1
|
McSwain LF, Parwani KK, Shahab SW, Hambardzumyan D, MacDonald TJ, Spangle JM, Kenney AM. Medulloblastoma and the DNA Damage Response. Front Oncol 2022; 12:903830. [PMID: 35747808 PMCID: PMC9209741 DOI: 10.3389/fonc.2022.903830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children with standard of care consisting of surgery, radiation, and chemotherapy. Recent molecular profiling led to the identification of four molecularly distinct MB subgroups – Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4. Despite genomic MB characterization and subsequent tumor stratification, clinical treatment paradigms are still largely driven by histology, degree of surgical resection, and presence or absence of metastasis rather than molecular profile. Patients usually undergo resection of their tumor followed by craniospinal radiation (CSI) and a 6 month to one-year multi-agent chemotherapeutic regimen. While there is clearly a need for development of targeted agents specific to the molecular alterations of each patient, targeting proteins responsible for DNA damage repair could have a broader impact regardless of molecular subgrouping. DNA damage response (DDR) protein inhibitors have recently emerged as targeted agents with potent activity as monotherapy or in combination in different cancers. Here we discuss the molecular underpinnings of genomic instability in MB and potential avenues for exploitation through DNA damage response inhibition.
Collapse
Affiliation(s)
- Leon F. McSwain
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Kiran K. Parwani
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Shubin W. Shahab
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Dolores Hambardzumyan
- Departments of Neurosurgery and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Jennifer M. Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Anna Marie Kenney
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- *Correspondence: Anna Marie Kenney,
| |
Collapse
|
2
|
Christy J, Harini, Vasudevan S, Lingesan P, Anand DA. Deciphering the molecular interplay between pelvic inflammatory disease (PID) and ovarian cancer (OC)—A network biology approach. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Zhou L, Pei X, Zhang Y, Ning Y, Li L, Hu X, Chalasani SL, Sharma K, Nkwocha J, Yu J, Bandyopadhyay D, Sebti SM, Grant S. Chk1 inhibition potently blocks STAT3 tyrosine705 phosphorylation, DNA binding activity, and activation of downstream targets in human multiple myeloma cells. Mol Cancer Res 2021; 20:456-467. [PMID: 34782371 DOI: 10.1158/1541-7786.mcr-21-0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
The relationship between the checkpoint kinase Chk1 and the STAT3 pathway was examined in multiple myeloma (MM) cells. Gene expression profiling of U266 cells exposed to low (nM) Chk1 inhibitor (PF-477736) concentrations revealed STAT3 pathway-related gene down-regulation (e.g., BCL-XL, MCL-1, c-Myc), findings confirmed by RT-PCR. This was associated with marked inhibition of STAT3 Tyr705 (but not Ser727) phosphorylation, dimerization, nuclear localization, DNA binding, STAT3 promoter activity by ChIP assay, and down-regulation of STAT-3-dependent proteins. Similar findings were obtained in other MM cells and with alternative Chk1 inhibitors (e.g., prexasertib, CEP3891). While PF did not reduce GP130 expression or modify SOCS or PRL-3 phosphorylation, the phosphatase inhibitor pervanadate antagonized PF-mediated Tyr705 dephosphorylation. Significantly, PF attenuated Chk1-mediated STAT3 phosphorylation in in vitro assays. SPR analysis suggested Chk1/STAT3 interactions and PF reduced Chk1/STAT3 co-immunoprecipitation. Chk1 CRISPR knockout or shRNA knockdown cells also displayed STAT3 inactivation and STAT-3-dependent protein down-regulation. Constitutively active STAT3 diminished PF-mediated STAT3 inactivation and down-regulate STAT3-dependent proteins while significantly reducing PF-induced DNA damage (rH2A.X formation) and apoptosis. Exposure of cells with low basal phospho-STAT3 expression to IL-6 or human stromal cell conditioned medium activated STAT3, an event attenuated by Chk1 inhibitors. PF also inactivated STAT3 in primary human CD138+ MM cells and tumors extracted from an NSG MM xenograft model while inhibiting tumor growth. Implications: These findings identify a heretofore unrecognized link between the Chk1 and STAT3 pathways and suggest that Chk1 pathway inhibitors warrant attention as novel and potent candidate STAT3 antagonists in myeloma.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center
| | - Xinyan Pei
- Internal Medicine, Virginia Commonwealth University, Massey Cancer Center
| | - Yu Zhang
- Department of Medicine, Massey Cancer Center, Virginia Commonwealth University
| | - Yanxia Ning
- Department of Medicine, Virginia Commonwealth University Medical Center
| | - Lin Li
- Department of Medicine, Virginia Commonwealth University Medical Center
| | - Xiaoyan Hu
- Department of Medicine, Virginia Commonwealth University Medical Center
| | | | - Kanika Sharma
- Medicine, Biochemistry, and Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University
| | - Jewel Nkwocha
- Virginia Commonwealth University, Massey Cancer Center
| | | | | | - Said M Sebti
- Pharmacology & Toxicology, Massey Cancer Center, Virginia Commonwealth University
| | - Steven Grant
- Medicine, Biochemistry, and Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University
| |
Collapse
|
4
|
Park S, Kim J, Choi J, Lee C, Lee W, Park S, Park Z, Baek J, Nam J. Lipid raft-disrupting miltefosine preferentially induces the death of colorectal cancer stem-like cells. Clin Transl Med 2021; 11:e552. [PMID: 34841679 PMCID: PMC8567043 DOI: 10.1002/ctm2.552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Lipid rafts (LRs), cholesterol-enriched microdomains on cell membranes, are increasingly viewed as signalling platforms governing critical facets of cancer progression. The phenotype of cancer stem-like cells (CSCs) presents significant hurdles for successful cancer treatment, and the expression of several CSC markers is associated with LR integrity. However, LR implications in CSCs remain unclear. METHODS This study evaluated the biological and molecular functions of LRs in colorectal cancer (CRC) by using an LR-disrupting alkylphospholipid (APL) drug, miltefosine. The mechanistic role of miltefosine in CSC inhibition was examined through normal or tumour intestinal mouse organoid, human CRC cell, CRC xenograft and miltefosine treatment gene expression profile analyses. RESULTS Miltefosine suppresses CSC populations and their self-renewal activities in CRC cells, a CSC-targeting effect leading to irreversible disruption of tumour-initiating potential in vivo. Mechanistically, miltefosine reduced the expression of a set of genes, leading to stem cell death. Among them, miltefosine transcriptionally inhibited checkpoint kinase 1 (CHEK1), indicating that LR integrity is essential for CHEK1 expression regulation. In isolated CD44high CSCs, we found that CSCs exhibited stronger therapy resistance than non-CSC counterparts by preventing cell death through CHEK1-mediated cell cycle checkpoints. However, inhibition of the LR/CHEK1 axis by miltefosine released cell cycle checkpoints, forcing CSCs to enter inappropriate mitosis with accumulated DNA damage and resulting in catastrophic cell death. CONCLUSION Our findings underscore the therapeutic potential of LR-targeting APLs for CRC treatment that overcomes the therapy-resistant phenotype of CSCs, highlighting the importance of the LR/CHEK1 axis as a novel mechanism of APLs.
Collapse
Affiliation(s)
- So‐Yeon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
- Cell Logistics Research CenterGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jee‐Heun Kim
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jang‐Hyun Choi
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Choong‐Jae Lee
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Won‐Jae Lee
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Sehoon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Zee‐Yong Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jeong‐Heum Baek
- Division of Colon and Rectal SurgeryDepartment of SurgeryGil Medical CenterGachon University College of MedicineIncheonRepublic of Korea
| | - Jeong‐Seok Nam
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
- Cell Logistics Research CenterGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| |
Collapse
|
5
|
Zhu H, Rao Z, Yuan S, You J, Hong C, He Q, Yang B, Du C, Cao J. One therapeutic approach for triple-negative breast cancer: Checkpoint kinase 1 inhibitor AZD7762 combination with neoadjuvant carboplatin. Eur J Pharmacol 2021; 908:174366. [PMID: 34314706 DOI: 10.1016/j.ejphar.2021.174366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/11/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
Carboplatin treatment is associated with potential benefits in practice in the neoadjuvant chemotherapy for Triple-negative breast cancer (TNBC) patients. In order to enhance its anti-tumor effects, new concepts for successful combination therapy are needed. Here, we interestingly found that the combination treatment of carboplatin with the Chk1 inhibitor AZD7762 synergistically inhibits TNBC cell growth in multiple TNBC cell lines in vitro. Mechanistically, we proved that prolonged carboplatin-treated induce cell mitotic arrest, and cells would fail to initiate the G2-M transition following the inhibition of the Chk1 pathway, leading to accumulation of DNA lesions. With this drug-in-combination treatment, the incidence of mitotic catastrophes including spindle multipolarity and cytokinesis failure is remarkably enhanced, which subsequently drives tumor cells multinucleation, polyploidization and apoptosis. Thus, our findings not only propose Chk1 as a therapeutic target for combination therapy with DNA-damaging agents such as carboplatin in TNBC, but also highlight that the induction of mitotic catastrophe could be considered as an alternative strategy for TNBC therapy.
Collapse
Affiliation(s)
- Haiying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zijian Rao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sichen Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jieqiong You
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenggang Hong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China; Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Chengyong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China; Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Barnaba N, LaRocque JR. Targeting cell cycle regulation via the G2-M checkpoint for synthetic lethality in melanoma. CELL CYCLE (GEORGETOWN, TEX.) 2021; 20:1041-1051. [PMID: 33966611 DOI: 10.1080/15384101.2021.1922806] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Disruption of cell cycle checkpoints has been well established as a hallmark of cancer. In particular, the G1-S transition mediated by the cyclin D-cyclin-dependent kinase 4/6 (CDK4/6) pathway is dysregulated in more than 90% of melanoma cases. Therefore, tumor cells mainly rely on the G2-M checkpoint to halt the cell cycle in order to repair DNA damage. Here, we review the promising method of cell cycle-mediated synthetic lethality for melanoma treatment, which entails exploiting somatically acquired mutations in the G1-S transition with inhibitors of the G2-M transition in order to specifically kill melanoma cells. The idea stems from the theory that melanoma cells lacking G1-S checkpoints are particularly vulnerable to mitotic catastrophe when presented with G2-M checkpoint inhibition in addition to DNA damage, whereas normal cells with intact G1-S checkpoints should theoretically be spared. This review explores the link between cell cycle dysregulation and synthetic lethality in melanoma cells and discusses potential future applications for this treatment.
Collapse
Affiliation(s)
- Nicholas Barnaba
- Biology Department, Georgetown University, Washington, DC, USA.,Georgetown University School of Medicine, Georgetown University, Washington, DC, USA
| | | |
Collapse
|
7
|
Gorecki L, Andrs M, Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers (Basel) 2021; 13:795. [PMID: 33672884 PMCID: PMC7918546 DOI: 10.3390/cancers13040795] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| |
Collapse
|
8
|
Cheng C, Yun F, He J, Ullah S, Yuan Q. Design, synthesis and biological evaluation of novel thioquinazolinone-based 2-aminobenzamide derivatives as potent histone deacetylase (HDAC) inhibitors. Eur J Med Chem 2019; 173:185-202. [DOI: 10.1016/j.ejmech.2019.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
|
9
|
Chung SW, Kim GC, Kweon S, Lee H, Choi JU, Mahmud F, Chang HW, Kim JW, Son WC, Kim SY, Byun Y. Metronomic oral doxorubicin in combination of Chk1 inhibitor MK-8776 for p53-deficient breast cancer treatment. Biomaterials 2018; 182:35-43. [DOI: 10.1016/j.biomaterials.2018.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023]
|
10
|
The Impact of p53 Dysfunction in ATR Inhibitor Cytotoxicity and Chemo- and Radiosensitisation. Cancers (Basel) 2018; 10:cancers10080275. [PMID: 30127241 PMCID: PMC6116113 DOI: 10.3390/cancers10080275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 08/14/2018] [Indexed: 01/24/2023] Open
Abstract
Ataxia telangiectasia mutated and Rad3 related kinase (ATR) signals replication stress and DNA damage to S and G2 arrest and promotes DNA repair. Mutations in p53, critical for G1 checkpoint control, are common in cancer and predicted to confer vulnerability to ATR inhibitors. Reported data on the impact of p53 status are variable possibly because of the use of unmatched cells and surrogate endpoints of survival. The cytotoxicity of VE-821 alone and its ability to potentiate radiation and gemcitabine cytotoxicity was determined in isogenic and unmatched p53 wild-type (wt) and null/mutant cells, as well as immortalised nonmalignant MCF10 (immortalised non-neoplastic) cells, by colony-forming assay. The effect on cell cycle checkpoints was determined by flow cytometry. The isogenic p53 defective cells were not more sensitive to VE-821 alone. Defective p53 consistently conferred greater chemo- and radiosensitisation, particularly at high dose levels in isogenic cells but not unmatched cells. VE-821 did not sensitise MCF10 cells. We conclude that p53 status is just one factor contributing to chemo- and radiosensitisation by ATR inhibition, the lack of chemo- or radiosensitisation in the noncancerous cells suggests an element of tumour-specificity that warrants further investigation. The greater sensitisation at high-dose irradiation suggests that ATR inhibitors may be most effective with hypofractionated radiotherapy.
Collapse
|
11
|
Chamoun K, Borthakur G. Investigational CHK1 inhibitors in early stage clinical trials for acute myeloid leukemia. Expert Opin Investig Drugs 2018; 27:661-666. [PMID: 30084282 DOI: 10.1080/13543784.2018.1508448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Introduction: Acute myeloid leukemia (AML) is the most common myeloid malignancy in adults. Despite recent discoveries of targeted therapies, the frontline therapy consisting of chemotherapy remains unchanged for the past four decades. Like other cancers, AML is characterized by deranged DNA damage repair (DDR) pathway. Although impaired DDR may contribute to the pathogenesis of AML it also allows leukemia cells with damaged DNA to attempt repair resulting in resistance. CHK1 inhibitors reverse the cell cycle arrest, disallowing the cell to repair the chemotherapy-induced DNA damage, driving the cell to enter into mitotic catastrophe.Areas covered: This paper reviews the preclinical and clinical development of CHK1 inhibitors and we discussed their promising role as a potential addition to the therapeutic arsenal of AML.Expert opinion: Targeting the cell cycle checkpoints is an intriguing approach to treat cancer in general and AML in particular. CHK1 inhibitors in combination with chemotherapy have the potential of improving outcome in high-risk AML characterized by DDR activation.
Collapse
Affiliation(s)
- Kamal Chamoun
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Zemanova J, Hylse O, Collakova J, Vesely P, Oltova A, Borsky M, Zaprazna K, Kasparkova M, Janovska P, Verner J, Kohoutek J, Dzimkova M, Bryja V, Jaskova Z, Brychtova Y, Paruch K, Trbusek M. Chk1 inhibition significantly potentiates activity of nucleoside analogs in TP53-mutated B-lymphoid cells. Oncotarget 2018; 7:62091-62106. [PMID: 27556692 PMCID: PMC5308713 DOI: 10.18632/oncotarget.11388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Treatment options for TP53-mutated lymphoid tumors are very limited. In experimental models, TP53-mutated lymphomas were sensitive to direct inhibition of checkpoint kinase 1 (Chk1), a pivotal regulator of replication. We initially tested the potential of the highly specific Chk1 inhibitor SCH900776 to synergize with nucleoside analogs (NAs) fludarabine, cytarabine and gemcitabine in cell lines derived from B-cell malignancies. In p53-proficient NALM-6 cells, SCH900776 added to NAs enhanced signaling towards Chk1 (pSer317/pSer345), effectively blocked Chk1 activation (Ser296 autophosphorylation), increased replication stress (p53 and γ-H2AX accumulation) and temporarily potentiated apoptosis. In p53-defective MEC-1 cell line representing adverse chronic lymphocytic leukemia (CLL), Chk1 inhibition together with NAs led to enhanced and sustained replication stress and significantly potentiated apoptosis. Altogether, among 17 tested cell lines SCH900776 sensitized four of them to all three NAs. Focusing further on MEC-1 and co-treatment of SCH900776 with fludarabine, we disclosed chromosome pulverization in cells undergoing aberrant mitoses. SCH900776 also increased the effect of fludarabine in a proportion of primary CLL samples treated with pro-proliferative stimuli, including those with TP53 disruption. Finally, we observed a fludarabine potentiation by SCH900776 in a T-cell leukemia 1 (TCL1)-driven mouse model of CLL. Collectively, we have substantiated the significant potential of Chk1 inhibition in B-lymphoid cells.
Collapse
Affiliation(s)
- Jana Zemanova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Hylse
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Collakova
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Vesely
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Alexandra Oltova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Borsky
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristina Zaprazna
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Kasparkova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavlina Janovska
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Verner
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Kohoutek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Marta Dzimkova
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Vitezslav Bryja
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Zuzana Jaskova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yvona Brychtova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamil Paruch
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
13
|
Umezawa Y, Kurosu T, Akiyama H, Wu N, Nogami A, Nagao T, Miura O. Down regulation of Chk1 by p53 plays a role in synergistic induction of apoptosis by chemotherapeutics and inhibitors for Jak2 or BCR/ABL in hematopoietic cells. Oncotarget 2018; 7:44448-44461. [PMID: 27286446 PMCID: PMC5190110 DOI: 10.18632/oncotarget.9844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/20/2016] [Indexed: 01/17/2023] Open
Abstract
DNA-damaging chemotherapeutic agents activate apoptotic pathways in cancer cells. However, they also activate checkpoint mechanisms mainly involving Chk1 and p53 to arrest cell cycle progression, thus abbreviating their cytotoxic effects. We previously found that aberrant tyrosine kinases involved in leukemogenesis, such as BCR/ABL and Jak2-V617F, as well as Jak2 activated by hematopoietic cytokines enhance Chk1-mediated G2/M arrest through the PI3K/Akt/GSK3 pathway to confer resistance to chemotherapeutic agents, which was prevented by inhibition of these kinases or the downstream PI3K/Akt pathway. However, the possible involvement of p53 in regulation of Chk1-mediated G2/M checkpoint has remained to be elucidated. We demonstrate here that a dominant negative mutant of p53, p53-DD, increases Chk1-mediated G2/M checkpoint activation induced by chemotherapeutics and protects it from down regulation by inhibition of Jak2, BCR/ABL, or the PI3K/Akt pathway in hematopoietic model cell lines 32D and BaF3 or their transformants by BCR/ABL. Consistent with this, the p53 activator nutlin-3 synergistically induced apoptosis with chemotherapeutics by inhibiting Chk1-mediated G2/M arrest in these cells, including cells transformed by the T315I mutant of BCR/ABL resistant to various kinase inhibitors in clinical use. Further studies suggest that p53 may inhibit the Chk1 pathway by its transcription-dependent function and through mechanisms involving the proteasomal system, but not the PI3K/Akt/GSK3 pathway. The present study may shed a new light on molecular mechanisms for the therapy resistance of p53-mutated hematological malignancies and would provide valuable information for the development of novel therapeutic strategies against these diseases with dismal prognosis.
Collapse
Affiliation(s)
- Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, and Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Kurosu
- Department of Hematology, Graduate School of Medical and Dental Sciences, and Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Akiyama
- Department of Hematology, Graduate School of Medical and Dental Sciences, and Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nang Wu
- Department of Hematology, Graduate School of Medical and Dental Sciences, and Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, and Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, and Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, and Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Qiu Z, Oleinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 2017; 126:450-464. [PMID: 29054375 DOI: 10.1016/j.radonc.2017.09.043] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023]
Abstract
The cell cycle checkpoint proteins ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) and its major downstream effector checkpoint kinase 1 (CHK1) prevent the entry of cells with damaged or incompletely replicated DNA into mitosis when the cells are challenged by DNA damaging agents, such as radiation therapy (RT) or chemotherapeutic drugs, that are the major modalities to treat cancer. This regulation is particularly evident in cells with a defective G1 checkpoint, a common feature of cancer cells, due to p53 mutations. In addition, ATR and/or CHK1 suppress replication stress (RS) by inhibiting excess origin firing, particularly in cells with activated oncogenes. Those functions of ATR/CHK1 make them ideal therapeutic targets. ATR/CHK1 inhibitors have been developed and are currently used either as single agents or paired with radiotherapy or a variety of genotoxic chemotherapies in preclinical and clinical studies. Here, we review the status of the development of ATR and CHK1 inhibitors. We also discuss the potential mechanisms by which ATR and CHK1 inhibition induces cell killing in the presence or absence of exogenous DNA damaging agents, such as RT and chemotherapeutic agents. Lastly, we discuss synthetic lethality interactions between the inhibition of ATR/CHK1 and defects in other DNA damage response (DDR) pathways/genes.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Nancy L Oleinick
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
15
|
Herůdková J, Paruch K, Khirsariya P, Souček K, Krkoška M, Vondálová Blanářová O, Sova P, Kozubík A, Hyršlová Vaculová A. Chk1 Inhibitor SCH900776 Effectively Potentiates the Cytotoxic Effects of Platinum-Based Chemotherapeutic Drugs in Human Colon Cancer Cells. Neoplasia 2017; 19:830-841. [PMID: 28888100 PMCID: PMC5591453 DOI: 10.1016/j.neo.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/11/2023] Open
Abstract
Although Chk1 kinase inhibitors are currently under clinical investigation as effective cancer cell sensitizers to the cytotoxic effects of numerous chemotherapeutics, there is still a considerable uncertainty regarding their role in modulation of anticancer potential of platinum-based drugs. Here we newly demonstrate the ability of one of the most specific Chk1 inhibitors, SCH900776 (MK-8776), to enhance human colon cancer cell sensitivity to the cytotoxic effects of platinum(II) cisplatin and platinum(IV)- LA-12 complexes. The combined treatment with SCH900776 and cisplatin or LA-12 results in apparent increase in G1/S phase-related apoptosis, stimulation of mitotic slippage, and senescence of HCT116 cells. We further show that the cancer cell response to the drug combinations is significantly affected by the p21, p53, and PTEN status. In contrast to their wt counterparts, the p53- or p21-deficient cells treated with SCH900776 and cisplatin or LA-12 enter mitosis and become polyploid, and the senescence phenotype is strongly suppressed. While the cell death induced by SCH900776 and cisplatin or LA-12 is significantly delayed in the absence of p53, the anticancer action of the drug combinations is significantly accelerated in p21-deficient cells, which is associated with stimulation of apoptosis beyond G2/M cell cycle phase. We also show that cooperative killing action of the drug combinations in HCT116 cells is facilitated in the absence of PTEN. Our results indicate that SCH900776 may act as an important modulator of cytotoxic response triggered by platinum-based drugs in colon cancer cells.
Collapse
Affiliation(s)
- Jarmila Herůdková
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Prashant Khirsariya
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Krkoška
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Petr Sova
- Platinum Pharmaceuticals, a.s., Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic.
| |
Collapse
|
16
|
Targeting the ATR-CHK1 Axis in Cancer Therapy. Cancers (Basel) 2017; 9:cancers9050041. [PMID: 28448462 PMCID: PMC5447951 DOI: 10.3390/cancers9050041] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Targeting the DNA damage response (DDR) is a new therapeutic approach in cancer that shows great promise for tumour selectivity. Key components of the DDR are the ataxia telangiectasia mutated and Rad3 related (ATR) and checkpoint kinase 1 (CHK1) kinases. This review article describes the role of ATR and its major downstream target, CHK1, in the DDR and why cancer cells are particularly reliant on the ATR-CHK1 pathway, providing the rationale for targeting these kinases, and validation of this hypothesis by genetic manipulation. The recent development of specific inhibitors and preclinical data using these inhibitors not only as chemosensitisers and radiosensitisers but also as single agents to exploit specific pathologies of tumour cells is described. These potent and specific inhibitors have now entered clinical trial and early results are presented.
Collapse
|
17
|
Wieringa HW, van der Zee AGJ, de Vries EGE, van Vugt MATM. Breaking the DNA damage response to improve cervical cancer treatment. Cancer Treat Rev 2015; 42:30-40. [PMID: 26643553 DOI: 10.1016/j.ctrv.2015.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/25/2022]
Abstract
Every year, cervical cancer affects ∼500,000 women worldwide, and ∼275,000 patients die of this disease. The addition of platin-based chemotherapy to primary radiotherapy has increased 5-year survival of advanced-stage cervical cancer patients, which is, however, still only 66%. One of the factors thought to contribute to treatment failure is the ability of tumor cells to repair chemoradiotherapy-induced DNA damage. Therefore, sensitization of tumor cells for chemoradiotherapy via inhibition of the DNA damage response (DDR) as a novel strategy to improve therapy effect, is currently studied pre-clinically as well as in the clinic. Almost invariably, cervical carcinogenesis involves infection with the human papillomavirus (HPV), which inactivates part of the DNA damage response. This HPV-mediated partial inactivation of the DDR presents therapeutic targeting of the residual DDR as an interesting approach to achieve chemoradio-sensitization for cervical cancer. How the DDR can be most efficiently targeted, however, remains unclear. The fact that cisplatin and radiotherapy activate multiple signaling axes within the DDR further complicates a rational choice of therapeutic targets within the DDR. In this review, we provide an overview of the current preclinical and clinical knowledge about targeting the DDR in cervical cancer.
Collapse
Affiliation(s)
- Hylke W Wieringa
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Mikami K, Medová M, Nisa L, Francica P, Glück AA, Tschan MP, Blaukat A, Bladt F, Aebersold DM, Zimmer Y. Impact of p53 Status on Radiosensitization of Tumor Cells by MET Inhibition-Associated Checkpoint Abrogation. Mol Cancer Res 2015; 13:1544-53. [PMID: 26358474 DOI: 10.1158/1541-7786.mcr-15-0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Signaling via the MET receptor tyrosine kinase has been implicated in crosstalk with cellular responses to DNA damage. Our group previously demonstrated that MET inhibition in tumor cells with deregulated MET activity results in radiosensitization via downregulation of the ATR-CHK1-CDC25 pathway, a major signaling cascade responsible for intra-S and G2-M cell-cycle arrest following DNA damage. Here we aimed at studying the potential therapeutic application of ionizing radiation in combination with a MET inhibitor, EMD-1214063, in p53-deficient cancer cells that harbor impaired G1-S checkpoint regulation upon DNA damage. We hypothesized that upon MET inhibition, p53-deficient cells would bypass both G1-S and G2-M checkpoints, promoting premature mitotic entry with substantial DNA lesions and cell death in a greater extent than p53-proficient cells. Our data suggest that p53-deficient cells are more susceptible to EMD-1214063 and combined treatment with irradiation than wild-type p53 lines as inferred from elevated γH2AX expression and increased cytotoxicity. Furthermore, cell-cycle distribution profiling indicates constantly lower G1 and higher G2-M population as well as higher expression of a mitotic marker p-histone H3 following the dual treatment in p53 knockdown isogenic variant, compared with the parental counterpart. IMPLICATIONS The concept of MET inhibition-mediated radiosensitization enhanced by p53 deficiency is of high clinical relevance, as p53 is frequently mutated in numerous types of human cancer. The current data point for a therapeutic advantage for an approach combining MET targeting along with DNA-damaging agents for MET-positive/p53-negative tumors.
Collapse
Affiliation(s)
- K Mikami
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - M Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - L Nisa
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - P Francica
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - A A Glück
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - M P Tschan
- Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - A Blaukat
- Merck Serono Research & Development, Merck KGaA, Darmstadt, Germany
| | - F Bladt
- Merck Serono Research & Development, Merck KGaA, Darmstadt, Germany
| | - D M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Y Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Magnussen GI, Emilsen E, Giller Fleten K, Engesæter B, Nähse-Kumpf V, Fjær R, Slipicevic A, Flørenes VA. Combined inhibition of the cell cycle related proteins Wee1 and Chk1/2 induces synergistic anti-cancer effect in melanoma. BMC Cancer 2015; 15:462. [PMID: 26054341 PMCID: PMC4460948 DOI: 10.1186/s12885-015-1474-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/26/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Malignant melanoma has an increasing incidence rate and the metastatic disease is notoriously resistant to standard chemotherapy. Loss of cell cycle checkpoints is frequently found in many cancer types and makes the cells reliant on compensatory mechanisms to control progression. This feature may be exploited in therapy, and kinases involved in checkpoint regulation, such as Wee1 and Chk1/2, have thus become attractive therapeutic targets. METHODS In the present study we combined a Wee1 inhibitor (MK1775) with Chk1/2 inhibitor (AZD7762) in malignant melanoma cell lines grown in vitro (2D and 3D cultures) and in xenografts models. RESULTS Our in vitro studies showed that combined inhibition of Wee1 and Chk1/2 synergistically decreased viability and increased apoptosis (cleavage of caspase 3 and PARP), which may be explained by accumulation of DNA-damage (increased expression of γ-H2A.X)--and premature mitosis of S-phase cells. Compared to either inhibitor used as single agents, combined treatment reduced spheroid growth and led to greater tumour growth inhibition in melanoma xenografts. CONCLUSIONS These data provide a rationale for further evaluation of the combination of Wee1 and Chk1/2 inhibitors in malignant melanoma.
Collapse
Affiliation(s)
- Gry Irene Magnussen
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway.
| | - Elisabeth Emilsen
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway.
| | - Karianne Giller Fleten
- Department of Tumour Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.
| | - Birgit Engesæter
- Department of Tumour Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.
| | - Viola Nähse-Kumpf
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.
| | - Roar Fjær
- Department of Medical Genetics, Ullevål University Hospital, Oslo, Norway.
| | - Ana Slipicevic
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway.
| | - Vivi Ann Flørenes
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway.
| |
Collapse
|
20
|
Vera J, Raatz Y, Wolkenhauer O, Kottek T, Bhattacharya A, Simon JC, Kunz M. Chk1 and Wee1 control genotoxic-stress induced G2-M arrest in melanoma cells. Cell Signal 2015; 27:951-60. [PMID: 25683911 DOI: 10.1016/j.cellsig.2015.01.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/31/2015] [Indexed: 11/29/2022]
Abstract
In the present report, the role of ATR-Chk1-Wee1 and ATM-Chk2-p53-p21 pathways in stress-induced cell cycle control is analysed in melanoma cells. Treatment of p53 wild-type melanoma cells with the genotoxic agent doxorubicin induces G2-M arrest, inhibitory phosphorylation of cell cycle kinase Cdc2 (CDK1) and enhanced expression of p53/p21. Wee1 inhibition under doxorubicin pulse-treatment reduces G2-M arrest and induces apoptosis. Inhibition of upstream kinase Chk1 under doxorubicin treatment almost completely abolishes stress-induced G2-M arrest and induces enhanced apoptosis. Interestingly, Chk1 inhibition alone even further increases apoptosis. While Chk1 inhibition alone almost completely abolishes G0-G1 arrest, combined treatment with doxorubicin re-establishes G0-G1 arrest. Moreover, Chk1 inhibition alone induces only a slight p53/p21 induction, while a strong induction of both proteins is observed by the combination with doxorubicin. These findings are suggestive for a particular role of p53/p21 in G0-G1, and Chk1 in G0-G1 and G2-M arrest. In line with this, the p53-mutant SK-Mel-28 melanoma cells do not mount a significant G0-G1 arrest under combined doxorubicin and Chk1 inhibitor treatment but rather show extensive apoptosis. Moreover, knockdown of p21 dramatically reduces stress-induced G0-G1 arrest under doxorubicin and Chk1 inhibitor treatment accompanied by massive DNA damage and apoptosis induction. Treatment of melanoma cells with an inhibitor of Chk2 upstream kinase ATM and doxorubicin almost completely abolishes G0-G1 arrest. Taken together, both Chk1 and Wee1 are mediators of G2-M arrest, while p53, p21 and Chk1 are mediators of G0-G1 arrest in melanoma cells. Combined treatment with chemotherapeutic agents such as doxorubicin and Chk1 inhibitors may help to overcome apoptosis resistance of p53-proficient melanoma cells. But treatment with Chk1 inhibitor alone may even be more efficient.
Collapse
Affiliation(s)
- Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
| | - Yvonne Raatz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Ulmenstrasse 69, 18057 Rostock, Germany
| | - Tina Kottek
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | - Animesh Bhattacharya
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Checkpoint kinase 1 is activated and promotes cell survival after exposure to sulphur mustard. Toxicol Lett 2015; 232:413-21. [DOI: 10.1016/j.toxlet.2014.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/27/2023]
|
22
|
Grabocka E, Commisso C, Bar-Sagi D. Molecular pathways: targeting the dependence of mutant RAS cancers on the DNA damage response. Clin Cancer Res 2014; 21:1243-7. [PMID: 25424849 DOI: 10.1158/1078-0432.ccr-14-0650] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Of the genes mutated in cancer, RAS remains the most elusive to target. Recent technological advances and discoveries have greatly expanded our knowledge of the biology of oncogenic Ras and its role in cancer. As such, it has become apparent that a property that intimately accompanies RAS-driven tumorigenesis is the dependence of RAS-mutant cells on a number of nononcogenic signaling pathways. These dependencies arise as a means of adaptation to Ras-driven intracellular stresses and represent unique vulnerabilities of mutant RAS cancers. A number of studies have highlighted the dependence of mutant RAS cancers on the DNA damage response and identified the molecular pathways that mediate this process, including signaling from wild-type Ras isoforms, ATR/Chk1, and DNA damage repair pathways. Here, we review these findings, and we discuss the combinatorial use of DNA-damaging chemotherapy with blockade of wild-type H- and N-Ras signaling by farnesyltransferase inhibitors, Chk1 inhibitors, or small-molecule targeting DNA damage repair as potential strategies through which the dependence of RAS cancers on the DNA damage response can be harnessed for therapeutic intervention.
Collapse
Affiliation(s)
- Elda Grabocka
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York.
| | - Cosimo Commisso
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| |
Collapse
|
23
|
Thompson R, Eastman A. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design. Br J Clin Pharmacol 2014; 76:358-69. [PMID: 23593991 DOI: 10.1111/bcp.12139] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/11/2013] [Indexed: 12/21/2022] Open
Abstract
Many anticancer agents damage DNA and activate cell cycle checkpoints that permit time for the cells to repair their DNA and recover. These checkpoints have undergone intense investigation as potential therapeutic targets and Chk1 inhibitors have emerged as promising novel therapeutic agents. Chk1 was initially recognized as a regulator of the G2/M checkpoint, but has since been demonstrated to have additional roles in replication fork stability, replication origin firing and homologous recombination. Inhibition of these pathways can dramatically sensitize cells to some antimetabolites. Current clinical trials with Chk1 inhibitors are primarily focusing on their combination with gemcitabine. Here, we discuss the mechanisms of, and emerging uses for Chk1 inhibitors as single agents and in combination with antimetabolites. We also discuss the pharmacodynamic issues that need to be addressed in attaining maximum efficacy in vivo. Following administration of gemcitabine to mice and humans, tumour cells accumulate in S phase for at least 24 h before recovering. In addition, stalled replication forks evolve over time to become more Chk1 dependent. We emphasize the need to assess cell cycle perturbation and Chk1 dependence of tumours in patients administered gemcitabine. These assessments will define the optimum dose and schedule for administration of these drug combinations.
Collapse
Affiliation(s)
- Ruth Thompson
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Lebanon, NH, USA
| | | |
Collapse
|
24
|
MacKay C, Carroll E, Ibrahim AFM, Garg A, Inman GJ, Hay RT, Alpi AF. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Cancer Res 2014; 74:2246-2257. [PMID: 24686174 DOI: 10.1158/0008-5472.can-13-2131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genotoxin cisplatin is commonly used in chemotherapy to treat solid tumors, yet our understanding of the mechanism underlying the drug response is limited. In a focused siRNA screen, using an siRNA library targeting genes involved in ubiquitin and ubiquitin-like signaling, we identified the E3 ubiquitin ligase HOIP as a key regulator of cisplatin-induced genotoxicity. HOIP forms, with SHARPIN and HOIL-1L, the linear ubiquitin assembly complex (LUBAC). We show that cells deficient in the HOIP ligase complex exhibit hypersensitivity to cisplatin. This is due to a dramatic increase in caspase-8/caspase-3-mediated apoptosis that is strictly dependent on ATM-, but not ATR-mediated DNA damage checkpoint activation. Moreover, basal and cisplatin-induced activity of the stress response kinase JNK is enhanced in HOIP-depleted cells and, conversely, JNK inhibition can increase cellular resistance to cisplatin and reverse the apoptotic hyperactivation in HOIP-depleted cells. Furthermore, we show that HOIP depletion sensitizes cancer cells, derived from carcinomas of various origins, through an enhanced apoptotic cell death response. We also provide evidence that ovarian cancer cells classified as cisplatin-resistant can regain sensitivity following HOIP downregulation. Cumulatively, our study identifies a HOIP-regulated antiapoptotic signaling pathway, and we envisage HOIP as a potential target for the development of combinatorial chemotherapies to potentiate the efficacy of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Craig MacKay
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Eilís Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Adel F M Ibrahim
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Amit Garg
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Gareth J Inman
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ronald T Hay
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, UK
| | - Arno F Alpi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| |
Collapse
|
25
|
Fokas E, Prevo R, Hammond EM, Brunner TB, McKenna WG, Muschel RJ. Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat Rev 2014; 40:109-17. [PMID: 23583268 DOI: 10.1016/j.ctrv.2013.03.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/12/2022]
Abstract
The ataxia telangiectasia and Rad3-related (ATR) plays an important role in maintaining genome integrity during DNA replication through the phosphorylation and activation of Chk1 and regulation of the DNA damage response. Preclinical studies have shown that disruption of ATR pathway can exacerbate the levels of replication stress in oncogene-driven murine tumors to promote cell killing. Additionally, inhibition of ATR can sensitise tumor cells to radiation or chemotherapy. Accumulating evidence suggests that targeting ATR can selectively sensitize cancer cells but not normal cells to DNA damage. Furthermore, in hypoxic conditions, ATR blockade results in overloading replication stress and DNA damage response causing cell death. Despite the attractiveness of ATR inhibition in the treatment of cancer, specific ATR inhibitors have remained elusive. In the last two years however, selective ATR inhibitors suitable for in vitro and - most recently - in vivo studies have been identified. In this article, we will review the literature on ATR function, its role in DDR and the potential of ATR inhibition to enhance the efficacy of radiation and chemotherapy.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, Oxford University, Oxford, United Kingdom; Department of Radiation Therapy and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Manzl C, Fava LL, Krumschnabel G, Peintner L, Tanzer MC, Soratroi C, Bock FJ, Schuler F, Luef B, Geley S, Villunger A. Death of p53-defective cells triggered by forced mitotic entry in the presence of DNA damage is not uniquely dependent on Caspase-2 or the PIDDosome. Cell Death Dis 2013; 4:e942. [PMID: 24309929 PMCID: PMC3877543 DOI: 10.1038/cddis.2013.470] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022]
Abstract
Much effort has been put in the discovery of ways to selectively kill p53-deficient tumor cells and targeting cell cycle checkpoint pathways has revealed promising candidates. Studies in zebrafish and human cell lines suggested that the DNA damage response kinase, checkpoint kinase 1 (Chk1), not only regulates onset of mitosis but also cell death in response to DNA damage in the absence of p53. This effect reportedly relies on ataxia telangiectasia mutated (ATM)-dependent and PIDDosome-mediated activation of Caspase-2. However, we show that genetic ablation of PIDDosome components in mice does not affect cell death in response to γ-irradiation. Furthermore, Chk1 inhibition largely failed to sensitize normal and malignant cells from p53−/− mice toward DNA damaging agents, and p53 status did not affect the death-inducing activity of DNA damage after Chk1 inhibition in human cancer cells. These observations argue against cross-species conservation of a Chk1-controlled cell survival pathway demanding further investigation of the molecular machinery responsible for cell death elicited by forced mitotic entry in the presence of DNA damage in different cell types and model organisms.
Collapse
Affiliation(s)
- C Manzl
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
McNeely S, Beckmann R, Bence Lin AK. CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther 2013; 142:1-10. [PMID: 24140082 DOI: 10.1016/j.pharmthera.2013.10.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/05/2013] [Indexed: 02/06/2023]
Abstract
CHEK1 encodes the serine/threonine kinase CHK1, a central component of the DNA damage response. CHK1 regulates cell cycle checkpoints following genotoxic stress to prevent the entry of cells with damaged DNA into mitosis and coordinates various aspects of DNA repair. Accordingly, CHK1 has become a target of considerable interest in oncology. CHK1 inhibitors potentiate the efficacy of DNA-damaging chemotherapeutics by abrogating CHK1-mediated cell cycle arrest and preventing repair of damaged DNA. In addition, CHK1 inhibitors interfere with the biological role of CHK1 as a principal regulator of the cell cycle that controls the initiation of DNA replication, stabilizes replication forks, and coordinates mitosis. Since these functions of CHK1 facilitate progression through an unperturbed cell cycle, CHK1 inhibitors are being developed not only as chemopotentiators, but also as single-agent therapies. This review is intended to provide information on the current progress of CHK1 inhibitors in pre-clinical and clinical development and will focus on mechanisms of single-agent activity and potential strategies for patient tailoring and combinations with non-genotoxic agents.
Collapse
Affiliation(s)
- S McNeely
- Eli Lilly and Company, Indianapolis, IN, United States.
| | - R Beckmann
- Eli Lilly and Company, Indianapolis, IN, United States
| | - A K Bence Lin
- Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
28
|
Patil M, Pabla N, Dong Z. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci 2013; 70:4009-21. [PMID: 23508805 DOI: 10.1007/s00018-013-1307-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/28/2013] [Accepted: 02/18/2013] [Indexed: 12/19/2022]
Abstract
Originally identified as a mediator of DNA damage response (DDR), checkpoint kinase 1 (Chk1) has a broader role in checkpoint activation in DDR and normal cell cycle regulation. Chk1 activation involves phosphorylation at conserved sites. However, recent work has identified a splice variant of Chk1, which may regulate Chk1 in both DDR and normal cell cycle via molecular interaction. Upon activation, Chk1 phosphorylates a variety of substrate proteins, resulting in the activation of DNA damage checkpoints, cell cycle arrest, DNA repair, and/or cell death. Chk1 and its related signaling may be an effective therapeutic target in diseases such as cancer.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd., Augusta, GA, 30912, USA
| | | | | |
Collapse
|
29
|
Du M, Qiu Q, Gruslin A, Gordon J, He M, Chan CC, Li D, Tsang BK. SB225002 promotes mitotic catastrophe in chemo-sensitive and -resistant ovarian cancer cells independent of p53 status in vitro. PLoS One 2013; 8:e54572. [PMID: 23359652 PMCID: PMC3554720 DOI: 10.1371/journal.pone.0054572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022] Open
Abstract
Recent evidence indicates that CXCR2 signaling is crucial for cancer progression, and its antagonist SB225002 induces apoptosis in Wilms’ tumor cells. Here, we investigated the effect of SB225002 on cell cycle progression and apoptosis induction in vitro, using CDDP-sensitive and -resistant OVCA cell lines with different p53 status (wild type, mutant or null). Adenovirus infection of wild-type p53 or transfection of p53 siRNA was used to over-express or knock-down p53. Cell cycle and apoptosis were determined by flow cytometry or Hoechst staining and observation of nuclear morphology. Our data demonstrated that SB225002 induced apoptosis in both wild-type and p53-deficient ovarian cancer (OVCA) cells through alternative mechanisms. SB225002 promoted mitotic catastrophe, as evidenced by the accumulation of mitotic cells with spindle abnormalities, chromosome mis-segregation, multi-polar cell division, multiple nuclei, aneuploidy/polyploidy and subsequent extensive apoptosis. SB225002-induced mitotic catastrophe appeared to be mediated by down-regulation of checkpoint kinase Chk1 and Cdk1-cyclin B activation. In cells expressing wild-type p53 (OV2008 and C13*), SB225002 increased total and phospho-Ser p53 levels, and p53 knock-down decreased SB225002-induced apoptosis, without affecting premature mitosis. These results suggest that SB225002 induces p53-dependent apoptosis, and provokes mitotic catastrophe in p53-independent manner in p53 wild-type cells. Reconstitution with wild-type P53 in P53-null SKOV3 cell attenuated SB225002-induced mitotic catastrophe, suggesting p53 prevented mitotic catastrophe induced by SB225002 in p53-deficient OVCA cells. Finally, the effect of SB225002 could not be prevented by pretreatment with CXCR2 ligand or its neutralizing antibody. The present studies demonstrate for the first time that SB225002 has dual actions in OVCA cells, inducing classic apoptosis through p53 activation and provoking mitotic catastrophe in both p53 wild-type and deficient cells by Chk1 inhibition and Cdk activation. These findings raise the possibility of SB225002 as a new candidate molecule for OVCA therapy independent of the p53 status.
Collapse
Affiliation(s)
- Meirong Du
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics & Gynecology, Institute of Biomedical Sciences, Fudan University Shanghai, Medical College, Shanghai, China
- Departments of Cellular & Molecular Medicine and Obstetrics & Gynaecology, University of Ottawa, Ottawa, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Qing Qiu
- Departments of Cellular & Molecular Medicine and Obstetrics & Gynaecology, University of Ottawa, Ottawa, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Andree Gruslin
- Departments of Cellular & Molecular Medicine and Obstetrics & Gynaecology, University of Ottawa, Ottawa, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - John Gordon
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Miao He
- WuXi AppTech Co., Ltd., Shanghai, China
| | | | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics & Gynecology, Institute of Biomedical Sciences, Fudan University Shanghai, Medical College, Shanghai, China
- Department of Obstetrics & Gynecology, Hainan Medical College Affiliated Hospital, Haikou, China
- * E-mail: (DJL) (DL); (BKT) (BT)
| | - Benjamin K. Tsang
- Departments of Cellular & Molecular Medicine and Obstetrics & Gynaecology, University of Ottawa, Ottawa, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Obstetrics & Gynecology, Hainan Medical College Affiliated Hospital, Haikou, China
- World Class University (WCU) Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Republic of Korea
- * E-mail: (DJL) (DL); (BKT) (BT)
| |
Collapse
|
30
|
Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D'Incalci M, Piccolo S, Veronesi A, Zambelli A, Del Sal G, Di Leo A. Targeting triple negative breast cancer: is p53 the answer? Cancer Treat Rev 2013; 39:541-50. [PMID: 23321033 DOI: 10.1016/j.ctrv.2012.12.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/03/2012] [Indexed: 01/15/2023]
Abstract
Triple negative breast cancers, which are defined by lack of expression of estrogen, progesterone, or HER2 receptors, represent approximately 15% of all breast cancers, although they account for a much higher proportional of breast cancer mortality. This is due both to their innate aggressive biological characteristics, but also to lack of effective therapies. Conventional chemotherapy is currently the only treatment option, thus there is a critical need to find new and effective targeted therapies in this disease. While investigation of agents such as poly (ADP-ribose) polymerase (PARP) inhibitors and EGFR inhibitors continues, results from recent clinical trials indicate that these therapies are not as active in sporadic triple negative breast cancers as initially hoped. It is important therefore to consider other emerging therapeutic agents. Mutation in p53 is found in the vast majority of triple negative breast cancers, and as such is a target of particular interest. Within this review, several agents with potential activity against aberrant p53 signaling have been considered, as a novel approach to finding an effective targeted therapy for this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Natalie Turner
- Sandro Pitigliani Medical Oncology Unit, Department of Oncology, Hospital of Prato, Prato, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Maugeri-Saccà M, Bartucci M, De Maria R. Checkpoint kinase 1 inhibitors for potentiating systemic anticancer therapy. Cancer Treat Rev 2012. [PMID: 23207059 DOI: 10.1016/j.ctrv.2012.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The checkpoint kinase 1 (Chk1) is a key component of the DNA damage response, a molecular network deputed to maintain genome integrity. Nevertheless, cancer cells aberrantly exploit these circuits to overcome chemotherapy-induced cytotoxicity. Chk1 inhibitors have been developed as a chemopotentiating strategy and different molecular mechanisms underlying the synergism with chemotherapeutics have been uncovered. The monotherapy with Chk1 inhibitors seems to be endowed with antitumor activity against cancer cells characterized by specific defects in the DNA damage machinery or characterized by elevated levels of oncogene-induced replication stress. In this biological framework Chk1 neutralization represents a synthetic lethality-based therapeutic approach. Moreover, a dual targeting of the DNA damage machinery has been proposed envisioning the association of Chk1 abrogation with poly-ADP ribose polymerase inhibitors. The spectrum of antitumor properties of Chk1 antagonists is completed by the activity against cancer stem cells, the prominent tumorigenic population that is equipped to survive stressful conditions through multiple and interconnected mechanisms. Although the clinical development of the first generation of Chk1 antagonists was hindered by off-target effects and an unfavorable pharmacokinetic profile, a new wave of early clinical trials with more selective compounds are currently being carried out. To this end, the identification of predictive biomarkers and an in-depth characterization of molecular circuits governed by Chk1 are issues that need to be addressed for sharpening the therapeutic potential of Chk1 inhibitors.
Collapse
Affiliation(s)
- M Maugeri-Saccà
- Regina Elena National Cancer Institute, Via E. Chianesi, n. 53, 00144 Rome, Italy.
| | | | | |
Collapse
|
32
|
Walton MI, Eve PD, Hayes A, Valenti MR, De Haven Brandon AK, Box G, Hallsworth A, Smith EL, Boxall KJ, Lainchbury M, Matthews TP, Jamin Y, Robinson SP, Aherne GW, Reader JC, Chesler L, Raynaud FI, Eccles SA, Collins I, Garrett MD. CCT244747 is a novel potent and selective CHK1 inhibitor with oral efficacy alone and in combination with genotoxic anticancer drugs. Clin Cancer Res 2012; 18:5650-61. [PMID: 22929806 PMCID: PMC3474704 DOI: 10.1158/1078-0432.ccr-12-1322] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Many tumors exhibit defective cell-cycle checkpoint control and increased replicative stress. CHK1 is critically involved in the DNA damage response and maintenance of replication fork stability. We have therefore discovered a novel potent, highly selective, orally active ATP-competitive CHK1 inhibitor, CCT244747, and present its preclinical pharmacology and therapeutic activity. EXPERIMENTAL DESIGN Cellular CHK1 activity was assessed using an ELISA assay, and cytotoxicity a SRB assay. Biomarker modulation was measured using immunoblotting, and cell-cycle effects by flow cytometry analysis. Single-agent oral CCT244747 antitumor activity was evaluated in a MYCN-driven transgenic mouse model of neuroblastoma by MRI and in genotoxic combinations in human tumor xenografts by growth delay. RESULTS CCT244747 inhibited cellular CHK1 activity (IC(50) 29-170 nmol/L), significantly enhanced the cytotoxicity of several anticancer drugs, and abrogated drug-induced S and G(2) arrest in multiple tumor cell lines. Biomarkers of CHK1 (pS296 CHK1) activity and cell-cycle inactivity (pY15 CDK1) were induced by genotoxics and inhibited by CCT244747 both in vitro and in vivo, producing enhanced DNA damage and apoptosis. Active tumor concentrations of CCT244747 were obtained following oral administration. The antitumor activity of both gemcitabine and irinotecan were significantly enhanced by CCT244747 in several human tumor xenografts, giving concomitant biomarker modulation indicative of CHK1 inhibition. CCT244747 also showed marked antitumor activity as a single agent in a MYCN-driven neuroblastoma. CONCLUSION CCT244747 represents the first structural disclosure of a highly selective, orally active CHK1 inhibitor and warrants further evaluation alone or combined with genotoxic anticancer therapies.
Collapse
Affiliation(s)
- Mike I Walton
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The discovery of tumor-initiating cells endowed with stem-like features has added a further level of complexity to the pathobiology of neoplastic diseases. In the attempt of dissecting the functional properties of this uncommon cellular subpopulation, investigators are taking full advantage of a body of knowledge about adult stem cells, as the "cancer stem cell model" implies that tissue-resident stem cells are the target of the oncogenic process. It is emerging that a plethora of molecular mechanisms protect cancer stem cells (CSC) against chemotherapy- and radiotherapy-induced death stimuli. The ability of CSCs to survive stressful conditions is correlated, among others, with a multifaceted protection of genome integrity by a prompt activation of the DNA damage sensor and repair machinery. Nevertheless, many molecular-targeted agents directed against DNA repair effectors are in late preclinical or clinical development while the identification of predictive biomarkers of response coupled with the validation of robust assays for assessing biomarkers is paving the way for biology-driven clinical trials.
Collapse
Affiliation(s)
- Marcello Maugeri-Saccà
- Department of Hematology Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | | | | |
Collapse
|
34
|
Hong J, Hu K, Yuan Y, Sang Y, Bu Q, Chen G, Yang L, Li B, Huang P, Chen D, Liang Y, Zhang R, Pan J, Zeng YX, Kang T. CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma. J Clin Invest 2012; 122:2165-75. [PMID: 22585575 DOI: 10.1172/jci61380] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/04/2012] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies resistant to current chemotherapies or radiotherapies, which makes it urgent to identify new therapeutic targets for HCC. In this study, we found that checkpoint kinase 1 (CHK1) was frequently overexpressed and correlated with poor clinical outcome in patients with HCC. We further showed that the CHK1 inhibitor GÖ6976 was capable of sensitizing HCC cells to cisplatin, indicating that CHK1 may have oncogenic function in HCC. We found that CHK1 phosphorylated the tumor suppressor spleen tyrosine kinase (L) (SYK[L]) and identified the phosphorylation site at Ser295. Furthermore, CHK1 phosphorylation of SYK(L) promoted its subsequent proteasomal degradation. Expression of a nonphosphorylated mutant of SYK(L) was more efficient at suppressing proliferation, colony formation, mobility, and tumor growth in HCC lines. Importantly, a strong inverse correlation between the expression levels of CHK1 and SYK(L) was observed in patients with HCC. Collectively, our data demonstrate that SYK(L) is a substrate of CHK1 in tumor cells and suggest that targeting the CHK1/SYK(L) pathway may be a promising strategy for treating HCC.
Collapse
Affiliation(s)
- Jian Hong
- State Key Laboratory of Oncology in South China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen T, Stephens PA, Middleton FK, Curtin NJ. Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today 2011; 17:194-202. [PMID: 22192883 DOI: 10.1016/j.drudis.2011.12.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/04/2011] [Accepted: 12/07/2011] [Indexed: 12/16/2022]
Abstract
Cell survival following DNA damage depends on activating checkpoints to arrest proliferation. Most cancer cells have dysregulated G1 checkpoints making them dependent on their S and G2 checkpoints, which are activated by ATR/Chk1 signalling. Thus, inhibiting ATR or Chk1 should selectively sensitise cancer cells to DNA damage. Genetic inactivation of ATR and Chk1 abrogates cell cycle arrest and enhances cytotoxicity following exposure to DNA-damaging agents. Similar effects were seen with small-molecule Chk1 inhibitors in preclinical studies, and clinical trial data are starting to emerge. Recently, potent ATR inhibitors have been identified that also sensitise cancer cells in vitro. ATR and Chk1 inhibitors might also cause 'synthetic lethality' in tumour cells defective in defined DNA repair pathways.
Collapse
Affiliation(s)
- Tao Chen
- Newcastle University, Northern Institute for Cancer Research, Newcastle-upon-Tyne, UK
| | | | | | | |
Collapse
|
36
|
Zhao L, Chen X, Cao Y. New role of microRNA: carcinogenesis and clinical application in cancer. Acta Biochim Biophys Sin (Shanghai) 2011; 43:831-9. [PMID: 21908856 DOI: 10.1093/abbs/gmr080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miRNA) is a cluster of small non-encoding RNA molecules of 21-23 nucleotides in length, which controls the expression of target gene at the post-transcriptional level. Recent researches have indicated that miRNA plays an essential role in carcinogenesis, such as affecting the cell growth, differentiation, apoptosis, and cell cycle. Nowadays, multiple promising roles of miRNA involved in carcinogenesis are emerging, and it is shown that miRNA closely relates to the process of epithelial-mesenchymal transition (EMT), the regulation of cancer stem cells (CSCs), the development of tumor invasion and migration. miRNA also acts as a biomarker stably expressed in serum and provides new target for molecular target therapy of various cancers. The aim of this review is to illustrate the new role of miRNA in carcinogenesis and highlight the new prospects of miRNA in cancer clinical application, such as in serological diagnosis and molecular-targeted therapeutics.
Collapse
Affiliation(s)
- Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha 410078, China.
| | | | | |
Collapse
|
37
|
Sørensen CS, Syljuåsen RG. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 2011; 40:477-86. [PMID: 21937510 PMCID: PMC3258124 DOI: 10.1093/nar/gkr697] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA damage. Importantly, the checkpoint kinases ATR, CHK1 and WEE1 are not only activated in response to exogenous DNA damaging agents, but are active during normal S phase progression. Here, we review recent evidence that these checkpoint kinases are critical to avoid deleterious DNA breakage during DNA replication in normal, unperturbed cell cycle. Possible mechanisms how loss of these checkpoint kinases may cause DNA damage in S phase are discussed. We propose that the majority of DNA damage is induced as a consequence of deregulated CDK activity that forces unscheduled initiation of DNA replication. This could generate structures that are cleaved by DNA endonucleases leading to the formation of DNA double-strand breaks. Finally, we discuss how these S phase effects may impact on our understanding of cancer development following disruption of these checkpoint kinases, as well as on the potential of these kinases as targets for cancer treatment.
Collapse
Affiliation(s)
- Claus Storgaard Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| | | |
Collapse
|
38
|
Abstract
CHK1 and CHK2 function as effectors of cell cycle checkpoint arrest following DNA damage. Small molecule inhibitors of CHK proteins are under clinical evaluation in combination with chemotherapeutic agents known to induce DNA damage. We examined whether CHK inhibitors could be effective as single agents in malignant cells with inherent DNA damage because of deregulated expression of the oncogene c-Myc. Eμ-myc lymphoma cells showed a dramatic increase in the extent of DNA damage and DNA damage response (DDR) signalling within 1 h of treatment with CHK1 inhibitors followed by caspase-dependent apoptosis and cell death. In p53 wild-type/ARF null Eμ-myc lymphoma cells, apoptotic cell death was preceded by accumulation of DNA damage and the amount of DNA damage correlated with the extent of cell death. This effect was not observed in normal B cells indicating that DNA damage accumulation following CHK inhibition was specific to Eμ-myc lymphoma cells that exhibit inherent DNA damage because of MYC-induced replication stress. Similar results were obtained with another structurally distinct CHK-inhibitor. Eμ-myc p53 null lymphoma cells were more sensitive to a dual CHK1/CHK2 inhibitor than to a CHK1-specific inhibitor. In all cases, the level of DNA damage following treatment was the most consistent indicator of drug sensitivity. Our results suggest that CHK inhibitors would be beneficial therapeutic agents in MYC-driven cancers. We propose that inhibitors of CHK can act in a synthetically lethal manner in cancers with replication stress as a result of these cancers being reliant on CHK proteins for an effective DDR and cell survival.
Collapse
|
39
|
Abstract
Cancer lethality is mainly due to the onset of distant metastases and refractoriness to chemotherapy. Thus, the development of molecular targeted agents that can restore or increase chemosensitivity will provide valuable therapeutic options for cancer patients. Growing evidence indicates that a cellular subpopulation with stem cell-like features, commonly referred to as cancer stem cells (CSCs), is critical for tumor generation and maintenance. Recent advances in stem cell biology are revealing that this cellular fraction shares many properties with normal adult stem cells and is able to propagate the parental tumor in animal models. CSCs seem to be protected against widely used chemotherapeutic agents by means of different mechanisms, such as a marked proficiency in DNA damage repair, high expression of ATP-binding cassette drug transporters, and activation of PI3K/AKT and Wnt pathways. Moreover, microenvironmental stimuli such as those involved in the epithelial-mesenchymal transition and hypoxia indirectly contribute to chemoresistance by inducing in cancer cells a stem-like phenotype. Understanding how CSCs overcome chemotherapy-induced death stimuli, and integrating such knowledge into clinical research methodology, has become a priority in the process of identifying innovative therapeutic strategies aimed at improving the outcome of cancer patients.
Collapse
Affiliation(s)
- Marcello Maugeri-Saccà
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
40
|
Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 2011; 32:308-16. [PMID: 21458083 DOI: 10.1016/j.tips.2011.02.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 11/22/2022]
Abstract
Research into inhibitors of the protein kinases controlling the cellular response to DNA damage has reached an exciting stage, particularly for the checkpoint kinases CHK1 and CHK2. Selective inhibitors are now being tested in clinical trials in cancer patients. In this review, we highlight recent data from cellular and in vivo preclinical models that provide insight into the clinical contexts for checkpoint kinase inhibition (e.g. the timing of treatment and what type of inhibitor would be most appropriate). Although it has been shown that CHK1 inhibition potentiates the efficacy of various DNA-damaging therapies, the context for selective CHK2 inhibition is not yet as well defined. Distinct effects of selective CHK1 or CHK2 inhibition are observed when combined with DNA-damaging agents. It has also been shown that both CHK1 and CHK2 inhibitors potentiate the effects of other molecular targeted therapeutics [e.g. poly(ADP-ribose) polymerase inhibitors]. We also consider the single-agent activity of checkpoint kinase inhibitors for tumours with defined genetic backgrounds.
Collapse
|
41
|
Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T, Shumway SD, Mizuarai S, Hirai H, Maitra A, Hidalgo M. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 2011; 17:2799-806. [PMID: 21389100 DOI: 10.1158/1078-0432.ccr-10-2580] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Investigate the efficacy and pharmacodynamic effects of MK-1775, a potent Wee1 inhibitor, in both monotherapy and in combination with gemcitabine (GEM) using a panel of p53-deficient and p53 wild-type human pancreatic cancer xenografts. EXPERIMENTAL DESIGN Nine individual patient-derived pancreatic cancer xenografts (6 with p53-deficient and 3 with p53 wild-type status) from the PancXenoBank collection at Johns Hopkins were treated with MK-1775, GEM, or GEM followed 24 hour later by MK-1775, for 4 weeks. Tumor growth rate/regressions were calculated on day 28. Target modulation was assessed by Western blotting and immunohistochemistry. RESULTS MK-1775 treatment led to the inhibition of Wee1 kinase and reduced inhibitory phosphorylation of its substrate Cdc2. MK-1775, when dosed with GEM, abrogated the checkpoint arrest to promote mitotic entry and facilitated tumor cell death as compared to control and GEM-treated tumors. MK-1775 monotherapy did not induce tumor regressions. However, the combination of GEM with MK-1775 produced robust antitumor activity and remarkably enhanced tumor regression response (4.01-fold) compared to GEM treatment in p53-deficient tumors. Tumor regrowth curves plotted after the drug treatment period suggest that the effect of the combination therapy is longer-lasting than that of GEM. None of the agents produced tumor regressions in p53 wild-type xenografts. CONCLUSIONS These results indicate that MK-1775 selectively synergizes with GEM to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts.
Collapse
Affiliation(s)
- N V Rajeshkumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sangster-Guity N, Conrad BH, Papadopoulos N, Bunz F. ATR mediates cisplatin resistance in a p53 genotype-specific manner. Oncogene 2011; 30:2526-33. [PMID: 21258400 PMCID: PMC3107343 DOI: 10.1038/onc.2010.624] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein kinase encoded by the ataxia-telangiectasia and Rad3-related (ATR) gene is activated by DNA damaging agents that are frequently employed as anticancer therapeutics. Inhibition of ATR expression in cultured cancer cells has been demonstrated to increase sensitivity to chemotherapeutic drugs, including the DNA crosslinking agent cisplatin. Cisplatin is a widely employed and effective drug, but its use is associated with significant toxicity. Here, we demonstrate that genetic inhibition of ATR expression selectively enhanced cisplatin sensitivity in human colorectal cancer cells with inactivated p53. A knockin strategy was employed to restore wild type p53 in cells harboring wild type or mutant ATR alleles. Knockin of functional p53 in ATR-deficient cells restored checkpoint function, suppressed apoptotic pathways, and dramatically increased clonogenic survival after cisplatin treatment. These results suggest that a strategy that combines specific inhibitors of ATR and conventional therapies might promote synthetic lethality in p53-deficient tumors while minimizing toxicity to normal tissues.
Collapse
Affiliation(s)
- N Sangster-Guity
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
43
|
Levitzki A, Klein S. Signal transduction therapy of cancer. Mol Aspects Med 2010; 31:287-329. [DOI: 10.1016/j.mam.2010.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 04/28/2010] [Indexed: 01/05/2023]
|