1
|
Gao Y, Shelling AN, Nolan E, Porter D, Leung E, Wu Z. Liposome-enabled bufalin and doxorubicin combination therapy for trastuzumab-resistant breast cancer with a focus on cancer stem cells. J Liposome Res 2024; 34:489-506. [PMID: 38269490 DOI: 10.1080/08982104.2024.2305866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2+) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2+ cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 vs. 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (p < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2+ breast cancer.
Collapse
Affiliation(s)
- Yu Gao
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Emma Nolan
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - David Porter
- Auckland Regional Cancer and Blood Service, Auckland City Hospital, Auckland, New Zealand
| | - Euphemia Leung
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Zimei Wu
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Wang X, Li X, Niu L, Lv F, Guo T, Gao Y, Ran Y, Huang W, Wang B. FAK-LINC01089 negative regulatory loop controls chemoresistance and progression of small cell lung cancer. Oncogene 2024; 43:1669-1687. [PMID: 38594505 DOI: 10.1038/s41388-024-03027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The focal adhesion kinase (FAK) tyrosine kinase is activated and upregulated in multiple cancer types including small cell lung cancer (SCLC). However, FAK inhibitors have shown limited efficacy in clinical trials for cancer treatment. With the aim of identifying potential therapeutic strategies to inhibit FAK for cancer treatment, we investigated long non-coding RNAs (lncRNAs) that potentially regulate FAK in SCLC. In this study, we identified a long non-coding RNA LINC01089 that binds and inhibits FAK phosphorylation (activation). Expression analysis revealed that LINC01089 was downregulated in SCLC tissues and negatively correlated with chemoresistance and survival in SCLC patients. Functionally, LINC01089 inhibited chemoresistance and progression of SCLC in vitro and in vivo. Mechanistically, LINC01089 inhibits FAK activation by blocking binding with Src and talin kinases, while FAK negatively regulates LINC01089 transcription by activating the ERK signaling pathway to recruit the REST transcription factor. Furthermore, LINC01089-FAK axis mediates the expression of drug resist-related genes by modulating YBX1 phosphorylation, leading to drug resistance in SCLC. Intriguingly, the FAK-LINC01089 interaction depends on the co-occurrence of the novel FAK variant and the non-conserved region of LINC01089 in primates. In Conclusion, our results indicated that LINC01089 may serve as a novel high-efficiency FAK inhibitor and the FAK-LINC01089 axis represents a valuable prognostic biomarker and potential therapeutic target in SCLC.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liman Niu
- Chongqing Key Laboratory of Sichuan-Chongging Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Guo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Chen S, Zhang G, Liu Y, Yang C, He Y, Guo Q, Du Y, Gao F. Anchoring of hyaluronan glycocalyx to CD44 reduces sensitivity of HER2-positive gastric cancer cells to trastuzumab. FEBS J 2024; 291:1719-1731. [PMID: 38275079 DOI: 10.1111/febs.17069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Trastuzumab is widely used in human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC) therapy, but ubiquitous resistance limits its clinical application. In this study, we first showed that CD44 antigen is a significant predictor of overall survival for patients with HER2-positive GC. Next, we found that CD44 could be co-immunoprecipitated and co-localized with HER2 on the membrane of GC cells. By analyzing the interaction between CD44 and HER2, we identified that CD44 could upregulate HER2 protein by inhibiting its proteasome degradation. Notably, the overexpression of CD44 could decrease the sensitivity of HER2-positive GC cells to trastuzumab. Further mechanistic study showed that CD44 upregulation could induce its ligand, hyaluronan (HA), to deposit on the cancer cell surface, resulting in covering up the binding sites of trastuzumab to HER2. Removing the HA glycocalyx restored sensitivity of the cells to trastuzumab. Collectively, our findings suggested a role for CD44 in regulating trastuzumab sensitivity and provided novel insights into HER2-targeted therapy.
Collapse
Affiliation(s)
- Si Chen
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
4
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
5
|
Quan C, Wu Z, Xiong J, Li M, Fu Y, Su J, Wang Y, Ning L, Zhang D, Xie N. Upregulated PARP1 confers breast cancer resistance to CDK4/6 inhibitors via YB-1 phosphorylation. Exp Hematol Oncol 2023; 12:100. [PMID: 38037159 PMCID: PMC10687910 DOI: 10.1186/s40164-023-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Cyclic-dependent kinase (CDK) 4/6 kinases, as the critical drivers of the cell cycle, are involved in the tumor progression of various malignancies. Pharmacologic inhibitors of CDK4/6 have shown significant clinical prospects in treating hormone receptor-positive and human epidermal growth factor receptor-negative (HR + /HER2-) breast cancer (BC) patients. However, acquired resistance to CDK4/6 inhibitors (CDK4/6i), as a common issue, has developed rapidly. It is of great significance that the identification of novel therapeutic targets facilitates overcoming the CDK4/6i resistance. PARP1, an amplified gene for CDK4/6i-resistant patients, was found to be significantly upregulated during the construction of CDK4/6i-resistant strains. Whether PARP1 drives CDK4/6i resistance in breast cancer is worth further study. METHOD PARP1 and p-YB-1 protein levels in breast cancer cells and tissues were quantified using Western blot (WB) analysis, immunohistochemical staining (IHC) and immunofluorescence (IF) assays. Bioinformatics analyses of Gene Expression Profiling Interactive Analysis (GEPIA), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets were applied to explore the relationship between YB-1/PARP1 protein levels and CDK4/6i IC50. Cell Counting Kit-8 (CCK-8) and crystal violet staining assays were performed to evaluate cell proliferation rates and drug killing effects. Flow cytometry assays were conducted to assess apoptosis rates and the G1/S ratio in the cell cycle. An EdU proliferation assay was used to detect the DNA replication ratio after treatment with PARP1 and YB-1 inhibitors. A ChIP assay was performed to assess the interaction of the transcription factor YB-1 and associated DNA regions. A double fluorescein reporter gene assay was designed to assess the influence of WT/S102A/S102E YB-1 on the promoter region of PARP1. Subcutaneous implantation models were applied for in vivo tumor growth evaluations. RESULTS Here, we reported that PARP1 was amplified in breast cancer cells and CDK4/6i-resistant patients, and knockdown or inhibition of PARP1 reversed drug resistance in cell experiments and animal models. In addition, upregulation of transcription factor YB-1 also occurred in CDK4/6i-resistant breast cancer, and YB-1 inhibition can regulate PARP1 expression. p-YB-1 and PARP1 were upregulated when treated with CDK4/6i based on the WB and IF results, and elevated PARP1 and p-YB-1 were almost simultaneously observed during the construction of MCF7AR-resistant strains. Inhibition of YB-1 or PAPR1 can cause decreased DNA replication, G1/S cycle arrest, and increased apoptosis. We initially confirmed that YB-1 can bind to the promoter region of PARP1 through a ChIP assay. Furthermore, we found that YB-1 phosphorylated at S102 was crucial for PARP1 transcription according to the double fluorescein reporter gene assay. The combination therapy of YB-1 inhibitors and CDK4/6i exerted a synergistic antitumor effect in vitro and in vivo. The clinical data suggested that HR + /HER2- patients with low expression of p-YB-1/PARP1 may be sensitive to CDK4/6i in breast cancer. CONCLUSION These findings indicated that a ''YB-1/PARP1'' loop conferred resistance to CDK4/6 inhibitors. Furthermore, interrupting the loop can enhance tumor killing in the xenograft tumor model, which provides a promising strategy against drug resistance in breast cancer.
Collapse
Affiliation(s)
- Chuntao Quan
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology, Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
| | - Zhijie Wu
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Juan Xiong
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Manqing Li
- Public Health School of Sun Yat-Sen University, Guangzhou, 510182, People's Republic of China
| | - Yu Fu
- Laboratory Department, Shenzhen Center for Chronic Disease Control, Shenzhen, 518035, People's Republic of China
| | - Jiaying Su
- Laboratory Department, Shenzhen Baoan People's Hospital, Second Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People's Republic of China
| | - Yue Wang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Lvwen Ning
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Deju Zhang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China.
| |
Collapse
|
6
|
Khozooei S, Veerappan S, Bonzheim I, Singer S, Gani C, Toulany M. Fisetin overcomes non-targetability of mutated KRAS induced YB-1 signaling in colorectal cancer cells and improves radiosensitivity by blocking repair of radiation-induced DNA double-strand breaks. Radiother Oncol 2023; 188:109867. [PMID: 37634766 DOI: 10.1016/j.radonc.2023.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND AND PURPOSE KRAS is frequently mutated, and the Y-box binding protein 1 (YB-1) is overexpressed in colorectal cancer (CRC). Mutant KRAS (KRASmut) stimulates YB-1 through MAPK/RSK and PI3K/AKT, independent of epidermal growth factor receptor (EGFR). The p21-activated kinase (PAK) family is a switch-site upstream of AKT and RSK. The flavonoid compound fisetin inhibits RSK-mediated YB-1 signaling. We sought the most effective molecular targeting approach that interferes with DNA double strand break (DSB) repair and induces radiosensitivity of CRC cells, independent of KRAS mutation status. MATERIALS AND METHODS KRAS activity and KRAS mutation were analyzed by Ras-GTP assay and NGS. Effect of dual targeting of RSK and AKT (DT), the effect of fisetin as well as targeting PAK by FRAX486 and EGFR by erlotinib on YB-1 activity was tested by Western blotting after irradiation in vitro and ex vivo. Additionally, the effect of DT and FRAX486 on DSB repair pathways was tested in cells expressing reporter constructs for the DSB repair pathways by flow cytometry analysis. Residual DSBs and clonogenicity were examined by γH2AX- and clonogenic assays, respectively. RESULTS Erlotinib neither blocked DSB repair nor inhibited YB-1 phosphorylation under KRAS mutation condition in vitro and ex vivo. DT and FRAX486 effectively inhibited YB-1 phosphorylation independent of KRAS mutation status and diminished homologous recombination (HR) and alternative non-homologous end joining (NHEJ) repair. DT and FRAX486 inhibited DSB repair in CaCo2 but not in isogenic KRASG12V cells. Fisetin inhibited YB-1 phosphorylation, blocked DSB repair and increased radiosensitivity, independent of KRAS mutation status. CONCLUSION Combination of fisetin with radiotherapy may improve CRC radiation response, regardless of KRASmut status.
Collapse
Affiliation(s)
- Shayan Khozooei
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Soundaram Veerappan
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Department of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan Singer
- Department of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Wang W, Rana PS, Markovic V, Sossey-Alaoui K. The WAVE3/β-catenin oncogenic signaling regulates chemoresistance in triple negative breast cancer. Breast Cancer Res 2023; 25:31. [PMID: 36949468 PMCID: PMC10035207 DOI: 10.1186/s13058-023-01634-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Metastatic breast cancer is responsible for the death of the majority of breast cancer patients. In fact, metastatic BC is the 2nd leading cause of cancer-related deaths in women in the USA and worldwide. Triple negative breast cancer (TNBC), which lacks expression of hormone receptors (ER-α and PR) and ErbB2/HER2, is especially lethal due to its highly metastatic behavior, propensity to recur rapidly, and for its resistance to standard of care therapies, through mechanisms that remain incompletely understood. WAVE3 has been established as a promoter of TNBC development and metastatic progression. In this study, we investigated the molecular mechanisms whereby WAVE3 promotes therapy-resistance and cancer stemness in TNBC, through the regulation of β-catenin stabilization. METHODS The Cancer Genome Atlas dataset was used to assess the expression of WAVE3 and β-catenin in breast cancer tumors. Kaplan-Meier Plotter analysis was used to correlate expression of WAVE3 and β-catenin with breast cancer patients' survival probability. MTT assay was used to quantify cell survival. CRISPR/Cas9-mediated gene editing, 2D and 3D tumorsphere growth and invasion assays, Immunofluorescence, Western blotting, Semi-quantitative and real-time quantitative PCR analyses were applied to study the WAVE3/β-catenin oncogenic signaling in TNBC. Tumor xenograft assays were used to study the role of WAVE3 in mediating chemotherapy resistance of TNBC tumors. RESULTS Genetic inactivation of WAVE3 in combination of chemotherapy resulted in inhibition of 2D growth and 3D tumorsphere formation and invasion of TNBC cells in vitro, as well as tumor growth and metastasis in vivo. In addition, while re-expression of phospho-active WAVE3 in the WAVE3-deficient TNBC cells restored the oncogenic activity of WAVE3, re-expression of phospho-mutant WAVE3 did not. Further studies revealed that dual blocking of WAVE3 expression or phosphorylation in combination with chemotherapy treatment inhibited the activity and expression and stabilization of β-catenin. Most importantly, the combination of WAVE3-deficiency or WAVE3-phospho-deficiency and chemotherapy suppressed the oncogenic behavior of chemoresistant TNBC cells, both in vitro and in vivo. CONCLUSION We identified a novel WAVE3/β-catenin oncogenic signaling axis that modulates chemoresistance of TNBC. This study suggests that a targeted therapeutic strategy against WAVE3 could be effective for the treatment of chemoresistant TNBC tumors.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH, 44109, USA
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Priyanka S Rana
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH, 44109, USA
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Vesna Markovic
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH, 44109, USA.
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, Wang L, Pang S, Li Y, Zou B, Zhou G, Gu J. Galectin‐3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in
HER2
‐positive breast cancer cells. Thorac Cancer 2022; 13:1961-1973. [PMID: 35599381 PMCID: PMC9250839 DOI: 10.1111/1759-7714.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose The aim of this study was to explore the role of galectin‐3 in human epidermal growth factor receptor 2 (HER2)‐positive breast cancer cells and the potential mechanism. Methods Kaplan–Meier (KM)‐plot and The Cancer Genome Atlas (TCGA) databases were used to study the role of galectin‐3 in the prognosis of HER2‐positive breast cancer. The effects of galectin‐3 on cell proliferation, migration, invasion, and colony formation ability in HER2‐positive breast cancer cells were examined. The relationship between galectin‐3 and important components in the HER2 pathways, including HER2, epidermal growth factor receptor (EGFR), protein kinase B (AKT), and phosphatase and tensin homolog (PTEN), was further studied. Lentivirus and CRISPR/Cas9 were used to construct stable cell lines. Cell counting kit‐8 (CCK‐8) and apoptosis assays were used to study the relationship between galectin‐3 and trastuzumab. The effect of galectin‐3 on cell stemness was studied by mammosphere formation assay. The effects of galectin‐3 on stemness biomarkers and the Notch1 pathway were examined. Tumorigenic models were used to evaluate the effects of galectin‐3 on tumorigenesis and the therapeutic effect of trastuzumab in vivo. Results HER2‐positive breast cancer patients with a high expression level of LGALS3 (the gene encoding galectin‐3) messenger RNA (mRNA) showed a poor prognosis. Galectin‐3 promoted cancer malignancy through phosphoinositide 3‐kinase (PI3K)/AKT signaling pathway activation and upregulated stemness by activating the Notch1 signaling pathway in HER2‐positive breast cancer cells. These two factors contributed to the enhancement of trastuzumab resistance in cells. Knockout of LGALS3 had a synergistic therapeutic effect with trastuzumab both in vitro and in vivo. Conclusions Galectin‐3 may represent a prognostic predictor and therapeutic target for HER2‐positive breast cancer.
Collapse
Affiliation(s)
- Yuqiu Chen
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Jiawei Xu
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Wang Pan
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Xiaofan Xu
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Xueping Ma
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Ya'nan Chu
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Lu Wang
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Shuyun Pang
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Yujiao Li
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy China Pharmaceutical University Nanjing China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmacy Southern Medical University Guangzhou China
| | - Jun Gu
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| |
Collapse
|
9
|
YB1 Is a Major Contributor to Health Disparities in Triple Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13246262. [PMID: 34944882 PMCID: PMC8699660 DOI: 10.3390/cancers13246262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) is a devastating disease that affects many women, due to the lack of FDA-approved targeted therapy. In the absence of cell surface receptors ER, PR, and Her2 that can be targeted with hormonal and antibody treatments, cytotoxic chemotherapy remains the major course of treatment, with a dismal response and rapid recurrence due to the acquisition of resistance. TNBC is also twice as more prevalent in African American (AA) when compared to Caucasian American (CA) women. This study investigated the role of the YB1 gene in the disparities in TNBC between AA and CA women. We found that YB1 is highly expressed in TNBC tumors of AA origin when compared to CAs. Increased expression levels and activity of YB1 correlates with poor disease outcomes, resistance to chemotherapy, and the activation of the cancer stem cell (CSC) phenotype, with higher levels in AA than in CA TNBC tumors. More importantly, we found that the targeted inhibition of the expression and activity of YB1 significantly inhibited the oncogenic behavior of AA tumors through sensitization to chemotherapy and inhibition of CSCs. Our study is the first to show that YB1 activity may be a major biological contributor to the health disparities in TNBC, and that development of therapies that specifically target YB1 could reduce these disparities. Abstract Triple negative breast cancer (TNBC) is the most aggressive amongst all breast cancer (BC) subtypes. While TNBC tumors represent less than 20% of all BC subtypes, they are responsible for the most BC-related deaths. More significantly, when considering TNBC incidence across all racial/ethnic groups, TNBC accounts for less than 20% of all BCs. However, in non-Hispanic black women, the incidence rate of TNBC is more than 40%, which may be a contributing factor to the higher BC-related death rate in this population. These disparities remain strong even after accounting for differences in socioeconomic status, healthcare access, and lifestyle factors. Increased evidence now points to biological mechanisms that are intrinsic to the tumor that contribute to disparate TNBC disease burdens. Here, we show that YB1, a multifunction gene, plays a major role in the TNBC disparities between African American (AA) and Caucasian American (CA) women. We show in three independent TNBC tumors cohorts, that YB1 is significantly highly expressed in AA TNBC tumors when compared to CAs, and that increased levels of YB1 correlate with poor survival of AA patients with TNBC. We used a combination of genetic manipulation of YB1 and chemotherapy treatment, both in vitro and in animal models of TNBC to show that YB1 oncogenic activity is more enhanced in TNBC cell lines of AA origin, by increasing their tumorigenic and aggressive behaviors, trough the activation of cancer stem cell phenotype and resistance to chemotherapeutic treatments.
Collapse
|
10
|
Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal 2021; 85:110073. [PMID: 34224843 DOI: 10.1016/j.cellsig.2021.110073] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
The Y Box binding protein 1 (YB-1) is a member of the highly conserved Cold Shock Domain protein family with multifunctional properties both in the cytoplasm and inside the nucleus. YB-1 is also involved in various cellular functions, including regulation of transcription, mRNA stability, and splicing. Recent studies have associated YB-1 with the regulation of the malignant phenotypes in several tumor types. In this review article, we provide an in-depth and expansive review of the literature pertaining to the multiple physiological functions of YB-1. We will also review the role of YB-1 in cancer development, progression, metastasis, and drug resistance in various malignancies, with more weight on literature published in the last decade. The methodology included querying databases PubMed, Embase, and Google Scholar for Y box binding protein 1, YB-1, YBX1, and Y-box-1.
Collapse
Affiliation(s)
- Akram Alkrekshi
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Wei Wang
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Priyanka Shailendra Rana
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Vesna Markovic
- MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
11
|
Qiu Y, Yang L, Liu H, Luo X. Cancer stem cell-targeted therapeutic approaches for overcoming trastuzumab resistance in HER2-positive breast cancer. STEM CELLS (DAYTON, OHIO) 2021; 39:1125-1136. [PMID: 33837587 DOI: 10.1002/stem.3381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
Application of the anti-HER2 drug trastuzumab has significantly improved the prognosis of patients with the HER2-positive subtype of breast cancer. However, 50% of patients with HER2 amplification relapse due to trastuzumab resistance. Accumulating evidence indicates that breast cancer is driven by a small subset of cancer-initiating cells or breast cancer stem cells (BCSCs), which have the capacity to self-renew and differentiate to regenerate the tumor cell hierarchy. Increasing data suggest that BCSCs are resistant to conventional therapy, including chemotherapy, radiotherapy, and endocrine therapy, which drives distant metastasis and breast cancer relapse. In recent years, the trastuzumab resistance of breast cancer has been closely related to the prevalence of BCSCs. Here, our primary focus is to discuss the role of epithelial-mesenchymal transition (EMT) of BCSCs in the setting of trastuzumab resistance and approaches of reducing or eradicating BCSCs in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Honghong Liu
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
12
|
Koygun GK, Kars MD, Emsen A, Artac H, Aksoy F, Cakir M, Tavli L, Artac M. Response to trastuzumab and investigation of expression profiles of matrix metalloproteinase-related proteins in primary breast cancer stem cells. Clin Exp Med 2021; 21:447-456. [PMID: 33471244 DOI: 10.1007/s10238-021-00685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Breast cancer (BC) is the leading cause of cancer deaths in women. One of the reasons for the failure of BC treatment is reportedly the ineffectiveness of chemotherapeutic drugs against breast cancer stem-like cells (BCSCs). HER2 receptors have an important role in the self-renewal of BCSCs. Matrix metalloproteinase (MMP) and cytokine levels were found to be higher in BCSCs, which demonstrates their potential metastatic capacity. Therefore, the aim of this study was to evaluate the response of BCSCs to trastuzumab and to investigate the MMP levels in primary breast cancer cells and HER2+ BCSCs. Tumour tissue samples were obtained during surgical intervention from ten breast cancer patients, and primary culture cells were established from these tissues. Four major molecular subgroups were sorted from the primary culture: HER2+ BCSCs (CD44+CD24-HER2+), HER2- BCSCs (CD44+CD24-HER2-), HER2- primary culture cells (CD44+CD24+HER2-) and triple positive primary culture cells (CD44+CD24+HER2+). These cells were cultured and treated with trastuzumab, paclitaxel, carboplatin, and the combination of those three drugs for 96 h. Cellular responses to these drugs were determined by XTT cytotoxicity test. MMPs and cytokine array analysis showed that MMPs and TIMP-1, TIMP-2 proteins were expressed more in HER2+ BCSCs than in primary culture. HER2- BCSCs were more resistant to drugs than HER2+ BCSCs. Our findings suggest that the presence of HER2- BCSCs may be responsible for primary trastuzumab resistance in HER2+ BC cell population. Further studies investigating the function of MMPs are needed for drug targeting of BCSCs.
Collapse
Affiliation(s)
- Gozde Kayadibi Koygun
- Department of Nanotechnology and Advanced Materials, Advanced Technology Research and Application Center, Selcuk University, Konya, Turkey
| | - Meltem Demirel Kars
- Meram Vocational School, Medicinal and Aromatic Plants Program, Necmettin Erbakan University, Konya, Turkey
| | - Ayca Emsen
- Faculty of Medicine, Department of Pediatric Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Hasibe Artac
- Faculty of Medicine, Department of Pediatric Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Faruk Aksoy
- Meram Faculty of Medicine, Department of General Surgery, Necmettin Erbakan University, Konya, Turkey
| | - Murat Cakir
- Meram Faculty of Medicine, Department of General Surgery, Necmettin Erbakan University, Konya, Turkey
| | - Lema Tavli
- Meram Faculty of Medicine, Department of Pathology, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Artac
- Meram Faculty of Medicine, Department of Medical Oncology, Necmettin Erbakan University, Konya, Turkey.
| |
Collapse
|
13
|
Zhang J, Fan JS, Li S, Yang Y, Sun P, Zhu Q, Wang J, Jiang B, Yang D, Liu M. Structural basis of DNA binding to human YB-1 cold shock domain regulated by phosphorylation. Nucleic Acids Res 2020; 48:9361-9371. [PMID: 32710623 PMCID: PMC7498358 DOI: 10.1093/nar/gkaa619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Human Y-box binding protein 1 (YB-1) is a multifunctional protein and overexpressed in many types of cancer. It specifically recognizes DNA/RNA through a cold shock domain (CSD) and regulates nucleic acid metabolism. The C-terminal extension of CSD and the phosphorylation of S102 are indispensable for YB-1 function. Until now, the roles of the C-terminal extension and phosphorylation in gene transcription and translation are still largely unknown. Here, we solved the structure of human YB-1 CSD with a C-terminal extension sequence (CSDex). The structure reveals that the extension interacts with several residues in the conventional CSD and adopts a rigid structure instead of being disordered. Either deletion of this extension or phosphorylation of S102 destabilizes the protein and results in partial unfolding. Structural characterization of CSDex in complex with a ssDNA heptamer shows that all the seven nucleotides are involved in DNA-protein interactions and the C-terminal extension provides a unique DNA binding site. Our DNA-binding study indicates that CSDex can recognize more DNA sequences than previously thought and the phosphorylation reduces its binding to ssDNA dramatically. Our results suggest that gene transcription and translation can be regulated by changing the affinity of CSDex binding to DNA and RNA through phosphorylation, respectively.
Collapse
Affiliation(s)
- Jingfeng Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Peng Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Qinjun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jiannan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| |
Collapse
|
14
|
Bates M, Boland A, McDermott N, Marignol L. YB-1: The key to personalised prostate cancer management? Cancer Lett 2020; 490:66-75. [PMID: 32681926 DOI: 10.1016/j.canlet.2020.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Y-box-binding protein 1 (YB-1) is a DNA/RNA binding protein increasingly implicated in the regulation of cancer cell biology. Normally located in the cytoplasm, nuclear localisation in prostate cancer is associated with more aggressive, potentially treatment-resistant disease. This is attributed to the ability of YB-1 to act as a transcription factor for various target genes associated with androgen receptor signalling, survival, DNA repair, proliferation, invasion, differentiation, angiogenesis and hypoxia. This review aims to examine the clinical potential of YB-1 in the detection and therapeutic management of prostate cancer.
Collapse
Affiliation(s)
- Mark Bates
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| | - Anna Boland
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh McDermott
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| | - Laure Marignol
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
15
|
Altered transcriptional regulatory proteins in glioblastoma and YBX1 as a potential regulator of tumor invasion. Sci Rep 2019; 9:10986. [PMID: 31358880 PMCID: PMC6662741 DOI: 10.1038/s41598-019-47360-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/24/2019] [Indexed: 01/24/2023] Open
Abstract
We have studied differentially regulated nuclear proteome of the clinical tissue specimens of glioblastoma (GBM, WHO Grade IV) and lower grades of gliomas (Grade II and III) using high resolution mass spectrometry- based quantitative proteomics approach. The results showed altered expression of many regulatory proteins from the nucleus such as DNA binding proteins, transcription and post transcriptional processing factors and also included enrichment of nuclear proteins that are targets of granzyme signaling – an immune surveillance pathway. Protein - protein interaction network analysis using integrated proteomics and transcriptomics data of transcription factors and proteins for cell invasion process (drawn from another GBM dataset) revealed YBX1, a ubiquitous RNA and DNA-binding protein and a transcription factor, as a key interactor of major cell invasion-associated proteins from GBM. To verify the regulatory link between them, the co-expression of YBX1 and six of the interacting proteins (EGFR, MAPK1, CD44, SOX2, TNC and MMP13) involved in cell invasion network was examined by immunohistochemistry on tissue micro arrays. Our analysis suggests YBX1 as a potential regulator of these key molecules involved in tumor invasion and thus as a promising target for development of new therapeutic strategies for GBM.
Collapse
|
16
|
Li Y, Chu J, Feng W, Yang M, Zhang Y, Zhang Y, Qin Y, Xu J, Li J, Vasilatos SN, Fu Z, Huang Y, Yin Y. EPHA5 mediates trastuzumab resistance in HER2-positive breast cancers through regulating cancer stem cell-like properties. FASEB J 2019; 33:4851-4865. [PMID: 30620624 DOI: 10.1096/fj.201701561rrrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Trastuzumab is a successful, rationally designed therapy that provides significant clinical benefit for human epidermal growth factor receptor-2 (HER2)-positive breast cancer patients. However, about half of individuals with HER2-positive breast cancer do not respond to trastuzumab treatment because of various resistance mechanisms, including but not limited to: 1) shedding of the HER2 extracellular domain, 2) steric hindrance ( e.g., MUC4 and MUC1), 3) parallel pathway activation (this is the general mechanism cited in the quote above), 4) perturbation of downstream signaling events ( e.g., PTEN loss or PIK3CA mutation), and 5) immunologic mechanisms (such as FcR polymorphisms). EPHA5, a receptor tyrosine kinase, has been demonstrated to act as an anticancer agent in several cancer cell types. In this study, deletion of EPHA5 can significantly increase the resistance of HER2-positive breast cancer patients to trastuzumab. To investigate how EPHA5 deficiency induces trastuzumab resistance, clustered regularly interspaced short palindromic repeat technology was used to create EPHA5-deficient variants of breast cancer cells. EPHA5 deficiency effectively increases breast cancer stem cell (BCSC)-like properties, including NANOG, CD133+, E-cadherin expression, and the CD44+/CD24-/low phenotype, concomitantly enhancing mammosphere-forming ability. EPHA5 deficiency also caused significant aggrandized tumor malignancy in trastuzumab-sensitive xenografts, coinciding with the up-regulation of BCSC-related markers and intracellular Notch1 and PTEN/AKT signaling pathway activation. These findings highlight that EPHA5 is a potential prognostic marker for the activity of Notch1 and better sensitivity to trastuzumab in HER2-positive breast cancer. Moreover, patients with HER2-positive breast cancers expressing high Notch1 activation and low EPHA5 expression could be the best candidates for anti-Notch1 therapy.-Li, Y., Chu, J., Feng, W., Yang, M., Zhang, Y., Zhang, Y., Qin, Y., Xu, J., Li, J., Vasilatos, S. N., Fu, Z., Huang, Y., Yin, Y. EPHA5 mediates trastuzumab resistance in HER2-positive breast cancers through regulating cancer stem cell-like properties.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and.,Department of Breast Diseases, Jiangsu Province Hospital of Traditional Chinese Medicine (TMC)/Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanting Feng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengzhu Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanqiu Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Qin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Juan Xu
- Nanjing Maternal and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shauna N Vasilatos
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternal and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Huang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Stavrovskaya AA, Rybalkina EY. Recent Advances in the Studies of Molecular Mechanisms Regulating Multidrug Resistance in Cancer Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:779-786. [PMID: 30200862 DOI: 10.1134/s0006297918070015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we present new approaches to better understanding multidrug resistance (MDR) development in cancer cells, such as identification of components of a complex process of MDR evolution. Recent advances in the studies of MDR are discussed: 1) chemotherapy agents might be involved in the selection of cancer stem cells resulting in the elevated drug resistance and enhanced tumorigenicity; 2) cell-cell interactions have a great effect on the MDR emergence and evolution; 3) mechanotransduction is an important signaling mechanism in cell-cell interactions; 4) proteins of the ABC transporter family which are often involved in MDR might be transferred between cells via microvesicles (epigenetic MDR regulation); 5) proteins providing cell-to-cell transfer of functional P-glycoprotein (MDR1 protein) via microvesicles have been investigated; 6) P-glycoprotein may serve to regulate apoptosis, as well as transcription and translation of target genes/proteins. Although proving once again that MDR is a complex multi-faceted process, these data open new approaches to overcoming it.
Collapse
Affiliation(s)
- A A Stavrovskaya
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| | - E Yu Rybalkina
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
18
|
Mao L, Sun AJ, Wu JZ, Tang JH. Involvement of microRNAs in HER2 signaling and trastuzumab treatment. Tumour Biol 2016; 37:10.1007/s13277-016-5405-3. [PMID: 27734339 DOI: 10.1007/s13277-016-5405-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022] Open
Abstract
The prognostic value of HER2 has been demonstrated in many human cancer types such us breast cancer, gastric cancer and ovarian cancer. Trastuzumab is the first anti-HER2 monoclonal antibody that has remarkably improved outcomes of patients with HER2-positive breast cancer. For HER2-positive metastatic gastric cancers, the addition of trastuzumab to traditional chemotherapy also significantly prolonged overall survival. However, intrinsic and acquired resistance to trastuzumab is common and results in disease progression. HER2 signaling network and mechanisms underlying the resistance have been broadly investigated in order to develop strategy to overcome the dilemma. Increasing evidence indicates that microRNAs (miRNA), a group of small non-coding RNAs, are involved in HER2 signaling and trastuzumab treatment. This review summarizes all the miRNAs that target HER2 and describes their activity on biological processes. Moreover, miRNAs that regulate trastuzumab resistance and relevant molecular mechanisms are highlighted. MiRNA signatures associated with HER2, miRNAs that mediate trastuzumab activity, and potential miRNA biomarkers of trastuzumab sensitivity are also discussed.
Collapse
Affiliation(s)
- Ling Mao
- Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
- Department of Thyroid and Breast Surgery, Huai'an Second People's Hospital, Xuzhou medical university, Huai'an, China
| | - Ai-Jun Sun
- Department of Thyroid and Breast Surgery, Huai'an Second People's Hospital, Xuzhou medical university, Huai'an, China
| | - Jian-Zhong Wu
- Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jin-Hai Tang
- Department of General Surgery, the Affiliated Jiangsu Cancer Hospital, Nanjing Medical University, 42Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
19
|
Martin-Castillo B, Lopez-Bonet E, Cuyàs E, Viñas G, Pernas S, Dorca J, Menendez JA. Cancer stem cell-driven efficacy of trastuzumab (Herceptin): towards a reclassification of clinically HER2-positive breast carcinomas. Oncotarget 2016; 6:32317-38. [PMID: 26474458 PMCID: PMC4741696 DOI: 10.18632/oncotarget.6094] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/24/2015] [Indexed: 12/21/2022] Open
Abstract
Clinically HER2+ (cHER2+) breast cancer (BC) can no longer be considered a single BC disease entity in terms of trastuzumab responsiveness. Here we propose a framework for predicting the response of cHER2+ to trastuzumab that integrates the molecular distinctions of intrinsic BC subtypes with recent knowledge on cancer stem cell (CSC) biology. First, we consider that two interchangeable populations of epithelial-like, aldehyde dehydrogenase (ALDH)-expressing and mesenchymal-like, CD44+CD24-/low CSCs can be found in significantly different proportions across all intrinsic BC subtypes. Second, we overlap all the intrinsic subtypes across cHER2+ BC to obtain a continuum of mixed phenotypes in which one extreme exhibits a high identity with ALDH+ CSCs and the other extreme exhibits a high preponderance of CD44+CD24-/low CSCs. The differential enrichment of trastuzumab-responsive ALDH+ CSCs versus trastuzumab-refractory CD44+CD24-/low CSCs can explain both the clinical behavior and the primary efficacy of trastuzumab in each molecular subtype of cHER2+ (i.e., HER2-enriched/cHER2+, luminal A/cHER2+, luminal B/cHER2+, basal/cHER2+, and claudin-low/cHER2+). The intrinsic plasticity determining the epigenetic ability of cHER2+ tumors to switch between epithelial and mesenchymal CSC states will vary across the continuum of mixed phenotypes, thus dictating their intratumoral heterogeneity and, hence, their evolutionary response to trastuzumab. Because CD44+CD24-/low mesenchymal-like CSCs distinctively possess a highly endocytic activity, the otherwise irrelevant HER2 can open the door to a type of "Trojan horse" approach by employing antibody-drug conjugates such as T-DM1, which will allow a rapid and CSC-targeted delivery of cytotoxic drugs to therapeutically manage trastuzumab-unresponsive basal/cHER2+ BC. Contrary to the current dichotomous model used clinically, our model proposes that a reclassification of cHER2+ tumors based on the spectrum of molecular BC subtypes might inform on their CSC-determined sensitivity to trastuzumab, thus providing a better delineation of the predictive value of cHER2+ in BC by incorporating CSCs-driven intra-tumor heterogeneity into clinical decisions.
Collapse
Affiliation(s)
- Begoña Martin-Castillo
- Unit of Clinical Research, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona, Catalonia, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Gemma Viñas
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Sonia Pernas
- Department of Medical Oncology, Breast Unit, Catalan Institute of Oncology-Hospital Universitari de Bellvitge-Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Joan Dorca
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| |
Collapse
|
20
|
Shinkai K, Nakano K, Cui L, Mizuuchi Y, Onishi H, Oda Y, Obika S, Tanaka M, Katano M. Nuclear expression of Y-box binding protein-1 is associated with poor prognosis in patients with pancreatic cancer and its knockdown inhibits tumor growth and metastasis in mice tumor models. Int J Cancer 2016; 139:433-45. [PMID: 26939718 DOI: 10.1002/ijc.30075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
The objective of this study was to examine the implication of Y-box-binding protein-1 (YB-1) for the aggressive phenotypes, prognosis and therapeutic target in pancreatic ductal adenocarcinoma (PDAC). YB-1 expression in PDAC, pancreatic intraepithelial neoplasia (PanIN) and normal pancreas specimens was evaluated by immunohistochemistry, and its correlation with clinicopathological features was assessed in patients with PDAC. The effects of YB-1 on proliferation, invasion and expressions of cell cycle-related proteins and matrix metalloproteinases (MMPs) were analyzed by WST-8, cell cycle and Matrigel invasion assays, Western blotting and quantitative RT-PCR in PDAC cells transfected with YB-1-siRNAs. To verify the significance of YB-1 for tumor progression in vivo, the growth and metastasis were monitored after intrasplenic implantation of ex vivo YB-1 siRNA-transfected PDAC cells, and YB-1-targeting antisense oligonucleotides were intravenously administered in nude mice harboring subcutaneous tumor. The intensity of YB-1 expression and positivity of nuclear YB-1 expression were higher in PDAC than PanIN and normal pancreatic tissues. Nuclear YB-1 expression was significantly associated with dedifferentiation, lymphatic/venous invasion and unfavorable prognosis. YB-1 knockdown inhibited cell proliferation via cell cycle arrest by S-phase kinase-associated protein 2 downregulation and consequent p27 accumulation, and decreased the invasion due to downregulated membranous-type 2 MMP expression in PDAC cells. Tumor growth and liver metastasis formation were significantly suppressed in nude mice after implantation of YB-1-silenced PDAC cells, and the YB-1 targeting antisense oligonucleotide significantly inhibited the growth of subcutaneous tumors. In conclusion, YB-1 may be involved in aggressive natures of PDAC and a promising therapeutic target.
Collapse
Affiliation(s)
- Kentaro Shinkai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Nakano
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Yusuke Mizuuchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuo Katano
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
CD44 expression contributes to trastuzumab resistance in HER2-positive breast cancer cells. Breast Cancer Res Treat 2015; 151:501-13. [DOI: 10.1007/s10549-015-3414-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/04/2015] [Indexed: 01/07/2023]
|
22
|
Zhang Y, Zhao PW, Feng G, Xie G, Wang AQ, Yang YH, Wang D, Du XB. The expression level and prognostic value of Y-box binding protein-1 in rectal cancer. PLoS One 2015; 10:e0119385. [PMID: 25790262 PMCID: PMC4366156 DOI: 10.1371/journal.pone.0119385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
The aims of this study were to simultaneously evaluate the expression of Y-box binding protein-1 (YB-1) in non-neoplastic rectal tissue and rectal cancer tissue, and to collect clinical follow-up data for individual patients. Additionally, we aimed to investigate the developmental functions and prognostic value of YB-1 in rectal cancer. We performed immunohistochemical studies to examine YB-1 expression in tissue samples from 80 patients with rectal cancer, 30 patients with rectal tubular adenoma, and 30 patients with rectitis. The mean YB-1 histological scores for rectal cancer, rectal tubular adenoma, and rectitis tissue specimens were 205.5, 164.3, and 137.7, respectively. Shorter disease-free and overall survival times were found in patients with rectal cancer who had higher YB-1 expression than in those with lower expression (38.2 months vs. 52.4 months, P = 0.013; and 44.4 months vs. 57.3 months, P = 0.008, respectively). Our results indicate that YB-1 expression is higher in rectal cancer tissue than in rectal tubular adenoma and rectitis tissue and that it may be an independent prognostic factor for rectal cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oncology, MianYang Central Hospital, MianYang, People’s Republic of China
- Department of Surgery, LuZhou Medical College, LuZhou, People’s Republic of China
| | - Ping-Wu Zhao
- Department of Surgery, MianYang Central Hospital, MianYang, People’s Republic of China
| | - Gang Feng
- Department of Oncology, MianYang Central Hospital, MianYang, People’s Republic of China
| | - Gang Xie
- Department of Pathology, MianYang Central Hospital, MianYang, People’s Republic of China
| | - An-Qun Wang
- Department of Pathology, MianYang Central Hospital, MianYang, People’s Republic of China
| | - Yong-Hong Yang
- Department of Pathology, MianYang Central Hospital, MianYang, People’s Republic of China
| | - Dong Wang
- Department of Surgery, LuZhou Medical College, LuZhou, People’s Republic of China
- Department of Surgery, MianYang Central Hospital, MianYang, People’s Republic of China
- * E-mail: (DW); (XBD)
| | - Xiao-Bo Du
- Department of Oncology, MianYang Central Hospital, MianYang, People’s Republic of China
- * E-mail: (DW); (XBD)
| |
Collapse
|
23
|
miR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1. Mol Ther 2014; 23:89-98. [PMID: 25292190 DOI: 10.1038/mt.2014.197] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 09/28/2014] [Indexed: 12/15/2022] Open
Abstract
Lung metastasis and relapse in osteosarcoma (OS) patients indicate poor prognosis. Here, we identified significantly decreased expression of miR-382 in highly metastatic OS cell lines and relapsed OS samples compared to their parental cell lines and primary OS samples, respectively. In addition, our clinical data showed that the miR-382 expression level was inversely associated with relapse and positively associated with metastasis-free survival in OS patients. The overexpression of miR-382 suppressed epithelial-mesenchymal transition (EMT) and metastasis. This overexpression also decreased the cancer stem cell (CSC) population and function in OS cells. In contrast, inhibition of miR-382 stimulated EMT and metastasis and increased CSC population in OS cells. In addition, our in vivo experiments showed that the overexpression of miR-382 inhibited CSC-induced tumor formation, and the combination of miR-382 with doxorubicin prevented disease relapse in OS patients. Furthermore, we demonstrated that miR-382 exerted its tumor-suppressing potential by directly targeting Y box-binding protein 1 (YB-1) in OS. Taken together, our findings suggest that miR-382 functions as a tumor suppressor function and that the overexpression of miR-382 is a novel strategy to inhibit tumor metastasis and prevent CSC-induced relapse in OS.
Collapse
|
24
|
Shiota M, Yokomizo A, Takeuchi A, Itsumi M, Imada K, Kashiwagi E, Inokuchi J, Tatsugami K, Uchiumi T, Naito S. Inhibition of RSK/YB-1 signaling enhances the anti-cancer effect of enzalutamide in prostate cancer. Prostate 2014; 74:959-69. [PMID: 24740858 DOI: 10.1002/pros.22813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/26/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previously, we have shown that Y-box binding protein-1 (YB-1) regulates androgen receptor (AR) expression and contributes to castration resistance. However, the mechanism of YB-1 activation remains unknown. In this study, we aimed to elucidate the mechanism and role of YB-1 activation in relation to castration resistance as well as enzalutamide resistance, with a view to developing a novel therapeutic concept for castration-resistant prostate cancer (CRPC) treatment. METHODS The expression and phosphorylation levels of ribosomal S6 kinase 1 (RSK1), YB-1 and AR were examined by quantitative PCR and Western blotting using prostate cancer cells. In addition, the effects of YB-1 inhibition using specific siRNA and small molecule inhibitor SL0101 on AR expression as well as combination treatment with enzalutamide and SL0101 were examined. RESULTS We found that androgen deprivation, as well as treatment with the next-generation anti-androgen enzalutamide, induced RSK1 and YB-1 activation followed by AR induction, which could be reversed by YB-1 shutdown and RSK inhibitor SL0101. SL0101 and enzalutamide exerted a synergistic tumor-suppressive effect on cell proliferation in androgen-dependent prostate cancer LNCaP cells, as well as castration-resistant C4-2 cells. Furthermore, the phosphorylation levels of RSK1 and YB-1 were elevated in castration- and enzalutamide-resistant cells, compared with their parental cells. CONCLUSIONS Taken together, these findings indicate that RSK1/YB-1 signaling contributes to castration as well as enzalutamide resistance, and that the therapeutic targeting of RSK1/YB-1 signaling would be a promising novel therapy against prostate cancer, especially CRPC when combined with enzalutamide.
Collapse
MESH Headings
- Benzamides
- Benzopyrans/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/physiology
- Drug Synergism
- Drug Therapy, Combination
- Humans
- Male
- Monosaccharides/pharmacology
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Phosphorylation
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- RNA, Small Interfering/pharmacology
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/drug effects
- Y-Box-Binding Protein 1/antagonists & inhibitors
- Y-Box-Binding Protein 1/genetics
- Y-Box-Binding Protein 1/metabolism
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reipas KM, Law JH, Couto N, Islam S, Li Y, Li H, Cherkasov A, Jung K, Cheema AS, Jones SJM, Hassell JA, Dunn SE. Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1). Oncotarget 2014; 4:329-45. [PMID: 23593654 PMCID: PMC3712578 DOI: 10.18632/oncotarget.834] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Triple-negative breast cancers (TNBC) are notoriously difficult to treat because they lack hormone receptors and have limited targeted therapies. Recently, we demonstrated that p90 ribosomal S6 kinase (RSK) is essential for TNBC growth and survival indicating it as a target for therapeutic development. RSK phosphorylates Y-box binding protein-1 (YB-1), an oncogenic transcription/translation factor, highly expressed in TNBC (~70% of cases) and associated with poor prognosis, drug resistance and tumor initiation. YB-1 regulates the tumor-initiating cell markers, CD44 and CD49f however its role in Notch signaling has not been explored. We sought to identify novel chemical entities with RSK inhibitory activity. The Prestwick Chemical Library of 1120 off-patent drugs was screened for RSK inhibitors using both in vitro kinase assays and molecular docking. The lead candidate, luteolin, inhibited RSK1 and RSK2 kinase activity and suppressed growth in TNBC, including TIC-enriched populations. Combining luteolin with paclitaxel increased cell death and unlike chemotherapy alone, did not enrich for CD44+ cells. Luteolin’s efficacy against drug-resistant cells was further indicated in the primary x43 cell line, where it suppressed monolayer growth and mammosphere formation. We next endeavored to understand how the inhibition of RSK/YB-1 signaling by luteolin elicited an effect on TIC-enriched populations. ChIP-on-ChIP experiments in SUM149 cells revealed a 12-fold enrichment of YB-1 binding to the Notch4 promoter. We chose to pursue this because there are several reports indicating that Notch4 maintains cells in an undifferentiated, TIC state. Herein we report that silencing YB-1 with siRNA decreased Notch4 mRNA. Conversely, transient expression of Flag:YB-1WT or the constitutively active mutant Flag:YB-1D102 increased Notch4 mRNA. The levels of Notch4 transcript and the abundance of the Notch4 intracellular domain (N4ICD) correlated with activation of P-RSKS221/7 and P-YB-1S102 in a panel of TNBC cell lines. Silencing YB-1 or RSK reduced Notch4 mRNA and this corresponded with loss of N4ICD. Likewise, the RSK inhibitors, luteolin and BI-D1870, suppressed P-YB-1 S102 and thereby reduced Notch4. In conclusion, inhibiting the RSK/YB-1 pathway with luteolin is a novel approach to blocking Notch4 signaling and as such provides a means of inhibiting TICs.
Collapse
Affiliation(s)
- Kristen M Reipas
- Laboratory for Oncogenomic Research, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fink MY, Chipuk JE. Survival of HER2-Positive Breast Cancer Cells: Receptor Signaling to Apoptotic Control Centers. Genes Cancer 2013; 4:187-95. [PMID: 24069506 DOI: 10.1177/1947601913488598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/31/2013] [Indexed: 02/06/2023] Open
Abstract
HER2 is overexpressed in a subset of breast cancers and controls an oncogenic signaling network that inhibits tumor cell death through the specific biochemical regulation of apoptotic pathways. In particular, the mitochondrial pathway for apoptosis is important for death induced by inhibitors of HER2. This review focuses on the connections between this oncogenic signaling network and individual components of the mitochondrial pathway. A comprehensive view of this signaling network is crucial for developing novel drugs in this area and to gain an understanding of how these regulatory interactions are altered in drug-refractory cancers.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biomedical Sciences, Long Island University Post, Brookville, NY, USA
| | | |
Collapse
|
27
|
Pu L, Jing S, Bianqin G, Ping L, Qindong L, Chenggui L, Feng C, Wenbin K, Qin W, Jinyu D, Qianfeng X, Yu L, Zhiguang T. Development of a Chemiluminescence Immunoassay for Serum YB-1 and its Clinical Application as a Potential Diagnostic Marker for Hepatocellular Carcinoma. HEPATITIS MONTHLY 2013; 13:e8918. [PMID: 24069038 PMCID: PMC3782250 DOI: 10.5812/hepatmon.8918] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/14/2013] [Accepted: 01/24/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Y-box binding protein 1 (YB-1) overexpression has been shown in various tumor cells including hepatocellular carcinoma (HCC); moreover, this protein can be actively secreted. OBJECTIVES The aim of this study was to establish a method to quantify serum YB-1 and evaluate its clinical application in the clinical diagnosis of HCC. PATIENTS AND METHODS Recombinant YB-1 and two populations of its antibodies were prepared. A monoclonal antibody was specific to the N-terminus of YB-1 amino acids 134-160; and another was a polyclonal antibody. A sandwich-type chemiluminescence immunoassay (CLIA) was developed and evaluated. Levels of YB-1 and alpha fetoprotein (AFP) in serum samples from 105 HCC patients, 25 hepatitis B virus patients, 25 cirrhosis patients, and 50 healthy donors were detected using the established method and an AFP electrochemiluminescence kit. RESULTS The developed method was linear to 150 μg/L of YB-1 with a minimum detection limit of 0.01 μg/L. The average recoveries were between 93.9% and 109.0%. The mean intra- and inter-assay coefficients of variation (CVs) were 4.0-4.8% and 8.2-10.2%, respectively. The relationship between the concentration of diluted YB-1 and the dilution ratios gave a good linear correlation coefficient of 0.9986. The YB-1 concentration was increased in serum of HCC patients (33.0 ± 23.39 μg/L) compared to healthy individuals (13.2 ± 5.29 μg/L, P < 0.0001), patients with HBV (17.9 ± 7.49 μg/L, P = 0.0003), and patients with HBV cirrhosis (20.7 ± 8.75 μg/L, P < 0.05). Moreover, the combination of YB-1 and alpha-fetoprotein had a high sensitivity (89.5%) and reasonable specificity (62.0%) in identifying HCC. CONCLUSIONS The established method has an acceptable performance in quantifying YB-1. In addition, serum YB-1 may aid in the diagnosis of HCC.
Collapse
Affiliation(s)
- Li Pu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shi Jing
- Department of Clinical Laboratory, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guo Bianqin
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liu Ping
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Qindong
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liu Chenggui
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Cheng Feng
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Kuang Wenbin
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wang Qin
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Dong Jinyu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xia Qianfeng
- Department of Laboratory Medicine, Hainan Medical College, Hainan, China
| | - Liu Yu
- Department of Clinical Laboratory, Chongqing Tumor Hospital, Chongqing, China
| | - Tu Zhiguang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Corresponding author: Tu Zhiguang, Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Tel: +86-2368485759, Fax: +86-2368485005, E-mail:
| |
Collapse
|
28
|
Bonsignore A, Warburton D. The mechanisms responsible for exercise intolerance in early-stage breast cancer: What role does chemotherapy play? Hong Kong Physiother J 2013. [DOI: 10.1016/j.hkpj.2013.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Abstract
Hanahan and Weinberg have proposed the ‘hallmarks of cancer’ to cover the biological changes required for the development and persistence of tumours [Hanahan and Weinberg (2011) Cell 144, 646–674]. We have noted that many of these cancer hallmarks are facilitated by the multifunctional protein YB-1 (Y-box-binding protein 1). In the present review we evaluate the literature and show how YB-1 modulates/regulates cellular signalling pathways within each of these hallmarks. For example, we describe how YB-1 regulates multiple proliferation pathways, overrides cell-cycle check points, promotes replicative immortality and genomic instability, may regulate angiogenesis, has a role in invasion and metastasis, and promotes inflammation. We also argue that there is strong and sufficient evidence to suggest that YB-1 is an excellent molecular marker of cancer progression that could be used in the clinic, and that YB-1 could be a useful target for cancer therapy.
Collapse
|
30
|
LUISTRO LEOPOLDOL, ROSINSKI JAMESA, BIAN HONGJIN, BISHAYEE SUBAL, RAMESHWAR PRANELA, PONZIO NICHOLASM, RITLAND STEVER. Development and characterization of a preclinical ovarian carcinoma model to investigate the mechanism of acquired resistance to trastuzumab. Int J Oncol 2012; 41:639-51. [DOI: 10.3892/ijo.2012.1463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/27/2012] [Indexed: 11/05/2022] Open
|
31
|
Panischeva LA, Kakpakova ES, Rybalkina EY, Stavrovskaya AA. Influence of proteasome inhibitor bortezomib on the expression of multidrug resistance genes and Akt kinase activity. BIOCHEMISTRY (MOSCOW) 2012; 76:1009-16. [PMID: 22082269 DOI: 10.1134/s0006297911090045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this work was to study the mechanisms of ABC family transport proteins' regulation by a new-generation antitumor drug - the proteasome inhibitor bortezomib (Velcade). ABC transporters determine the multidrug resistance of tumor cells (MDR). We confirmed our previously discovered observation that bortezomib affects the expression of genes involved in the formation of MDR (ABCB1 gene, also known as MDR1, and ABCC1-MRP1), reducing the amount of their mRNA. This effect was found to depend on Akt kinase activity: the Akt activity inhibitor Ly 294002 increased the amount of MRP1 mRNA in KB 8-5 cells. It was also shown that bortezomib increased the amount of Akt kinase phosphorylated form in cell lines of malignant cells KB 8-5 and K 562/i-S9 that overexpressed ABCB1 transporter (Pgp), and did not affect the amount of activated Akt in the corresponding wild-type cells. When exposed to bortezomib, selection of resistant to it cell variants was much faster for a Pgp-overexpressing cell population (compared to wild-type cells). It is shown that bortezomib affects the amount of MRP1 gene mRNA, relocating the multifunctional protein YB-1, dependent on Akt activity, from cytoplasm to nuclei of MCF-7 breast cancer cells. The data indicate that the transcriptional activity of YB-1 might be one of the mechanisms that determine the effect of bortezomib on the amount of MRP1 gene mRNA.
Collapse
Affiliation(s)
- L A Panischeva
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
32
|
Astanehe A, Finkbeiner MR, Krzywinski M, Fotovati A, Dhillon J, Berquin IM, Mills GB, Marra MA, Dunn SE. MKNK1 is a YB-1 target gene responsible for imparting trastuzumab resistance and can be blocked by RSK inhibition. Oncogene 2012; 31:4434-46. [PMID: 22249268 DOI: 10.1038/onc.2011.617] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trastuzumab (Herceptin) resistance is a major obstacle in the treatment of patients with HER2-positive breast cancers. We recently reported that the transcription factor Y-box binding protein-1 (YB-1) leads to acquisition of resistance to trastuzumab in a phosphorylation-dependent manner that relies on p90 ribosomal S6 kinase (RSK). To explore how this may occur we compared YB-1 target genes between trastuzumab-sensitive cells (BT474) and those with acquired resistance (HR5 and HR6) using genome-wide chromatin immunoprecipitation sequencing (ChIP-sequencing), which identified 1391 genes uniquely bound by YB-1 in the resistant cell lines. We then examined differences in protein expression and phosphorylation between these cell lines using the Kinexus Kinex antibody microarrays. Cross-referencing these two data sets identified the mitogen-activated protein kinase-interacting kinase (MNK) family as potentially being involved in acquired resistance downstream from YB-1. MNK1 and MNK2 were subsequently shown to be overexpressed in the resistant cell lines; however, only the former was a YB-1 target based on ChIP-PCR and small interfering RNA (siRNA) studies. Importantly, loss of MNK1 expression using siRNA enhanced sensitivity to trastuzumab. Further, MNK1 overexpression was sufficient to confer resistance to trastuzumab in cells that were previously sensitive. We then developed a de novo model of acquired resistance by exposing BT474 cells to trastuzumab for 60 days (BT474LT). Similar to the HR5/HR6 cells, the BT474LT cells had elevated MNK1 levels and were dependent on it for survival. In addition, we demonstrated that RSK phosphorylated MNK1, and that this phosphorylation was required for ability of MNK1 to mediate resistance to trastuzumab. Furthermore, inhibition of RSK with the small molecule BI-D1870 repressed the MNK1-mediated trastuzumab resistance. In conclusion, this unbiased integrated approach identified MNK1 as a player in mediating trastuzumab resistance as a consequence of YB-1 activation, and demonstrated RSK inhibition as a means to overcome recalcitrance to trastuzumab.
Collapse
Affiliation(s)
- A Astanehe
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Martin-Castillo B, Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Moreno JM, Corominas-Faja B, Urruticoechea A, Martín ÁG, López-Bonet E, Menendez JA. Basal/HER2 breast carcinomas: integrating molecular taxonomy with cancer stem cell dynamics to predict primary resistance to trastuzumab (Herceptin). Cell Cycle 2012; 12:225-45. [PMID: 23255137 DOI: 10.4161/cc.23274] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High rates of inherent primary resistance to the humanized monoclonal antibody trastuzumab (Herceptin) are frequent among HER2 gene-amplified breast carcinomas in both metastatic and adjuvant settings. The clinical efficacy of trastuzumab is highly correlated with its ability to specifically and efficiently target HER2-driven populations of breast cancer stem cells (CSCs). Intriguingly, many of the possible mechanisms by which cancer cells escape trastuzumab involve many of the same biomarkers that have been implicated in the biology of CS-like tumor-initiating cells. In the traditional, one-way hierarchy of CSCs in which all cancer cells descend from special self-renewing CSCs, HER2-positive CSCs can occur solely by self-renewal. Therefore, by targeting CSC self-renewal and resistance, trastuzumab is expected to induce tumor shrinkage and further reduce breast cancer recurrence rates when used alongside traditional therapies. In a new, alternate model, more differentiated non-stem cancer cells can revert to trastuzumab-refractory, CS-like cells via the activation of intrinsic or microenvironmental paths-to-stemness, such as the epithelial-to-mesenchymal transition (EMT). Alternatively, stochastic transitions of trastuzumab-responsive CSCs might also give rise to non-CSC cellular states that lack major attributes of CSCs and, therefore, can remain "hidden" from trastuzumab activity. Here, we hypothesize that a better understanding of the CSC/non-CSC social structure within HER2-overexpressing breast carcinomas is critical for trastuzumab-based treatment decisions in the clinic. First, we decipher the biological significance of CSC features and the EMT on the molecular effects and efficacy of trastuzumab in HER2-positive breast cancer cells. Second, we reinterpret the genetic heterogeneity that differentiates trastuzumab-responders from non-responders in terms of CSC cellular states. Finally, we propose that novel predictive approaches aimed at better forecasting early tumor responses to trastuzumab should identify biological determinants that causally underlie the intrinsic flexibility of HER2-positive CSCs to "enter" into or "exit" from trastuzumab-sensitive states. An accurate integration of CSC cellular states and EMT-related biomarkers with the currently available breast cancer molecular taxonomy may significantly improve our ability to make a priori decisions about whether patients belonging to HER2 subtypes differentially enriched with a "mesenchymal transition signature" (e.g., luminal/HER2 vs. basal/HER2) would distinctly benefit from trastuzumab-based therapy ab initio.
Collapse
Affiliation(s)
- Begoña Martin-Castillo
- Unit of Clinical Research, Catalan Institute of Oncology-Girona (ICO-Girona), Catalonia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Expression of Y-box-binding protein YB-1 allows stratification into long- and short-term survivors of head and neck cancer patients. Br J Cancer 2011; 105:1864-73. [PMID: 22095225 PMCID: PMC3251888 DOI: 10.1038/bjc.2011.491] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Histology-based classifications and clinical parameters of head and neck squamous cell carcinoma (HNSCC) are limited in their clinical capacity to provide information on prognosis and treatment choice of HNSCC. The primary aim of this study was to analyse Y-box-binding protein-1 (YB-1) protein expression in different grading groups of HNSCC patients, and to correlate these findings with the disease-specific survival (DSS). Methods: We investigated the expression and cellular localisation of the oncogenic transcription/translation factor YB-1 by immunohistochemistry on tissue micro arrays in a total of 365 HNSCC specimens and correlated expression data with clinico-pathological parameters including DSS. Results: Compared with control tissue from healthy individuals, a significantly (P<0.01) increased YB-1 protein expression was observed in high-grade HNSCC patients. By univariate survival data analysis, HNSCC patients with elevated YB-1 protein expression had a significantly (P<0.01) decreased DSS. By multivariate Cox regression analysis, high YB-1 expression and nuclear localisation retained its significance as a statistically independent (P<0.002) prognostic marker for DSS. Within grade 2 group of HNSCC patients, a subgroup defined by high nuclear and cytoplasmic YB-1 levels (co-expression pattern) in the cells of the tumour invasion front had a significantly poorer 5-year DSS rate of only 38% compared with overall 55% for grade 2 patients. Vice versa, the DSS rate was markedly increased to 74% for grade 2 cancer patients with low YB-1 protein expression at the same localisation. Conclusion: Our findings point to the fact that YB-1 expression in combination with histological classification in a double stratification strategy is superior to classical grading in the prediction of tumour progression in HNSCC.
Collapse
|
35
|
Shiota M, Takeuchi A, Song Y, Yokomizo A, Kashiwagi E, Uchiumi T, Kuroiwa K, Tatsugami K, Fujimoto N, Oda Y, Naito S. Y-box binding protein-1 promotes castration-resistant prostate cancer growth via androgen receptor expression. Endocr Relat Cancer 2011; 18:505-17. [PMID: 21652770 DOI: 10.1530/erc-11-0017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The androgen receptor (AR) is well known to play a central role in the pathogenesis of prostate cancer (PCa). In several studies, AR was overexpressed in castration-resistant PCa (CRPC). However, the mechanism of AR overexpression in CRPC is not fully elucidated. Y-box binding protein-1 (YB-1) is a pleiotropic transcription factor that is upregulated in CPRC. We aimed to elucidate the role of YB-1 in castration resistance of PCa and identify therapeutic potential of targeting YB-1. Using immunohistochemistry, we found that nuclear YB-1 expression significantly correlated with the Gleason score and AR expression in PCa tissues. In PCa cells, YB-1 regulated AR expression at the transcriptional level. Furthermore, YB-1 expression and nuclear localization were upregulated in CRPC cells. Overexpression of AR, as well as YB-1, conferred castration-resistant growth in LNCaP and 22Rv1 cells. Conversely, knocking down YB-1 resulted in suppressed cell growth and induced apoptosis, which was more efficient than knocking down AR in LNCaP cells. In other types of PCa cells, such as CRPC cells, knocking down YB-1 resulted in a significant reduction of cell growth. In conclusion, these findings suggested that YB-1 induces castration resistance in androgen-dependent PCa cells via AR expression. Thus, YB-1 may be a promising therapeutic target for PCa, as well as CRPC.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Can an abundantly expressed molecule be a reliable marker for the cancer-initiating cells (CICs; also known as cancer stem cells), which constitute the minority of cells within the mass of a tumour? CD44 has been implicated as a CIC marker in several malignancies of haematopoietic and epithelial origin. Is this a fortuitous coincidence owing to the widespread expression of the molecule or is CD44 expression advantageous as it fulfils some of the special properties that are displayed by CICs, such as self-renewal, niche preparation, epithelial-mesenchymal transition and resistance to apoptosis?
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumour Cell Biology, University Hospital of Surgery and German Cancer Research Centre, D69120 Heidelberg, Germany.
| |
Collapse
|
37
|
Davies AH, Barrett I, Pambid MR, Hu K, Stratford AL, Freeman S, Berquin IM, Pelech S, Hieter P, Maxwell C, Dunn SE. YB-1 evokes susceptibility to cancer through cytokinesis failure, mitotic dysfunction and HER2 amplification. Oncogene 2011; 30:3649-60. [PMID: 21423216 PMCID: PMC3121916 DOI: 10.1038/onc.2011.82] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Y-box binding protein-1 (YB-1) expression in the mammary gland promotes breast carcinoma that demonstrates a high degree of genomic instability. In the present study, we developed a model of premalignancy to characterize the role of this gene during breast cancer initiation and early progression. Antibody microarray technology was used to ascertain global changes in signal transduction following the conditional expression of YB-1 in human mammary epithelial cells (HMEC). Cell cycle associated proteins were frequently altered with the most dramatic being LIM Kinase 1/2 (LIMK1/2). Consequently, the misexpression of LIMK1/2 was associated with cytokinesis failure that acted as a precursor to centrosome amplification. Detailed investigation revealed that YB-1 localized to the centrosome in a phosphorylation-dependent manner where it complexed with pericentrin and γ-tubulin. This was found to be essential in maintaining the structural integrity and microtubule nucleation capacity of the organelle. Prolonged exposure to YB-1 led to rampant acceleration toward tumourigenesis with the majority of cells acquiring numerical and structural chromosomal abnormalities. Slippage through the G1/S checkpoint due to overexpression of cyclin E promoted continued proliferation of these genomically compromised cells. As malignancy further progressed, we identified a subset of cells harbouring HER2 amplification. Our results recognize YB-1 as a cancer susceptibility gene with the capacity to prime cells for tumourigenesis.
Collapse
Affiliation(s)
- A H Davies
- Laboratory of Oncogenomic Research, Departments of Pediatrics and Experimental Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Toulany M, Schickfluss TA, Eicheler W, Kehlbach R, Schittek B, Rodemann HP. Impact of oncogenic K-RAS on YB-1 phosphorylation induced by ionizing radiation. Breast Cancer Res 2011; 13:R28. [PMID: 21392397 PMCID: PMC3219189 DOI: 10.1186/bcr2845] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/27/2010] [Accepted: 03/10/2011] [Indexed: 12/22/2022] Open
Abstract
Introduction Expression of Y-box binding protein-1 (YB-1) is associated with tumor progression and drug resistance. Phosphorylation of YB-1 at serine residue 102 (S102) in response to growth factors is required for its transcriptional activity and is thought to be regulated by cytoplasmic signaling phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. These pathways can be activated by growth factors and by exposure to ionizing radiation (IR). So far, however, no studies have been conducted on IR-induced YB-1 phosphorylation. Methods IR-induced YB-1 phosphorylation in K-RAS wild-type (K-RASwt) and K-RAS-mutated (K-RASmt) breast cancer cell lines was investigated. Using pharmacological inhibitors, small interfering RNA (siRNA) and plasmid-based overexpression approaches, we analyzed pathways involved in YB-1 phosphorylation by IR. Using γ-H2AX foci and standard colony formation assays, we investigated the function of YB-1 in repair of IR-induced DNA double-stranded breaks (DNA-DSB) and postirradiation survival was investigated. Results The average level of phosphorylation of YB-1 in the breast cancer cell lines SKBr3, MCF-7, HBL100 and MDA-MB-231 was significantly higher than that in normal cells. Exposure to IR and stimulation with erbB1 ligands resulted in phosphorylation of YB-1 in K-RASwt SKBr3, MCF-7 and HBL100 cells, which was shown to be K-Ras-independent. In contrast, lack of YB-1 phosphorylation after stimulation with either IR or erbB1 ligands was observed in K-RASmt MDA-MB-231 cells. Similarly to MDA-MB-231 cells, YB-1 became constitutively phosphorylated in K-RASwt cells following the overexpression of mutated K-RAS, and its phosphorylation was not further enhanced by IR. Phosphorylation of YB-1 as a result of irradiation or K-RAS mutation was dependent on erbB1 and its downstream pathways, PI3K and MAPK/ERK. In K-RASmt cells K-RAS siRNA as well as YB-1 siRNA blocked repair of DNA-DSB. Likewise, YB-1 siRNA increased radiation sensitivity. Conclusions IR induces YB-1 phosphorylation. YB-1 phosphorylation induced by oncogenic K-Ras or IR enhances repair of DNA-DSB and postirradiation survival via erbB1 downstream PI3K/Akt and MAPK/ERK signaling pathways.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tübingen, Roentgenweg 11, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|