS A total of 4310 unique differentially methylated regions, mapping to 144 miRNA loci, were identified. Three distinct groups of miRNAs were differentially methylated in cancer tissues from smokers, chewers and mixed habitués. Hypermethylation of miR-503, miR-200a/b, miR-320b and miR-489 was associated with worse 5-year survival. CONCLUSION Differential methylation patterns in miRNA loci are associated with poor survival underscoring their potential as predictive and prognostic biomarkers in oral cancer.
Collapse
Affiliation(s)
- Roshni Roy
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Aniruddha Chatterjee
- HB Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109-1024, USA
| | - Debasis Das
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Anindita Ray
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Richa Singh
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Esita Chattopadhyay
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Navonil De Sarkar
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand.,Department of Oral & Maxillofacial Pathology, Guru Nanak Institute of Dental Science & Research, Kolkata, India
| | - Michael Eccles
- HB Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109-1024, USA
| | - Mousumi Pal
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | - Arindam Maitra
- Human Genetics Unit, Indian Statistical Institute, 205 B.T. Road, Kolkata 700108, India
| | - Bidyut Roy
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| |
Collapse
|
42
|
Hersi HM, Raulf N, Gaken J, Folarin N, Tavassoli M. MicroRNA-9 inhibits growth and invasion of head and neck cancer cells and is a predictive biomarker of response to plerixafor, an inhibitor of its target CXCR4. Mol Oncol 2018; 12:2023-2041. [PMID: 29959873 PMCID: PMC6275261 DOI: 10.1002/1878-0261.12352] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are associated with poor morbidity and mortality. Current treatment strategies are highly toxic and do not benefit over 50% of patients. There is therefore a crucial need for predictive and/or prognostic biomarkers to allow treatment stratification for individual patients. One class of biomarkers that has recently gained importance are microRNA (miRNA). MiRNA are small, noncoding molecules which regulate gene expression post‐transcriptionally. We performed miRNA expression profiling of a cohort of head and neck tumours with known clinical outcomes. The results showed miR‐9 to be significantly downregulated in patients with poor treatment outcome, indicating its role as a potential biomarker in HNSCC. Overexpression of miR‐9 in HNSCC cell lines significantly decreased cellular proliferation and inhibited colony formation in soft agar. Conversely, miR‐9 knockdown significantly increased both these features. Importantly, endogenous CXCR4 expression levels, a known target of miR‐9, inversely correlated with miR‐9 expression in a panel of HNSCC cell lines tested. Induced overexpression of CXCR4 in low expressing cells increased proliferation, colony formation and cell cycle progression. Moreover, CXCR4‐specific ligand, CXCL12, enhanced cellular proliferation, migration, colony formation and invasion in CXCR4‐overexpressing and similarly in miR‐9 knockdown cells. CXCR4‐specific inhibitor plerixafor abrogated the oncogenic phenotype of CXCR4 overexpression as well as miR‐9 knockdown. Our data demonstrate a clear role for miR‐9 as a tumour suppressor microRNA in HNSCC, and its role seems to be mediated through CXCR4 suppression. MiR‐9 knockdown, similar to CXCR4 overexpression, significantly promoted aggressive HNSCC tumour cell characteristics. Our results suggest CXCR4‐specific inhibitor plerixafor as a potential therapeutic agent, and miR‐9 as a possible predictive biomarker of treatment response in HNSCC.
Collapse
Affiliation(s)
| | - Nina Raulf
- Department of Molecular Oncology, King's College London, UK
| | - Joop Gaken
- Department of Haematological Medicine, The Rayne Institute, King's College London, UK
| | | | | |
Collapse
|
43
|
miR-9-5p in Nephrectomy Specimens is a Potential Predictor of Primary Resistance to First-Line Treatment with Tyrosine Kinase Inhibitors in Patients with Metastatic Renal Cell Carcinoma. Cancers (Basel) 2018; 10:cancers10090321. [PMID: 30201928 PMCID: PMC6162741 DOI: 10.3390/cancers10090321] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 20–30% of patients with metastatic renal cell carcinoma (mRCC) in first-line treatment with tyrosine kinase inhibitors (TKIs) do not respond due to primary resistance to this drug. At present, suitable robust biomarkers for prediction of a response are not available. Therefore, the aim of this study was to evaluate a panel of microRNAs (miRNAs) in nephrectomy specimens for use as predictive biomarkers for TKI resistance. Archived formalin-fixed, paraffin embedded nephrectomy samples from 60 mRCC patients treated with first-line TKIs (sunitinib, n = 51; pazopanib, n = 6; sorafenib, n = 3) were categorized into responders and non-responders. Using the standard Response Evaluation Criteria in Solid Tumors, patients with progressive disease within 3 months after the start of treatment with TKI were considered as non-responders and those patients with stable disease and complete or partial response under the TKI treatment for at least 6 months as responders. Based on a miRNA microarray expression profile in the two stratified groups of patients, seven differentially expressed miRNAs were validated using droplet digital reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) assays in the two groups. Receiver operating characteristic curve analysis and binary logistic regression of response prediction were performed. MiR-9-5p and miR-489-3p were able to discriminate between the two groups. MiR-9-5p, as the most significant miRNA, improved the correct prediction of primary resistance against TKIs in comparison to that of conventional clinicopathological variables. The results of the decision curve analyses, Kaplan-Meier analyses and Cox regression analyses confirmed the potential of miR-9-5p in the prediction of response to TKIs and the prediction of progression-free survival after the initiation of TKI treatment.
Collapse
|
44
|
Lang WJ, Chen FY. The reciprocal link between EVI1 and miRNAs in human malignancies. Gene 2018; 672:56-63. [DOI: 10.1016/j.gene.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/05/2018] [Accepted: 06/03/2018] [Indexed: 12/26/2022]
|
45
|
Liu S, Yang Y, Wang W, Pan X. Long noncoding RNA TUG1 promotes cell proliferation and migration of renal cell carcinoma via regulation of YAP. J Cell Biochem 2018; 119:9694-9706. [PMID: 30132963 DOI: 10.1002/jcb.27284] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Recently, long noncoding RNAs (lncRNAs) have captured much attention for their important roles in human diseases. Deregulation of lncRNA taurine-upregulated gene 1 (TUG1) has been reported to regulate cancer progression in many cancer types. However, how TUG1 contributes to renal cell carcinoma (RCC) remains elusive; we were eager to resolve the questions. METHODS Tumor tissues and the matched adjacent normal tissues were collected from patients with RCC. Messenger RNA (mRNA) levels of TUG1, yes-associated protein (YAP), and microRNA (miR)-9 levels were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The regulation of YAP by TUG1 was investigated using Western blot analysis, RT-qPCR, and immunofluorescence. The oncogenic roles of TUG1 and YAP were studied using a cell proliferation assay and a wound healing assay. The interaction of TUG1-miR-9-YAP was analyzed in RCC cell lines. RESULTS In the current study, we observed a positive correlation between TUG1 expression and YAP expression in RCC using the Gene Expression Omnibus database and tumor tissues collected from 58 patients with RCC. The TUG1 elevation enhanced YAP expression but did not alter the Hippo-signaling pathway activity or YAP protein distribution in cells. In addition, we found that TUG1 could bind to miR-9; therefore, TUG1 could positively control YAP expression via downregulation of miR-9 level. Furthermore, we observed that inhibition of cell proliferation and cell migration induced by TUG1 silencing could be reversed by overexpression of YAP in RCC cell lines. CONCLUSIONS Our findings indicated a pivotal role of TUG1 in driving RCC progression via regulation of miR-9/YAP, suggesting a potential therapeutic targeting role of TUG1 in RCC.
Collapse
Affiliation(s)
- Shan Liu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yantong Yang
- Cancer Institute, Henan University of Science and Technology, Luoyang, China.,Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Weiwei Wang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyue Pan
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
46
|
Zhang K, Wu L, Zhang P, Luo M, Du J, Gao T, O'Connell D, Wang G, Wang H, Yang Y. miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma. Mol Carcinog 2018; 57:1566-1576. [PMID: 30035324 DOI: 10.1002/mc.22878] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022]
Abstract
Ferroptosis is a recently recognized form of regulated cell death driven by lipid-based reactive oxygen species (ROS) accumulation. However, the molecular mechanisms of ferroptosis regulation are still largely unknown. Here we identified a novel miRNA, miR-9, as an important regulator of ferroptosis by directly targeting GOT1 in melanoma cells. Overexpression of miR-9 suppressed GOT1 by directly binding to its 3'-UTR, which subsequently reduced erastin- and RSL3-induced ferroptosis. Conversely, suppression of miR-9 increased the sensitivity of melanoma cells to erastin and RSL3. Importantly, anti-miR-9 mediated lipid ROS accumulation and ferroptotic cell death could be abrogated by inhibiting glutaminolysis process. Taken together, our findings demonstrate that miR-9 regulates ferroptosis by targeting GOT1 in melanoma cells, illustrating the important role of miRNA in ferroptosis.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Longfei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Peng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Meiying Luo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jing Du
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongtong Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Douglas O'Connell
- Department of Medicine, UC Irvine School of Medicine, Orange, California
| | - Gaoyang Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongfei Yang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
47
|
Abstract
Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and histological subtypes with different clinical characteristics. While survival rates are high if RCC is diagnosed when still confined to the kidney and treated definitively, there are no specific diagnostic screening tests available and symptoms are rare in early stages of the disease. Management of advanced RCC has changed significantly with the advent of targeted therapies, yet survival is usually increased by months due to acquired resistance to these therapies. DNA methylation, the covalent addition of a methyl group to a cytosine, is essential for normal development and transcriptional regulation, but becomes altered commonly in cancer. These alterations result in broad transcriptional changes, including in tumor suppressor genes. Because DNA methylation is one of the earliest molecular changes in cancer and is both widespread and stable, its role in cancer biology, including RCC, has been extensively studied. In this review, we examine the role of DNA methylation in RCC disease etiology and progression, the preclinical use of DNA methylation alterations as diagnostic, prognostic and predictive biomarkers, and the potential for DNA methylation-directed therapies.
Collapse
Affiliation(s)
- Brittany N Lasseigne
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806-2908, USA.
| | - James D Brooks
- Department of Urology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA, 94305-5118, USA
| |
Collapse
|
48
|
Mytsyk Y, Dosenko V, Skrzypczyk MA, Borys Y, Diychuk Y, Kucher A, Kowalskyy V, Pasichnyk S, Mytsyk O, Manyuk L. Potential clinical applications of microRNAs as biomarkers for renal cell carcinoma. Cent European J Urol 2018; 71:295-303. [PMID: 30386650 PMCID: PMC6202627 DOI: 10.5173/ceju.2018.1618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction Renal cell carcinoma (RCC) accounts for 3% of adult malignancies and more than 90% of kidney neoplasms. High rates of undiagnostic percutaneous kidney biopsies and difficulties in reliable pre-operative differentiation between malignant and benign renal tumors using contemporary imaging techniques result in large numbers of redundant surgeries. Absence of specific biomarkers for early detection and monitoring complicates on-time diagnosis of the disease and relapse. For the patients followed up after having a nephrectomy, a noninvasive and sensitive biomarker enabling early detection of disease relapse would be extremely useful. Material and methods The study is a review of recent knowledge regarding potential clinical applications of microRNAs (miRNAs) as biomarkers of RCC. Results MicroRNAs are essential regulators of various processes such as cell proliferation, differentiation, development and death; they have been implicated in diverse biological and pathological processes in RCC. There is a class of miRNAs that promote RCC development (oncomirs) and a class of miRNAs that negatively regulate oncogenes, suppress tumor growth and invasion, and thus could be considered treatment agents (anti-oncomirs). Separate miRNAs and specific miRNAs expression profiles have been identified, enabling early detection of the disease, prediction of response to systemic therapy, or prognostication of biological behavior of the disease. Conclusions The miRNA network analysis and gene profiling may help to identify the most sensible molecular signatures of RCC that can be used for diagnostic purposes, as well as poor prognosis signatures and poor therapeutic response signatures in patients who undergo systemic therapy.
Collapse
Affiliation(s)
- Yulian Mytsyk
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Victor Dosenko
- General and Molecular Pathophysiology Department, Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kiev, Ukraine
| | | | - Yuriy Borys
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yuriy Diychuk
- Department of Urology, Lviv State Regional Oncology Treatment and Diagnostic Center, Lviv, Ukraine
| | - Askold Kucher
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Vasyl Kowalskyy
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Serhyi Pasichnyk
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oleh Mytsyk
- Lviv Regional Bureau of Forensic Services, Lviv, Ukraine
| | - Lubov Manyuk
- Department of Foreign Languages, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
49
|
Dos Santos Nunes MK, Silva AS, Wanderley de Queiroga Evangelista I, Modesto Filho J, Alves Pegado Gomes CN, Ferreira do Nascimento RA, Pordeus Luna RC, de Carvalho Costa MJ, Paulo de Oliveira NF, Camati Persuhn D. Analysis of the DNA methylation profiles of miR-9-3, miR-34a, and miR-137 promoters in patients with diabetic retinopathy and nephropathy. J Diabetes Complications 2018; 32:593-601. [PMID: 29674133 DOI: 10.1016/j.jdiacomp.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/28/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - João Modesto Filho
- Department of Internal Medicine, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | | | - Maria José de Carvalho Costa
- Nutrition Science Department and Post-graduate Program in Nutrition Science, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | - Darlene Camati Persuhn
- Department of Molecular Biology and Post-Graduation Program in Nutrition Science, Federal University of Paraiba, Joao Pessoa, Brazil.
| |
Collapse
|
50
|
Liao X, Zhu G, Huang R, Yang C, Wang X, Huang K, Yu T, Han C, Su H, Peng T. Identification of potential prognostic microRNA biomarkers for predicting survival in patients with hepatocellular carcinoma. Cancer Manag Res 2018; 10:787-803. [PMID: 29713196 PMCID: PMC5912208 DOI: 10.2147/cmar.s161334] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The aim of the present study was to identify potential prognostic microRNA (miRNA) biomarkers for hepatocellular carcinoma (HCC) prognosis prediction based on a dataset from The Cancer Genome Atlas (TCGA). Materials and methods A miRNA sequencing dataset and corresponding clinical parameters of HCC were obtained from TCGA. Genome-wide univariate Cox regression analysis was used to screen prognostic differentially expressed miRNAs (DEMs), and multivariable Cox regression analysis was used for prognostic signature construction. Comprehensive survival analysis was performed to evaluate the prognostic value of the prognostic signature. Results Five miRNAs were regarded as prognostic DEMs and used for prognostic signature construction. The five-DEM prognostic signature performed well in prognosis prediction (adjusted P < 0.0001, adjusted hazard ratio = 2.249, 95% confidence interval =1.491-3.394), and time-dependent receiver-operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.765, 0.745, 0.725, and 0.687 for 1-, 2-, 3-, and 5-year HCC overall survival (OS) prediction, respectively. Comprehensive survival analysis of the prognostic signature suggests that the risk score model could serve as an independent factor of HCC and perform better in prognosis prediction than other traditional clinical indicators. Functional assessment of the target genes of hsa-mir-139 and hsa-mir-5003 indicates that they were significantly enriched in multiple biological processes and pathways, including cell proliferation and cell migration regulation, pathways in cancer, and the cyclic adenosine monophosphate (cAMP) signaling pathway. Conclusion Our study indicates that the novel miRNA expression signature may be a potential prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|