1
|
Meléndez RA, Wynn DT, Merugu SB, Singh P, Kaplan KP, Robbins DJ. Exploring the role of casein kinase 1α splice variants across cancer cell lines. Biochem Biophys Res Commun 2024; 723:150189. [PMID: 38852281 PMCID: PMC11287285 DOI: 10.1016/j.bbrc.2024.150189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Casein kinase 1α (CK1α) is a serine/threonine protein kinase that acts in various cellular processes affecting cell division and signal transduction. CK1α is present as multiple splice variants that are distinguished by the presence or absence of a long insert (L-insert) and a short carboxyl-terminal insert (S-insert). When overexpressed, zebrafish CK1α splice variants exhibit different biological properties, such as subcellular localization and catalytic activity. However, whether endogenous, alternatively spliced CK1α gene products also differ in their biological functions has yet to be elucidated. Here, we identify a panel of splice variant specific CK1α antibodies and use them to show that four CK1α splice variants are expressed in mammals. We subsequently show that the relative abundance of CK1α splice variants varies across distinct mouse tissues and between various cancer cell lines. Furthermore, we identify pathways whose expression is noticeably altered in cell lines enriched with select splice variants of CK1α. Finally, we show that the S-insert of CK1α promotes the growth of HCT 116 cells as cells engineered to lack the S-insert display decreased cell growth. Together, we provide tools and methods to identify individual CK1α splice variants, which we use to begin to uncover the differential biological properties driven by specific splice variants of mammalian CK1α.
Collapse
Affiliation(s)
- Ricardo A Meléndez
- Department of Biochemistry and Molecular Biology University of Miami Miller School of Medicine Miami FL, USA; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - Daniel T Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - Siva Bharath Merugu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - Prerna Singh
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - Kenton P Kaplan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - David J Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA.
| |
Collapse
|
2
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
SRSF10 stabilizes CDC25A by triggering exon 6 skipping to promote hepatocarcinogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:353. [PMID: 36539837 PMCID: PMC9764681 DOI: 10.1186/s13046-022-02558-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Alternative splicing (AS) events are extensively involved in the progression of diverse tumors, but how serine/arginine-rich splicing Factor 10 (SRSF10) behaves in hepatocellular carcinoma (HCC) has not been sufficiently studied. We aimed to determine SRSF10 associated AS mechanisms and their effects on HCC progression. METHODS The expression of SRSF10 in HCC tissues was examined, and the in vitro and in vivo functions of SRSF10 were investigated. The downstream AS targets were screened using RNA sequencing. The interaction between SRSF10 protein and exclusion of cell division cycle 25 A (CDC25A) mRNA was identified using RNA immunoprecipitation and crosslinking immunoprecipitation q-PCR. The effects of SRSF10 on CDC25A posttranslational modification, subcellular distribution, and protein stability were verified through coimmunoprecipitation, immunofluorescence, and western blotting. RESULTS SRSF10 was enriched in HCC tissues and facilitated HCC proliferation, cell cycle, and invasion. RNA sequencing showed that SRSF10 promotes exon 6 exclusion of CDC25A pre-mRNA splicing. As a crucial cell cycle mediator, the exon-skipped isoform CDC25A(△E6) was identified to be stabilized and retained in the nucleus due to the deletion of two ubiquitination (Lys150, Lys169) sites in exon 6. The stabilized isoform CDC25A(△E6) derived from AS had stronger cell cycle effects on HCC tumorigenesis, and playing a more significant role than the commonly expressed longer variant CDC25A(L). Interestingly, SRSF10 activated the carcinogenesis role of CDC25A through Ser178 dephosphorylation to cause nuclear retention. Moreover, CDC25A(△E6) was verified to be indispensable for SRSF10 to promote HCC development in vitro and in vivo. CONCLUSIONS We reveal a regulatory pattern whereby SRSF10 contributes to a large proportion of stabilized CDC25A(△E6) production, which is indispensable for SRSF10 to promote HCC development. Our findings uncover AS mechanisms such as CDC25A that might serve as potential therapeutic targets to treat HCC.
Collapse
|
4
|
Wang ZX, Che L, Hu RS, Sun XL. Comparative Phosphoproteomic Analysis of Sporulated Oocysts and Tachyzoites of Toxoplasma gondii Reveals Stage-Specific Patterns. Molecules 2022; 27:molecules27031022. [PMID: 35164288 PMCID: PMC8839046 DOI: 10.3390/molecules27031022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan of severe threat to humans and livestock, whose life history harbors both gamic and apogamic stages. Chinese 1 (ToxoDB#9) was a preponderant genotype epidemic in food-derived animals and humans in China, with a different pathogenesis from the strains from the other nations of the world. Posttranslational modifications (PTMs) of proteins were critical mediators of the biology, developmental transforms, and pathogenesis of protozoan parasites. The phosphoprotein profiling and the difference between the developmental phases of T. gondii, contributing to development and infectivity, remain unknown. A quantitative phosphoproteomic approach using IBT integrated with TiO2 affinity chromatography was applied to identify and analyze the difference in the phosphoproteomes between the sporulated oocysts and the tachyzoites of the virulent ToxoDB#9 (PYS) strain of T. gondii. A total of 4058 differential phosphopeptides, consisting of 2597 upregulated and 1461 downregulated phosphopeptides, were characterized between sporulated the oocysts and tachyzoites. Twenty-one motifs extracted from the upregulated phosphopeptides contained 19 serine motifs and 2 threonine motifs (GxxTP and TP), whereas 16 motifs identified from downregulated phosphopeptides included 13 serine motifs and 3 threonine motifs (KxxT, RxxT, and TP). Beyond the traditional kinases, some infrequent classes of kinases, including Ab1, EGFR, INSR, Jak, Src and Syk, were found to be corresponding to motifs from the upregulated and downregulated phosphopeptides. Remarkable functional properties of the differentially expressed phosphoproteins were discovered by GO analysis, KEGG pathway analysis, and STRING analysis. S8GFS8 (DNMT1-RFD domain-containing protein) and S8F5G5 (Histone kinase SNF1) were the two most connected peptides in the kinase-associated network. Out of these, phosphorylated modifications in histone kinase SNF1 have functioned in mitosis and interphase of T. gondii, as well as in the regulation of gene expression relevant to differentiation. Our study discovered a remarkable difference in the abundance of phosphopeptides between the sporulated oocysts and tachyzoites of the virulent ToxoDB#9 (PYS) strain of T. gondii, which may provide a new resource for understanding stage-specific differences in PTMs and may enhance the illustration of the regulatory mechanisms contributing to the development and infectivity of T. gondii.
Collapse
Affiliation(s)
- Ze-Xiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (X.-L.S.)
- Correspondence:
| | - Liang Che
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (X.-L.S.)
| | - Rui-Si Hu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Xiao-Lin Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (X.-L.S.)
| |
Collapse
|
5
|
Lara-Chica M, Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Ponce FJ, Moreno R, Morrison K, Di Vona C, Arató K, Jiménez-Jiménez C, Morrugares R, Schmitz ML, de la Luna S, de la Vega L, Calzado MA. A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death Differ 2022; 29:105-117. [PMID: 34363019 PMCID: PMC8738746 DOI: 10.1038/s41418-021-00845-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell division cycle 25A (CDC25A) phosphatase is a key regulator of cell cycle progression that acts on the phosphorylation status of Cyclin-Cyclin-dependent kinase complexes, with an emergent role in the DNA damage response and cell survival control. The regulation of CDC25A activity and its protein level is essential to control the cell cycle and maintain genomic integrity. Here we describe a novel ubiquitin/proteasome-mediated pathway negatively regulating CDC25A stability, dependent on its phosphorylation by the serine/threonine kinase DYRK2. DYRK2 phosphorylates CDC25A on at least 7 residues, resulting in its degradation independent of the known CDC25A E3 ubiquitin ligases. CDC25A in turn is able to control the phosphorylation of DYRK2 at several residues outside from its activation loop, thus affecting DYRK2 localization and activity. An inverse correlation between DYRK2 and CDC25A protein amounts was observed during cell cycle progression and in response to DNA damage, with CDC25A accumulation responding to the manipulation of DYRK2 levels or activity in either physiological scenario. Functional data show that the pro-survival activity of CDC25A and the pro-apoptotic activity of DYRK2 could be partly explained by the mutual regulation between both proteins. Moreover, DYRK2 modulation of CDC25A expression and/or activity contributes to the DYRK2 role in cell cycle regulation. Altogether, we provide evidence suggesting that DYRK2 and CDC25A mutually control their activity and stability by a feedback regulatory loop, with a relevant effect on the genotoxic stress pathway, apoptosis, and cell cycle regulation.
Collapse
Affiliation(s)
- Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Francisco J Ponce
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rita Moreno
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Kimberley Morrison
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
6
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
7
|
Ditano JP, Sakurikar N, Eastman A. Activation of CDC25A phosphatase is limited by CDK2/cyclin A-mediated feedback inhibition. Cell Cycle 2021; 20:1308-1319. [PMID: 34156324 DOI: 10.1080/15384101.2021.1938813] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cyclin-dependent kinase (CDK) 1 complexed with cyclin B is a driver of mitosis, while CDK2 drives S phase entry and replicon initiation. CDK2 activity increases as cells progress through S phase, and its cyclin partner switches from cyclin E to cyclin A. Activation of CDK2 requires dephosphorylation of tyrosine-15 by CDC25A. DNA damage activates the checkpoint protein CHK1, which phosphorylates and degrades CDC25A to prevent activation of CDK2 and protect from cell cycle progression before damage is repaired. CHK1 inhibitors were developed to circumvent this arrest and enhance the efficacy of many cancer chemotherapeutic agents. CHK1 inhibition results in the accumulation of CDC25A and activation of CDK2. We demonstrate that inhibition of CDK2 or suppression of cyclin A also results in accumulation of CDC25A suggesting a feedback loop that prevents over activation of this pathway. The feedback inhibition of CDC25A targets phosphorylation of S88-CDC25A, which resides within a CDK consensus sequence. In contrast, it appears that CDK complexes with cyclin B (and possibly cyclin E) stabilize CDC25A in a feed-forward activation loop. While CDK2/cyclin A would normally be active at late S/G2, we propose that this feedback inhibitory loop prevents over activation of CDK2 in early S phase, while still leaving CDK2/cyclin E to catalyze replicon initiation. One importance of this observation is that a subset of cancer cell lines are very sensitive to CHK1 inhibition, which is mediated by CDK2/cyclin A activity in S phase cells. Hence, dysregulation of this feedback loop might facilitate sensitivity of the cells.
Collapse
Affiliation(s)
- Jennifer P Ditano
- Department of Molecular and Systems Biology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nandini Sakurikar
- Department of Molecular and Systems Biology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alan Eastman
- Department of Molecular and Systems Biology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
8
|
Pérez-Benavente B, Nasresfahani AF, Farràs R. Ubiquitin-Regulated Cell Proliferation and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:3-28. [PMID: 32274751 DOI: 10.1007/978-3-030-38266-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ubiquitin ligases (E3) play a crucial role in the regulation of different cellular processes such as proliferation and differentiation via recognition, interaction, and ubiquitination of key cellular proteins in a spatial and temporal regulated manner. The type of ubiquitin chain formed determines the fate of the substrates. The ubiquitinated substrates can be degraded by the proteasome, display altered subcellular localization, or can suffer modifications on their interaction with functional protein complexes. Deregulation of E3 activities is frequently found in various human pathologies, including cancer. The illegitimated or accelerated degradation of oncosuppressive proteins or, inversely, the abnormally high accumulation of oncoproteins, contributes to cell proliferation and transformation. Anomalies in protein abundance may be related to mutations that alter the direct or indirect recognition of proteins by the E3 enzymes or alterations in the level of expression or activity of ubiquitin ligases. Through a few examples, we illustrate here the complexity and diversity of the molecular mechanisms related to protein ubiquitination involved in cell cycle regulation. We will discuss the role of ubiquitin-dependent degradation mediated by the proteasome, the role of non-proteolytic ubiquitination during cell cycle progression, and the consequences of this deregulation on cellular transformation. Finally, we will highlight the novel opportunities that arise from these studies for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Rosa Farràs
- Oncogenic Signaling Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
9
|
Fouad S, Wells OS, Hill MA, D'Angiolella V. Cullin Ring Ubiquitin Ligases (CRLs) in Cancer: Responses to Ionizing Radiation (IR) Treatment. Front Physiol 2019; 10:1144. [PMID: 31632280 PMCID: PMC6781834 DOI: 10.3389/fphys.2019.01144] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple cancer types, including disseminated and aggressive diseases in the palliative setting. Radiotherapy efficacy could be improved in combination with drugs that regulate the ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal factors regulating the cancer and normal tissue response to IR. Here, we summarize the findings on the involvement of CRLs in the response of cancer cells to IR, and we discuss the therapeutic approaches to target the CRLs which could be exploited in the clinic.
Collapse
Affiliation(s)
- Shahd Fouad
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen S Wells
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mark A Hill
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018; 16:23. [PMID: 29793495 PMCID: PMC5968562 DOI: 10.1186/s12964-018-0236-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development, circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential opportunities for advancing theranostics.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
11
|
Richter J, Kretz AL, Lemke J, Fauler M, Werner JU, Paschke S, Leithäuser F, Henne-Bruns D, Hillenbrand A, Knippschild U. CK1α overexpression correlates with poor survival in colorectal cancer. BMC Cancer 2018; 18:140. [PMID: 29409464 PMCID: PMC5801892 DOI: 10.1186/s12885-018-4019-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
Background Colorectal cancer (CRC) is the fourth leading cause of cancer related deaths worldwide and prognosis in advanced tumor stage still remains poor. Since CK1 isoforms have been reported to be deregulated in several tumor entities CK1 has emerged as a novel drug target in cancer therapy. In this study we set out to investigate whether CK1α might have the potential to serve as prognostic marker. Methods CK1α RNA and protein expression levels in healthy and tumor tissue of CRC patients were analyzed using quantitative real-time PCR and Western Blot analysis, respectively. Prognostic relevance was investigated by correlating obtained CK1α expression levels with patients’ survival rate generating Kaplan-Meier survival plots. Results It could be shown that CK1α is overexpressed in colorectal tumor tissue compared to normal tissue and CK1α overexpression in tumor tissue correlates with poor survival in CRC patients. Results become more significant when only considering patients with high-grade tumors, as well as patients assigned to UICC II and UICC III stage. Furthermore, Cox regression analysis revealed that CK1α is an independent prognostic factor. In addition, tumors expressing decreased levels of the kinase reveal positive effects on overall survival when localized in the right colon compared to those in the left side. Conclusion In summary, this study provides evidence for the first time that CK1α RNA levels might serve as prognostic marker for CRC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4019-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Richter
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Michael Fauler
- Ulm University, Institute of General Physiology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jens-Uwe Werner
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Stephan Paschke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Frank Leithäuser
- Department of Pathology, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
12
|
Liu OG, Xiong XY, Li CM, Zhou XS, Li SS. Role of Xeroderma Pigmentosum Group D in Cell Cycle and Apoptosis in Cutaneous Squamous Cell Carcinoma A431 Cells. Med Sci Monit 2018; 24:453-460. [PMID: 29362353 PMCID: PMC5791386 DOI: 10.12659/msm.905319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is the second most widespread cancer in humans and its incidence is rising. Novel therapy with better efficacy is needed for clinical treatment of cSCC. Many studies have shown the importance of DNA repair pathways during the development of cancer. A key nucleotide excision repair (NER) protein, xeroderma pigmentosum group D (XPD), is responsible for the excision of a large variety of bulky DNA lesions. MATERIAL AND METHODS To explore the role of XPD in A431 cells, we overexpressed XPD in A431 cells and performed MTT assay, flow cytometry, and Western blot analysis to examine cell proliferation, cell apoptosis, and genes expression. RESULTS We found that the overexpression of XPD suppressed cell viability, induced cell cycle arrest at G1 phase, and promoted cell apoptosis. Additionally, XPD blocked the expression of c-myc, cdc25A, and cdk2, and improved the levels of HIPK2 and p53. CONCLUSIONS These results provide new evidence to reveal the role of XPD in cSCC A431 cells and suggest that XPD may serve as an anti-oncogene during cSCC development.
Collapse
Affiliation(s)
- Ou-Gen Liu
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiao-Yan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xian-Sheng Zhou
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Si-Si Li
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
13
|
Shen T, Zhou H, Shang C, Luo Y, Wu Y, Huang S. Ciclopirox activates ATR-Chk1 signaling pathway leading to Cdc25A protein degradation. Genes Cancer 2018; 9:39-52. [PMID: 29725502 PMCID: PMC5931253 DOI: 10.18632/genesandcancer.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/11/2018] [Indexed: 02/05/2023] Open
Abstract
Ciclopirox olamine (CPX), an off-patent anti-fungal drug, has been found to inhibit the G1-cyclin dependent kinases partly by increasing the phosphorylation and degradation of Cdc25A. However, little is known about the molecular target(s) of CPX responsible for Cdc25A degradation. Here, we show that CPX induced the degradation of Cdc25A neither by increasing CK1α or decreasing DUB3 expression, nor via activating GSK3β, but through activating Chk1 in rhabdomyosarcoma (Rh30) and breast carcinoma (MDA-MB-231) cells. This is strongly supported by the findings that inhibition of Chk1 with TCS2312 or knockdown of Chk1 profoundly attenuated CPX-induced Cdc25A degradation in the cells. Furthermore, we observed that CPX caused DNA damage, which was independent of reactive oxygen species (ROS) induction, but related to iron chelation. CPX treatment resulted in the activation of ataxia telangiectasia mutated (ATM) and ATM-and RAD3-related (ATR) kinases. Treatment with Ku55933 (a selective ATM inhibitor) failed to prevent CPX-induced Chk1 phosphorylation and Cdc25A degradation. In contrast, knockdown of ATR conferred high resistance to CPX-induced Chk1 phosphorylation and Cdc25A degradation. Therefore, the results suggest that CPX-induced degradation of Cdc25A is attributed to the activation of ATR-Chk1 signaling pathway, a consequence of iron chelation-induced DNA damage.
Collapse
Affiliation(s)
- Tao Shen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- State Key Laboratory of Biotherapy / Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yang Wu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- State Key Laboratory of Biotherapy / Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
14
|
Zhang F, Virshup DM, Cheong JK. Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis. Oncogene 2017; 37:363-376. [PMID: 28945225 PMCID: PMC5799771 DOI: 10.1038/onc.2017.334] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/30/2017] [Accepted: 08/12/2017] [Indexed: 12/18/2022]
Abstract
Evasion of forkhead box O (FOXO) family of longevity-related transcription factors-mediated growth suppression is necessary to promote cancer development. Since somatic alterations or mutations and transcriptional dysregulation of the FOXO genes are infrequent in human cancers, it remains unclear how these tumour suppressors are eliminated from cancer cells. The protein stability of FOXO3A is regulated by Casein Kinase 1 alpha (CK1α) in an oncogenic RAS-specific manner, but whether this mode of regulation extends to related FOXO family members is unknown. Here we report that CK1α similarly destabilizes FOXO4 in RAS-mutant cells by phosphorylation at serines 265/268. The CK1α-dependent phosphoregulation of FOXO4 is primed, in part, by the PI3K/AKT effector axis of oncogenic RAS signalling. In addition, mutant RAS coordinately elevates proteasome subunit expression and proteolytic activity to eradicate nuclear FOXO4 proteins from RAS-mutant cancer cells. Importantly, dual inhibition of CK1α and the proteasome synergistically inhibited the growth of multiple RAS-mutant human cancer cell lines of diverse tissue origin by blockade of nuclear FOXO4 degradation and induction of caspase-dependent apoptosis. Our findings challenge the current paradigm that nuclear export regulates the proteolysis of FOXO3A/4 tumour suppressors in the context of cancer and illustrates how oncogenic RAS-mediated degradation of FOXOs, via post-translational mechanisms, blocks these important tumour suppressors.
Collapse
Affiliation(s)
- F Zhang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - D M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Department of Biochemistry, National University of Singapore, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - J K Cheong
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| |
Collapse
|
15
|
Parajuli S, Teasley DC, Murali B, Jackson J, Vindigni A, Stewart SA. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork. J Biol Chem 2017; 292:15216-15224. [PMID: 28717002 DOI: 10.1074/jbc.m117.787473] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/21/2017] [Indexed: 11/06/2022] Open
Abstract
Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease.
Collapse
Affiliation(s)
| | | | - Bhavna Murali
- From the Departments of Cell Biology and Physiology and
| | - Jessica Jackson
- the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Alessandro Vindigni
- the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 .,Siteman Cancer Center, and
| | - Sheila A Stewart
- From the Departments of Cell Biology and Physiology and .,Siteman Cancer Center, and.,Medicine.,Integrating Communications within the Cancer Environment (ICCE) Institute, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
16
|
Abstract
Ciclopirox olamine (CPX), an off-patent fungicide, has recently been identified as a novel anticancer agent. However, the molecular mechanism underlying its anticancer action remains to be elucidated. Here we show that CPX inhibits cell proliferation in part by downregulating the protein level of Cdc25A in tumor cells. Our studies revealed that CPX did not significantly reduce Cdc25A mRNA level or Cdc25A protein synthesis, but remarkably promoted Cdc25A protein degradation. This resulted in inhibition of G1-cyclin dependent kinases (CDKs), as evidenced by increased inhibitory phosphorylation of G1-CDKs. Since Cdc25A degradation is tightly related to its phosphorylation status, we further examined whether CPX alters Cdc25A phosphorylation. The results showed that CPX treatment increased the phosphorylation of Cdc25A (S76 and S82), but only Cdc25A-S82A mutant was resistant to CPX-induced degradation. Furthermore, ectopic expression of Cdc25A-S82A partially conferred resistance to CPX inhibition of cell proliferation. Therefore, our findings indicate that CPX inhibits cell proliferation at least in part by promoting Cdc25A degradation.
Collapse
|
17
|
Borg NA, Dixit VM. Ubiquitin in Cell-Cycle Regulation and Dysregulation in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-040716-075607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncontrolled cell proliferation and genomic instability are common features of cancer and can arise from, respectively, the loss of cell-cycle control and defective checkpoints. Ubiquitin-mediated proteolysis, ultimately executed by ubiquitin-ligating enzymes (E3s), plays a key part in cell-cycle regulation and is dominated by two multisubunit E3s, the anaphase-promoting complex (or cyclosome) (APC/C) and SKP1–cullin-1–F-box (SCF) complex. We highlight the role of APC/C and the SCF bound to F-box proteins, FBXW7, SKP2, and β-TrCP, in regulating the abundance of select fundamental proteins, primarily during the cell cycle, that are associated with human cancer. The clinical success of the first proteasome inhibitor, bortezomib, in treating multiple myeloma and mantle-cell lymphoma set the precedent for viewing the ubiquitin–proteasome system as a druggable target for cancer. Given that there are more E3s than kinases, selective, small-molecule E3 inhibitors have the potential of opening up another dimension in the therapeutic armamentarium for the treatment of cancer.
Collapse
Affiliation(s)
- Natalie A. Borg
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080
| |
Collapse
|
18
|
Dozier C, Mazzolini L, Cénac C, Froment C, Burlet-Schiltz O, Besson A, Manenti S. CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability. Oncogene 2017; 36:3781-3788. [PMID: 28192398 DOI: 10.1038/onc.2016.506] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022]
Abstract
The phosphatase CDC25A is a key regulator of cell cycle progression by dephosphorylating and activating cyclin-CDK complexes. CDC25A is an unstable protein expressed from G1 until mitosis. CDC25A overexpression, which can be caused by stabilization of the protein, accelerates the G1/S and G2/M transitions, leading to genomic instability and promoting tumorigenesis. Thus, controlling CDC25A protein levels by regulating its stability is a critical mechanism for timing cell cycle progression and to maintain genomic integrity. Herein, we show that CDC25A is phosphorylated on Ser40 throughout the cell cycle and that this phosphorylation is established during the progression from G1 to S phase. We demonstrate that CyclinD-CDK4/CDK6 complexes mediate the phosphorylation of CDC25A on Ser40 during G1 and that these complexes directly phosphorylate this residue in vitro. Importantly, we also find that CyclinD1-CDK4 decreases CDC25A stability in a ßTrCP-dependent manner and that Ser40 and Ser88 phosphorylations contribute to this regulation. Thus our results identify cyclinD-CDK4/6 complexes as novel regulators of CDC25A stability during G1 phase, generating a negative feedback loop allowing control of the G1/S transition.
Collapse
Affiliation(s)
- C Dozier
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France.,Equipe labellisée Ligue Contre le Cancer, CNRS ERL5294, Toulouse, France
| | - L Mazzolini
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France.,Equipe labellisée Ligue Contre le Cancer, CNRS ERL5294, Toulouse, France
| | - C Cénac
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France
| | - C Froment
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR5089, Université Toulouse, Toulouse, France
| | - O Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR5089, Université Toulouse, Toulouse, France
| | - A Besson
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France
| | - S Manenti
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France.,Equipe labellisée Ligue Contre le Cancer, CNRS ERL5294, Toulouse, France
| |
Collapse
|
19
|
Greer YE, Gao B, Yang Y, Nussenzweig A, Rubin JS. Lack of Casein Kinase 1 Delta Promotes Genomic Instability - The Accumulation of DNA Damage and Down-Regulation of Checkpoint Kinase 1. PLoS One 2017; 12:e0170903. [PMID: 28125685 PMCID: PMC5268481 DOI: 10.1371/journal.pone.0170903] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/12/2017] [Indexed: 12/18/2022] Open
Abstract
Casein kinase 1 delta (CK1δ) is a conserved serine/threonine protein kinase that regulates diverse cellular processes. Mice lacking CK1δ have a perinatal lethal phenotype and typically weigh 30% less than their wild type littermates. However, the causes of death and small size are unknown. We observed cells with abnormally large nuclei in tissue from Csnk1d null embryos, and multiple centrosomes in mouse embryo fibroblasts (MEFs) deficient in CK1δ (MEFCsnk1d null). Results from γ-H2AX staining and the comet assay demonstrated significant DNA damage in MEFCsnk1d null cells. These cells often contain micronuclei, an indicator of genomic instability. Similarly, abrogation of CK1δ expression in control MEFs stimulated micronuclei formation after doxorubicin treatment, suggesting that CK1δ loss increases vulnerability to genotoxic stress. Cellular levels of total and activated checkpoint kinase 1 (Chk1), which functions in the DNA damage response and mitotic checkpoints, and its downstream effector, Cdc2/CDK1 kinase, were often decreased in MEFCsnk1d null cells as well as in control MEFs transfected with CK1δ siRNA. Hydroxyurea-induced Chk1 activation, as measured by Ser345 phosphorylation, and nuclear localization also were impaired in MEF cells following siRNA knockdown of CK1δ. Similar results were observed in the MCF7 human breast cancer cell line. The decreases in phosphorylated Chk1 were rescued by concomitant expression of siRNA-resistant CK1δ. Experiments with cycloheximide demonstrated that the stability of Chk1 protein was diminished in cells subjected to CK1δ knockdown. Together, these findings suggest that CK1δ contributes to the efficient repair of DNA damage and the proper functioning of mitotic checkpoints by maintaining appropriate levels of Chk1.
Collapse
Affiliation(s)
- Yoshimi Endo Greer
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
- Women’s Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (YEG); (JSR)
| | - Bo Gao
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeffrey S. Rubin
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (YEG); (JSR)
| |
Collapse
|
20
|
Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget 2016; 7:1380-94. [PMID: 26595527 PMCID: PMC4811467 DOI: 10.18632/oncotarget.6364] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
DNA damage activates Checkpoint kinase 1 (Chk1) to halt cell cycle progression thereby preventing further DNA replication and mitosis until the damage has been repaired. Consequently, Chk1 inhibitors have emerged as promising anticancer therapeutics in combination with DNA damaging drugs, but their single agent activity also provides a novel approach that may be particularly effective in a subset of patients. From analysis of a large panel of cell lines, we demonstrate that 15% are very sensitive to the Chk1 inhibitor MK-8776. Upon inhibition of Chk1, sensitive cells rapidly accumulate DNA double-strand breaks in S phase in a CDK2- and cyclin A-dependent manner. In contrast, resistant cells can continue to grow for at least 7 days despite continued inhibition of Chk1. Resistance can be circumvented by inhibiting Wee1 kinase and thereby directly activating CDK2. Hence, sensitivity to Chk1 inhibition is regulated upstream of CDK2 and correlates with accumulation of CDC25A. We conclude that cells poorly tolerate CDK2 activity in S phase and that a major function of Chk1 is to ensure it remains inactive. Indeed, inhibitors of CDK1 and CDK2 arrest cells in G1 or G2, respectively, but do not prevent progression through S phase demonstrating that neither kinase is required for S phase progression. Inappropriate activation of CDK2 in S phase underlies the sensitivity of a subset of cell lines to Chk1 inhibitors, and this may provide a novel therapeutic opportunity for appropriately stratified patients.
Collapse
Affiliation(s)
- Nandini Sakurikar
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Ruth Thompson
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Ryan Montano
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alan Eastman
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
21
|
Structural dynamics of Casein Kinase I (CKI) from malarial parasite Plasmodium falciparum (Isolate 3D7): Insights from theoretical modelling and molecular simulations. J Mol Graph Model 2016; 71:154-166. [PMID: 27923179 DOI: 10.1016/j.jmgm.2016.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022]
Abstract
The protein kinases (PKs), belonging to serine/threonine kinase (STKs), are important drug targets for a wide spectrum of diseases in human. Among protein kinases, the Casein Kinases (CKs) are vastly expanded in various organisms, where, the malarial parasite Plasmodium falciparum possesses a single member i.e., PfCKI, which can phosphorylate various proteins in parasite extracts in vitro condition. But, the structure-function relationship of PfCKI and dynamics of ATP binding is yet to be understood. Henceforth, an attempt was made to study the dynamics, stability, and ATP binding mechanisms of PfCKI through computational modelling, docking, molecular dynamics (MD) simulations, and MM/PBSA binding free energy estimation. Bi-lobed catalytic domain of PfCKI shares a high degree of secondary structure topology with CKI domains of rice, human, and mouse indicating co-evolution of these kinases. Molecular docking study revealed that ATP binds to the active site where the glycine-rich ATP-binding motif (G16-X-G18-X-X-G21) along with few conserved residues plays a crucial role maintaining stability of the complex. Structural superposition of PfCKI with close structural homologs depicted that the location and length of important loops are different, indicating the dynamic properties of these loops among CKIs, which is consistent with principal component analysis (PCA). PCA displayed that the overall global motion of ATP-bound form is comparatively higher than that of apo form. The present study provides insights into the structural features of PfCKI, which could contribute towards further understanding of related protein structures, dynamics of catalysis and phosphorylation mechanism in these important STKs from malarial parasite in near future.
Collapse
|
22
|
Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies. Mol Cell Biochem 2016; 416:33-46. [PMID: 27038604 DOI: 10.1007/s11010-016-2693-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Alterations in the cell-cycle regulatory genes result in uncontrolled cell proliferation leading to several disease conditions. Cyclin-dependent kinases (CDK) and their regulatory subunit, cyclins, are essential proteins in cell-cycle progression. The activity of CDK is regulated by a series of phosphorylation and dephosphorylation at different amino acid residues. Cell Division Cycle-25 (CDC25) plays an important role in transitions between cell-cycle phases by dephosphorylating and activating CDKs. CDC25B and CDC25C play a major role in G2/M progression, whereas CDC25A assists in G1/S transition. Different isomers of CDC25 expressions are upregulated in various clinicopathological situations. Overexpression of CDC25A deregulates G1/S and G2/M events, including the G2 checkpoint. CDC25B has oncogenic properties. Binding to the 14-3-3 proteins regulates the activity and localization of CDC25B. CDC25C is predominantly a nuclear protein in mammalian cells. At the G2/M transition, mitotic activation of CDC25C protein occurs by its dissociation from 14-3-3 proteins along with its phosphorylation at multiple sites within its N-terminal domain. In this article, we critically reviewed the biology of the activation/deactivation of CDC25 by kinases/phosphatases to maintain the level of CDK-cyclin activities and thus the genomic stability, clinical implications due to dysregulation of CDC25, and potential role of CDC25 inhibitors in diseases.
Collapse
|
23
|
Borgal L, Rinschen MM, Dafinger C, Liebrecht VI, Abken H, Benzing T, Schermer B. Jade-1S phosphorylation induced by CK1α contributes to cell cycle progression. Cell Cycle 2016; 15:1034-45. [PMID: 26919559 PMCID: PMC4889251 DOI: 10.1080/15384101.2016.1152429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/04/2016] [Indexed: 12/13/2022] Open
Abstract
The PHD zinc finger protein Jade-1S is a component of the HBO1 histone acetyltransferase complex and binds chromatin in a cell cycle-dependent manner. Jade-1S also acts as an E3 ubiquitin ligase for the canonical Wnt effector protein β-catenin and is influenced by CK1α-mediated phosphorylation. To further elucidate the functional impact of this phosphorylation, we used a stable, low-level expression system to express either wild-type or mutant Jade-1S lacking the N-terminal CK1α phosphorylation motif. Interactome analyses revealed that the Jade-1S mutant unable to be phosphorylated by CK1α has an increased binding affinity to proteins involved in chromatin remodelling, histone deacetylation, transcriptional repression, and ribosome biogenesis. Interestingly, cells expressing the mutant displayed an elongated cell shape and a delay in cell cycle progression. Finally, phosphoproteomic analyses allowed identification of a Jade-1S site phosphorylated in the presence of CK1α but closely resembling a PLK1 phosphorylation motif. Our data suggest that Jade-1S phosphorylation at an N-terminal CK1α motif creates a PLK1 phospho-binding domain. We propose CK1α phosphorylation of Jade 1S to serve as a molecular switch, turning off chromatin remodelling functions of Jade-1S and allowing timely cell cycle progression. As Jade-1S protein expression in the kidney is altered upon renal injury, this could contribute to understanding mechanisms underlying epithelial injury repair.
Collapse
Affiliation(s)
- Lori Borgal
- Department II of Internal Medicine; University of Cologne; Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne, Germany
| | - Markus M. Rinschen
- Department II of Internal Medicine; University of Cologne; Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne; Cologne, Germany
| | - Claudia Dafinger
- Department II of Internal Medicine; University of Cologne; Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne, Germany
| | - Valérie I. Liebrecht
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne, Germany
- Department I of Internal Medicine; University of Cologne; Cologne, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne, Germany
- Department I of Internal Medicine; University of Cologne; Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine; University of Cologne; Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne; Cologne, Germany
- Systems Biology of Ageing Cologne; University of Cologne; Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine; University of Cologne; Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne; Cologne, Germany
- Systems Biology of Ageing Cologne; University of Cologne; Cologne, Germany
| |
Collapse
|
24
|
Sabir SR, Sahota NK, Jones GDD, Fry AM. Loss of Nek11 Prevents G2/M Arrest and Promotes Cell Death in HCT116 Colorectal Cancer Cells Exposed to Therapeutic DNA Damaging Agents. PLoS One 2015; 10:e0140975. [PMID: 26501353 PMCID: PMC4621075 DOI: 10.1371/journal.pone.0140975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/03/2015] [Indexed: 11/19/2022] Open
Abstract
The Nek11 kinase is a potential mediator of the DNA damage response whose expression is upregulated in early stage colorectal cancers (CRCs). Here, using RNAi-mediated depletion, we examined the role of Nek11 in HCT116 WT and p53-null CRC cells exposed to ionizing radiation (IR) or the chemotherapeutic drug, irinotecan. We demonstrate that depletion of Nek11 prevents the G2/M arrest induced by these genotoxic agents and promotes p53-dependent apoptosis both in the presence and absence of DNA damage. Interestingly, Nek11 depletion also led to long-term loss of cell viability that was independent of p53 and exacerbated following IR exposure. CRC cells express four splice variants of Nek11 (L/S/C/D). These are predominantly cytoplasmic, but undergo nucleocytoplasmic shuttling mediated through adjacent nuclear import and export signals in the C-terminal non-catalytic domain. In HCT116 cells, Nek11S in particular has an important role in the DNA damage response. These data provide strong evidence that Nek11 contributes to the response of CRC cells to genotoxic agents and is essential for survival either with or without exposure to DNA damage.
Collapse
Affiliation(s)
- Sarah R. Sabir
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Navdeep K. Sahota
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - George D. D. Jones
- Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Teasley DC, Parajuli S, Nguyen M, Moore HR, Alspach E, Lock YJ, Honaker Y, Saharia A, Piwnica-Worms H, Stewart SA. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand. J Biol Chem 2015; 290:15133-45. [PMID: 25922071 DOI: 10.1074/jbc.m115.647388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 01/01/2023] Open
Abstract
The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer.
Collapse
Affiliation(s)
- Daniel C Teasley
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Shankar Parajuli
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Mai Nguyen
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Hayley R Moore
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Elise Alspach
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Ying Jie Lock
- From the Departments of Cell Biology and Physiology and
| | - Yuchi Honaker
- From the Departments of Cell Biology and Physiology and
| | | | | | - Sheila A Stewart
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110 Medicine,
| |
Collapse
|
26
|
Drosophila casein kinase I alpha regulates homolog pairing and genome organization by modulating condensin II subunit Cap-H2 levels. PLoS Genet 2015; 11:e1005014. [PMID: 25723539 PMCID: PMC4344196 DOI: 10.1371/journal.pgen.1005014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 01/20/2015] [Indexed: 12/25/2022] Open
Abstract
The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing. Recent work has shown that condensin II governs both interphase chromosome compaction and homolog pairing and condensin II activity is controlled by the turnover of its regulatory subunit Cap-H2. Specifically, Cap-H2 is a target of the SCFSlimb E3 ubiquitin-ligase which down-regulates Cap-H2 in order to maintain homologous chromosome pairing, chromosome length and proper nuclear organization. Here, we identify Casein Kinase I alpha (CK1α) as an additional negative-regulator of Cap-H2. CK1α-depletion stabilizes Cap-H2 protein and results in an accumulation of Cap-H2 on chromosomes. Similar to Slimb mutation, CK1α depletion in cultured cells, larval salivary gland, and nurse cells results in several condensin II-dependent phenotypes including dispersal of centromeres, interphase chromosome compaction, and chromosome unpairing. Moreover, CK1α loss-of-function mutations dominantly suppress condensin II mutant phenotypes in vivo. Thus, CK1α facilitates Cap-H2 destruction and modulates nuclear organization by attenuating chromatin localized Cap-H2 protein.
Collapse
|
27
|
Goto H, Kasahara K, Inagaki M. Novel insights into Chk1 regulation by phosphorylation. Cell Struct Funct 2014; 40:43-50. [PMID: 25748360 DOI: 10.1247/csf.14017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) is a conserved protein kinase central to the cell-cycle checkpoint during DNA damage response (DDR). Until recently, ATR, a protein kinase activated in response to DNA damage or stalled replication, has been considered as the sole regulator of Chk1. Recent progress, however, has led to the identification of additional protein kinases involved in Chk1 phosphorylation, affecting the subcellular localization and binding partners of Chk1. In fact, spatio-temporal regulation of Chk1 is of critical importance not only in the DDR but also in normal cell-cycle progression. In due course, many potent inhibitors targeted to Chk1 have been developed as anticancer agents and some of these inhibitors are currently in clinical trials. In this review, we summarize the current knowledge of Chk1 regulation by phosphorylation.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | | | | |
Collapse
|
28
|
Casein kinase 1 suppresses activation of REST in insulted hippocampal neurons and halts ischemia-induced neuronal death. J Neurosci 2014; 34:6030-9. [PMID: 24760862 DOI: 10.1523/jneurosci.4045-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Repressor Element-1 (RE1) Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF) is a gene-silencing factor that is widely expressed during embryogenesis and plays a strategic role in neuronal differentiation. Recent studies indicate that REST can be activated in differentiated neurons during a critical window of time in postnatal development and in adult neurons in response to neuronal insults such as seizures and ischemia. However, the mechanism by which REST is regulated in neurons is as yet unknown. Here, we show that REST is controlled at the level of protein stability via β-TrCP-dependent, ubiquitin-based proteasomal degradation in differentiated neurons under physiological conditions and identify Casein Kinase 1 (CK1) as an upstream effector that bidirectionally regulates REST cellular abundance. CK1 associates with and phosphorylates REST at two neighboring, but distinct, motifs within the C terminus of REST critical for binding of β-TrCP and targeting of REST for proteasomal degradation. We further show that global ischemia in rats in vivo triggers a decrease in CK1 and an increase in REST in selectively vulnerable hippocampal CA1 neurons. Administration of the CK1 activator pyrvinium pamoate by in vivo injection immediately after ischemia restores CK1 activity, suppresses REST expression, and rescues neurons destined to die. Our results identify a novel and previously unappreciated role for CK1 as a brake on REST stability and abundance in adult neurons and reveal that loss of CK1 is causally related to ischemia-induced neuronal death. These findings point to CK1 as a potential therapeutic target for the amelioration of hippocampal injury and cognitive deficits associated with global ischemia.
Collapse
|
29
|
Abstract
The circadian clock is an endogenous timekeeper system that controls the daily rhythms of a variety of physiological processes. Accumulating evidence indicates that genetic changes or unhealthy lifestyle can lead to a disruption of circadian homeostasis, which is a risk factor for severe dysfunctions and pathologies including cancer. Cell cycle, proliferation, and cell death are closely intertwined with the circadian clock, and thus disruption of circadian rhythms appears to be linked to cancer development and progression. At the molecular level, the cell cycle machinery and the circadian clocks are controlled by similar mechanisms, including feedback loops of genes and protein products that display periodic activation and repression. Here, we review the circadian rhythmicity of genes associated with the cell cycle, proliferation, and apoptosis, and we highlight the potential connection between these processes, the circadian clock, and neoplastic transformations. Understanding these interconnections might have potential implications for the prevention and therapy of malignant diseases.
Collapse
Affiliation(s)
- Matúš Soták
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | | | | |
Collapse
|
30
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|
31
|
Poon RYC. DNA damage checkpoints in nasopharyngeal carcinoma. Oral Oncol 2014; 50:339-44. [PMID: 24503238 DOI: 10.1016/j.oraloncology.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive cancer with poor prognosis. One of the recurring themes of NPC biology and treatments is DNA damage. Epstein-Barr virus infection, which is generally accepted as a key etiological factor for NPC, triggers DNA damage responses. In normal cells, DNA damage checkpoints are able to prevent cell cycle progression following DNA damage and are critical for maintaining genome stability. Main features of the checkpoints include activation of ATM and ATR by sensors of DNA damage, which activates effector kinases CHK1 and CHK2; they in turn targets the CDC25/WEE1-cyclin B1-CDK1 axis to cause G(2) arrest, or the p53-p21(CIP1/WAF1) and pRb pathways to cause G(1) arrest. Significantly, these checkpoints are typically disrupted in NPC cells. While mutations are relatively rare, mechanisms including promoter modifications, miRNAs, and actions of Epstein-Barr virus-encoded proteins such as EBNA3C and LMP1 have been described. Paradoxically, radiation-mediated DNA damage remains the primary treatment of NPC. How dysregulation of the DNA damage checkpoints contribute to NPC tumorigenesis and responses to treatment remain poorly understood. In this review, the current understanding of the molecular mechanisms of the various DNA damage checkpoints and what is known about them in NPC are discussed.
Collapse
Affiliation(s)
- Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
32
|
Cunha-Ferreira I, Bento I, Pimenta-Marques A, Jana SC, Lince-Faria M, Duarte P, Borrego-Pinto J, Gilberto S, Amado T, Brito D, Rodrigues-Martins A, Debski J, Dzhindzhev N, Bettencourt-Dias M. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Curr Biol 2013; 23:2245-2254. [PMID: 24184099 DOI: 10.1016/j.cub.2013.09.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/08/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 4 (PLK4) is a major player in centriole biogenesis: in its absence centrioles fail to form, while in excess leads to centriole amplification. The SCF-Slimb/βTrCP-E3 ubiquitin ligase controls PLK4 levels through recognition of a conserved phosphodegron. SCF-Slimb/βTrCP substrate binding and targeting for degradation is normally regulated by phosphorylation cascades, controlling complex processes, such as circadian clocks and morphogenesis. Here, we show that PLK4 is a suicide kinase, autophosphorylating in residues that are critical for SCF-Slimb/βTrCP binding. We demonstrate a multisite trans-autophosphorylation mechanism, likely to ensure that both a threshold of PLK4 concentration is attained and a sequence of events is observed before PLK4 can autodestruct. First, we show that PLK4 trans-autophosphorylates other PLK4 molecules on both Ser293 and Thr297 within the degron and that these residues contribute differently for PLK4 degradation, the first being critical and the second maximizing auto-destruction. Second, PLK4 trans-autophosphorylates a phospho-cluster outside the degron, which regulates Thr297 phosphorylation, PLK4 degradation, and centriole number. Finally, we show the importance of PLK4-Slimb/βTrCP regulation as it operates in both soma and germline. As βTrCP, PLK4, and centriole number are deregulated in several cancers, our work provides novel links between centriole number control and tumorigenesis.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Inês Bento
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Mariana Lince-Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Joana Borrego-Pinto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Samuel Gilberto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Tiago Amado
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Daniela Brito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Janusz Debski
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Nikola Dzhindzhev
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | |
Collapse
|
33
|
CK1δ kinase activity is modulated by Chk1-mediated phosphorylation. PLoS One 2013; 8:e68803. [PMID: 23861943 PMCID: PMC3701638 DOI: 10.1371/journal.pone.0068803] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/01/2013] [Indexed: 12/19/2022] Open
Abstract
CK1δ, a member of the casein kinase 1 family, is involved in the regulation of various cellular processes and has been associated with the pathophysiology of neurodegenerative diseases and cancer. Therefore recently, interest in generating highly specific inhibitors for personalized therapy has increased enormously. However, the efficacy of newly developed inhibitors is affected by the phosphorylation state of CK1δ. Cellular kinases phosphorylating CK1δ within its C-terminal domain have been identified but still more information regarding the role of site-specific phosphorylation in modulating the activity of CK1δ is required. Here we show that Chk1 phosphorylates rat CK1δ at serine residues 328, 331, 370, and threonine residue 397 as well as the human CK1δ transcription variants 1 and 2. CK1δ mutant proteins bearing one, two or three mutations at these identified phosphorylation sites exhibited significant differences in their kinetic properties compared to wild-type CK1δ. Additionally, CK1δ co-precipitates with Chk1 from HT1080 cell extracts and activation of cellular Chk1 resulted in a significant decrease in cellular CK1δ kinase activity. Taken together, these data point towards a possible regulatory relationship between Chk1 and CK1δ.
Collapse
|
34
|
Bologna S, Ferrari S. It takes two to tango: Ubiquitin and SUMO in the DNA damage response. Front Genet 2013; 4:106. [PMID: 23781231 PMCID: PMC3678106 DOI: 10.3389/fgene.2013.00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/24/2013] [Indexed: 11/14/2022] Open
Abstract
The complexity of living cells is primarily determined by the genetic information encoded in DNA and gets fully disclosed upon translation. A major determinant of complexity is the reversible post-translational modification (PTM) of proteins, which generates variants displaying distinct biological properties such as subcellular localization, enzymatic activity and the ability to assemble in complexes. Decades of work on phosphorylation have unambiguously proven this concept. In recent years, the covalent attachment of Ubiquitin or Small Ubiquitin-like Modifiers (SUMO) to amino acid residues of target proteins has been recognized as another crucial PTM, re-directing protein fate and protein-protein interactions. This review focuses on the role of ubiquitylation and sumoylation in the control of DNA damage response proteins. To lay the ground, we begin with a description of ubiquitylation and sumoylation, providing established examples of DNA damage response elements that are controlled through these PTMs. We then examine in detail the role of PTMs in the cellular response to DNA double-strand breaks illustrating hierarchy, cross-talk, synergism or antagonism between phosphorylation, ubiquitylation and sumoylation. We conclude offering a perspective on Ubiquitin and SUMO pathways as targets in cancer therapy.
Collapse
Affiliation(s)
- Serena Bologna
- Institute of Molecular Cancer Research, University of ZurichZurich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of ZurichZurich, Switzerland
| |
Collapse
|
35
|
Abstract
The ubiquitin-proteasome system plays a pivotal role in the sequence of events leading to cell division known as the cell cycle. Not only does ubiquitin-mediated proteolysis constitute a critical component of the core oscillator that drives the cell cycle in all eukaryotes, it is also central to the mechanisms that ensure that the integrity of the genome is maintained. These functions are primarily carried out by two families of E3 ubiquitin ligases, the Skp/cullin/F-box-containing and anaphase-promoting complex/cyclosome complexes. However, beyond those functions associated with regulation of central cell cycle events, many peripheral cell cycle-related processes rely on ubiquitylation for signaling, homeostasis, and dynamicity, involving additional types of ubiquitin ligases and regulators. We are only beginning to understand the diversity and complexity of this regulation.
Collapse
Affiliation(s)
- Leonardo K Teixeira
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
36
|
Abstract
Casein kinase I (CKI) is a Ser/Thr kinase protein that is highly conserved from plants to animals. This enzyme is involved in various cellular functions, such as DNA repair, cell cycle, cytokinesis, vesicular trafficking, morphogenesis and circadian rhythm. The CKI family contains a highly conserved kinase domain at the N-terminus and a highly diverse regulatory domain at the C-terminus. The CKI-like protein has been indentified in rice and the 2.0 Å crystal structure of the kinase domain of the CKI-like protein from rice (riceCKI) was reported by our group recently. We also identified a lipase that was a substrate of riceCKI and showed that the activity of the lipase is controlled by the activity of riceCKI. Here, we identified potential phosphorylation sites on the lipase by molecular modeling and ser/thr mapping. Moreover, we showed that the activity of the lipase was decreased by CKI in a time-dependent manner.
Collapse
Affiliation(s)
- Hyun Ho Park
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|
37
|
Shen T, Huang S. The Role of Cdc25A in the Regulation of Cell Proliferation and Apoptosis. Anticancer Agents Med Chem 2012; 12:631-9. [DOI: 10.2174/187152012800617678] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/22/2011] [Accepted: 12/31/2011] [Indexed: 12/11/2022]
|
38
|
Goto H, Izawa I, Li P, Inagaki M. Novel regulation of checkpoint kinase 1: Is checkpoint kinase 1 a good candidate for anti-cancer therapy? Cancer Sci 2012; 103:1195-200. [PMID: 22435685 DOI: 10.1111/j.1349-7006.2012.02280.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/28/2022] Open
Abstract
DNA-damaging strategies, such as radiotherapy and the majority of chemotherapeutic therapies, are the most frequently used non-surgical anti-cancer therapies for human cancers. These therapies activate DNA damage/replication checkpoints, which induce cell-cycle arrest to provide the time needed to repair DNA damage. Due to genetic defect(s) in the ATM (ataxia-telangiectasia mutated)-Chk2-p53 pathway, an ATR (ATM- and Rad3-related)-Chk1-Cdc25 route is the sole checkpoint pathway in a majority of cancer cells. Chk1 inhibitors are expected to selectively induce the mitotic cell death (mitotic catastrophe) of cancer cells. However, recent new findings have pointed out that Chk1 is essential for the maintenance of genome integrity even during unperturbed cell-cycle progression, which is controlled by a variety of protein kinases. These observations have raised concerns about a possible risk of Chk1 inhibitors on the clinics. In this review, we summarize recent advances in Chk1 regulation by phosphorylation, and discuss Chk1 as a molecular target for cancer therapeutics.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer left Research Institute, Nagoya, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
Cullin/RING ubiquitin ligases (CRL) comprise the largest subfamily of ubiquitin ligases. CRLs are involved in cell cycle regulation, DNA replication, DNA damage response (DDR), development, immune response, transcriptional regulation, circadian rhythm, viral infection, and protein quality control. One of the main functions of CRLs is to regulate the DDR, a fundamental signaling cascade that maintains genome integrity. In this review, we will discuss the regulation of CRL ubiquitin ligases and their roles in control of the DDR.
Collapse
Affiliation(s)
- Ju-Mei Li
- Department of Biochemistry and Molecular Biology, Medical School, The University of Texas Health Science Center at Houston Houston, TX, USA
| | | |
Collapse
|
40
|
Do KH, Park HH. Crystallization and preliminary X-ray crystallographic studies of casein kinase I-like protein from rice. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:298-300. [PMID: 22442227 PMCID: PMC3310535 DOI: 10.1107/s1744309112000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/05/2012] [Indexed: 11/10/2022]
Abstract
Casein kinase I (CKI) is a serine/threonine protein kinase that performs various functions in the cell, such as DNA repair, cell-cycle regulation, cytokinesis, vesicular trafficking, morphogenesis and circadian-rhythm regulation. CKI proteins contain a highly conserved catalytic domain at the N-terminus and a highly diverse regulatory domain that is responsible for substrate specificity at the C-terminus. In this study, CKI from rice (riceCKI) was overexpressed in Escherichia coli with an engineered C-terminal His tag. RiceCKI was then purified to homogeneity and crystallized at 293 K. X-ray diffraction data were collected to a resolution of 2.0 Å from a crystal belonging to the monoclinic space group C2, with unit-cell parameters a = 108.83, b = 69.60, c = 55.85 Å, β = 109.47°. The asymmetric unit was estimated to contain one monomer.
Collapse
Affiliation(s)
- Kyoung Hun Do
- School of Biotechnology and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | | |
Collapse
|
41
|
Park YI, Do KH, Kim IS, Park HH. Structural and functional studies of casein kinase I-like protein from rice. PLANT & CELL PHYSIOLOGY 2012; 53:304-311. [PMID: 22199373 DOI: 10.1093/pcp/pcr175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Casein kinase I (CKI) is a protein serine/threonine kinase that is highly conserved from plants to animals. It performs various functions in both the cytoplasm and nucleus, such as DNA repair, cell cycle, cytokinesis, vesicular trafficking, morphogenesis and circadian rhythm. CKI proteins contain a highly conserved kinase domain responsible for catalytic activity at the N-terminus and a highly diverse regulatory domain responsible for determining substrate specificity at the C-terminus. CKI-like protein has been identified in plants, including in rice, but its function and structure have not been reported. Here, we report the 2.0 Å crystal structure of the kinase domain of CKI-like protein from rice. Although the structure adopts the typical bi-lobal kinase architecture, the length and orientation of the glycine-rich ATP-binding motif are dynamic within the CKI family. A loop between α5 and α6 (the α5-α6 loop), which was previously not detected in the CKI family because of flexibility, was clearly detected in our structure. In addition, we identified a lipase as a substrate of CKI-like protein from rice. Phosphorylation of the lipase dramatically reduced its catalytic activity, suggesting that CKI may play a role in the regulation of lipase activity.
Collapse
Affiliation(s)
- Young-Il Park
- School of Life Science and Biotechnology at Kyungpook National University, Daegu, South Korea
| | | | | | | |
Collapse
|
42
|
Hirner H, Günes C, Bischof J, Wolff S, Grothey A, Kühl M, Oswald F, Wegwitz F, Bösl MR, Trauzold A, Henne-Bruns D, Peifer C, Leithäuser F, Deppert W, Knippschild U. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo. PLoS One 2012; 7:e29709. [PMID: 22235331 PMCID: PMC3250488 DOI: 10.1371/journal.pone.0029709] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/01/2011] [Indexed: 02/05/2023] Open
Abstract
Simian virus 40 (SV40) is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP) gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T) mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA repair. Our data show that inactivating mutations in CK1δ impair SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.
Collapse
MESH Headings
- Animals
- Antigens, Viral, Tumor/immunology
- Casein Kinase Idelta/chemistry
- Casein Kinase Idelta/genetics
- Casein Kinase Idelta/metabolism
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Viral/genetics
- Disease Progression
- Female
- Gene Expression Regulation
- Male
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/virology
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/virology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Milk Proteins/genetics
- Models, Molecular
- Mutation
- Phenotype
- Phosphorylation
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- Simian virus 40/immunology
- Simian virus 40/physiology
- Survival Analysis
Collapse
Affiliation(s)
- Heidrun Hirner
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Cagatay Günes
- Institute of Molecular Medicine and Max-Planck-Research Group on Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Joachim Bischof
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Sonja Wolff
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Arnhild Grothey
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Marion Kühl
- Department of Tumor Virology, Heinrich-Pette-Institute, Leibniz-Center for Experimental Virology, Hamburg, Germany
| | - Franz Oswald
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - Florian Wegwitz
- Department of Tumor Virology, Heinrich-Pette-Institute, Leibniz-Center for Experimental Virology, Hamburg, Germany
| | - Michael R. Bösl
- Max Planck Institute of Neurobiology Transgenic Mouse Models, Max Planck Institute, Martinsried, Germany
| | - Anna Trauzold
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCCNorth, UK S-H, Kiel, Germany
| | - Doris Henne-Bruns
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | | | | | - Wolfgang Deppert
- Department of Tumor Virology, Heinrich-Pette-Institute, Leibniz-Center for Experimental Virology, Hamburg, Germany
| | - Uwe Knippschild
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
43
|
Silverman JS, Skaar JR, Pagano M. SCF ubiquitin ligases in the maintenance of genome stability. Trends Biochem Sci 2011; 37:66-73. [PMID: 22099186 DOI: 10.1016/j.tibs.2011.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/10/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
In response to genotoxic stress, eukaryotic cells activate the DNA damage response (DDR), a series of pathways that coordinate cell cycle arrest and DNA repair to prevent deleterious mutations. In addition, cells possess checkpoint mechanisms that prevent aneuploidy by regulating the number of centrosomes and spindle assembly. Among these mechanisms, ubiquitin-mediated degradation of key proteins has an important role in the regulation of the DDR, centrosome duplication and chromosome segregation. This review discusses the functions of a group of ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) family, in the maintenance of genome stability. Given that general proteasome inhibitors are currently used as anticancer agents, a better understanding of the ubiquitylation of specific targets by specific ubiquitin ligases may result in improved cancer therapeutics.
Collapse
Affiliation(s)
- Joshua S Silverman
- Department of Radiation Oncology, New York University School of Medicine, 522 First Avenue, Smilow Research Building 1107, New York, NY 10016, USA
| | | | | |
Collapse
|
44
|
Gardino AK, Yaffe MB. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol 2011; 22:688-95. [PMID: 21945648 DOI: 10.1016/j.semcdb.2011.09.008] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 12/11/2022]
Abstract
14-3-3 proteins play critical roles in the regulation of cell fate through phospho-dependent binding to a large number of intracellular proteins that are targeted by various classes of protein kinases. 14-3-3 proteins play particularly important roles in coordinating progression of cells through the cell cycle, regulating their response to DNA damage, and influencing life-death decisions following internal injury or external cytokine-mediated cues. This review focuses on 14-3-3-dependent pathways that control cell cycle arrest and recovery, and the influence of 14-3-3 on the apoptotic machinery at multiple levels of regulation. Recognition of 14-3-3 proteins as signaling integrators that connect protein kinase signaling pathways to resulting cellular phenotypes, and their exquisite control through feedforward and feedback loops, identifies new drug targets for human disease, and highlights the emerging importance of using systems-based approaches to understand signal transduction events at the network biology level.
Collapse
Affiliation(s)
- Alexandra K Gardino
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
45
|
Bensimon A, Aebersold R, Shiloh Y. Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett 2011; 585:1625-39. [PMID: 21570395 DOI: 10.1016/j.febslet.2011.05.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 01/18/2023]
Abstract
The DNA of all organisms is constantly subjected to damaging agents, both exogenous and endogenous. One extremely harmful lesion is the double-strand break (DSB), which activates a massive signaling network - the DNA damage response (DDR). The chief activator of the DSB response is the ATM protein kinase, which phosphorylates numerous key players in its various branches. Recent phosphoproteomic screens have extended the scope of damage-induced phosphorylations beyond the direct ATM substrates. We review the evidence for the involvement of numerous other protein kinases in the DDR, obtained from documentation of specific pathways as well as high-throughput screens. The emerging picture of the protein phosphorylation landscape in the DDR broadens the current view on the role of this protein modification in the maintenance of genomic stability. Extensive cross-talk between many of these protein kinases forms an interlaced signaling network that spans numerous cellular processes. Versatile protein kinases in this network affect pathways that are different from those they have been identified with to date. The DDR appears to be one of the most extensive signaling responses to cellular stimuli.
Collapse
Affiliation(s)
- Ariel Bensimon
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
46
|
Young LM, Pagano M. Cdc25 phosphatases: differential regulation by ubiquitin-mediated proteolysis. Cell Cycle 2011; 9:4613-4. [PMID: 21260951 DOI: 10.4161/cc.9.23.13934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
47
|
Musgrove EA, Sutherland RL. RB in breast cancer: differential effects in estrogen receptor-positive and estrogen receptor-negative disease. Cell Cycle 2011; 9:4607. [PMID: 21260944 DOI: 10.4161/cc.9.23.13889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
48
|
Myer DL, Robbins SB, Yin M, Boivin GP, Liu Y, Greis KD, Bahassi EM, Stambrook PJ. Absence of polo-like kinase 3 in mice stabilizes Cdc25A after DNA damage but is not sufficient to produce tumors. Mutat Res 2011; 714:1-10. [PMID: 21376736 DOI: 10.1016/j.mrfmmm.2011.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 01/05/2011] [Accepted: 02/15/2011] [Indexed: 11/29/2022]
Abstract
The polo-like kinases (Plks1-5) are emerging as an important class of proteins involved in many facets of cell cycle regulation and response to DNA damage and stress. Here we show that Plk3 phosphorylates the key cell cycle protein phosphatase Cdc25A on two serine residues in its cyclinB/cdk1 docking domain and regulates its stability in response to DNA damage. We generated a Plk3 knock-out mouse and show that Cdc25A protein from Plk3-deficient cells is less susceptible to DNA damage-mediated degradation than cells with functional Plk3. We also show that absence of Plk3 correlates with loss of the G1/S cell cycle checkpoint. However, neither this compromised DNA damage checkpoint nor reduced susceptibility to proteasome-mediated degradation after DNA damage translated into a significant increase in tumor incidence in the Plk3-deficient mice.
Collapse
Affiliation(s)
- David L Myer
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Banerjee D, Chen X, Lin SY, Slack FJ. kin-19/casein kinase Iα has dual functions in regulating asymmetric division and terminal differentiation in C. elegans epidermal stem cells. Cell Cycle 2010; 9:4748-65. [PMID: 21127398 DOI: 10.4161/cc.9.23.14092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Casein Kinase I (CKI) is a conserved component of the Wnt signaling pathway, which regulates cell fate determination in metazoans. We show that post-embryonic asymmetric division and fate specification of C. elegans epidermal stem cells are controlled by a non-canonical Wnt/β-catenin signaling pathway, involving the β-catenins WRM-1 and SYS-1, and that C. elegans kin-19/CKIα functions in this pathway. Furthermore, we find that kin-19 is the only member of the Wnt asymmetry pathway that functions with, or in parallel to, the heterochronic temporal patterning pathway to control withdrawal from self-renewal and subsequent terminal differentiation of epidermal stem cells. We show that, except in the case of kin-19, the Wnt asymmetry pathway and the heterochronic pathway function separately and in parallel to control different aspects of epidermal stem cell fate specification. However, given the function of kin-19/CKIα in both pathways, and that CKI, Wnt signaling pathway and heterochronic pathway genes are widely conserved in animals, our findings suggest that CKIα may function as a regulatory hub through which asymmetric division and terminal differentiation are coordinated in adult stem cells of vertebrates.
Collapse
Affiliation(s)
- Diya Banerjee
- Department of Biological Sciences, Virginia Tech University, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|
50
|
Al-Hakim A, Escribano-Diaz C, Landry MC, O'Donnell L, Panier S, Szilard RK, Durocher D. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 2010; 9:1229-40. [PMID: 21056014 PMCID: PMC7105183 DOI: 10.1016/j.dnarep.2010.09.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2010] [Indexed: 01/22/2023]
Abstract
Protein ubiquitylation has emerged as an important regulatory mechanism that impacts almost every aspect of the DNA damage response. In this review, we discuss how DNA repair and checkpoint pathways utilize the diversity offered by the ubiquitin conjugation system to modulate the response to genotoxic lesions in space and time. In particular, we will highlight recent work done on the regulation of DNA double-strand breaks signalling and repair by the RNF8/RNF168 E3 ubiquitin ligases, the Fanconi anemia pathway and the role of protein degradation in the enforcement and termination of checkpoint signalling. We also discuss the various functions of deubiquitylating enzymes in these processes along with potential avenues for exploiting the ubiquitin conjugation/deconjugation system for therapeutic purposes.
Collapse
Affiliation(s)
- Abdallah Al-Hakim
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, ON, Canada
| | | | | | | | | | | | | |
Collapse
|