1
|
Li X, González-Maroto C, Tavassoli M. Crosstalk between CAFs and tumour cells in head and neck cancer. Cell Death Discov 2024; 10:303. [PMID: 38926351 PMCID: PMC11208506 DOI: 10.1038/s41420-024-02053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are amongst the most aggressive, complex, and heterogeneous malignancies. The standard of care treatments for HNC patients include surgery, radiotherapy, chemotherapy, or their combination. However, around 50% do not benefit while suffering severe toxic side effects, costing the individuals and society. Decades have been spent to improve HNSCC treatment outcomes with only limited success. Much of the research in HNSCC treatment has focused on understanding the genetics of the HNSCC malignant cells, but it has become clear that tumour microenvironment (TME) plays an important role in the progression as well as treatment response in HNSCC. Understanding the crosstalk between cancer cells and TME is crucial for inhibiting progression and treatment resistance. Cancer-associated fibroblasts (CAFs), the predominant component of stroma in HNSCC, serve as the primary source of extra-cellular matrix (ECM) and various pro-tumoral composites in TME. The activation of CAFs in HNSCC is primarily driven by cancer cell-secreted molecules, which in turn induce phenotypic changes, elevated secretive status, and altered ECM production profile. Concurrently, CAFs play a pivotal role in modulating the cell cycle, stemness, epithelial-mesenchymal transition (EMT), and resistance to targeted and chemoradiotherapy in HNSCC cells. This modulation occurs through interactions with secreted molecules or direct contact with the ECM or CAF. Co-culture and 3D models of tumour cells and other TME cell types allows to mimic the HNSCC tumour milieu and enable modulating tumour hypoxia and reprograming cancer stem cells (CSC). This review aims to provide an update on the development of HNSCC tumour models comprising CAFs to obtain better understanding of the interaction between CAFs and tumour cells, and for providing preclinical testing platforms of current and combination with emerging therapeutics.
Collapse
Affiliation(s)
- Xinyang Li
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Celia González-Maroto
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
2
|
Post-Translational Modifications in Tumor-Associated Antigens as a Platform for Novel Immuno-Oncology Therapies. Cancers (Basel) 2022; 15:cancers15010138. [PMID: 36612133 PMCID: PMC9817968 DOI: 10.3390/cancers15010138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications (PTMs) are generated by adding small chemical groups to amino acid residues after the translation of proteins. Many PTMs have been reported to correlate with tumor progression, growth, and survival by modifying the normal functions of the protein in tumor cells. PTMs can also elicit humoral and cellular immune responses, making them attractive targets for cancer immunotherapy. This review will discuss how the acetylation, citrullination, and phosphorylation of proteins expressed by tumor cells render the corresponding tumor-associated antigen more antigenic and affect the immune response in multiple cancers. In addition, the role of glycosylated protein mucins in anti-cancer immunotherapy will be considered. Mucin peptides in combination with stimulating adjuvants have, in fact, been utilized to produce anti-tumor antibodies and vaccines. Finally, we will also outline the results of the clinical trial exploiting glycosylated-MUC1 as a vaccine in different cancers. Overall, PTMs in TAAs could be considered in future therapies to result in lasting anti-tumor responses.
Collapse
|
3
|
Wang Y, Chen H, Yu J, Kang W, To KF. Recent insight into the role and therapeutic potential of YAP/TAZ in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188787. [PMID: 36041574 DOI: 10.1016/j.bbcan.2022.188787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of cancer treatment, gastrointestinal (GI) cancers are still the most prevalent malignancies with high morbidity and mortality worldwide. Dysregulation of the Hippo signaling pathway has been recognized to play a critical role during cancer development and adopted for monitoring disease progression and therapy response. Despite the well-documented tumor proliferation and metastasis, recent efforts in two core Hippo components, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), have identified as the driving forces behind cancer metabolism, stemness, tumor immunity, and therapy resistance. Understanding the molecular mechanisms by which YAP/TAZ facilitates the tumorigenesis and progression of GI cancer, and identifying novel therapeutic strategies for targeting YAP/TAZ are crucial to GI cancer treatment and prevention. In this study, we summarize the latest findings on the function and regulatory mechanisms of YAP/TAZ in GI cancers, and highlight the translational significance of targeting YAP/TAZ for cancer therapies.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
4
|
Kuo YZ, Kang YR, Chang WL, Sim LCL, Hsieh TC, Chang CH, Wang YC, Tsai CJ, Huang LC, Tsai ST, Wu LW. YAP1 acts as a negative regulator of pro-tumor TAZ expression in esophageal squamous cell carcinoma. Cell Oncol 2022; 45:893-909. [PMID: 35930163 PMCID: PMC9579103 DOI: 10.1007/s13402-022-00695-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Although YAP1 and TAZ are believed to be equivalent downstream effectors of the Hippo pathway, differential expression of YAP1 or TAZ suggests distinct functions during cancer progression. The exact role of YAP1 and TAZ in esophageal cancer, the 6th leading cancer-related mortality in the world, remains elusive. Methods Following single or double manipulation of YAP1 or TAZ expression, we subjected these manipulated cells to proliferation, migration, invasion, and xenograft tumorigenesis assays. We used RT-qPCR and Western blotting to examine their expression in the manipulated cells with or without inhibition of transcription or translation. We also examined the impact of YAP1 or TAZ deregulation on clinical outcome of esophageal cancer patients from the TCGA database. Results We found that YAP1 functions as a tumor suppressor whereas TAZ exerts pro-tumor functions in esophageal cancer cells. We also found a significant increase in TAZ mRNA expression upon YAP1 depletion, but not vice versa, despite the downregulation of CTGF and CYR61, shared targets of YAP1 and TAZ, in xenografted tissue cells. In addition to transcriptional regulation, YAP1-mediated TAZ expression was found to occur via protein synthesis. Restored TAZ expression mitigated YAP1-mediated suppression of cellular behavior. By contrast, TAZ silencing reduced the promoting effect exerted by YAP1 depletion on cellular behaviors. The observed anti-tumor function of YAP1 was further supported by a better overall survival among esophageal cancer patients with a high YAP1 expression. Conclusion From our data we conclude that YAP1 functions as a suppressor and negatively regulates pro-tumor TAZ expression via transcriptional and translational control in esophageal cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13402-022-00695-4.
Collapse
Affiliation(s)
- Yi-Zih Kuo
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Ya-Rong Kang
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Wei-Lun Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 70428, Taiwan, Republic of China
| | - Lydia Chin-Ling Sim
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Tzu-Chin Hsieh
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Chu-Han Chang
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Ching-Jung Tsai
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Li-Chun Huang
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China.
| | - Li-Wha Wu
- Institutes of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China.
- Department of Laboratory Science and Technology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
5
|
Cheng Y, Mao M, Lu Y. The biology of YAP in programmed cell death. Biomark Res 2022; 10:34. [PMID: 35606801 PMCID: PMC9128211 DOI: 10.1186/s40364-022-00365-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
In the last few decades, YAP has been shown to be critical in regulating tumor progression. YAP activity can be regulated by many kinase cascade pathways and proteins through phosphorylation and promotion of cytoplasmic localization. Other factors can also affect YAP activity by modulating its binding to different transcription factors (TFs). Programmed cell death (PCD) is a genetically controlled suicide process present with the scope of eliminating cells unnecessary or detrimental for the proper development of the organism. In some specific states, PCD is activated and facilitates the selective elimination of certain types of tumor cells. As a candidate oncogene correlates with many regulatory factors, YAP can inhibit or induce different forms of PCD, including apoptosis, autophagy, ferroptosis and pyroptosis. Furthermore, YAP may act as a bridge between different forms of PCD, eventually leading to different outcomes regarding tumor development. Researches on YAP and PCD may benefit the future development of novel treatment strategies for some diseases. Therefore, in this review, we provide a general overview of the cellular functions of YAP and the relationship between YAP and PCD.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Lu
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China.
| |
Collapse
|
6
|
Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN, Gutkind JS. Genomic Hippo Pathway Alterations and Persistent YAP/TAZ Activation: New Hallmarks in Head and Neck Cancer. Cells 2022; 11:1370. [PMID: 35456049 PMCID: PMC9028246 DOI: 10.3390/cells11081370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a highly prevalent and deadly malignancy worldwide. The prognosis for locoregionally advanced HNSCC has not appreciably improved over the past 30 years despite advances in surgical, radiation, and targeted therapies and less than 20% of HNSCC patients respond to recently approved immune checkpoint inhibitors. The Hippo signaling pathway, originally discovered as a mechanism regulating tissue growth and organ size, transduces intracellular and extracellular signals to regulate the transcriptional co-activators YAP and TAZ. Alterations in the Hippo pathway resulting in persistent YAP and TAZ activation have emerged as major oncogenic drivers. Our analysis of the human HNSCC oncogenome revealed multiple genomic alterations impairing Hippo signaling and activating YAP and TAZ, which in turn contribute to HNSCC development. This includes mutations and deletions of the FAT1 gene (29%) and amplification of the WWTR1 (encoding TAZ, 14%) and YAP1 genes (8%), together representing one of the most genetically altered signaling mechanisms in this malignancy. Here, we discuss key elements of the mammalian Hippo pathway, detail mechanisms by which perturbations in Hippo signaling promote HNSCC initiation and progression and outline emerging strategies to target Hippo signaling vulnerabilities as part of novel multimodal precision therapies for HNSCC.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sydney I. Ramirez
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Disease and Global Public Health, Department of Internal Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | | | | | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
7
|
Griso AB, Acero-Riaguas L, Castelo B, Cebrián-Carretero JL, Sastre-Perona A. Mechanisms of Cisplatin Resistance in HPV Negative Head and Neck Squamous Cell Carcinomas. Cells 2022; 11:561. [PMID: 35159370 PMCID: PMC8834318 DOI: 10.3390/cells11030561] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the eighth most common cancers worldwide. While promising new therapies are emerging, cisplatin-based chemotherapy remains the gold standard for advanced HNSCCs, although most of the patients relapse due to the development of resistance. This review aims to condense the different mechanisms involved in the development of cisplatin resistance in HNSCCs and highlight future perspectives intended to overcome its related complications. Classical resistance mechanisms include drug import and export, DNA repair and oxidative stress control. Emerging research identified the prevalence of these mechanisms in populations of cancer stem cells (CSC), which are the cells mainly contributing to cisplatin resistance. The use of old and new CSC markers has enabled the identification of the characteristics within HNSCC CSCs predisposing them to treatment resistance, such as cell quiescence, increased self-renewal capacity, low reactive oxygen species levels or the acquisition of epithelial to mesenchymal transcriptional programs. In the present review, we will discuss how cell intrinsic and extrinsic cues alter the phenotype of CSCs and how they influence resistance to cisplatin treatment. In addition, we will assess how the stromal composition and the tumor microenvironment affect drug resistance and the acquisition of CSCs' characteristics through a complex interplay between extracellular matrix content as well as immune and non-immune cell characteristics. Finally, we will describe how alterations in epigenetic modifiers or other signaling pathways can alter tumor behavior and cell plasticity to induce chemotherapy resistance. The data generated in recent years open up a wide range of promising strategies to optimize cisplatin therapy, with the potential to personalize HNSCC patient treatment strategies.
Collapse
Affiliation(s)
- Ana Belén Griso
- Laboratory of Experimental Therapies and Biomarkers in Cancer, IdiPAZ, 28046 Madrid, Spain; (A.B.G.); (L.A.-R.)
| | - Lucía Acero-Riaguas
- Laboratory of Experimental Therapies and Biomarkers in Cancer, IdiPAZ, 28046 Madrid, Spain; (A.B.G.); (L.A.-R.)
| | - Beatriz Castelo
- Medical Oncology Department, University Hospital La Paz, 28046 Madrid, Spain;
| | | | - Ana Sastre-Perona
- Laboratory of Experimental Therapies and Biomarkers in Cancer, IdiPAZ, 28046 Madrid, Spain; (A.B.G.); (L.A.-R.)
| |
Collapse
|
8
|
Wu Q, Xu X, Miao X, Bao X, Li X, Xiang L, Wang W, Du S, Lu Y, Wang X, Yang D, Zhang J, Shen X, Li F, Lu S, Fan Y, Xu S, Chen Z, Wang Y, Teng H, Huang Z. YAP signaling in horizontal basal cells promotes the regeneration of olfactory epithelium after injury. Stem Cell Reports 2022; 17:664-677. [PMID: 35148842 PMCID: PMC9039758 DOI: 10.1016/j.stemcr.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 10/29/2022] Open
Abstract
The horizontal basal cells (HBCs) of olfactory epithelium (OE) serve as reservoirs for stem cells during OE regeneration, through proliferation and differentiation, which is important in recovery of olfactory function. However, the molecular mechanism of regulation of HBC proliferation and differentiation after injury remains unclear. Here, we found that yes-associated protein (YAP) was upregulated and activated in HBCs after OE injury. Deletion of YAP in HBCs led to impairment in OE regeneration and functional recovery of olfaction after injury. Mechanically, YAP was activated by S1P/S1PR2 signaling, thereby promoting the proliferation of HBCs and OE regeneration after injury. Finally, activation of YAP signaling enhanced the proliferation of HBCs and improved functional recovery of olfaction after OE injury or in Alzheimer's disease model mice. Taken together, these results reveal an S1P/S1PR2/YAP pathway in OE regeneration in response to injury, providing a promising therapeutic strategy for OE injury.
Collapse
Affiliation(s)
- Qian Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuemeng Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaomei Bao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiuchun Li
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ludan Xiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Siyu Du
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiwu Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fayi Li
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sheng Lu
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiren Fan
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shujie Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zihao Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ying Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Department of Transfusion Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310053, China.
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
9
|
Zhu M, Peng R, Liang X, Lan Z, Tang M, Hou P, Song JH, Mak CSL, Park J, Zheng SE, Huang A, Ma X, Chen R, Chang Q, Logothetis CJ, Jain AK, Lin SH, Katayama H, Hanash S, Wang G. P4HA2-induced prolyl hydroxylation suppresses YAP1-mediated prostate cancer cell migration, invasion, and metastasis. Oncogene 2021; 40:6049-6056. [PMID: 34471235 PMCID: PMC8526415 DOI: 10.1038/s41388-021-02000-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Yes-associated protein 1 (YAP1), a key player in the Hippo pathway, has been shown to play a critical role in tumor progression. However, the role of YAP1 in prostate cancer cell invasion, migration, and metastasis is not well defined. Through functional, transcriptomic, epigenomic, and proteomic analyses, we showed that prolyl hydroxylation of YAP1 plays a critical role in the suppression of cell migration, invasion, and metastasis in prostate cancer. Knockdown (KD) or knockout (KO) of YAP1 led to an increase in cell migration, invasion, and metastasis in prostate cancer cells. Microarray analysis showed that the EMT pathway was activated in Yap1-KD cells. ChIP-seq analysis showed that YAP1 target genes are enriched in pathways regulating cell migration. Mass spectrometry analysis identified P4H prolyl hydroxylase in the YAP1 complex and YAP1 was hydroxylated at multiple proline residues. Proline-to-alanine mutations of YAP1 isoform 3 identified proline 174 as a critical residue, and its hydroxylation suppressed cell migration, invasion, and metastasis. KO of P4ha2 led to an increase in cell migration and invasion, which was reversed upon Yap1 KD. Our study identified a novel regulatory mechanism of YAP1 by which P4HA2-dependent prolyl hydroxylation of YAP1 determines its transcriptional activities and its function in prostate cancer metastasis.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruiqing Peng
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin Liang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiwon Park
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shui-er Zheng
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ailing Huang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruidong Chen
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhinav K. Jain
- Department of Epigenetics and Molecular Carcinogenesis & Epigenomics Profiling Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Zhou Y, Jiang Y, Peng W, Li M, Chen H, Chen S. The diverse roles of YAP in the regulation of human nasal epithelial remodeling. Tissue Cell 2021; 72:101592. [PMID: 34303282 DOI: 10.1016/j.tice.2021.101592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Yes-associated protein (YAP) is essential in maintaining tissue size. Aberrant epithelial remodeling is a key pathological alteration in both inflammation and benign tumors in nasal mucosa. We sought to investigate the expression and localization patterns of YAP in remodeled nasal epithelium of basal cell hyperplasia, goblet cell metaplasia and squamous metaplasia. YAP expression patterns were evaluated in tissues obtained from patients with NP (n = 45) and IP (n = 27), and control subjects with septal deviation (n = 17) and tissue-derived primary cell cultures. Compared to the normal epithelium, expressions of YAP were significantly higher in basal cell hyperplasia (NP, 11.4-fold; IP, 19.6-fold), followed by squamous metaplasia (8.2-fold) and mild to moderate goblet cell metaplasia (2.9-fold); while their expression was lower in severe goblet cell metaplasia (3.3-fold). Our resultsshowed that: 1) ectopic nuclear YAP expression associated with p63+ basal cell hyperplasia and the high proliferative potential epithelial cells; 2) increase of cytoplasmic YAP correlated with mild to moderate goblet cell metaplasia; 3) increase of cytoplasmic YAP correlated with squamous cell metaplasia. The in vitro cell model also demonstrated almost concordant changes of YAP with the mucosa findings. Different YAP expression and localization patterns should play critical but differential roles in the nasal epithelial remodeling processes under mucosal inflammation and benign tumor formation.
Collapse
Affiliation(s)
- Yutao Zhou
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yumei Jiang
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Peng
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingfei Li
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hexin Chen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Songling Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Vrbský J, Vinarský V, Perestrelo AR, De La Cruz JO, Martino F, Pompeiano A, Izzi V, Hlinomaz O, Rotrekl V, Sudol M, Pagliari S, Forte G. Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases. Genomics 2021; 113:1349-1365. [PMID: 33713822 DOI: 10.1016/j.ygeno.2021.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional co-activator downstream of Hippo pathway. The pathway exerts crucial roles in organogenesis and its dysregulation is associated with the spreading of different cancer types. YAP1 gene encodes for multiple protein isoforms, whose specific functions are not well defined. We demonstrate the splicing of isoform-specific mRNAs is controlled in a stage- and tissue-specific fashion. We designed expression vectors encoding for the most-represented isoforms of YAP1 with either one or two WW domains and studied their specific signaling activities in YAP1 knock-out cell lines. YAP1 isoforms display both common and unique functions and activate distinct transcriptional programs, as the result of their unique protein interactomes. By generating TEAD-based transcriptional reporter cell lines, we demonstrate individual YAP1 isoforms display unique effects on cell proliferation and differentiation. Finally, we illustrate the complexity of the regulation of Hippo-YAP1 effector in physiological and in pathological conditions of the heart.
Collapse
Affiliation(s)
- Jan Vrbský
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic.
| | - Vladimir Vinarský
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Jorge Oliver De La Cruz
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Fabiana Martino
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic; Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Antonio Pompeiano
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Valerio Izzi
- University of Oulu, FI-90014 Oulu, Finland; Finnish Cancer Institute, 00130 Helsinki, Finland
| | - Ota Hlinomaz
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Marius Sudol
- Department of Physiology, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, 117597, Singapore; Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, New York 10029, United States of America
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
12
|
LeBlanc L, Ramirez N, Kim J. Context-dependent roles of YAP/TAZ in stem cell fates and cancer. Cell Mol Life Sci 2021; 78:4201-4219. [PMID: 33582842 PMCID: PMC8164607 DOI: 10.1007/s00018-021-03781-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Hippo effectors YAP and TAZ control cell fate and survival through various mechanisms, including transcriptional regulation of key genes. However, much of this research has been marked by conflicting results, as well as controversy over whether YAP and TAZ are redundant. A substantial portion of the discordance stems from their contradictory roles in stem cell self-renewal vs. differentiation and cancer cell survival vs. apoptosis. In this review, we present an overview of the multiple context-dependent functions of YAP and TAZ in regulating cell fate decisions in stem cells and organoids, as well as their mechanisms of controlling programmed cell death pathways in cancer.
Collapse
Affiliation(s)
- Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Nereida Ramirez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA. .,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Zeng R, Dong J. The Hippo Signaling Pathway in Drug Resistance in Cancer. Cancers (Basel) 2021; 13:cancers13020318. [PMID: 33467099 PMCID: PMC7830227 DOI: 10.3390/cancers13020318] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Although great breakthroughs have been made in cancer treatment following the development of targeted therapy and immune therapy, resistance against anti-cancer drugs remains one of the most challenging conundrums. Considerable effort has been made to discover the underlying mechanisms through which malignant tumor cells acquire or develop resistance to anti-cancer treatment. The Hippo signaling pathway appears to play an important role in this process. This review focuses on how components in the human Hippo signaling pathway contribute to drug resistance in a variety of cancer types. This article also summarizes current pharmacological interventions that are able to target the Hippo signaling pathway and serve as potential anti-cancer therapeutics. Abstract Chemotherapy represents one of the most efficacious strategies to treat cancer patients, bringing advantageous changes at least temporarily even to those patients with incurable malignancies. However, most patients respond poorly after a certain number of cycles of treatment due to the development of drug resistance. Resistance to drugs administrated to cancer patients greatly limits the benefits that patients can achieve and continues to be a severe clinical difficulty. Among the mechanisms which have been uncovered to mediate anti-cancer drug resistance, the Hippo signaling pathway is gaining increasing attention due to the remarkable oncogenic activities of its components (for example, YAP and TAZ) and their druggable properties. This review will highlight current understanding of how the Hippo signaling pathway regulates anti-cancer drug resistance in tumor cells, and currently available pharmacological interventions targeting the Hippo pathway to eradicate malignant cells and potentially treat cancer patients.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +1-402-559-5596; Fax: +1-402-559-4651
| |
Collapse
|
14
|
|
15
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Dong T, Yuan Y, Xiang X, Sang S, Shen H, Wang L, Yang C, Li F, Li H, Zheng S. High cytoplasmic YAP1 expression predicts a poor prognosis in patients with colorectal cancer. PeerJ 2020; 8:e10397. [PMID: 33240680 PMCID: PMC7680625 DOI: 10.7717/peerj.10397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Yes associated protein 1 (YAP1), which is a standout amongst the most essential effectors of the Hippo pathway, assumes a vital part in a few kinds of cancer. However, whether YAP1 is an oncogene in CRC (colorectal cancer) remains controversial, and the association between the subcellular localization of YAP1 and clinical implications in CRC remains unknown. Patients and methods In this study, we investigated the subcellular localization of YAP1 in CRC cells by immunohistochemistry and then associate these findings with clinical information in a large CRC cohort with 919 CRC patients. Results The results show that CRC tissues has a significant higher expression of cytoplasmic YAP1 compared to adjacent normal tissues (all P < 0.001). Cytoplasmic YAP1 expression was significantly associated with the number of lymph nodes removed and differentiation grade (all P < 0.001). Furthermore, after correcting confounding variables, for example, TNM stage and differentiation grade, the multivariate Cox analysis confirmed cytoplasmic YAP1-high subgroup had a significant shorter DFS (HR = 3.255; 95% CI [2.290-4.627]; P < 0.001) and DSS (HR = 4.049; 95% CI [2.400-6.830]; P < 0.001) than cytoplasmic YAP1-low subgroup. High cytoplasmic YAP1 expression is associated with a worse survival in stage III CRC patients who received chemotherapy. Conclusion Cytoplasmic YAP1 could be could be utilized as a prognosis factor in CRC patients, and may be an indicator of whether certain patients population could benefit from postoperative chemotherapy.
Collapse
Affiliation(s)
- Tianqi Dong
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Yuncang Yuan
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Xudong Xiang
- Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shuping Sang
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Hao Shen
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Lei Wang
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Chunyan Yang
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Fangfang Li
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Hongliang Li
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Shangyong Zheng
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
17
|
Cao L, Yao M, Sasano H, Sun PL, Gao H. YAP increases response to Trastuzumab in HER2-positive Breast Cancer by enhancing P73-induced apoptosis. J Cancer 2020; 11:6748-6759. [PMID: 33046997 PMCID: PMC7545685 DOI: 10.7150/jca.48535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
The role of the Yes-associated protein (YAP) in oncogenesis and progression of breast cancer remains controversial. Meanwhile, development of therapeutic resistance to trastuzumab, a common breast cancer treatment administered after chemotherapy, is a significant challenge in the treatment of HER2-positive breast cancer. We, therefore, analyzed the role of YAP in trastuzumab resistance in HER2-positive-breast carcinoma cells in vitro and evaluated the status of YAP and related proteins in patient-derived breast carcinoma tissues by immunohistochemistry. YAP expression was observed in both BT474-TS (trastuzumab-sensitive) and BT474-TR (trastuzumab-resistant) cells. Treatment with trastuzumab increased expression of nuclear-YAP (N-YAP) in BT474-TS cells, whereas BT474-TR cells showed a decrease in N-YAP expression following trastuzumab treatment. YAP silencing significantly reduced trastuzumab-induced inhibitory effects in BT474-TS cells. YAP-silenced cells also showed decreased apoptosis and significantly lower p73 levels following trastuzumab treatment. Combined protein kinase B (AKT) inhibitor-trastuzumab treatment significantly inhibited BT474-TR cell proliferation, resulting in increased N-YAP and p73 expression, as well as apoptosis. In both paclitaxel, doxorubicin and cyclophosphamide (TAC)-treated, and docetaxel, carboplatin, and trastuzumab (TCbH)-treated groups; the pathological complete response (pCR) ratios were inversely correlated with p-AKT status in biopsy specimens, while YAP and p73 status were positively correlated with the pCR ratio in the biopsy specimens of the TCbH group. Our results show that YAP is involved in trastuzumab resistance in HER2-positive breast carcinoma cells and that YAP and AKT may be developed as prognostic markers of neoadjuvant trastuzumab therapy in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Lanqing Cao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Min Yao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
| | - Ping-Li Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hongwen Gao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
18
|
Li D, Bao J, Yao J, Li J. lncRNA USP2-AS1 promotes colon cancer progression by modulating Hippo/YAP1 signaling. Am J Transl Res 2020; 12:5670-5682. [PMID: 33042447 PMCID: PMC7540120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Dysregulation of Hippo signaling by long non-coding RNA (lncRNA) contributes to colon adenocarcinoma (COAD) progression, while the underlying mechanisms remain elusive. Our study shows that lncRNA USP2-AS1 is a Yes-associated protein 1 (YAP1) binding lncRNA, and inactivates Hippo signaling in COAD cells. Moreover, our data indicated that USP2-AS1 lowered the phosph-YAP (S127), elevated the total level of YAP1, and triggered the expression of downstream target genes in COAD cells. The loss- and gain-of function assays demonstrated that USP2-AS1 promotes cellular proliferation and metastasis of COAD cells. Clinically, the USP2-AS1 levels were significantly elevated in COAD tissues and were positively correlated with tumor grade, size, and TNM stage. Collectively, these findings demonstrated that USP2-AS1 modulates and regulates Hippo signaling in COAD and could be a valuable therapeutic target.
Collapse
Affiliation(s)
- Dongying Li
- Department of Digestive, The First Affiliated Hospital of Zhengzhou University No. 1 East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Jie Bao
- Department of Digestive, The First Affiliated Hospital of Zhengzhou University No. 1 East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Jiayuan Yao
- Department of Digestive, The First Affiliated Hospital of Zhengzhou University No. 1 East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Jiansheng Li
- Department of Digestive, The First Affiliated Hospital of Zhengzhou University No. 1 East Jianshe Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
19
|
Shin E, Kim J. The potential role of YAP in head and neck squamous cell carcinoma. Exp Mol Med 2020; 52:1264-1274. [PMID: 32859951 PMCID: PMC8080831 DOI: 10.1038/s12276-020-00492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023] Open
Abstract
The transcriptional cofactor YAP and its inhibitory regulators, Hippo kinases and adapter proteins, constitute an evolutionarily conserved signaling pathway that controls organ size and cell fate. The activity of the Hippo-YAP pathway is determined by a variety of intracellular and intercellular cues, such as cell polarity, junctions, density, mechanical stress, energy status, and growth factor signaling. Recent studies have demonstrated that YAP can induce the expression of a set of genes that allow cancer cells to gain a survival advantage and aggressive behavior. Comprehensive genomic studies have revealed frequent focal amplifications of the YAP locus in human carcinomas, including head and neck squamous cell carcinoma (HNSCC). Moreover, FAT1, which encodes an upstream component of Hippo signaling, is one of the most commonly altered genes in HNSCC. In this review, we discuss the causes and functional consequences of YAP dysregulation in HNSCC. We also address interactions between YAP and other oncogenic drivers of HNSCC. Abnormal activity of a protein involved in cell proliferation may influence the progression of head and neck cancers. Head and neck squamous cell carcinoma (HNSCC) affects the skin, throat, mouth and nose tissues. Disruption to the Hippo-YAP signaling pathway, which plays a key role in cell proliferation and differentiation, is implicated in multiple cancers. Joon Kim and Eunbie Shin at the Korea Advanced Institute of Science and Technology, Daejeon, South Korea, reviewed recent research into the role of YAP in HNSCC. Abnormal YAP protein activity triggers the expression of genes that encourage cancer cell proliferation. Mice with over-expressed YAP showed tissue overgrowth and tumor formation. High YAP levels have been found at the invasive front of HNSCC tumors, suggesting a role in metastasis. Further research is needed to verify whether YAP is a potential therapeutic target.
Collapse
Affiliation(s)
- Eunbie Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
20
|
Tsinias G, Nikou S, Mastronikolis N, Bravou V, Papadaki H. Expression and prognostic significance of YAP, TAZ, TEAD4 and p73 in human laryngeal cancer. Histol Histopathol 2020; 35:983-995. [PMID: 32378727 DOI: 10.14670/hh-18-228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The Hippo signaling pathway plays a critical role in organ size control and tissue homeostasis and its perturbation is associated with tumorigenesis. YAP (Yes associated protein) and TAZ (transcriptional co-activator with PDZ- binding motif) are the major nuclear effectors of the Hippo pathway interacting with TEADs (TEA domain) and p73 transcriptional factors to regulate gene expression. Altered expression of the above proteins promotes tumor initiation, progression and metastasis in a variety of cancer types. This study addresses their expression and prognostic significance in human laryngeal carcinoma. METHODS Protein expression of YAP, TAZ, TEAD4 and p73 was examined by immunohistochemistry in 121 human laryngeal squamous cell carcinomas. Correlations with clinicopathological data and survival were evaluated. RESULTS All proteins were overexpressed in human laryngeal carcinomas compared to non-neoplastic adjacent epithelium. High expression of YAP, TAZ, TEAD4 and p73 correlated significantly with high grade, advanced stage, supraglottic location of tumor, nodal metastases and recurrence. Furthermore, high expression of all proteins was significantly associated with poor overall and disease- free survival. p73 expression proved to be an independent predictive factor of survival and YAP expression proved to be an independent predictive factor of disease recurrence. CONCLUSIONS Deregulation of the expression of the Hippo pathway proteins is implicated in human laryngeal carcinogenesis and YAP and p73 have prognostic significance in the outcome of the disease.
Collapse
Affiliation(s)
- Georgios Tsinias
- Department of Otolaryngology, Head and Neck Surgery, University General Hospital of Patras, Patras, Greece.,Department of Anatomy, Histology and Embryology, University of Patras School of Medicine, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy, Histology and Embryology, University of Patras School of Medicine, Patras, Greece
| | - Nicholas Mastronikolis
- Department of Otolaryngology, Head and Neck Surgery, University General Hospital of Patras, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy, Histology and Embryology, University of Patras School of Medicine, Patras, Greece.
| | - Helen Papadaki
- Department of Anatomy, Histology and Embryology, University of Patras School of Medicine, Patras, Greece.
| |
Collapse
|
21
|
Omori H, Nishio M, Masuda M, Miyachi Y, Ueda F, Nakano T, Sato K, Mimori K, Taguchi K, Hikasa H, Nishina H, Tashiro H, Kiyono T, Mak TW, Nakao K, Nakagawa T, Maehama T, Suzuki A. YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma. SCIENCE ADVANCES 2020; 6:eaay3324. [PMID: 32206709 PMCID: PMC7080500 DOI: 10.1126/sciadv.aay3324] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/18/2019] [Indexed: 05/23/2023]
Abstract
Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common group of cancers in the world, and patients have a poor prognosis. Here, we present data indicating that YAP1 may be a strong driver of the onset and progression of oral SCC (OSCC), a major subtype of HNSCC. Mice with tongue-specific deletion of Mob1a/b and thus endogenous YAP1 hyperactivation underwent surprisingly rapid and highly reproducible tumorigenesis, developing tongue carcinoma in situ within 2 weeks and invasive SCC within 4 weeks. In humans, precancerous tongue dysplasia displays YAP1 activation correlating with reduced patient survival. Combinations of molecules mutated in OSCC may increase and sustain YAP1 activation to the point of oncogenicity. Strikingly, siRNA or pharmacological inhibition of YAP1 blocks murine OSCC onset in vitro and in vivo. Our work justifies targeting YAP1 as therapy for OSCC and perhaps HNSCC, and our mouse model represents a powerful tool for evaluating these agents.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Biomarkers, Tumor
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Disease Progression
- Disease Susceptibility
- Gene Expression
- Humans
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins/deficiency
- Mice
- Mice, Knockout
- Mouth Neoplasms/etiology
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/mortality
- Mouth Neoplasms/pathology
- Oncogene Proteins
- Prognosis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Hirofumi Omori
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yosuke Miyachi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Fumihito Ueda
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takafumi Nakano
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kuniaki Sato
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Kenichi Taguchi
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Hiroki Hikasa
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hironori Tashiro
- Department of Women’s Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Tak Wah Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kazuwa Nakao
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206:107448. [PMID: 31836455 PMCID: PMC6995404 DOI: 10.1016/j.pharmthera.2019.107448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Fails
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
23
|
Guo W, Zeng H, Zheng J, He Y, Zhuang X, Cai J, Huang H, Huang H, Xu M. Preliminary study on the clinical significance of kinesin Kif18a in nonsmall cell lung cancer: An analysis of 100 cases. Medicine (Baltimore) 2020; 99:e19011. [PMID: 31977917 PMCID: PMC7004722 DOI: 10.1097/md.0000000000019011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the expression of Kif18A in cancerous and paracancerous tissues from 100 patients with nonsmall cell lung cancer (NSCLC).This was a prospective study of 100 patients with pathologically confirmed NSCLC (adenocarcinoma and squamous cell carcinoma [SCC], n = 50/group) that were operated at the Quanzhou First Hospital Affiliated to Fujian Medical University between June 2015 and December 2016. Kif18A protein expression in cancerous and paracancerous normal tissues was detected by western blot and immunohistochemistry.The expression of the Kif18A protein was higher in adenocarcinoma and SCC tissues than in the corresponding paracancerous normal tissues. The expression of the Kif18A protein was higher in highly differentiated tumors, in patients with lymph node metastasis (vs no lymph node metastasis), adenocarcinoma, and in stage III NSCLC. There were no associations between Kif18A expression and age, gender, and pathologic type.The expression of the Kif18A protein by immunohistochemistry was higher in NSCLC tissues than in normal tissues, and was associated with tumor differentiation, lymph node metastasis, and TNM staging. These results could provide a theoretical basis for novel molecular targeted therapies against NSCLC.
Collapse
Affiliation(s)
- Weifeng Guo
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Huiqing Zeng
- Fujian Medical University Union Hospital, Fuzhou
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen
| | - Jinyang Zheng
- Department of Pathology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yueming He
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Xibin Zhuang
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Jinghuang Cai
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen
| | - Hong Huang
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Hongbo Huang
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Meng Xu
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| |
Collapse
|
24
|
Santos-de-Frutos K, Segrelles C, Lorz C. Hippo Pathway and YAP Signaling Alterations in Squamous Cancer of the Head and Neck. J Clin Med 2019; 8:jcm8122131. [PMID: 31817001 PMCID: PMC6947155 DOI: 10.3390/jcm8122131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer affects the upper aerodigestive tract and is the sixth leading cancer worldwide by incidence and the seventh by cause of death. Despite significant advances in surgery and chemotherapy, molecularly targeted therapeutic options for this type of cancer are scarce and long term survival rates remain low. Recently, comprehensive genomic studies have highlighted the most commonly altered genes and signaling pathways in this cancer. The Hippo-YAP pathway has been identified as a key oncogenic pathway in multiple tumors. Expression of genes controlled by the Hippo downstream transcriptional coactivators YAP (Yes-associated protein 1) and TAZ (WWTR1, WW domain containing transcription regulator 1) is widely deregulated in human cancer including head and neck squamous cell carcinoma (HNSCC). Interestingly, YAP/TAZ signaling might not be as essential for the normal homeostasis of adult tissues as for oncogenic growth, altogether making the pathway an amenable therapeutic target in cancer. Recent advances in the role of Hippo-YAP pathway in HNSCC have provided evidence that genetic alterations frequent in this type of cancer such as PIK3CA (phosphatidylinositide 3-kinase catalytic subunit alpha) overexpression or FAT1 (FAT atypical cadherin 1) functional loss can result in YAP activation. We discuss current therapeutic options targeting this pathway which are currently in use for other tumor types.
Collapse
Affiliation(s)
- Karla Santos-de-Frutos
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain; (K.S.-d.-F.); (C.S.)
- Molecular Oncology, Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041 Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain; (K.S.-d.-F.); (C.S.)
- Molecular Oncology, Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ave Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain; (K.S.-d.-F.); (C.S.)
- Molecular Oncology, Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ave Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-4962-521; Fax: +34-91-3466-484
| |
Collapse
|
25
|
Zhang W, Ge H, Jiang Y, Huang R, Wu Y, Wang D, Guo S, Li S, Wang Y, Jiang H, Cheng J. Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma. Cancer Lett 2019; 469:510-523. [PMID: 31765738 DOI: 10.1016/j.canlet.2019.11.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
Abstract
The bromodomain and extra-terminal domain protein BRD4 has been recognized as a key oncogenic driver and a druggable target against cancer. However, these BRD4 inhibitors as monotherapy were moderate in efficacy in preclinical models. Here we utilized a small-scale drug synergy screen that combined the BRD4 inhibitor (JQ1) with 8 epigenetic or transcriptional targeted chemicals and identified THZ1 (a CDK7 inhibitor) acting synergistically with JQ1 against head neck squamous cell carcinoma (HNSCC). Combinational JQ1 and THZ1 treatment impaired cell proliferation, induced apoptosis and senescence, which were largely recapitulated by dual BRD4 and CDK7 knockdown. Combinational treatment inhibited tumor growth and progression in 4NQO-induced HNSCC and xenograft animal models. RNA-sequencing analyses identified hundreds of differentially expressed genes modulated by JQ1 and THZ1, which were significantly enriched in categories including cell cycle and apoptosis. Mechanistically, combinational treatment reduced H3K27ac enrichment in the super-enhancer region of YAP1, which inactivated its transcription and in turn induced anti-proliferative and pro-apoptotic effects. Combined BRD4 and CDK7 upregulation associated with worst prognosis in HNSCC patients. Collectively, our findings reveal a novel therapeutic strategy of pharmacological inhibitions of BRD4 and CDK7 against HNSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Han Ge
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yue Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Rong Huang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Dongmiao Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Songsong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
26
|
Szelachowska J, Donizy P, Ratajczak-Wielgomas K, Halon A, Zielecka-Debska D, Lichon K, Maciejczyk A, Lata-Wozniak E, Piotrowska A, Matkowski R. The effect of YAP expression in tumor cells and tumor stroma on the prognosis of patients with squamous cell carcinoma of the oral cavity floor and oral surface of the tongue. Oncol Lett 2019; 18:3561-3570. [PMID: 31579068 PMCID: PMC6757271 DOI: 10.3892/ol.2019.10695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022] Open
Abstract
Classic prognostic factors, such as clinical advancement of the disease and histological grade of the tumor, continue to have a decisive role in the selection of therapeutic strategy in patients with carcinoma of the oral cavity floor and oral surface of the tongue (OCC). YAP1/Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif, WWTR1 (TAZ) proteins, appear to be promising markers that may be used to develop personalized therapies. The aim of the present study was to analyze the associations between the levels of YAP, TAZ and tyrosine-protein phosphatase non-receptor type 14 (PTPN14) and to determine whether the increased expression of YAP and TAZ had an effect on tumor cell proliferation, as determined by minichromosome maintenance 7, DNA replication licensing factor 7 expression. Their prognostic value was also assessed. In total, 127 patients who underwent radical surgery and were subjected to adjuvant radiation therapy due to squamous cell OCC were enrolled in the present study. The results demonstrated an evident effect as YAP expression increased in cancer-associated fibroblasts, which induced unfavorable prognosis in patients. In addition, a positive association between proliferation in cancer cells and YAP expression in stromal cells was observed. A lack of YAP expression in the cytoplasm of tumor cells was a factor for poor prognosis with regard to disease-free survival and disease specific survival. No statistically significant correlations between YAP and TAZ expression and PTPN14 expression were identified, nor was a correlation between cell proliferation and the presence of YAP and TAZ in tumor cells observed. The results indicated that YAP expression levels may support the development of personalized therapies for patients.
Collapse
Affiliation(s)
- Jolanta Szelachowska
- Department of Oncology, Gynaecological Oncology Clinic, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dominika Zielecka-Debska
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
- Department of Oncology, Clinic of Surgical Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Krystian Lichon
- Department of Oncology, Gynaecological Oncology Clinic, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Adam Maciejczyk
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
- Department of Oncology, Clinic of Radiation Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Ewelina Lata-Wozniak
- Department of Oncology, Gynaecological Oncology Clinic, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Histology and Embryology Division, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Rafal Matkowski
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
- Department of Oncology, Clinic of Surgical Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| |
Collapse
|
27
|
Britt EL, Raman S, Leek K, Sheehy CH, Kim SW, Harada H. Combination of fenretinide and ABT-263 induces apoptosis through NOXA for head and neck squamous cell carcinoma treatment. PLoS One 2019; 14:e0219398. [PMID: 31276572 PMCID: PMC6611623 DOI: 10.1371/journal.pone.0219398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
The overall survival for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) remains low, with little progress made over decades. Cisplatin, most frequently used for HNSCC treatment, activates mitochondria-dependent apoptosis through the BCL-2 family proteins. We have previously demonstrated that the pro-apoptotic BH3-only protein, NOXA plays a critical role in this process. NOXA binds and inactivates anti-apoptotic MCL-1, while the BCL-2 inhibitor ABT-263 is capable of inactivating anti-apoptotic BCL-2 and BCL-XL. We hypothesized that combination of NOXA and ABT-263 treatment increases cell death by simultaneously inhibiting anti-apoptotic BCL-2 family proteins in HNSCC cells. Here, we demonstrated that combination of ectopic NOXA expression and ABT-263 enhanced apoptosis in p53-inactive, p53 wild-type, and human papillomavirus (HPV)-positive HNSCC cell lines. Furthermore, a retinoid derivative and an endoplasmic reticulum stress inducer, fenretinide, induced NOXA, and combination of fenretinide and ABT-263 strongly induced apoptosis in HNSCC cells regardless of the HPV or p53 statuses. We also found that MCL-1 and BCL-XL are the primary targets of apoptosis induced by the combinations. These results will develop novel and alternative therapeutic strategies to directly modify the cell death machinery in HNSCC.
Collapse
Affiliation(s)
- Erin L. Britt
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarina Raman
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kendall Leek
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Casey H. Sheehy
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sung W. Kim
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
28
|
YAP, ΔNp63, and β-Catenin Signaling Pathways Are Involved in the Modulation of Corneal Epithelial Stem Cell Phenotype Induced by Substrate Stiffness. Cells 2019; 8:cells8040347. [PMID: 31013745 PMCID: PMC6523807 DOI: 10.3390/cells8040347] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies have established that the phenotype of epithelial stem cells residing in the corneal periphery (the limbus) depends on this niche’s distinct biomechanical properties. However, the signaling pathways underlying this dependency are still poorly understood. To address this issue, we investigated the effect of substrate stiffness on the migration, proliferation, and molecular phenotype of human limbal epithelial stem cells (LESCs). Specifically, we demonstrated that cells grown on collagen-based substrates with limbus-like compliance showed higher proliferation and stratification and lower migration capabilities, as well as higher levels of pro-proliferative markers Ki67 and β-Catenin, and LESC markers ΔNp63, ABCG2, and CK15. In contrast, cells on stiffer substrates lost these stem/progenitor cell markers, but instead expressed the key mechanotransduction factor YAP, as well as elevated levels of BMP4, a promotor of cell differentiation known to be negatively regulated by Wnt/β-Catenin signaling. This data allowed us to propose a new model that integrates the various molecular pathways involved in LESC response to substrate stiffness. This model will potentially be a useful guide to future research on the mechanisms underlying LESC loss following fibrosis-causing injuries.
Collapse
|
29
|
Ono S, Nakano K, Takabatake K, Kawai H, Nagatsuka H. Immunohistochemistry of YAP and dNp63 and survival analysis of patients bearing precancerous lesion and oral squamous cell carcinoma. Int J Med Sci 2019; 16:766-773. [PMID: 31217745 PMCID: PMC6566736 DOI: 10.7150/ijms.29995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/21/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Yes-associated protein (YAP) is a candidate oncogene in various human cancers, and recently, it has been reported that YAP expression and its activity was enhanced by ΔNp63. However, the role of YAP and ΔNp63 expression in carcinogenesis and progression of oral squamous cell carcinoma (OSCC) has been unknown. Therefore, we investigated how YAP and ΔNp63 influence carcinogenesis and progression of OSCC. Methods: We performed immunohistochemical analyses in whole tissue samples to investigate YAP and ΔNp63 expression in normal oral mucosa, epithelial hyperplasia, oral epithelial dysplasia (OED; low/high grade), carcinoma in situ (CIS), and OSCC. Furthermore, in OSCC, we analyzed clinical significance by using Kaplan-Meier survival analysis. Results: In normal oral mucosa and epithelial hyperplasia, YAP expression was primarily confined to the basal and parabasal layers, but YAP expression was elevated in OED, CIS, and OSCC. In OED, YAP and ΔNp63 expression levels were markedly higher in high grade than in low grade. In OSCC groups, YAP and ΔNp63 expression patterns tended to differ according to histopathological differentiation of OSCC. Furthermore, the YAP high expression group, which showed YAP staining in >50% positive cells with strong cytoplasmic staining or >10% positive cells with nuclear reactivity, showed a tendency to have a poor survival rate. Conclusion: YAP and ΔNp63 expression levels correlated with grade of oral OED. Additionally, YAP expression was associated with OSCC survival rate. Our results suggested that YAP and ΔNp63 expression might serve as predictive markers to distinguish OSCC development and progression.
Collapse
Affiliation(s)
- Sawako Ono
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
30
|
Jamous A, Salah Z. WW-Domain Containing Protein Roles in Breast Tumorigenesis. Front Oncol 2018; 8:580. [PMID: 30619734 PMCID: PMC6300493 DOI: 10.3389/fonc.2018.00580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are key factors in executing protein function. These interactions are mediated through different protein domains or modules. An important domain found in many different types of proteins is WW domain. WW domain-containing proteins were shown to be involved in many human diseases including cancer. Some of these proteins function as either tumor suppressor genes or oncogenes, while others show dual identity. Some of these proteins act on their own and alter the function(s) of specific or multiple proteins implicated in cancer, others interact with their partners to compose WW domain modular pathway. In this review, we discuss the role of WW domain-containing proteins in breast tumorigenesis. We give examples of specific WW domain containing proteins that play roles in breast tumorigenesis and explain the mechanisms through which these proteins lead to breast cancer initiation and progression. We discuss also the possibility of using these proteins as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Abrar Jamous
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| | - Zaidoun Salah
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| |
Collapse
|
31
|
The Ambivalent Function of YAP in Apoptosis and Cancer. Int J Mol Sci 2018; 19:ijms19123770. [PMID: 30486435 PMCID: PMC6321280 DOI: 10.3390/ijms19123770] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein, a core regulator of the Hippo-YAP signaling pathway, plays a vital role in inhibiting apoptosis. Thus, several studies and reviews suggest that yes-associated protein is a good target for treating cancer. Unfortunately, more and more evidence demonstrates that this protein is also an essential contributor of p73-mediated apoptosis. This questions the concept that yes-associated protein is always a good target for developing novel anti-cancer drugs. Thus, the aim of this review was to evaluate the clinical relevance of yes-associated protein for cancer pathophysiology. This review also summarized the molecules, processes and drugs, which regulate Hippo-YAP signaling and discusses their effect on apoptosis. In addition, issues are defined, which should be addressed in the future in order to provide a solid basis for targeting the Hippo-YAP signaling pathway in clinical trials.
Collapse
|
32
|
Yes-Associated Protein 1 as a Novel Prognostic Biomarker for Gastrointestinal Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4039173. [PMID: 30539010 PMCID: PMC6261404 DOI: 10.1155/2018/4039173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Background Yes-associated protein 1 (YAP1) is an effector of Hippo pathway, which plays a significant role in cell proliferation and tumor progression. The relationship between YAP1 and gastrointestinal cancer has been explored in many previous studies. We conducted a meta-analysis to explore the prognostic effect of YAP1 in patients with gastrointestinal cancer. Methods A systematic search was performed through the PubMed, Web of Science, Embase, and Cochrane library databases to collect eligible studies. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to evaluate the relationship between YAP1 expression and gastrointestinal cancer clinical outcomes. Results A total of 2941 patients from 18 studies were enrolled. The results showed that elevated YAP1 expression predicted a poor prognosis in gastrointestinal cancer (HR = 1.56; 95% CI: 1.29-1.89; P < 0.001). Subgroup analyses indicated significant association between YAP1 overexpression and shorter OS of patients with esophageal squamous cell carcinoma (HR = 1.85; 95% CI: 1.25-2.73; P = 0.002), gastric cancer (HR = 1.41,95% CI: 1.02-1.95; P = 0.037), and colorectal cancer (pooled HR = 1.75; 95% CI: 1.42-2.15; P < 0.001). However, YAP1 expression did not affect DFS of patients with gastrointestinal cancer (pooled HR = 1.33; 95% CI: 0.95-1.88; P = 0.101). Conclusion Elevated YAP1 expression in patients with gastrointestinal cancer might be related to shorter OS. YAP1 protein could serve as a potential predictor of poor prognosis in gastrointestinal cancer.
Collapse
|
33
|
Zhang Q, Han X, Chen J, Xie X, Xu J, Zhao Y, Shen J, Hu L, Xu P, Song H, Zhang L, Zhao B, Wang YJ, Xia Z. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) mediate cell density-dependent proinflammatory responses. J Biol Chem 2018; 293:18071-18085. [PMID: 30315101 DOI: 10.1074/jbc.ra118.004251] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
A proper inflammatory response is critical to the restoration of tissue homeostasis after injury or infection, but how such a response is modulated by the physical properties of the cellular and tissue microenvironments is not fully understood. Here, using H358, HeLa, and HEK293T cells, we report that cell density can modulate inflammatory responses through the Hippo signaling pathway. We found that NF-κΒ activation through the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) is not affected by cell density. However, we also noted that specific NF-κΒ target genes, such as cyclooxygenase 2 (COX-2), are induced much less at low cell densities than at high cell densities. Mechanistically, we observed that the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are localized to the nucleus, bind to TEA domain transcription factors (TEADs), recruit histone deacetylase 7 (HDAC7) to the promoter region of COX-2, and repress its transcription at low cell density and that high cell density abrogates this YAP/TAZ-mediated transcriptional repression. Of note, IL-1β stimulation promoted cell migration and invasion mainly through COX-2 induction, but YAP inhibited this induction and thus cell migration and invasion. These results suggest that YAP/TAZ-TEAD interactions can repress COX-2 transcription and thereby mediate cell density-dependent modulation of proinflammatory responses. Our findings highlight that the cellular microenvironment significantly influences inflammatory responses via the Hippo pathway.
Collapse
Affiliation(s)
- Qiong Zhang
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China,; Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China,; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and
| | - Xu Han
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Jinfeng Chen
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China
| | - Xiaomei Xie
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China,; Youth League Committee of Zhejiang Gongshang University, Hangzhou, 310018 Zhejiang, China, and
| | - Jiafeng Xu
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Yang Zhao
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Jie Shen
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215000 Jiangsu, China
| | - Pinglong Xu
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Hai Song
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Long Zhang
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Bin Zhao
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and
| | - Zongping Xia
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China,; Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China,.
| |
Collapse
|
34
|
Segrelles C, Paramio JM, Lorz C. The transcriptional co-activator YAP: A new player in head and neck cancer. Oral Oncol 2018; 86:25-32. [PMID: 30409308 DOI: 10.1016/j.oraloncology.2018.08.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/26/2018] [Indexed: 12/14/2022]
Abstract
The Hippo-YAP (Yes-associated protein) pathway is a key regulator of tissue growth, organ size and stem cell function. More recently, a fundamental role for this pathway has emerged in stem cell function and tumorigenesis. Activation of the transcriptional co-activator YAP promotes cell-contact independent proliferation, epithelial to mesenchymal transition (EMT), cancer stem cell features and drug resistance. In this review, we describe the main components of the pathway, the microenvironment and the cell-intrinsic cues governing its activation, the downstream players of the pathway and the biological implications of their activation in the context of cancer. We will focus on the existing knowledge of this pathway in head and neck squamous carcinoma (HNSCC), its clinical value in this type of cancer as a marker of poor prognosis and resistance to therapy, as well as the most encouraging therapeutic strategies targeting the pathway.
Collapse
Affiliation(s)
- Carmen Segrelles
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain; Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Av. Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain; Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Av. Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain; Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Av. Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
35
|
Ji J, Xu R, Zhang X, Han M, Xu Y, Wei Y, Ding K, Wang S, Bin Huang, Chen A, Di Zhang, Jiang Z, Xu S, Zhang Q, Li W, Ni S, Wang J, Li X. Actin like-6A promotes glioma progression through stabilization of transcriptional regulators YAP/TAZ. Cell Death Dis 2018; 9:517. [PMID: 29725063 PMCID: PMC5938705 DOI: 10.1038/s41419-018-0548-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
Increased Actin-like 6A (ACTL6A) expression has been implicated in the development of diverse cancers and recently associated with the Hippo signaling pathway, which is known to regulate biological properties, including proliferation, tissue regeneration, stem cell biology, as well as tumorigenesis. Here we first show that ACTL6A is upregulated in human gliomas and its expression is associated with glioma patient survival. ACTL6A promotes malignant behaviors of glioma cells in vitro and in orthotopic xenograft model. In co-immunoprecipitation assays, we discover that ACTL6A physically associated with YAP/TAZ and furthermore disrupts the interaction between YAP and β-TrCP E3 ubiquitin ligase, which promotes YAP protein degradation. Moreover, effects of ACTL6A on glioma cells proliferation, migration, and invasion could be mediated by YAP/TAZ. These data indicate that ACTL6A may contribute to cancer progression by stabilizing YAP/TAZ and therefore provide a novel therapeutic target for the treatment of human gliomas.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Actins/genetics
- Actins/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Aged
- Animals
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/antagonists & inhibitors
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/mortality
- Glioblastoma/pathology
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Stability
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Survival Analysis
- Trans-Activators
- Transcription Factors
- Transcriptional Coactivator with PDZ-Binding Motif Proteins
- Tumor Burden
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- beta-Transducin Repeat-Containing Proteins/genetics
- beta-Transducin Repeat-Containing Proteins/metabolism
Collapse
Affiliation(s)
- Jianxiong Ji
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Ran Xu
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
- Brain and Mind Centre, and Faculty of Health Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Xin Zhang
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Mingzhi Han
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yangyang Xu
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yuzhen Wei
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
- Department of Neurosurgery, Jining No.1 People's Hospital, Jiankang Road, Jining, 272011, China
| | - Kaikai Ding
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Shuai Wang
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Bin Huang
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Anjing Chen
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Di Zhang
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zheng Jiang
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Shuo Xu
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Qing Zhang
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Wenjie Li
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Shilei Ni
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Jian Wang
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway.
| | - Xingang Li
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
36
|
Campbell JD, Yau C, Bowlby R, Liu Y, Brennan K, Fan H, Taylor AM, Wang C, Walter V, Akbani R, Byers LA, Creighton CJ, Coarfa C, Shih J, Cherniack AD, Gevaert O, Prunello M, Shen H, Anur P, Chen J, Cheng H, Hayes DN, Bullman S, Pedamallu CS, Ojesina AI, Sadeghi S, Mungall KL, Robertson AG, Benz C, Schultz A, Kanchi RS, Gay CM, Hegde A, Diao L, Wang J, Ma W, Sumazin P, Chiu HS, Chen TW, Gunaratne P, Donehower L, Rader JS, Zuna R, Al-Ahmadie H, Lazar AJ, Flores ER, Tsai KY, Zhou JH, Rustgi AK, Drill E, Shen R, Wong CK, Stuart JM, Laird PW, Hoadley KA, Weinstein JN, Peto M, Pickering CR, Chen Z, Van Waes C. Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Rep 2018; 23:194-212.e6. [PMID: 29617660 PMCID: PMC6002769 DOI: 10.1016/j.celrep.2018.03.063] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.
Collapse
Affiliation(s)
- Joshua D Campbell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Boston University School of Medicine, Boston, MA 02118, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94115, USA; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin Brennan
- Department of Medicine-Biomedical Informatics Research, Stanford University, Stanford, CA 94305, USA
| | - Huihui Fan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Alison M Taylor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Vonn Walter
- Department of Public Health Sciences, Penn State Milton Hershey Medical Center, Hershey, PA 17033, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren Averett Byers
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chad J Creighton
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Medicine and Dan L Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juliann Shih
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Olivier Gevaert
- Department of Medicine-Biomedical Informatics Research, Stanford University, Stanford, CA 94305, USA
| | - Marcos Prunello
- Department of Medicine-Biomedical Informatics Research, Stanford University, Stanford, CA 94305, USA
| | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Pavana Anur
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jianhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - D Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Chandra Sekhar Pedamallu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Akinyemi I Ojesina
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Sara Sadeghi
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Christopher Benz
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rupa S Kanchi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Apurva Hegde
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pavel Sumazin
- Department of Medicine-Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua-Sheng Chiu
- Department of Medicine-Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting-Wen Chen
- Department of Medicine-Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Preethi Gunaratne
- Department of Biology & Biochemistry, UH-SeqNEdit Core, University of Houston, Houston, TX 77204, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Larry Donehower
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rosemary Zuna
- University of Oklahoma Health Sciences Center, Department of Pathology, Oklahoma City, OK 73104, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander J Lazar
- Departments of Pathology, Genomic Medicine, Dermatology, and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77401, USA
| | - Elsa R Flores
- Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kenneth Y Tsai
- Departments of Anatomic Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jane H Zhou
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Esther Drill
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronglei Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher K Wong
- Department of Biomolecular Engineering, Center for Biomolecular Sciences and Engineering University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering, Center for Biomolecular Sciences and Engineering University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Katherine A Hoadley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Myron Peto
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Abstract
Alternative splicing is a well-studied gene regulatory mechanism that produces biological diversity by allowing the production of multiple protein isoforms from a single gene. An involvement of alternative splicing in the key biological signalling Hippo pathway is emerging and offers new therapeutic avenues. This review discusses examples of alternative splicing in the Hippo pathway, how deregulation of these processes may contribute to disease and whether these processes offer new potential therapeutic targets.
Collapse
|
38
|
He J, Bao Q, Zhang Y, Liu M, Lv H, Liu Y, Yao L, Li B, Zhang C, He S, Zhai G, Zhu Y, Liu X, Zhang K, Wang XJ, Zou MH, Zhu Y, Ai D. Yes-Associated Protein Promotes Angiogenesis via Signal Transducer and Activator of Transcription 3 in Endothelial Cells. Circ Res 2018; 122:591-605. [PMID: 29298775 DOI: 10.1161/circresaha.117.311950] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 01/12/2023]
Abstract
RATIONALE Angiogenesis is a complex process regulating endothelial cell (EC) functions. Emerging lines of evidence support that YAP (Yes-associated protein) plays an important role in regulating the angiogenic activity of ECs. OBJECTIVE The objective of this study was to specify the effect of EC YAP on angiogenesis and its underlying mechanisms. METHOD AND RESULTS In ECs, vascular endothelial growth factor reduced YAP phosphorylation time and dose dependently and increased its nuclear accumulation. Using Tie2Cre-mediated YAP transgenic mice, we found that YAP promoted angiogenesis in the postnatal retina and tumor tissues. Mass spectrometry revealed signal transducer and activator of transcription 3 (STAT3) as a potential binding partner of YAP in ECs. Western blot and immunoprecipitation assays indicated that binding with YAP prolonged interleukin 6-induced STAT3 nuclear accumulation by blocking chromosomal maintenance 1-mediated STAT3 nuclear export without affecting its phosphorylation. Moreover, angiopoietin-2 expression induced by STAT3 was enhanced by YAP overexpression in ECs. Finally, a selective STAT3 inhibitor or angiopoietin-2 blockage partly attenuated retinal angiogenesis in Tie2Cre-mediated YAP transgenic mice. CONCLUSIONS YAP binding sustained STAT3 in the nucleus to enhance the latter's transcriptional activity and promote angiogenesis via regulation of angiopoietin-2.
Collapse
Affiliation(s)
- Jinlong He
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Qiankun Bao
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Yan Zhang
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Mingming Liu
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Huizhen Lv
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Yajin Liu
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Liu Yao
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Bochuan Li
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Chenghu Zhang
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Shuang He
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Guijin Zhai
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Yan Zhu
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Xin Liu
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Kai Zhang
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Xiu-Jie Wang
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Ming-Hui Zou
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Yi Zhu
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.)
| | - Ding Ai
- From the Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology (J.H., Q.B., M.L., H.L., Y.L., L.Y., B.L., C.Z., G.Z., K.Z., Y.Z., D.A.) and College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute (Y.Z.), Tianjin Medical University, China; Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine (S.H., Y.Z.); Key Laboratory of Network Genetics, Collaborative Innovation Center for Cardiovascular Disorders, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (X.L., X.-J.W.); Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.); and Tianjin Key Laboratory of Metabolic Diseases, China (Y.Z., D.A.).
| |
Collapse
|
39
|
Furth N, Aylon Y, Oren M. p53 shades of Hippo. Cell Death Differ 2018; 25:81-92. [PMID: 28984872 PMCID: PMC5729527 DOI: 10.1038/cdd.2017.163] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
The three p53 family members, p53, p63 and p73, are structurally similar and share many biochemical activities. Yet, along with their common fundamental role in protecting genomic fidelity, each has acquired distinct functions related to diverse cell autonomous and non-autonomous processes. Similar to the p53 family, the Hippo signaling pathway impacts a multitude of cellular processes, spanning from cell cycle and metabolism to development and tumor suppression. The core Hippo module consists of the tumor-suppressive MST-LATS kinases and oncogenic transcriptional co-effectors YAP and TAZ. A wealth of accumulated data suggests a complex and delicate regulatory network connecting the p53 and Hippo pathways, in a highly context-specific manner. This generates multiple layers of interaction, ranging from interdependent and collaborative signaling to apparent antagonistic activity. Furthermore, genetic and epigenetic alterations can disrupt this homeostatic network, paving the way to genomic instability and cancer. This strengthens the need to better understand the nuances that control the molecular function of each component and the cross-talk between the different components. Here, we review interactions between the p53 and Hippo pathways within a subset of physiological contexts, focusing on normal stem cells and development, as well as regulation of apoptosis, senescence and metabolism in transformed cells.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| |
Collapse
|
40
|
Andrade D, Mehta M, Griffith J, Panneerselvam J, Srivastava A, Kim TD, Janknecht R, Herman T, Ramesh R, Munshi A. YAP1 inhibition radiosensitizes triple negative breast cancer cells by targeting the DNA damage response and cell survival pathways. Oncotarget 2017; 8:98495-98508. [PMID: 29228705 PMCID: PMC5716745 DOI: 10.18632/oncotarget.21913] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved signaling pathway that regulates proliferation and apoptosis to control organ size during developmental growth. Yes-associated protein 1 (YAP1), the terminal effector of the Hippo pathway, is a transcriptional co-activator and a potent growth promoter that has emerged as a critical oncogene. Overexpression of YAP1 has been implicated in promoting resistance to chemo-, radiation and targeted therapy in various cancers. However, the role of YAP1 in radioresistance in triple-negative breast cancer (TNBC) is currently unknown. We evaluated the role of YAP1 in radioresistance in TNBC in vitro, using two approaches to inhibit YAP1: 1) genetic inhibition by YAP1 specific shRNA or siRNA, and 2) pharmacological inhibition by using the small molecule inhibitor, verteporfin that prevents YAP1 transcriptional activity. Our findings demonstrate that both genetic and pharmacological inhibition of YAP1 sensitizes TNBC cells to radiation by inhibiting the EGFR/PI3K/AKT signaling axis and causing an increased accumulation of DNA damage. Our results reveal that YAP1 activation exerts a protective role for TNBC cells in radiotherapy and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of TNBC.
Collapse
Affiliation(s)
- Daniel Andrade
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - James Griffith
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Janani Panneerselvam
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Akhil Srivastava
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Tae-Dong Kim
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Terence Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
41
|
Venkataramani V, Küffer S, Cheung KCP, Jiang X, Trümper L, Wulf GG, Ströbel P. CD31 Expression Determines Redox Status and Chemoresistance in Human Angiosarcomas. Clin Cancer Res 2017; 24:460-473. [PMID: 29084920 DOI: 10.1158/1078-0432.ccr-17-1778] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022]
Abstract
Purpose: Angiosarcomas are soft tissue sarcomas with endothelial differentiation and vasoformative capacity. Most angiosarcomas show strong constitutive expression of the endothelial adhesion receptor CD31/PECAM-1 pointing to an important role of this molecule. However, the biological function of CD31 in angiosarcomas is unknown.Experimental Design: The expression levels of CD31 in angiosarcoma cells and its effects on cell viability, colony formation, and chemoresistance were evaluated in human angiosarcoma clinical samples and in cell lines through isolation of CD31high and CD31low cell subsets. The redox-regulatory CD31 function linked to YAP signaling was determined using a CD31-blocking antibody and siRNA approach and was further validated in CD31-knockout endothelial cells.Results: We found that most angiosarcomas contain a small CD31low cell population. CD31low cells had lost part of their endothelial properties and were more tumorigenic and chemoresistant than CD31high cells due to more efficient reactive oxygen species (ROS) detoxification. Active downregulation of CD31 resulted in loss of endothelial tube formation, nuclear accumulation of YAP, and YAP-dependent induction of antioxidative enzymes. Addition of pazopanib, a known enhancer of proteasomal YAP degradation resensitized CD31low cells for doxorubicin resulting in growth suppression and induction of apoptosis.Conclusions: Human angiosarcomas contain a small aggressive CD31low population that have lost part of their endothelial differentiation programs and are more resistant against oxidative stress and DNA damage due to intensified YAP signaling. Our finding that the addition of YAP inhibitors can resensitize CD31low cells toward doxorubicin may aid in the rational development of novel combination therapies to treat angiosarcomas. Clin Cancer Res; 24(2); 460-73. ©2017 AACR.
Collapse
Affiliation(s)
- Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany. .,Cell Biology Program, Memorial Sloan Kettering Cancer Center, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Kenneth C P Cheung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, Göttingen, Germany
| | - Lorenz Trümper
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Gerald G Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
42
|
Li Y, Kong F, Shao Q, Wang R, Hu E, Liu J, Jin C, He D, Xiao X. YAP Expression and Activity Are Suppressed by S100A7 via p65/NFκB-mediated Repression of ΔNp63. Mol Cancer Res 2017; 15:1752-1763. [DOI: 10.1158/1541-7786.mcr-17-0349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022]
|
43
|
Shigeeda W, Shibazaki M, Yasuhira S, Masuda T, Tanita T, Kaneko Y, Sato T, Sekido Y, Maesawa C. Hyaluronic acid enhances cell migration and invasion via the YAP1/TAZ-RHAMM axis in malignant pleural mesothelioma. Oncotarget 2017; 8:93729-93740. [PMID: 29212185 PMCID: PMC5706831 DOI: 10.18632/oncotarget.20750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/29/2017] [Indexed: 12/03/2022] Open
Abstract
Most malignant mesotheliomas (MPMs) frequently show activated forms of Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which transcriptionally regulates the receptor for hyaluronic acid-mediated motility (RHAMM). As RHAMM is involved in cell migration and invasion in various tumors, we speculated that hyaluronic acid (HA) in pleural fluid might affect the progression of mesothelioma by stimulating cell migration and invasion through RHAMM. The level of RHAMM expression was decreased by YAP1/TAZ knockdown, and conversely increased by forced expression of the active form of YAP1, suggesting that RHAMM was regulated by YAP1/TAZ in MPM cells. Cell migration and invasion were also decreased by YAP1/TAZ or RHAMM knockdown. Notably, HA treatment increased cell motility and invasion, and this was abolished by RHAMM knockdown, suggesting that HA may augment local progression of MPM cells via RHAMM. Furthermore, treatment with fluvastatin, which regulates RHAMM transcription by modulating YAP1/TAZ activity, decreased the motility and invasion of MPM cells. Collectively, these data suggest that HA is an “unfavorable” factor because it promotes malignancy in mesothelioma and that the YAP1/TAZ-RHAMM axis may have potential value as a therapeutic target for inhibition of disease progression in MPM.
Collapse
Affiliation(s)
- Wataru Shigeeda
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan.,Department of Thoracic Surgery, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Masahiko Shibazaki
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Shinji Yasuhira
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Tomoyuki Masuda
- Department of Pathology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Tatsuo Tanita
- Department of Thoracic Surgery, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yuka Kaneko
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Tatsuhiro Sato
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Chihaya Maesawa
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| |
Collapse
|
44
|
Ou C, Sun Z, Li S, Li G, Li X, Ma J. Dual roles of yes-associated protein (YAP) in colorectal cancer. Oncotarget 2017; 8:75727-75741. [PMID: 29088905 PMCID: PMC5650460 DOI: 10.18632/oncotarget.20155] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein (YAP) is a downstream effector molecule of a newly emerging tumour suppressor pathway called the Hippo pathway. YAP is a transcriptional co-activator and mis-expressed in various cancers, including colorectal cancer (CRC). Accumulating studies show that the high expression of nuclear YAP is linked with tumour progression and decreased survival. Nuclear YAP can interact with other transcription factors to promote cancer cell proliferation, apoptosis, metastasis and maintenance of stemness. Therefore, YAP has the potential to be a tumour biomarker or therapeutic target for CRC. However, recently, a number of studies have supported a contradictory role for YAP as a tumour suppressor, demonstrating inhibition of the tumorigenesis of CRC, involvement in promoting cell apoptosis, and inhibiting the maintenance of intestinal stem cells and inflammatory activity. In these studies, high expression of YAP was highly correlated with worse survival in CRC. In this review, we will comprehensively summarize and analyse these paradoxical reports, and discuss both the oncogenic and tumour suppressor functions of YAP in the differential status of CRC progression. Further investigation into the mechanisms responsible for the dual function of YAP will be of great value in the prevention, early diagnosis, and therapy of CRC.
Collapse
Affiliation(s)
- Chunlin Ou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhenqiang Sun
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Department of Gastrointestinal Surgery, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Shen Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
45
|
The Hippo pathway in hepatocellular carcinoma: Non-coding RNAs in action. Cancer Lett 2017; 400:175-182. [DOI: 10.1016/j.canlet.2017.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/08/2017] [Accepted: 04/22/2017] [Indexed: 01/18/2023]
|
46
|
VGLL4 Selectively Represses YAP-Dependent Gene Induction and Tumorigenic Phenotypes in Breast Cancer. Sci Rep 2017; 7:6190. [PMID: 28733631 PMCID: PMC5522454 DOI: 10.1038/s41598-017-06227-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023] Open
Abstract
Members of the mammalian Vestigial-like (VGLL) family of transcriptional cofactors activate genes in response to a wide variety of environmental cues. Recently, VGLL proteins have been proposed to regulate key signaling networks involved in cancer development and progression. However, the biological and clinical significance of VGLL dysregulation in human breast cancer pathogenesis remains unknown. Here, we report that diminished VGLL4 expression, but not VGLL1-3, correlated with both shorter relapse-free survival and shorter disease-specific survival of cancer patients with different molecular subtypes of breast cancer. Additionally, we further demonstrate that overexpression of VGLL4 reduces breast cancer cell proliferation, migration, intravasation/extravasation potential, favors cell death, and suppresses tumor growth in vivo. Mechanistically, VGLL4 negatively regulates the TEAD1-YAP1 transcriptional complex and exerts its growth inhibitory control through its evolutionary conserved TDU2 domain at its C-terminus. The results suggest that VGLL4 is a candidate tumor suppressor gene which acts by selectively antagonizing YAP-dependent tumor growth. VGLL4 may be a promising therapeutic target in breast cancer.
Collapse
|
47
|
Peng B, Zhan H, Alotaibi F, Alkusayer GM, Bedaiwy MA, Yong PJ. Nerve Growth Factor Is Associated With Sexual Pain in Women With Endometriosis. Reprod Sci 2017; 25:540-549. [DOI: 10.1177/1933719117716778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Peng
- Department of Obstetrics & Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Hong Zhan
- Department of Obstetrics & Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Fahad Alotaibi
- Department of Obstetrics & Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Ghadeer M. Alkusayer
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed A. Bedaiwy
- Department of Obstetrics & Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
- BC Women’s Centre for Pelvic Pain and Endometriosis, Vancouver, British Columbia, Canada
| | - Paul J. Yong
- Department of Obstetrics & Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
- BC Women’s Centre for Pelvic Pain and Endometriosis, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat Commun 2017; 8:14744. [PMID: 28332498 PMCID: PMC5376649 DOI: 10.1038/ncomms14744] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/26/2017] [Indexed: 01/13/2023] Open
Abstract
Individual human epidermal cells differ in their self-renewal ability. To uncover the molecular basis for this heterogeneity, we performed genome-wide pooled RNA interference screens and identified genes conferring a clonal growth advantage on normal and neoplastic (cutaneous squamous cell carcinoma, cSCC) human epidermal cells. The Hippo effector YAP was amongst the top positive growth regulators in both screens. By integrating the Hippo network interactome with our data sets, we identify WW-binding protein 2 (WBP2) as an important co-factor of YAP that enhances YAP/TEAD-mediated gene transcription. YAP and WPB2 are upregulated in actively proliferating cells of mouse and human epidermis and cSCC, and downregulated during terminal differentiation. WBP2 deletion in mouse skin results in reduced proliferation in neonatal and wounded adult epidermis. In reconstituted epidermis YAP/WBP2 activity is controlled by intercellular adhesion rather than canonical Hippo signalling. We propose that defective intercellular adhesion contributes to uncontrolled cSCC growth by preventing inhibition of YAP/WBP2.
Collapse
|
49
|
Andl T, Zhou L, Yang K, Kadekaro AL, Zhang Y. YAP and WWTR1: New targets for skin cancer treatment. Cancer Lett 2017; 396:30-41. [PMID: 28279717 DOI: 10.1016/j.canlet.2017.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/11/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
The core components of the Hippo signaling pathway are a cascade of kinases that govern the phosphorylation of downstream transcriptional co-activators, namely, YES-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ). The Hippo signaling pathway is considered an important tumor-suppressor pathway, and its dysregulation has been noted in a variety of human cancers, in which YAP/WWTR1 enable cancerous cells to overcome contact inhibition, and to grow and spread uncontrollably. Interestingly, however, recent studies have told a somewhat different but perhaps more intriguing YAP/WWTR1 story, as these studies found that YAP/WWTR1 function as a central hub that integrates signals from multiple upstream signaling pathways, cell-cell interactions and mechanical forces and then bind to and activate different downstream transcriptional factors to direct cell social behavior and cell-cell interactions. In this review, we present the latest findings on the role of YAP/WWTR1 in skin physiology, pathology and tumorigenesis and discuss the statuses of newly developed therapeutic interventions that target YAP/WWTR1 in human cancers, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
- Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kun Yang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ana Luisa Kadekaro
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
50
|
Ahmed AA, Mohamed AD, Gener M, Li W, Taboada E. YAP and the Hippo pathway in pediatric cancer. Mol Cell Oncol 2017; 4:e1295127. [PMID: 28616573 DOI: 10.1080/23723556.2017.1295127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
The Hippo pathway is an important signaling pathway that controls cell proliferation and apoptosis. It is evolutionarily conserved in mammals and is stimulated by cell-cell contact, inhibiting cell proliferation in response to increased cell density. During early embryonic development, the Hippo signaling pathway regulates organ development and size, and its functions result in the coordinated balance between proliferation, apoptosis, and differentiation. Its principal effectors, YAP and TAZ, regulate signaling by the embryonic stem cells and determine cell fate and histogenesis. Dysfunction of this pathway contributes to cancer development in adults and children. Emerging studies have shed light on the upregulation of Hippo pathway members in several pediatric cancers and may offer prognostic information on rhabdomyosarcoma, osteosarcoma, Wilms tumor, neuroblastoma, medulloblastoma, and other brain gliomas. We review the results of such published studies and highlight the potential clinical application of this pathway in pediatric oncologic and pathologic studies. These studies support targeting this pathway as a novel treatment strategy.
Collapse
Affiliation(s)
- Atif A Ahmed
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | | | - Melissa Gener
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Weijie Li
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Eugenio Taboada
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| |
Collapse
|