1
|
Wang W, Zhang X, Gui P, Zou Q, Nie Y, Ma S, Zhang S. SEPT9: From pan-cancer to lung squamous cell carcinoma. BMC Cancer 2024; 24:1105. [PMID: 39237897 PMCID: PMC11375884 DOI: 10.1186/s12885-024-12877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND SEPT9 is a pivotal cytoskeletal GTPase that regulates diverse biological processes encompassing mitosis and cytokinesis. While previous studies have implicated SEPT9 in tumorigenesis and development; comprehensive pan-cancer analyses have not been performed. This study aims to systematically explore its role in cancer screening, prognosis, and treatment, addressing this critical gap. METHODS Gene and protein expression data containing clinical information were obtained from public databases for pan-cancer analyses. Additionally, clinical samples from 90 patients with lung squamous cell carcinoma (LUSC) were used to further experimentally validate the clinical significance of SEPT9. In addition, the molecular docking tool was used to analyze the affinities between SEPT9 protein and drugs. RESULTS SEPT9 is highly expressed in various cancers, and its aberrant expression correlates with genetic alternations and epigenetic modifications, leading to adverse clinical outcomes. Take LUSC as an example, additional dataset analyses and immunohistochemical experiments further confirm the diagnostic and prognostic values as well as the clinical relevance of the SEPT9 gene and protein. Functional enrichment, single-cell expression, and immune infiltration analyses revealed that SEPT9 promotes malignant tumor progression and modulates the immune microenvironments, enabling patients to benefit from immunotherapy. Moreover, drug sensitivity and molecular docking analyses showed that SEPT9 is associated with the sensitivity and resistance of multiple drugs and has stable binding activity with them, including Vorinostat and OTS-964. To harness its prognostic and therapeutic potential in LUSC, a mitotic spindle-associated prognostic model including SEPT9, HSF1, ARAP3, KIF20B, FAM83D, TUBB8, and several clinical characteristics, was developed. This model not only improves clinical outcome predictions but also reshapes the immune microenvironment, making immunotherapy more effective for LUSC patients. CONCLUSION This is the first study to systematically analyze the role of SEPT9 in cancers and innovatively apply the mitotic spindle-associated model to LUSC, fully demonstrating its potential as a valuable biomarker for cancer screening and prognosis, and highlighting its application value in promoting immunotherapy and chemotherapy, particularly for LUSC.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Ping Gui
- Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Qizhen Zou
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yuzhou Nie
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Shenglin Ma
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310006, Zhejiang, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Structural Insights Uncover the Specific Phosphoinositide Recognition by the PH1 Domain of Arap3. Int J Mol Sci 2023; 24:ijms24021125. [PMID: 36674645 PMCID: PMC9865853 DOI: 10.3390/ijms24021125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Arap3, a dual GTPase-activating protein (GAP) for the small GTPases Arf6 and RhoA, plays key roles in regulating a wide range of biological processes, including cancer cell invasion and metastasis. It is known that Arap3 is a PI3K effector that can bind directly to PI(3,4,5)P3, and the PI(3,4,5)P3-mediated plasma membrane recruitment is crucial for its function. However, the molecular mechanism of how the protein recognizes PI(3,4,5)P3 remains unclear. Here, using liposome pull-down and surface plasmon resonance (SPR) analysis, we found that the N-terminal first pleckstrin homology (PH) domain (Arap3-PH1) can interact with PI(3,4,5)P3 and, with lower affinity, with PI(4,5)P2. To understand how Arap3-PH1 and phosphoinositide (PIP) lipids interact, we solved the crystal structure of the Arap3-PH1 in the apo form and complex with diC4-PI(3,4,5)P3. We also characterized the interactions of Arap3-PH1 with diC4-PI(3,4,5)P3 and diC4-PI(4,5)P2 in solution by nuclear magnetic resonance (NMR) spectroscopy. Furthermore, we found overexpression of Arap3 could inhibit breast cancer cell invasion in vitro, and the PIPs-binding ability of the PH1 domain is essential for this function.
Collapse
|
3
|
Elevated expression of ADAP2 is associated with aggressive behavior of human clear-cell renal cell carcinoma and poor patient survival. Clin Genitourin Cancer 2022; 21:e78-e91. [PMID: 36127253 DOI: 10.1016/j.clgc.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common and lethal cancer of the adult kidney. ADAP2 is a GTPase-activating protein was upregulated in clear cell renal cell carcinoma. The role of ADAP2 in ccRCC progression is unknown. METHODS ADAP2 expression in ccRCC cell lines and tissues was examined via real-time PCR, Western blot and IHC. MTS, colony formation and transwell assay to explore the role of ADAP2 in ccRCC. ADAP2 in growth and metastasis of ccRCC were evaluated in vivo through ccRCC xenograft tumor growth, lung metastatic mice model. The prognostic role of ADAP2 was evaluated by survival analysis. RESULTS ADAP2 mRNA was expressed at significantly higher levels in 23 pairs of ccRCC tissues than in normal kidney tissues (P < 0.01). Immunohistochemical analysis of 298 ccRCC tissues revealed elevated ADAP2 expression as an independent unfavorable prognostic factor for the overall survival (P = 0.0042) and progression-free survival (P = 0.0232) of patients. The KaplanMeier survival curve showed that patients with a higher expression of ADAP2 showed a significantly lower overall survival rate and disease-free survival rate. Moreover, high expression of ADAP2 at the mRNA level was associated with a worse prognosis for overall survival (P = 0.0083) in The Cancer Genome Atlas (TCGA) cohort. In vivo and in vitro functional study showed that overexpression of ADAP2 promotes ccRCC cell proliferation and metastasis ability, whereas knockdown of ADAP2 inhibited cell proliferation, colony formation, migration and invasion. CONCLUSION ADAP2 is a novel prognostic marker and could promotes tumor progression in ccRCC.
Collapse
|
4
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
5
|
Casalou C, Ferreira A, Barral DC. The Role of ARF Family Proteins and Their Regulators and Effectors in Cancer Progression: A Therapeutic Perspective. Front Cell Dev Biol 2020; 8:217. [PMID: 32426352 PMCID: PMC7212444 DOI: 10.3389/fcell.2020.00217] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The Adenosine diphosphate-Ribosylation Factor (ARF) family belongs to the RAS superfamily of small GTPases and is involved in a wide variety of physiological processes, such as cell proliferation, motility and differentiation by regulating membrane traffic and associating with the cytoskeleton. Like other members of the RAS superfamily, ARF family proteins are activated by Guanine nucleotide Exchange Factors (GEFs) and inactivated by GTPase-Activating Proteins (GAPs). When active, they bind effectors, which mediate downstream functions. Several studies have reported that cancer cells are able to subvert membrane traffic regulators to enhance migration and invasion. Indeed, members of the ARF family, including ARF-Like (ARL) proteins have been implicated in tumorigenesis and progression of several types of cancer. Here, we review the role of ARF family members, their GEFs/GAPs and effectors in tumorigenesis and cancer progression, highlighting the ones that can have a pro-oncogenic behavior or function as tumor suppressors. Moreover, we propose possible mechanisms and approaches to target these proteins, toward the development of novel therapeutic strategies to impair tumor progression.
Collapse
Affiliation(s)
- Cristina Casalou
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Andreia Ferreira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Trevino V. Integrative genomic analysis identifies associations of molecular alterations to APOBEC and BRCA1/2 mutational signatures in breast cancer. Mol Genet Genomic Med 2019; 7:e810. [PMID: 31294536 PMCID: PMC6687632 DOI: 10.1002/mgg3.810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The observed mutations in cancer are the result of ~30 mutational processes, which stamp particular mutational signatures (MS). Nevertheless, it is still not clear which genomic alterations correlate to several MS. Here, a method to analyze associations of genomic data with MS is presented and applied to The Cancer Genome Atlas breast cancer data revealing promising associations. METHODS The MS were discretized into clusters whose extremes were statistically associated with mutations, copy number, and gene expression data. RESULTS Known associations for apolipoprotein B editing complex (APOBEC) and for BRCA1 and BRCA2 support the proposal. For BRCA1/2, mutations in ARAP3, three focal deletions, and one amplification were detected. Around 50 mutated genes for the two APOBEC signatures were identified including three kinesins (KIF13A, KIF1B, KIF4A), three ubiquitins (USP45, UBR4, UBR1), and two demethylases (KDM5B, KDM5C) among other genes also connected to DNA damage pathways. The results suggest novel roles for other genes currently not involved in DNA repair. The altered expression program was very high for the BRCA1/2 signature, high for APOBEC signature 13 clearly associated to immune response, and low for APOBEC signature 2. The remaining signatures show scarce associations. CONCLUSION Specific genetic alterations can be associated with particular MS.
Collapse
Affiliation(s)
- Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, México
| |
Collapse
|
7
|
Tanna CE, Goss LB, Ludwig CG, Chen PW. Arf GAPs as Regulators of the Actin Cytoskeleton-An Update. Int J Mol Sci 2019; 20:ijms20020442. [PMID: 30669557 PMCID: PMC6358971 DOI: 10.3390/ijms20020442] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Arf GTPase-activating proteins (Arf GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf GAP activity. A number of these functions hinge on the remodeling of actin filaments. Accordingly, some of the effects exerted by Arf GAPs involve proteins known to engage in regulation of the actin dynamics and architecture, such as Rho family proteins and nonmuscle myosin 2. Circular dorsal ruffles (CDRs), podosomes, invadopodia, lamellipodia, stress fibers and focal adhesions are among the actin-based structures regulated by Arf GAPs. Arf GAPs are thus important actors in broad functions like adhesion and motility, as well as the specialized functions of bone resorption, neurite outgrowth, and pathogen internalization by immune cells. Arf GAPs, with their multiple protein-protein interactions, membrane-binding domains and sites for post-translational modification, are good candidates for linking the changes in actin to the membrane. The findings discussed depict a family of proteins with a critical role in regulating actin dynamics to enable proper cell function.
Collapse
Affiliation(s)
- Christine E Tanna
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Louisa B Goss
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Calvin G Ludwig
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
8
|
Wang QX, Chen ED, Cai YF, Zhou YL, Zheng ZC, Wang YH, Jin YX, Jin WX, Zhang XH, Wang OC. Next-generation sequence detects ARAP3 as a novel oncogene in papillary thyroid carcinoma. Onco Targets Ther 2016; 9:7161-7167. [PMID: 27920554 PMCID: PMC5125802 DOI: 10.2147/ott.s115668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Thyroid cancer is the most frequent malignancies of the endocrine system, and it has became the fastest growing type of cancer worldwide. Much still remains unknown about the molecular mechanisms of thyroid cancer. Studies have found that some certain relationship between ARAP3 and human cancer. However, the role of ARAP3 in thyroid cancer has not been well explained. This study aimed to investigate the role of ARAP3 gene in papillary thyroid carcinoma. Methods Whole exon sequence and whole genome sequence of primary papillary thyroid carcinoma (PTC) samples and matched adjacent normal thyroid tissue samples were performed and then bioinformatics analysis was carried out. PTC cell lines (TPC1, BCPAP, and KTC-1) with transfection of small interfering RNA were used to investigate the functions of ARAP3 gene, including cell proliferation assay, colony formation assay, migration assay, and invasion assay. Results Using next-generation sequence and bioinformatics analysis, we found ARAP3 genes may play an important role in thyroid cancer. Downregulation of ARAP3 significantly suppressed PTC cell lines (TPC1, BCPAP, and KTC-1), cell proliferation, colony formation, migration, and invasion. Conclusion This study indicated that ARAP3 genes have important biological implications and may act as a potentially drugable target in PTC.
Collapse
Affiliation(s)
- Qing-Xuan Wang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - En-Dong Chen
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ye-Feng Cai
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi-Li Zhou
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhou-Ci Zheng
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Hao Wang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi-Xiang Jin
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wen-Xu Jin
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiao-Hua Zhang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ou-Chen Wang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Schroll MM, Liu X, Herzog SK, Skube SB, Hummon AB. Nutrient restriction of glucose or serum results in similar proteomic expression changes in 3D colon cancer cell cultures. Nutr Res 2016; 36:1068-1080. [PMID: 27865348 PMCID: PMC5119765 DOI: 10.1016/j.nutres.2016.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 11/23/2022]
Abstract
Nutrient restriction, also known as caloric restriction, has been extensively examined for its positive impact on lifespan, immune system boost, and aging. In addition, nutrient restriction is implicated in decreasing cancer initiation and progression. Given the phenotypic changes associated with nutrient restriction, we hypothesized significant protein expression alterations must be associated with caloric restriction. To compare the molecular and phenotypic changes caused by glucose restriction and fetal bovine serum restriction there is need for an efficient model system. We establish 3-dimensional cell culture models, known as spheroids, in the HCT 116 colorectal cancer cell line as a high throughput model for studying the proteomic changes associated with nutrient restriction. Flow cytometry was used to assess apoptosis and autophagy levels in the spheroids under nutrient restriction. Isobaric tags for relative and absolute quantification and liquid chromatography tandem mass spectrometry were used to determine differential protein abundances between the nutrient restriction conditions. We identified specific proteins that have implications in cancer progression and metastasis that are differentially regulated by restriction of either glucose or serum. These proteins include the up-regulation of sirtuin 1 and protein inhibitor of activated STAT 1 and down-regulation of multi-drug resistance protein and Zinc finger and BTB domain-containing protein 7A. The results indicate nutrient restriction causes lower apoptotic and higher autophagy rates in HCT 116 spheroids. In addition, proteins shown to be differentially regulated by both glucose and serum restriction were similarly regulated.
Collapse
Affiliation(s)
- Monica M Schroll
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame
| | - Xin Liu
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame
| | - Sarah K Herzog
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame
| | - Susan B Skube
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame.
| |
Collapse
|
10
|
Abstract
Members of the ADP-ribosylation factor (Arf) family of small GTP-binding (G) proteins regulate several aspects of membrane trafficking, such as vesicle budding, tethering and cytoskeleton organization. Arf family members, including Arf-like (Arl) proteins have been implicated in several essential cellular functions, like cell spreading and migration. These functions are used by cancer cells to disseminate and invade the tissues surrounding the primary tumor, leading to the formation of metastases. Indeed, Arf and Arl proteins, as well as their guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) have been found to be abnormally expressed in different cancer cell types and human cancers. Here, we review the current evidence supporting the involvement of Arf family proteins and their GEFs and GAPs in cancer progression, focusing on 3 different mechanisms: cell-cell adhesion, integrin internalization and recycling, and actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Cristina Casalou
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Alexandra Faustino
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal.,b ProRegeM PhD Program, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Duarte C Barral
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| |
Collapse
|
11
|
Bao H, Li F, Wang C, Wang N, Jiang Y, Tang Y, Wu J, Shi Y. Structural Basis for the Specific Recognition of RhoA by the Dual GTPase-activating Protein ARAP3. J Biol Chem 2016; 291:16709-19. [PMID: 27311713 DOI: 10.1074/jbc.m116.736140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 02/04/2023] Open
Abstract
ARAP3 (Arf-GAP with Rho-GAP domain, ANK repeat, and PH domain-containing protein 3) is unique for its dual specificity GAPs (GTPase-activating protein) activity for Arf6 (ADP-ribosylation factor 6) and RhoA (Ras homolog gene family member A) regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP and is involved in regulation of cell shape and adhesion. However, the molecular interface between the ARAP3-RhoGAP domain and RhoA is unknown, as is the substrates specificity of the RhoGAP domain. In this study, we solved the crystal structure of RhoA in complex with the RhoGAP domain of ARAP3. The structure of the complex presented a clear interface between the RhoGAP domain and RhoA. By analyzing the crystal structure and in combination with in vitro GTPase activity assays and isothermal titration calorimetry experiments, we identified the crucial residues affecting RhoGAP activity and substrates specificity among RhoA, Rac1 (Ras-related C3 botulinum toxin substrate 1), and Cdc42 (cell division control protein 42 homolog).
Collapse
Affiliation(s)
- Hongyu Bao
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fudong Li
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chongyuan Wang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Na Wang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yiyang Jiang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yajun Tang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jihui Wu
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yunyu Shi
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| |
Collapse
|
12
|
Roy NS, Yohe ME, Randazzo PA, Gruschus JM. Allosteric properties of PH domains in Arf regulatory proteins. CELLULAR LOGISTICS 2016; 6:e1181700. [PMID: 27294009 DOI: 10.1080/21592799.2016.1181700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Pleckstrin Homology (PH) domains bind phospholipids and proteins. They are critical regulatory elements of a number enzymes including guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) for Ras-superfamily guanine nucleotide binding proteins such as ADP-ribosylation factors (Arfs). Recent studies have indicated that many PH domains may bind more than one ligand cooperatively. Here we discuss the molecular basis of PH domain-dependent allosteric behavior of 2 ADP-ribosylation factor exchange factors, Grp1 and Brag2, cooperative binding of ligands to the PH domains of Grp1 and the Arf GTPase-activating protein, ASAP1, and the consequences for activity of the associated catalytic domains.
Collapse
Affiliation(s)
- Neeladri Sekhar Roy
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Marielle E Yohe
- Genetics Branch, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - James M Gruschus
- Laboratory of Structural Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
13
|
Rakitin A, Kõks S, Reimann E, Prans E, Haldre S. Changes in the Peripheral Blood Gene Expression Profile Induced by 3 Months of Valproate Treatment in Patients with Newly Diagnosed Epilepsy. Front Neurol 2015; 6:188. [PMID: 26379622 PMCID: PMC4553897 DOI: 10.3389/fneur.2015.00188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022] Open
Abstract
Valproic acid (VPA) is a widely used antiepileptic drug with a broad range of effects and broad clinical efficacy. As a well-known histone deacetylase (HDAC) inhibitor, VPA regulates epigenetic programming by altering the expression of many genes. The aim of study was to analyze differences in gene expression profiles before and after the start of VPA treatment in patients with newly diagnosed epilepsy. RNA sequencing was used to compare whole-genome gene expression patterns of peripheral blood from nine patients with epilepsy before and 3 months after the start of treatment with VPA. Of the 23,099 analyzed genes, only 11 showed statistically significant differential expression with false discovery rate-adjusted p-values below 0.1. Functional annotation and network analyses showed activation of only one genetic network (enrichment score = 30), which included genes for cardiovascular system development and function, cell morphology, and hematological system development and function. The finding of such a small number of differently expressed genes between before and after the start of treatment suggests a lack of HDAC inhibition in these patients, which could be explained by the relatively low doses of VPA that were used. In conclusion, VPA at standard therapeutic dosages modulates the expression of a small number of genes. Therefore, to minimize the potential side effects of HDAC inhibition, it is recommended that the lowest effective dose of VPA be used for treating epilepsy.
Collapse
Affiliation(s)
- Aleksei Rakitin
- Department of Neurology and Neurosurgery, University of Tartu , Tartu , Estonia ; Neurology Clinic, Tartu University Hospital , Tartu , Estonia
| | - Sulev Kõks
- Department of Pathophysiology, University of Tartu , Tartu , Estonia ; Centre of Translational Medicine, University of Tartu , Tartu , Estonia
| | - Ene Reimann
- Department of Pathophysiology, University of Tartu , Tartu , Estonia ; Centre of Translational Medicine, University of Tartu , Tartu , Estonia
| | - Ele Prans
- Department of Pathophysiology, University of Tartu , Tartu , Estonia ; Centre of Translational Medicine, University of Tartu , Tartu , Estonia
| | - Sulev Haldre
- Department of Neurology and Neurosurgery, University of Tartu , Tartu , Estonia ; Neurology Clinic, Tartu University Hospital , Tartu , Estonia
| |
Collapse
|
14
|
Song Y, Jiang J, Vermeren S, Tong W. ARAP3 functions in hematopoietic stem cells. PLoS One 2014; 9:e116107. [PMID: 25542002 PMCID: PMC4277471 DOI: 10.1371/journal.pone.0116107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
ARAP3 is a GTPase-activating protein (GAP) that inactivates Arf6 and RhoA small GTPases. ARAP3 deficiency in mice causes a sprouting angiogenic defect resulting in embryonic lethality by E11. Mice with an ARAP3 R302,303A mutation (Arap3KI/KI) that prevents activation by phosphoinositide-3-kinase (PI3K) have a similar angiogenic phenotype, although some animals survive to adulthood. Here, we report that hematopoietic stem cells (HSCs) from rare adult Arap3KI/KI bone marrow are compromised in their ability to reconstitute recipient mice and to self-renew. To elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in hematopoiesis, we conditionally deleted Arap3 in hematopoietic cells and in several cell types within the HSC niche. Excision of Arap3 in hematopoietic cells using Vav1-Cre does not alter the ability of ARAP3-deficient progenitor cells to proliferate and differentiate in vitro or ARAP3-deficient HSCs to provide multi-lineage reconstitution and to undergo self-renewal in vivo. Thus, our data suggest that ARAP3 does not play a cell-autonomous role in HSPCs. Deletion of Arap3 in osteoblasts and mesenchymal stromal cells using Prx1-Cre resulted in no discernable phenotypes in hematopoietic development or HSC homeostasis in adult mice. In contrast, deletion of Arap3 using vascular endothelial cadherin (VEC or Cdh5)-driven Cre resulted in embryonic lethality, however HSCs from surviving adult mice were largely normal. Reverse transplantations into VEC-driven Arap3 conditional knockout mice revealed no discernable difference in HSC frequencies or function in comparison to control mice. Taken together, our investigation suggests that despite a critical role for ARAP3 in embryonic vascular development, its loss in endothelial cells minimally impacts HSCs in adult bone marrow.
Collapse
Affiliation(s)
- Yiwen Song
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sonja Vermeren
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Wei Tong
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Blighe K, Kenny L, Patel N, Guttery DS, Page K, Gronau JH, Golshani C, Stebbing J, Coombes RC, Shaw JA. Whole genome sequence analysis suggests intratumoral heterogeneity in dissemination of breast cancer to lymph nodes. PLoS One 2014; 9:e115346. [PMID: 25546409 PMCID: PMC4278903 DOI: 10.1371/journal.pone.0115346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/22/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intratumoral heterogeneity may help drive resistance to targeted therapies in cancer. In breast cancer, the presence of nodal metastases is a key indicator of poorer overall survival. The aim of this study was to identify somatic genetic alterations in early dissemination of breast cancer by whole genome next generation sequencing (NGS) of a primary breast tumor, a matched locally-involved axillary lymph node and healthy normal DNA from blood. METHODS Whole genome NGS was performed on 12 µg (range 11.1-13.3 µg) of DNA isolated from fresh-frozen primary breast tumor, axillary lymph node and peripheral blood following the DNA nanoball sequencing protocol. Single nucleotide variants, insertions, deletions, and substitutions were identified through a bioinformatic pipeline and compared to CIN25, a key set of genes associated with tumor metastasis. RESULTS Whole genome sequencing revealed overlapping variants between the tumor and node, but also variants that were unique to each. Novel mutations unique to the node included those found in two CIN25 targets, TGIF2 and CCNB2, which are related to transcription cyclin activity and chromosomal stability, respectively, and a unique frameshift in PDS5B, which is required for accurate sister chromatid segregation during cell division. We also identified dominant clonal variants that progressed from tumor to node, including SNVs in TP53 and ARAP3, which mediates rearrangements to the cytoskeleton and cell shape, and an insertion in TOP2A, the expression of which is significantly associated with tumor proliferation and can segregate breast cancers by outcome. CONCLUSION This case study provides preliminary evidence that primary tumor and early nodal metastasis have largely overlapping somatic genetic alterations. There were very few mutations unique to the involved node. However, significant conclusions regarding early dissemination needs analysis of a larger number of patient samples.
Collapse
Affiliation(s)
- Kevin Blighe
- Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
| | - Laura Kenny
- Division of Cancer, Imperial College, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Naina Patel
- Division of Cancer, Imperial College, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - David S. Guttery
- Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
| | - Karen Page
- Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
| | - Julian H. Gronau
- Division of Cancer, Imperial College, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Cyrus Golshani
- Division of Cancer, Imperial College, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Justin Stebbing
- Division of Cancer, Imperial College, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - R. Charles Coombes
- Division of Cancer, Imperial College, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Jacqueline A. Shaw
- Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
| |
Collapse
|
16
|
Woźniak M, Hotowy K, Czapińska E, Duś-Szachniewicz K, Szczuka I, Gamian E, Gamian A, Terlecki G, Ziółkowski P. Early induction of stress-associated Src activator/Homo sapiens chromosome 9 open reading frame 10 protein following photodynamic therapy. Photodiagnosis Photodyn Ther 2013; 11:27-33. [PMID: 24280438 DOI: 10.1016/j.pdpdt.2013.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND There are proteins, responsible for many basic cell functions (transmission of extracellular signals to cytoplasm or nucleus, cell growth, proliferation, migration, survival), which are activated and overexpressed in response to acute oxidative stress, especially tyrosine kinases. The oxidative stress-associated Src activator/Homo sapiens chromosome 9 open reading frame 10 protein (Ossa/C9orf10) protects cancer cells from oxidative stress-induced apoptosis by Src family kinases activation. METHODS In this study precursor of protoporphyrin IX, 5-aminolevulinic acid and its encapsulated form were used in treating MCF-7 human breast cancer cells. After light illumination, cells were collected at different time points and used for evaluation (immunocytochemistry, Western blot analysis) of expression of above proteins, c-Src and Ossa. RESULTS Our results showed that 5-aminolevulinic acid-mediated photodynamic therapy caused decrease of c-Src expression at 7h after irradiation. The strongest expression was observed at 24h after treatment. Encapsulated form of 5-aminolevulinic acid in terms of PDT caused similar changes of expression of c-Src protein. Furthermore, we observed strong Ossa expression at 7h after treatment in comparison to very low expression at time points 0, 18 and 24h. CONCLUSION We would like to emphasize that our results showed high expression of Ossa at early time interval after PDT, which was accompanied by a low expression of c-Src kinase, what could protect cancer cells from PDT through activation of c-Src in response to oxidative stress.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Katarzyna Hotowy
- Department of Medical Biochemistry, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Elżbieta Czapińska
- Department of Medical Biochemistry, Wrocław Medical University, 50-367 Wrocław, Poland
| | | | - Izabela Szczuka
- Department of Medical Biochemistry, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Elżbieta Gamian
- Department of Pathology, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Grzegorz Terlecki
- Department of Medical Biochemistry, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, 50-367 Wrocław, Poland.
| |
Collapse
|
17
|
Kartopawiro J, Bower NI, Karnezis T, Kazenwadel J, Betterman KL, Lesieur E, Koltowska K, Astin J, Crosier P, Vermeren S, Achen MG, Stacker SA, Smith KA, Harvey NL, François M, Hogan BM. Arap3 is dysregulated in a mouse model of hypotrichosis–lymphedema–telangiectasia and regulates lymphatic vascular development. Hum Mol Genet 2013; 23:1286-97. [DOI: 10.1093/hmg/ddt518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Chi X, Wang S, Huang Y, Stamnes M, Chen JL. Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci 2013; 14:7089-108. [PMID: 23538840 PMCID: PMC3645678 DOI: 10.3390/ijms14047089] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/21/2023] Open
Abstract
Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics. Rac1 mediates endocytic and exocytic vesicle trafficking by interaction with its effectors, PI3kinase, synaptojanin 2, IQGAP1 and phospholipase D1. RhoA participates in the regulation of endocytosis through controlling its downstream target, Rho kinase. Interestingly, these GTPases play important roles at different stages of viral protein and genome transport in infected host cells. Importantly, dysregulation of Cdc42, Rac1 and RhoA leads to numerous disorders, including malignant transformation. In some cases, hyperactivation of Rho GTPases is required for cellular transformation. In this article, we review a number of findings related to Rho GTPase function in intracellular transport and cellular transformation.
Collapse
Affiliation(s)
- Xiaojuan Chi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Mark Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; E-Mail:
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-6480-7300; Fax: +86-10-6480-7980
| |
Collapse
|
19
|
Mercurio FA, Marasco D, Pirone L, Scognamiglio PL, Pedone EM, Pellecchia M, Leone M. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights. Chembiochem 2012; 14:100-6. [PMID: 23239578 DOI: 10.1002/cbic.201200592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Indexed: 11/07/2022]
Abstract
Arap3 is a phosphatidylinositol 3 kinase effector protein that plays a role as GTPase activator (GAP) for Arf6 and RhoA. Arap3 contains a sterile alpha motif (Sam) domain that has high sequence homology with the Sam domain of the EphA2-receptor (EphA2-Sam). Both Arap3-Sam and EphA2-Sam are able to associate with the Sam domain of the lipid phosphatase Ship2 (Ship2-Sam). Recently, we reported a novel interaction between the first Sam domain of Odin (Odin-Sam1), a protein belonging to the ANKS (ANKyrin repeat and Sam domain containing) family, and EphA2-Sam. In our latest work, we applied NMR spectroscopy, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to characterize the association between Arap3-Sam and Odin-Sam1. We show that these two Sam domains interact with low micromolar affinity. Moreover, by means of molecular docking techniques, supported by NMR data, we demonstrate that Odin-Sam1 and Arap3-Sam might bind with a topology that is common to several Sam-Sam complexes. The revealed structural details form the basis for the design of potential peptide antagonists that could be used as chemical tools to investigate functional aspects related to heterotypic Arap3-Sam associations.
Collapse
Affiliation(s)
- Flavia A Mercurio
- Department of Biological Sciences, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Shimamura S, Sasaki K, Tanaka M. The Src substrate SKAP2 regulates actin assembly by interacting with WAVE2 and cortactin proteins. J Biol Chem 2012; 288:1171-83. [PMID: 23161539 DOI: 10.1074/jbc.m112.386722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In our attempt to screen for substrates of Src family kinases in glioblastoma, Src kinase-associated phosphoprotein 2 (SKAP2) was identified. Although SKAP2 has been suggested to be associated with integrin-mediated adhesion of hematopoietic cells, little is known about its molecular function and the effects in other types of cells and tumors. Here, we demonstrate that SKAP2 physically associates with actin assembly factors WAVE2 and cortactin and inhibits their interaction. Cortactin is required for the membrane localization of WAVE2, and SKAP2 suppresses actin polymerization mediated by WAVE2 and cortactin in vitro. Knockdown of SKAP2 in NIH3T3 accelerated cell migration and enhanced translocation of WAVE2 to the cell membrane, and those effects of SKAP2 depend on the binding activity of SKAP2 to WAVE2. Furthermore, reduction of SKAP2 in the glioblastoma promoted tumor invasion both in ex vivo organotypic rat brain slices and immune-deficient mouse brains. These results suggest that SKAP2 negatively regulates cell migration and tumor invasion in fibroblasts and glioblastoma cells by suppressing actin assembly induced by the WAVE2-cortactin complex, indicating that SKAP2 may be a novel candidate for the suppressor of tumor progression.
Collapse
Affiliation(s)
- Shintaro Shimamura
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | | | | |
Collapse
|
21
|
Wu B, Wang F, Zhang J, Zhang Z, Qin L, Peng J, Li F, Liu J, Lu G, Gong Q, Yao X, Wu J, Shi Y. Identification and structural basis for a novel interaction between Vav2 and Arap3. J Struct Biol 2012; 180:84-95. [DOI: 10.1016/j.jsb.2012.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/17/2022]
|
22
|
Fang X, Netzer M, Baumgartner C, Bai C, Wang X. Genetic network and gene set enrichment analysis to identify biomarkers related to cigarette smoking and lung cancer. Cancer Treat Rev 2012; 39:77-88. [PMID: 22789435 DOI: 10.1016/j.ctrv.2012.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/03/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Cigarette smoking is the most demonstrated risk factor for the development of lung cancer, while the related genetic mechanisms are still unclear. METHODS The preprocessed microarray expression dataset was downloaded from Gene Expression Omnibus database. Samples were classified according to the disease state, stage and smoking state. A new computational strategy was applied for the identification and biological interpretation of new candidate genes in lung cancer and smoking by coupling a network-based approach with gene set enrichment analysis. MEASUREMENTS Network analysis was performed by pair-wise comparison according to the disease states (tumor or normal), smoking states (current smokers or nonsmokers or former smokers), or the disease stage (stages I-IV). The most activated metabolic pathways were identified by gene set enrichment analysis. RESULTS Panels of top ranked gene candidates in smoking or cancer development were identified, including genes involved in cell proliferation and drug metabolism like cytochrome P450 and WW domain containing transcription regulator 1. Semaphorin 5A and protein phosphatase 1F are the common genes represented as major hubs in both the smoking and cancer related network. Six pathways, e.g. cell cycle, DNA replication, RNA transport, protein processing in endoplasmic reticulum, vascular smooth muscle contraction and endocytosis were commonly involved in smoking and lung cancer when comparing the top ten selected pathways. CONCLUSION New approach of bioinformatics for biomarker identification and validation can probe into deep genetic relationships between cigarette smoking and lung cancer. Our studies indicate that disease-specific network biomarkers, interaction between genes/proteins, or cross-talking of pathways provide more specific values for the development of precision therapies for lung.
Collapse
Affiliation(s)
- Xiaocong Fang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | |
Collapse
|
23
|
Chandrashekar R, Salem O, Krizova H, McFeeters R, Adams PD. A switch I mutant of Cdc42 exhibits less conformational freedom. Biochemistry 2011; 50:6196-207. [PMID: 21667996 DOI: 10.1021/bi2004284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cdc42 is a Ras-related small G-protein and functions as a molecular switch in signal transduction pathways linked with cell growth and differentiation. It is controlled by cycling between GTP-bound (active) and GDP-bound (inactive) forms. Nucleotide binding and hydrolysis are modulated by interactions with effectors and/or regulatory proteins. These interactions are centralized in two relatively flexible "Switch" regions as characterized by internal dynamics on multiple time scales [Loh, A. P., et al. (2001) Biochemistry 40, 4590-4600], and this flexibility may be essential for protein interactions. In the Switch I region, Thr(35) seems to be critical for function, as it is completely invariant in Ras-related proteins. To investigate the importance of conformational flexibility in Switch I of Cdc42, we mutated threonine to alanine, determined the solution structure, and characterized the backbone dynamics of the single-point mutant protein, Cdc42(T35A). Backbone dynamics data suggest that the mutation changes the time scale of the internal motions of several residues, with several resonances not being discernible in wild-type Cdc42 [Adams, P. D., and Oswald, R. E. (2007) Biomol. NMR Assignments 1, 225-227]. The mutation does not appear to affect the thermal stability of Cdc42, and chymotrypsin digestion data further suggest that changes in the conformational flexibility of Switch I slow proteolytic cleavage relative to that of the wild type. In vitro binding assays show less binding of Cdc42(T35A), relative to that of wild type, to a GTPase binding protein that inhibits GTP hydrolysis in Cdc42. These results suggest that the mutation of T(35) leads to the loss of conformational freedom in Switch I that could affect effector-regulatory protein interactions.
Collapse
Affiliation(s)
- Reena Chandrashekar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | | | | | | |
Collapse
|