1
|
Verdina A, Garufi A, D’Orazi V, D’Orazi G. HIPK2 in Colon Cancer: A Potential Biomarker for Tumor Progression and Response to Therapies. Int J Mol Sci 2024; 25:7678. [PMID: 39062921 PMCID: PMC11277226 DOI: 10.3390/ijms25147678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and a "bona fide" oncosuppressor protein. Its activation inhibits tumor growth mainly by promoting apoptosis, while its inactivation increases tumorigenicity and resistance to therapies of many different cancer types, including colon cancer. HIPK2 interacts with many molecular pathways by means of its kinase activity or transcriptional co-repressor function modulating cell growth and apoptosis, invasion, angiogenesis, inflammation and hypoxia. HIPK2 has been shown to participate in several molecular pathways involved in colon cancer including p53, Wnt/β-catenin and the newly identified nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2). HIPK2 also plays a role in tumor-host interaction in the tumor microenvironment (TME) by inducing angiogenesis and cancer-associated fibroblast (CAF) differentiation. The aim of this review is to assess the role of HIPK2 in colon cancer and the underlying molecular pathways for a better understanding of its involvement in colon cancer carcinogenesis and response to therapies, which will likely pave the way for novel colon cancer therapies.
Collapse
Affiliation(s)
- Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
2
|
Conte A, Valente V, Paladino S, Pierantoni GM. HIPK2 in cancer biology and therapy: Recent findings and future perspectives. Cell Signal 2023; 101:110491. [PMID: 36241057 DOI: 10.1016/j.cellsig.2022.110491] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine-threonine kinase that phosphorylates and regulates a plethora of transcriptional regulators and chromatin modifiers. The heterogeneity of its interactome allows HIPK2 to modulate several cellular processes and signaling pathways, ultimately regulating cell fate and proliferation. Because of its p53-dependent pro-apoptotic activity and its downregulation in many tumor types, HIPK2 is traditionally considered a bone fide tumor suppressor gene. However, recent findings revealed that the role of HIPK2 in the pathogenesis of cancer is much more complex, ranging from tumor suppressive to oncogenic, strongly depending on the cellular context. Here, we review the very recent data emerged in the last years about the involvement of HIPK2 in cancer biology and therapy, highlighting the various alterations of this kinase (downregulation, upregulation, mutations and/or delocalization) in dependence on the cancer types. In addition, we discuss the recent advancement in the understanding the tumor suppressive and oncogenic functions of HIPK2, its role in establishing the response to cancer therapies, and its regulation by cancer-associated microRNAs. All these data strengthen the idea that HIPK2 is a key player in many types of cancer; therefore, it could represent an important prognostic marker, a factor to predict therapy response, and even a therapeutic target itself.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Valeria Valente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
3
|
Di Segni M, Virdia I, Verdina A, Amoreo CA, Baldari S, Toietta G, Diodoro MG, Mottolese M, Sperduti I, Moretti F, Buglioni S, Soddu S, Di Rocco G. HIPK2 cooperates with KRAS signaling and associates with colorectal cancer progression. Mol Cancer Res 2022; 20:686-698. [PMID: 35082165 DOI: 10.1158/1541-7786.mcr-21-0628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
HIPK2 is an evolutionary conserved kinase that has gained attention as a fine tuner of multiple signaling pathways, among which those commonly altered in colorectal cancer (CRC). The aim of this study was to evaluate the relationship of HIPK2 expression with progression markers and mutational pattern and gain insights into the contribution of HIPK2 activity in CRC. We evaluated a retrospective cohort of CRC samples by immunohistochemistry for HIPK2 expression and by NGS for the detection of mutations of cancer associated genes. We show that the percentage of HIPK2 positive cells increases with tumor progression, significantly correlates with TNM staging and associates with a worse outcome. In addition, we observed that high HIPK2 expression significantly associates with KRAS mutations but not with other cancer related genes. Functional characterization of the link between HIPK2 and KRAS show that activation of the RAS pathway either due to KRAS mutation or via upstream receptor stimulation, increases HIPK2 expression at the protein level. Of note, HIPK2 physically participates in the active RAS complex while HIPK2 depletion impairs ERK phosphorylation and the growth of tumors derived from KRAS mutated CRC cells. Overall, this study identifies HIPK2 as a prognostic biomarker candidate in CRC patients and underscores a previously unknown functional link between HIPK2 and the KRAS signaling pathway. Implications: Our data indicate HIPK2 as a new player in the complex picture of the KRAS signaling network, providing rationales for future clinical studies and new treatment strategies for KRAS mutated CRC.
Collapse
Affiliation(s)
- Micol Di Segni
- Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS - Regina Elena National Cancer Institute
| | - Ilaria Virdia
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, IRCCS - Regina Elena National Cancer Institute
| | - Alessandra Verdina
- Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS - Regina Elena National Cancer Institute
| | - Carla Azzurra Amoreo
- Research, Advanced Diagnostic, and Technological Innovation, Istituto Nazionale Tumori Regina Elena
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute
| | | | | | | | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy
| | | | - Silvia Soddu
- Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute
| | - Giuliana Di Rocco
- Department of Research and Advanced Technologies, IRCCS - Regina Elena National Cancer Institute
| |
Collapse
|
4
|
HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proc Natl Acad Sci U S A 2021; 118:2021798118. [PMID: 34244427 DOI: 10.1073/pnas.2021798118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although inflammation is critical for the clearance of pathogens, uncontrolled inflammation also contributes to the development of multiple diseases such as cancer and sepsis. Since NF-κB-mediated transactivation in the nucleus is pivotal downstream of various stimuli to induce inflammation, searching the nuclear-localized targets specifically regulating NF-κB activation will provide important therapeutic application. Here, we have identified that homeodomain-interacting protein kinase 2 (HIPK2), a nuclear serine/threonine kinase, increases its expression in inflammatory macrophages. Importantly, HIPK2 deficiency or overexpression could enhance or inhibit inflammatory responses in LPS-stimulated macrophages, respectively. HIPK2-deficient mice were more susceptible to LPS-induced endotoxemia and CLP-induced sepsis. Adoptive transfer of Hipk2 +/- bone marrow cells (BMs) also aggravated AOM/DSS-induced colorectal cancer. Mechanistically, HIPK2 bound and phosphorylated histone deacetylase 3 (HDAC3) at serine 374 to inhibit its enzymatic activity, thus reducing the deacetylation of p65 at lysine 218 to suppress NF-κB activation. Notably, the HDAC3 inhibitors protected wild-type or Hipk2 -/- BMs-reconstituted mice from LPS-induced endotoxemia. Our findings suggest that the HIPK2-HDAC3-p65 module in macrophages restrains excessive inflammation, which may represent a new layer of therapeutic mechanism for colitis-associated colorectal cancer and sepsis.
Collapse
|
5
|
Dai Y, Kyoyama H, Yang YL, Wang Y, Liu S, Wang Y, Mao JH, Xu Z, Uematsu K, Jablons DM, You L. A novel isoform of Homeodomain-interacting protein kinase-2 promotes YAP/TEAD transcriptional activity in NSCLC cells. Oncotarget 2021; 12:173-184. [PMID: 33613845 PMCID: PMC7869571 DOI: 10.18632/oncotarget.27871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
Homeodomain-interacting protein kinase-2 (HIPK2) can either promote or inhibit transcription depending on cellular context. In this study, we show that a new HIPK2 isoform increases TEAD reporter activity in NSCLC cells. We detected HIPK2 copy number gain in 5/6 (83.3%) NSCLC cell lines. In NSCLC patients with high HIPK2 mRNA expression in the Human Protein Atlas, the five-year survival rate is significantly lower than in patients with low expression (38% vs 47%; p = 0.047). We also found that 70/78 (89.7%) of NSCLC tissues have moderate to strong expression of the N-terminal HIPK2 protein. We detected and cloned a novel HIPK2 isoform 3 and found that its forced overexpression promotes TEAD reporter activity in NSCLC cells. Expressing HIPK2 isoform 3_K228A kinase-dead plasmid failed to increase TEAD reporter activity in NSCLC cells. Next, we showed that two siRNAs targeting HIPK2 decreased HIPK2 isoform 3 and YAP protein levels in NSCLC cells. Degradation of the YAP protein was accelerated after HIPK2 knockdown in NSCLC cells. Inhibition of HIPK2 isoform 3 decreased the mRNA expression of YAP downstream gene CTGF. The specific HIPK2 kinase inhibitor TBID decreased TEAD reporter activity, reduced cancer side populations, and inhibited tumorsphere formation of NSCLC cells. In summary, this study indicates that HIPK2 isoform 3, the main HIPK2 isoform expressed in NSCLC, promotes YAP/TEAD transcriptional activity in NSCLC cells. Our results suggest that HIPK2 isoform 3 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, China.,These authors contributed equally to this work
| | - Hiroyuki Kyoyama
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan.,These authors contributed equally to this work
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,These authors contributed equally to this work
| | - Yucheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yinghao Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Kazutsugu Uematsu
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
Xiao W, Wang T, Ye Y, Wang X, Chen B, Xing J, Yang H, Zhang X. Identification of HIPK3 as a potential biomarker and an inhibitor of clear cell renal cell carcinoma. Aging (Albany NY) 2021; 13:3536-3553. [PMID: 33495417 PMCID: PMC7906163 DOI: 10.18632/aging.202294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/27/2020] [Indexed: 12/09/2022]
Abstract
Invasion and metastasis are the main causes of poor prognosis in patients with clear cell renal cell carcinoma (ccRCC). The homeodomain interacting protein kinases (HIPKs) can regulate cell proliferation and apoptosis. Little is known about the prognostic role of HIPKs in ccRCC. Here we use Kaplan-Meier survival analysis and multivariate analysis to analyze the correlation of overall survival (OS) and disease–free survival (DFS). ROC curves analyzed the relationship between clinicopathological parameters and HIPK3 expression in ccRCC. Univariate analysis and multivariate analysis confirmed that the expression of HIPK3 was associated with OS (HR, 0.701; P=0.041) and DFS (HR, 0.630; P=0.012). Low HIPK3 expression was a poor prognostic factor and HIPK3 expression was significantly down-regulated in ccRCC cancer tissues when compared with normal renal tissues. In vitro cell results also confirmed that HIPK3 over-expression could inhibit tumor growth and malignant characteristics. The results indicate that low expression of HIPK3 in ccRCC tissues is significantly associated with poor survival rates in tumor patients, and HIPK3 may be used as a valuable biomarker and inhibitor of ccRCC.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuzhong Ye
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuegang Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
An Alternative Splice Variant of HIPK2 with Intron Retention Contributes to Cytokinesis. Cells 2020; 9:cells9020484. [PMID: 32093146 PMCID: PMC7072727 DOI: 10.3390/cells9020484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we describe one additional HIPK2 splice variant with a distinct subcellular distribution and functional activity in cytokinesis. This novel splice variant lacks the last two exons and retains intron13 with a stop codon after 89 bp of the intron, generating a short isoform, HIPK2-S, that is detectable by 2D Western blots. RT-PCR analyses of tissue arrays and tumor samples show that HIPK2-FL and HIPK2-S are expressed in normal human tissues in a tissue-dependent manner and differentially expressed in human colorectal and pancreatic cancers. Gain- and loss-of-function experiments showed that in contrast to HIPK2-FL, HIPK2-S has a diffuse, non-speckled distribution and is not involved in the DNA damage response. Rather, we found that HIPK2-S, but not HIPK2-FL, localizes at the intercellular bridge, where it phosphorylates histone H2B and spastin, both required for faithful cell division. Altogether, these data show that distinct human HIPK2 splice variants are involved in distinct HIPK2-regulated functions like stress response and cytokinesis.
Collapse
|
8
|
The nutrient sensor OGT regulates Hipk stability and tumorigenic-like activities in Drosophila. Proc Natl Acad Sci U S A 2020; 117:2004-2013. [PMID: 31932432 PMCID: PMC6994980 DOI: 10.1073/pnas.1912894117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Environmental cues such as nutrients alter cellular behaviors by acting on a wide array of molecular sensors inside cells. Of emerging interest is the link observed between effects of dietary sugars on cancer proliferation. Here, we identify the requirements of hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) for Drosophila homeodomain-interacting protein kinase (Hipk)-induced growth abnormalities in response to a high sugar diet. On a normal diet, OGT is both necessary and sufficient for inducing Hipk-mediated tumor-like growth. We further show that OGT maintains Hipk protein stability by blocking its proteasomal degradation and that Hipk is O-GlcNAcylated by OGT. In mammalian cells, human HIPK2 proteins accumulate posttranscriptionally upon OGT overexpression. Mass spectrometry analyses reveal that HIPK2 is at least O-GlcNAc modified at S852, T1009, and S1147 residues. Mutations of these residues reduce HIPK2 O-GlcNAcylation and stability. Together, our data demonstrate a conserved role of OGT in positively regulating the protein stability of HIPKs (fly Hipk and human HIPK2), which likely permits the nutritional responsiveness of HIPKs.
Collapse
|
9
|
Yogosawa S, Yoshida K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis. Cancer Sci 2018; 109:3376-3382. [PMID: 30191640 PMCID: PMC6215896 DOI: 10.1111/cas.13792] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 09/02/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor suppressor p53 plays an important role in cancer prevention. Under normal conditions, p53 is maintained at a low level. However, in response to various cellular stresses, p53 is stabilized and activated, which, in turn, initiates DNA repair, cell-cycle arrest, senescence and apoptosis. Post-translational modifications of p53 including phosphorylation, ubiquitination, and acetylation at multiple sites are important to regulate its activation and subsequent transcriptional gene expression. Particularly, phosphorylation of p53 plays a critical role in modulating its activation to induce apoptosis in cancer cells. In this context, previous studies show that several serine/threonine kinases regulate p53 phosphorylation and downstream gene expression. The molecular basis by which p53 and its kinases induce apoptosis for cancer prevention has been extensively studied. However, the relationship between p53 phosphorylation and its kinases and how the activity of kinases is controlled are still largely unclear; hence, they need to be investigated. In this review, we discuss various roles for p53 phosphorylation and its responsible kinases to induce apoptosis and a new therapeutic approach in a broad range of cancers.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Feng Y, Zhou L, Sun X, Li Q. Homeodomain-interacting protein kinase 2 (HIPK2): a promising target for anti-cancer therapies. Oncotarget 2017; 8:20452-20461. [PMID: 28107201 PMCID: PMC5386776 DOI: 10.18632/oncotarget.14723] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
The HIPK2 (serine/threonine homeodomain-interacting protein kinase 2) is a "caretaker" gene, its inactivation increases tumorigenicity while its activation inhibits tumor growth. This report reviews the anti-tumorigenic mechanisms of HIPK2, which include promotion of apoptosis, inhibition of angiogenesis in hypoxia, prevention of tumor invasion/metastasis and attenuation of multidrug resistance in cancer. Additionally, we summarize conditions or factors that may increase HIPK2 activity.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Zhang H, Wang L, Guo C, Tong Z, Liu Y, Meng X, Feng H, Chen Y. Response of mouse thymic cells to radiation after transfusion of mesenchymal stem cells. Medicine (Baltimore) 2016; 95:e5295. [PMID: 28002319 PMCID: PMC5181803 DOI: 10.1097/md.0000000000005295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thymic lymphoma is a highly invasive and even metastatic cancer. This study investigated the effects of mesenchymal stem cells (MSCs) transfusion on cell cycle, cell proliferation, CD3 expression, mutation frequency of T cell receptor using mouse model of thymic lymphoma.C57BL/6J young mouse models of thymoma were injected with MSCs. Six months later, the thymus was taken for pathological examination and flow cytometry studies. The cells were labeled with anti-CD4, CD8, CD3, propidium iodide, or CFDA-SE, cell cycle, proliferation kinetics, and mutation frequency of T cell receptor, respectively.Pathologic results showed that control had clear corticomedular structure with regularly shaped lymphocytes. After radiation, the thymus structure was completely destroyed, with lymphoid tumor cells diffusely distributed and heavily stained, and large nuclei. Transfusion of MSCs resulted in normal thymus structure. Cytometry studies showed that there were more CD4-/CD8- T cells in the thymus of irradiated mice than in control; transfusion of MSCs led to reduced CD4-/CD8- T cells. In irradiated mice, there were less CD4+/CD8+ T cells than in control and MSCs transfusion groups. It was observed that there were more cells arrested in G1 phase in the thymus cells and CD4-/CD8- T cells in irradiated mice than in other 2 groups, whereas there were more cells arrested in S phase in CD4+/CD8+ and CD4+/CD8- T cells in irradiated mice than in the other mice. In the thymus cells, and CD4+/CD8+ and CD4+/CD8- T cells, irradiated mice group had significantly less parent, G2, G3, and G4 cells, and more cells at higher generations, and also higher proliferation index. In CD4-/CD8- T cells, irradiated mice had significantly more parent, G2, and G3 cells, and less G4, G5, G6, and propidium iodide, as compared with the other 2 groups. The expression of CD3 in CD4/CD8 T cells was significantly higher than in control. MSCs transfusion improved CD3 expression, but was still less than the control. Irradiation resulted in very high mutation frequency of T cell receptor, which was barely affected by MSCs transfusion.Mesenchymal stem cell transfusion is able to restore the cell cycle and cell proliferation, but not CD3 expression and mutation frequency of T cell receptor in irradiated mice to control level.
Collapse
Affiliation(s)
- Hongmei Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun
| | - Ling Wang
- Department of Tumer, Tangdu Hospital of The Fourth Military Medical University, Xi’an
| | - Chunlong Guo
- ShenBang Cell Engineering Research Institute of Jilin Province
| | - Zhimin Tong
- ShenBang Cell Engineering Research Institute of Jilin Province
| | - Yue Liu
- ShenBang Cell Engineering Research Institute of Jilin Province
| | - Xiangkuan Meng
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Hu Feng
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Yubing Chen
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Blaquiere JA, Verheyen EM. Homeodomain-Interacting Protein Kinases: Diverse and Complex Roles in Development and Disease. Curr Top Dev Biol 2016; 123:73-103. [PMID: 28236976 DOI: 10.1016/bs.ctdb.2016.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Homeodomain-interacting protein kinase (Hipk) family of proteins plays diverse, and at times conflicting, biological roles in normal development and disease. In this review we will highlight developmental and cellular roles for Hipk proteins, with an emphasis on the pleiotropic and essential physiological roles revealed through genetic studies. We discuss the myriad ways of regulating Hipk protein function, and how these may contribute to the diverse cellular roles. Furthermore we will describe the context-specific activities of Hipk family members in diseases such as cancer and fibrosis, including seemingly contradictory tumor-suppressive and oncogenic activities. Given the diverse signaling pathways regulated by Hipk proteins, it is likely that Hipks act to fine-tune signaling and may mediate cross talk in certain contexts. Such regulation is emerging as vital for development and in disease.
Collapse
Affiliation(s)
- Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
13
|
Valente D, Bossi G, Moncada A, Tornincasa M, Indelicato S, Piscuoglio S, Karamitopoulou ED, Bartolazzi A, Pierantoni GM, Fusco A, Soddu S, Rinaldo C. HIPK2 deficiency causes chromosomal instability by cytokinesis failure and increases tumorigenicity. Oncotarget 2016; 6:10320-34. [PMID: 25868975 PMCID: PMC4496358 DOI: 10.18632/oncotarget.3583] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
HIPK2, a cell fate decision kinase inactivated in several human cancers, is thought to exert its oncosuppressing activity through its p53-dependent and -independent apoptotic function. However, a HIPK2 role in cell proliferation has also been described. In particular, HIPK2 is required to complete cytokinesis and impaired HIPK2 expression results in cytokinesis failure and tetraploidization. Since tetraploidy may yield to aneuploidy and chromosomal instability (CIN), we asked whether unscheduled tetraploidy caused by loss of HIPK2 might contribute to tumorigenicity. Here, we show that, compared to Hipk2+/+ mouse embryo fibroblasts (MEFs), hipk2-null MEFs accumulate subtetraploid karyotypes and develop CIN. Accumulation of these defects inhibits proliferation and spontaneous immortalization of primary MEFs whereas increases tumorigenicity when MEFs are transformed by E1A and Harvey-Ras oncogenes. Upon mouse injection, E1A/Ras-transformed hipk2-null MEFs generate tumors with genetic alterations resembling those of human cancers derived by initial tetraploidization events, such as pancreatic adenocarcinoma. Thus, we evaluated HIPK2 expression in different stages of pancreatic transformation. Importantly, we found a significant correlation among reduced HIPK2 expression, high grade of malignancy, and high nuclear size, a marker of increased ploidy. Overall, these results indicate that HIPK2 acts as a caretaker gene, whose inactivation increases tumorigenicity and causes CIN by cytokinesis failure.
Collapse
Affiliation(s)
- Davide Valente
- Experimental Oncology Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Gianluca Bossi
- Experimental Oncology Laboratory, Regina Elena National Cancer Institute, Rome, Italy.,Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Alice Moncada
- Experimental Oncology Laboratory, Regina Elena National Cancer Institute, Rome, Italy.,Present address: Institute of Medical Genetics, Catholic University, Rome, Italy
| | - Mara Tornincasa
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | | | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland.,Present address: Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | - Armando Bartolazzi
- Pathology Research Laboratory, Sant'Andrea University Hospital, Rome, Italy
| | | | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Silvia Soddu
- Experimental Oncology Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Cinzia Rinaldo
- Experimental Oncology Laboratory, Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), c/o Sapienza University, Rome, Italy
| |
Collapse
|
14
|
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 2016; 6:a026104. [PMID: 26931810 DOI: 10.1101/cshperspect.a026104] [Citation(s) in RCA: 727] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P53 is a transcription factor highly inducible by many stress signals such as DNA damage, oncogene activation, and nutrient deprivation. Cell-cycle arrest and apoptosis are the most prominent outcomes of p53 activation. Many studies showed that p53 cell-cycle and apoptosis functions are important for preventing tumor development. p53 also regulates many cellular processes including metabolism, antioxidant response, and DNA repair. Emerging evidence suggests that these noncanonical p53 activities may also have potent antitumor effects within certain context. This review focuses on the cell-cycle arrest and apoptosis functions of p53, their roles in tumor suppression, and the regulation of cell fate decision after p53 activation.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| |
Collapse
|
15
|
Di Rocco G, Verdina A, Gatti V, Virdia I, Toietta G, Todaro M, Stassi G, Soddu S. Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform. Oncotarget 2016; 7:1675-86. [PMID: 26625198 PMCID: PMC4811489 DOI: 10.18632/oncotarget.6423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/15/2015] [Indexed: 01/05/2023] Open
Abstract
Small interfering RNAs (siRNAs) are widely used to study gene function and extensively exploited for their potential therapeutic applications. HIPK2 is an evolutionary conserved kinase that binds and phosphorylates several proteins directly or indirectly related to apoptosis. Recently, an alternatively spliced isoform skipping 81 nucleotides of exon 8 (Hipk2-Δe8) has been described. Selective depletion of Hipk2 full-length (Hipk2-FL) with a specific siRNA that spares the Hipk2-Δe8 isoform has been shown to strongly induce apoptosis, suggesting an unpredicted dominant-negative effect of Hipk2-FL over the Δe8 isoform. From this observation, we sought to take advantage and assessed the therapeutic potential of generating Hipk2 isoform unbalance in tumor-initiating cells derived from colorectal cancer patients. Strong reduction of cell viability was induced in vitro and in vivo by the originally described exon 8-specific siRNA, supporting a potential therapeutic application. However, validation analyses performed with additional exon8-specific siRNAs with different stabilities showed that all exon8-targeting siRNAs can induce comparable Hipk2 isoform unbalance but only the originally reported e8-siRNA promotes cell death. These data show that loss of viability does not depend on the prevalence of Hipk2-Δe8 isoform but it is rather due to microRNA-like off-target effects.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Verdina
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Veronica Gatti
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Ilaria Virdia
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Matilde Todaro
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Silvia Soddu
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
16
|
Adams CJ, Yu JS, Mao JH, Jen KY, Costes SV, Wade M, Shoemake J, Aina OH, Del Rosario R, Menchavez PT, Cardiff RD, Wahl GM, Balmain A. The Trp53 delta proline (Trp53ΔP) mouse exhibits increased genome instability and susceptibility to radiation-induced, but not spontaneous, tumor development. Mol Carcinog 2015; 55:1387-96. [PMID: 26310697 DOI: 10.1002/mc.22377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 11/11/2022]
Abstract
The tumor suppressor TP53 can initiate a plethora of anti-proliferative effects to maintain genomic integrity under conditions of genotoxic stress. The N-terminal proline-rich domain (PRD) of TP53 is important in the regulation of TP53 activity and stability. A common polymorphism at codon 72 in this region has been associated with altered cancer risk in humans. The Trp53ΔP mouse, which carries a germline homozygous deletion of a region of the PRD, does not develop spontaneous tumors in a mixed 129/Sv and C57BL/6 genetic background, but is highly susceptible to a broad range of tumor types following total body exposure to 4 Gy gamma (γ) radiation. This contrasts with the tumor spectrum in Trp53 null (-/-) mice, which mainly develop thymic lymphomas and osteosarcomas. Analysis of genomic instability in tissues and cells from Trp53ΔP mice demonstrated elevated basal levels of aneuploidy, but this is not sufficient to drive spontaneous tumorigenesis, which requires an additional DNA damage stimulus. Levels of genomic instability did not increase significantly in Trp53ΔP mice following irradiation exposure, suggesting that other radiation effects including tissue inflammation, altered metabolism or autophagy, may play an important role. The Trp53ΔP mouse is a novel model to dissect the mechanisms of tumor development induced by radiation exposure. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cassandra J Adams
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Jennifer S Yu
- Department of Radiation Oncology, Department of Stem Cell Biology, Cleveland Clinic Main Campus, Cleveland, Ohio
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Kuang-Yu Jen
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Sylvain V Costes
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Jocelyn Shoemake
- Department of Radiation Oncology, Department of Stem Cell Biology, Cleveland Clinic Main Campus, Cleveland, Ohio
| | - Olulanu H Aina
- Department of Pathology and Laboratory Medicine, University of California Davis, Primate Drive, California
| | - Reyno Del Rosario
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Phuong Thuy Menchavez
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Robert D Cardiff
- Department of Pathology and Laboratory Medicine, University of California Davis, Primate Drive, California
| | - Geoffrey M Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
17
|
HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. Cell Death Differ 2015; 23:110-22. [PMID: 26113041 PMCID: PMC4815982 DOI: 10.1038/cdd.2015.75] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 01/23/2023] Open
Abstract
Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response.
Collapse
|
18
|
Nugent MM, Lee K, He JC. HIPK2 is a new drug target for anti-fibrosis therapy in kidney disease. Front Physiol 2015; 6:132. [PMID: 25972814 PMCID: PMC4411988 DOI: 10.3389/fphys.2015.00132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/13/2015] [Indexed: 11/13/2022] Open
Abstract
In vitro and animal studies continue to elucidate the mechanisms of fibrosis and have led to advancements in treatment for idiopathic pulmonary fibrosis and cirrhosis, but the search for treatments for renal fibrosis has been more disappointing. Here, we will discuss homeodomain-interacting-protein kinase 2 (HIPK2), a novel regulator of fibrosis that acts upstream of major fibrosis signaling pathways. Its key role in renal fibrosis has been validated in vitro and in several murine models of chronic kidney diseases (CKD).
Collapse
Affiliation(s)
- Melinda M Nugent
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Renal Section, James J. Peter Veterans Administration Medical Center New York, NY, USA
| |
Collapse
|
19
|
Abstract
Homeodomain interacting protein kinase 2 (HIPK2) functions as either a co-repressor or a co-activator of transcriptional regulators. Dysregulation of HIPK2 is associated with cancer and neurological disease. Recently, we found that HIPK2 is also an important driver of kidney fibrosis in the HIV-1 transgenic murine model, Tg26. HIPK2 protein levels are upregulated in the tubular epithelial cells of Tg26 mice as well as in kidney biopsies of patients with HIV-associated nephropathy, focal segmental glomerulosclerosis, diabetic nephropathy, and IgA nephropathy. We found that HIPK2 regulates pro-apoptotic, pro-fibrotic, and pro-inflammatory pathways including p53, transforming growth factor β (TGF-β)-SMAD family member 3 (Smad3), Notch, Wingless and INT-1 (Wnt)/β-catenin, and nuclear factor kappa-light-chain-enhancer of activated B cells in renal tubular epithelial cells. Our data suggest that HIPK2 may be a potential target for antifibrotic therapy. As mice with germline deletion of HIPK2 do not exhibit any phenotypic change under basal conditions, we do not expect significant side effects with specific HIPK2 inhibitors. However, potential effects of HIPK2 on tumor growth should be considered because of its tumor suppressor effects. Therefore, further understanding of structure-function relationships and post-translational modifications of HIPK2 are necessary to develop more specific drugs targeting the pro-fibrotic effects of HIPK2.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai 6th People's Hospital affiliated to Shanghai Jiaotong University , Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai 6th People's Hospital affiliated to Shanghai Jiaotong University , Shanghai, China
| | - Peter Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| |
Collapse
|
20
|
Zhou L, Feng Y, Jin Y, Liu X, Sui H, Chai N, Chen X, Liu N, Ji Q, Wang Y, Li Q. Verbascoside promotes apoptosis by regulating HIPK2-p53 signaling in human colorectal cancer. BMC Cancer 2014; 14:747. [PMID: 25282590 PMCID: PMC4197337 DOI: 10.1186/1471-2407-14-747] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 09/26/2014] [Indexed: 01/18/2023] Open
Abstract
Background We investigated the role of the HIPK2–p53 signaling pathway in tumorigenesis and resistance to the drug Verbascoside (VB) in colorectal cancer (CRC), using in vivo and in vitro experiments. Methods Primary human CRC samples and normal intestinal tissues from patients were analyzed for HIPK2 expression by immunohistochemistry (IHC) and its expression was correlated against patients’ clinicopathological characteristics. Human CRC HCT-116 cells were implanted in BALB/c nude mice; mice with xenografted tumors were randomly administrated vehicle (control), 20, 40, or 80 mg/mL VB, or 1 mg/mL fluorouracil (5-FU). HIPK2, p53, Bax, and Bcl-2 expression in these tumors were determined by IHC. In vitro effects of VB on CRC cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry; HIPK2, p53, p-p53, Bax, and Bcl-2 were measured by western blot. Results IHC analysis for 100 human CRC tumor samples and 20 normal intestinal tissues, showed HIPK2 expression to inversely correlate with Dukes stage and depth of invasion in CRC (P < 0.05). In vivo, the inhibition rates of 20, 40, and 80 mg/mL VB on CRC xenograft tumor weight were 42.79%, 53.90%, and 60.99%, respectively, and were accompanied by increased expression of HIPK2, p53, and Bax, and decreased Bcl-2 expression in treated tumors. In vitro, VB significantly inhibited proliferation of CRC cell lines HCT-116, HT-29, LoVo, and SW620, in a time- and dose-dependent manner. The apoptosis rates of 25, 50, and 100 μM VB on HCT-116 cells were 10.83 ± 1.28, 11.25 ± 1.54, and 20.19 ± 2.87%, and on HT-29 cells were 18.92 ± 6.12, 21.57 ± 4.05, and 25.14 ± 6.73%, respectively. In summary, VB treatment significantly enhanced the protein expression of pro-apoptotic HIPK2, p53, p-p53, Bax, and decreased anti-apoptotic Bcl-2 expression in CRC cells. Conclusions HIPK2 protein modulates the phosphorylation status of p53, and levels of Bax and Bcl-2 in CRC. We also found that VB effectively activated the HIPK2–p53 signaling pathway, resulting in increased CRC cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
21
|
Polonio-Vallon T, Krüger D, Hofmann TG. ShaPINg Cell Fate Upon DNA Damage: Role of Pin1 Isomerase in DNA Damage-Induced Cell Death and Repair. Front Oncol 2014; 4:148. [PMID: 24982848 PMCID: PMC4058901 DOI: 10.3389/fonc.2014.00148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/28/2014] [Indexed: 01/04/2023] Open
Abstract
The peptidyl-prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphorylation marks and implementing conformational changes in its substrates. Accordingly, Pin1 has been linked to numerous phosphorylation-controlled signaling pathways and cellular processes such as cell cycle progression, proliferation, and differentiation. In addition, Pin1 plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA damage is balanced by DNA repair, cells confronted with massive genotoxic stress are eliminated by the induction of programed cell death or cellular senescence. In this review, we summarize and discuss the current knowledge on how Pin1 specifies cell fate through regulating key players of the apoptotic and the repair branch of the DNA-damage response.
Collapse
Affiliation(s)
- Tilman Polonio-Vallon
- Research Group Cellular Senescence, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance , Heidelberg , Germany
| | - Daniel Krüger
- Research Group Cellular Senescence, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance , Heidelberg , Germany
| | - Thomas G Hofmann
- Research Group Cellular Senescence, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance , Heidelberg , Germany
| |
Collapse
|
22
|
Identification of Hipk2 as an essential regulator of white fat development. Proc Natl Acad Sci U S A 2014; 111:7373-8. [PMID: 24785298 DOI: 10.1073/pnas.1322275111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (Hipk2) has previously been implicated in the control of several transcription factors involved in embryonic development, apoptosis, cell proliferation, and tumor development, but very little is understood about the exact mechanisms through which Hipk2 influences these processes. Analysis of gene expression in normal tissues from genetically heterogeneous mouse or human populations can reveal network motifs associated with the structural or functional components of the tissue, and may predict roles for genes of unknown function. Here we have applied this network strategy to uncover a role for the Hipk2 gene in the transcriptional system controlling adipogenesis. Both in vitro and in vivo models were used to show that knockdown or loss of Hipk2 specifically inhibits white adipose cell differentiation and tissue development. In addition, loss of Hipk2 leads to induction of pockets of multilocular brown fat-like cells in remaining white adipose depots, which express markers of brown and beige fat such as uncoupling protein 1 and transmembrane protein 26. These changes are accompanied by increased insulin sensitivity in Hipk2 knockout mice and reduced high-fat diet-induced weight gain, highlighting a potential role for this kinase in diseases such as diabetes and obesity. Our study underscores the versatility and power of a readily available tissue, such as skin, for network modeling of systemic transcriptional programs involved in multiple pathways, including lipid metabolism and adipogenesis.
Collapse
|
23
|
Polonio-Vallon T, Kirkpatrick J, Krijgsveld J, Hofmann TG. Src kinase modulates the apoptotic p53 pathway by altering HIPK2 localization. Cell Cycle 2013; 13:115-25. [PMID: 24196445 DOI: 10.4161/cc.26857] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-receptor tyrosine kinase Src is a master regulator of cell proliferation. Hyperactive Src is a potent oncogene and a driver of cellular transformation and carcinogenesis. Homeodomain-interacting protein kinase 2 (HIPK2) is a tumor suppressor mediating growth suppression and apoptosis upon genotoxic stress through phosphorylation of p53 at Ser46. Here we show that Src phosphorylates HIPK2 and changes its subcellular localization. Using mass spectrometry we identified 9 Src-mediated Tyr-phosphorylation sites within HIPK2, 5 of them positioned in the kinase domain. By means of a phosphorylation-specific antibody we confirm that Src mediates phosphorylation of HIPK2 at Tyr354. We demonstrate that ectopic expression of Src increases the half-life of HIPK2 by interfering with Siah-1-mediated HIPK2 degradation. Moreover, we find that hyperactive Src binds HIPK2 and redistributes HIPK2 from the cell nucleus to the cytoplasm, where both kinases partially colocalize. Accordingly, we find that hyperactive Src decreases chemotherapeutic drug-induced p53 Ser46 phosphorylation and apoptosis activation. Together, our results suggest that Src kinase suppresses the apoptotic p53 pathway by phosphorylating HIPK2 and relocalizing the kinase to the cytoplasm.
Collapse
Affiliation(s)
- Tilman Polonio-Vallon
- German Cancer Research Center (DKFZ); Research Group Cellular Senescence; DKFZ-ZMBH Alliance; Heidelberg, Germany
| | - Joanna Kirkpatrick
- The European Molecular Biology Laboratory (EMBL); Proteomics Core Facility; Heidelberg, Germany
| | - Jeroen Krijgsveld
- The European Molecular Biology Laboratory (EMBL); Proteomics Core Facility; Heidelberg, Germany
| | - Thomas G Hofmann
- German Cancer Research Center (DKFZ); Research Group Cellular Senescence; DKFZ-ZMBH Alliance; Heidelberg, Germany
| |
Collapse
|
24
|
Autophosphorylation and Pin1 binding coordinate DNA damage-induced HIPK2 activation and cell death. Proc Natl Acad Sci U S A 2013; 110:E4203-12. [PMID: 24145406 DOI: 10.1073/pnas.1310001110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Excessive genome damage activates the apoptosis response. Protein kinase HIPK2 is a key regulator of DNA damage-induced apoptosis. Here, we deciphered the molecular mechanism of HIPK2 activation and show its relevance for DNA damage-induced apoptosis in cellulo and in vivo. HIPK2 autointeracts and site-specifically autophosphorylates upon DNA damage at Thr880/Ser882. Autophosphorylation regulates HIPK2 activity and mutation of the phosphorylation-acceptor sites deregulates p53 Ser46 phosphorylation and apoptosis in cellulo. Moreover, HIPK2 autophosphorylation is conserved between human and zebrafish and is important for DNA damage-induced apoptosis in vivo. Mechanistically, autophosphorylation creates a binding signal for the phospho-specific isomerase Pin1. Pin1 links HIPK2 activation to its stabilization by inhibiting HIPK2 polyubiquitination and modulating Siah-1-HIPK2 interaction. Concordantly, Pin1 is required for DNA damage-induced HIPK2 stabilization and p53 Ser46 phosphorylation and is essential for induction of apotosis both in cellulo and in zebrafish. Our results identify an evolutionary conserved mechanism regulating DNA damage-induced apoptosis.
Collapse
|
25
|
Choi DW, Na W, Kabir MH, Yi E, Kwon S, Yeom J, Ahn JW, Choi HH, Lee Y, Seo KW, Shin MK, Park SH, Yoo HY, Isono KI, Koseki H, Kim ST, Lee C, Kwon YK, Choi CY. WIP1, a homeostatic regulator of the DNA damage response, is targeted by HIPK2 for phosphorylation and degradation. Mol Cell 2013; 51:374-85. [PMID: 23871434 DOI: 10.1016/j.molcel.2013.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 04/28/2013] [Accepted: 06/11/2013] [Indexed: 12/25/2022]
Abstract
WIP1 (wild-type p53-induced phosphatase 1) functions as a homeostatic regulator of the ataxia telangiectasia mutated (ATM)-mediated signaling pathway in response to ionizing radiation (IR). Here we identify homeodomain-interacting protein kinase 2 (HIPK2) as a protein kinase that targets WIP1 for phosphorylation and proteasomal degradation. In unstressed cells, WIP1 is constitutively phosphorylated by HIPK2 and maintained at a low level by proteasomal degradation. In response to IR, ATM-dependent AMPKα2-mediated HIPK2 phosphorylation promotes inhibition of WIP1 phosphorylation through dissociation of WIP1 from HIPK2, followed by stabilization of WIP1 for termination of the ATM-mediated double-strand break (DSB) signaling cascade. Notably, HIPK2 depletion impairs IR-induced γ-H2AX foci formation, cell-cycle checkpoint activation, and DNA repair signaling, and the survival rate of hipk2+/- mice upon γ-irradiation is markedly reduced compared to wild-type mice. Taken together, HIPK2 plays a critical role in the initiation of DSB repair signaling by controlling WIP1 levels in response to IR.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Glucose restriction induces cell death in parental but not in homeodomain-interacting protein kinase 2-depleted RKO colon cancer cells: molecular mechanisms and implications for tumor therapy. Cell Death Dis 2013; 4:e639. [PMID: 23703384 PMCID: PMC3674370 DOI: 10.1038/cddis.2013.163] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor cell tolerance to nutrient deprivation can be an important factor for tumor progression, and may depend on deregulation of both oncogenes and oncosuppressor proteins. Homeodomain-interacting protein kinase 2 (HIPK2) is an oncosuppressor that, following its activation by several cellular stress, induces cancer cell death via p53-dependent or -independent pathways. Here, we used genetically matched human RKO colon cancer cells harboring wt-HIPK2 (HIPK2+/+) or stable HIPK2 siRNA interference (siHIPK2) to investigate in vitro whether HIPK2 influenced cell death in glucose restriction. We found that glucose starvation induced cell death, mainly due to c-Jun NH2-terminal kinase activation, in HIPK2+/+cells compared with siHIPK2 cells that did not die. 1H-nuclear magnetic resonance quantitative metabolic analyses showed a marked glycolytic activation in siHIPK2 cells. However, treatment with glycolysis inhibitor 2-deoxy-𝒟-glucose induced cell death only in HIPK2+/+ cells but not in siHIPK2 cells. Similarly, siGlut-1 interference did not re-establish siHIPK2 cell death under glucose restriction, whereas marked cell death was reached only after zinc supplementation, a condition known to reactivate misfolded p53 and inhibit the pseudohypoxic phenotype in this setting. Further siHIPK2 cell death was reached with zinc in combination with autophagy inhibitor. We propose that the metabolic changes acquired by cells after HIPK2 silencing may contribute to induce resistance to cell death in glucose restriction condition, and therefore be directly relevant for tumor progression. Moreover, elimination of such a tolerance might serve as a new strategy for cancer therapy.
Collapse
|
27
|
Saul VV, Schmitz ML. Posttranslational modifications regulate HIPK2, a driver of proliferative diseases. J Mol Med (Berl) 2013; 91:1051-8. [PMID: 23616089 DOI: 10.1007/s00109-013-1042-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
The serine/threonine kinase homeodomain-interacting protein kinase (HIPK2) is a tumor suppressor and functions as an evolutionary conserved regulator of signaling and gene expression. This kinase regulates a surprisingly vast array of biological processes that range from the DNA damage response and apoptosis to hypoxia signaling and cell proliferation. Recent studies show the tight control of HIPK2 by hierarchically occurring posttranslational modifications such as phosphorylation, small ubiquitin-like modifier modification, acetylation, and ubiquitination. The physiological function of HIPK2 as a regulator of cell proliferation and survival has a downside: proliferative diseases. Dysregulation of HIPK2 can result in increased proliferation of cell populations as it occurs in cancer or fibrosis. We discuss various models that could explain how inappropriate expression, modification, or localization of HIPK2 can be a driver for these proliferative diseases.
Collapse
Affiliation(s)
- Vera V Saul
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | | |
Collapse
|
28
|
Siepi F, Gatti V, Camerini S, Crescenzi M, Soddu S. HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1443-53. [PMID: 23485397 PMCID: PMC3787740 DOI: 10.1016/j.bbamcr.2013.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/21/2013] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
HIPK2 (homeodomain-interacting protein kinase-2) binds to and phosphorylates, at Ser and Thr residues, a large number of targets involved in cell division and cell fate decision in response to different physiological or stress stimuli. Inactivation of HIPK2 has been observed in human and mouse cancers supporting its role as a tumor suppressor. Despite the biological relevance of this kinase, very little is known on how HIPK2 becomes catalytically active. Based on sequence homologies, HIPK2 has been taxonomically classified as a subfamily member of the dual-specificity tyrosine-regulated kinases (DYRKs) and the activation-loop Y354 of HIPK2 has been found phosphorylated in different cells; however, the relevance of this Y phosphorylation is presently unknown. Here, we show that HIPK2, which is extensively phosphorylated at S/T sites throughout its functional domains, becomes catalytically active by autophosphorylation at the activation-loop Y354. In particular, we found that, in analogy to DYRKs, HIPK2-Y354 phosphorylation is an autocatalytic event and its prevention, through Y354 substitution with non-phosphorylatable amino acids or by using the kinase inhibitor purvalanol A, induces a strong reduction of the HIPK2 S/T-kinase activity on different substrates. Interestingly, at variance from DYRKs, inhibition of HIPK2-Y354 phosphorylation induces a strong out-of-target Y-kinase activity in cis and a strong cytoplasmic relocalization of the kinase. Together, these results demonstrate that the catalytic activity, substrate specificity, and subcellular localization of HIPK2 are regulated by autophosphorylation of its activation-loop Y354.
Collapse
Affiliation(s)
- Francesca Siepi
- Dipartimento di Oncologia Sperimentale, Istituto Nazionale Tumori Regina Elena, Roma, Italy.
| | | | | | | | | |
Collapse
|
29
|
Hofmann TG, Glas C, Bitomsky N. HIPK2: A tumour suppressor that controls DNA damage-induced cell fate and cytokinesis. Bioessays 2012; 35:55-64. [PMID: 23169233 DOI: 10.1002/bies.201200060] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In response to DNA-damage, cells have to decide between different cell fate programmes. Activation of the tumour suppressor HIPK2 specifies the DNA damage response (DDR) and tips the cell fate balance towards an apoptotic response. HIPK2 is activated by the checkpoint kinase ATM, and triggers apoptosis through regulatory phosphorylation of a set of cellular key molecules including the tumour suppressor p53 and the anti-apoptotic corepressor CtBP. Recent work has identified HIPK2 as a regulator of the ultimate step in cytokinesis: the abscission of the mother and daughter cells. Since proper cytokinesis is essential for genome stability and maintenance of correct ploidy, this finding sheds new light on the tumour suppressor function of HIPK2. Here we highlight the molecular mechanisms coordinating HIPK2 function and discuss its emerging role as a tumour suppressor.
Collapse
Affiliation(s)
- Thomas G Hofmann
- German Cancer Research Center (dkfz), DKFZ-ZMBH Alliance, Cellular Senescence Group, Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
Garufi A, Pistritto G, Ceci C, Di Renzo L, Santarelli R, Faggioni A, Cirone M, D’Orazi G. Targeting COX-2/PGE(2) pathway in HIPK2 knockdown cancer cells: impact on dendritic cell maturation. PLoS One 2012; 7:e48342. [PMID: 23144866 PMCID: PMC3492329 DOI: 10.1371/journal.pone.0048342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/24/2012] [Indexed: 02/04/2023] Open
Abstract
Background Homeodomain-interacting protein kinase 2 (HIPK2) is a multifunctional protein that exploits its kinase activity to modulate key molecular pathways in cancer to restrain tumor growth and induce response to therapies. For instance, HIPK2 knockdown induces upregulation of oncogenic hypoxia-inducible factor-1 (HIF-1) activity leading to a constitutive hypoxic and angiogenic phenotype with increased tumor growth in vivo. HIPK2 inhibition, therefore, releases pathways leading to production of pro-inflammatory molecules such as vascular endothelial growth factor (VEGF) or prostaglandin E2 (PGE2). Tumor-produced inflammatory mediators other than promote tumour growth and vascular development may permit evasion of anti-tumour immune responses. Thus, dendritic cells (DCs) dysfunction induced by tumor-produced molecules, may allow tumor cells to escape immunosurveillance. Here we evaluated the molecular mechanism of PGE2 production after HIPK2 depletion and how to modulate it. Methodology/Principal findings We show that HIPK2 knockdown in colon cancer cells resulted in cyclooxygenase-2 (COX-2) upregulation and COX-2-derived PGE2 generation. At molecular level, COX-2 upregulation depended on HIF-1 activity. We previously reported that zinc treatment inhibits HIF-1 activity. Here, zinc supplementation to HIPK2 depleted cells inhibited HIF-1-induced COX-2 expression and PGE2/VEGF production. At translational level, while conditioned media of both siRNA control and HIPK2 depleted cells inhibited DCs maturation, conditioned media of only zinc-treated HIPK2 depleted cells efficiently restored DCs maturation, seen as the expression of co-stimulatory molecules CD80 and CD86, cytokine IL-10 release, and STAT3 phosphorylation. Conclusion/Significance These findings show that: 1) HIPK2 knockdown induced COX-2 upregulation, mostly depending on HIF-1 activity; 2) zinc treatment downregulated HIF-1-induced COX-2 and inhibited PGE2/VEGF production; and 3) zinc treatment of HIPK2 depleted cells restored DCs maturation.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppa Pistritto
- Department of Neuroscience, Section of Pharmacology, University “Tor Vergata”, Rome, Italy
| | - Claudia Ceci
- Department of Neuroscience, Section of Pharmacology, University “Tor Vergata”, Rome, Italy
| | - Livia Di Renzo
- Department of Experimental Medicine, Institute Pasteur-Foundation Cenci Bolognetti, “Sapienza” University, Rome, Italy
| | - Roberta Santarelli
- Department of Experimental Medicine, Institute Pasteur-Foundation Cenci Bolognetti, “Sapienza” University, Rome, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, Institute Pasteur-Foundation Cenci Bolognetti, “Sapienza” University, Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Institute Pasteur-Foundation Cenci Bolognetti, “Sapienza” University, Rome, Italy
- * E-mail: (GD); (MC)
| | - Gabriella D’Orazi
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, Regina Elena National Cancer Institute, Rome, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Chieti, Italy
- * E-mail: (GD); (MC)
| |
Collapse
|
31
|
Saul VV, de la Vega L, Milanovic M, Krüger M, Braun T, Fritz-Wolf K, Becker K, Schmitz ML. HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop. J Mol Cell Biol 2012; 5:27-38. [PMID: 23000554 DOI: 10.1093/jmcb/mjs053] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The multitude of mechanisms regulating the activity of protein kinases includes phosphorylation of amino acids contained in the activation loop. Here we show that the serine/threonine kinase HIPK2 (homeodomain-interacting protein kinase 2) is heavily modified by autophosphorylation, which occurs by cis-autophosphorylation at the activation loop and by trans-autophosphorylation at other phosphorylation sites. Cis-autophosphorylation of HIPK2 at Y354 and S357 in the activation loop is essential for its kinase function and the binding to substrates and the interaction partner Pin1. HIPK2 activation loop phosphorylation is also required for its biological activity as a regulator of gene expression and cell proliferation. Phosphorylation of HIPK2 at Y354 alone is not sufficient for full HIPK2 activity, which is in marked contrast to some dual-specificity tyrosine-phosphorylated and regulated kinases where tyrosine phosphorylation is absolutely essential. This study shows that differential phosphorylation of HIPK2 provides a mechanism for controlling and specifying the signal output from this kinase.
Collapse
Affiliation(s)
- Vera V Saul
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Member of the German Center for Lung Research, Friedrichstrasse 24, Giessen 35392, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yamamoto-Sugitani M, Kuroda J, Shimura Y, Nagoshi H, Chinen Y, Ohshiro M, Mizutani S, Kiyota M, Nakayama R, Kobayashi T, Uchiyama H, Matsumoto Y, Horiike S, Taniwaki M. Comprehensive cytogenetic study of primary cutaneous gamma-delta T-cell lymphoma by means of spectral karyotyping and genome-wide single nucleotide polymorphism array. Cancer Genet 2012; 205:459-64. [DOI: 10.1016/j.cancergen.2012.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 01/14/2023]
|
33
|
D'Orazi G, Rinaldo C, Soddu S. Updates on HIPK2: a resourceful oncosuppressor for clearing cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:63. [PMID: 22889244 PMCID: PMC3432601 DOI: 10.1186/1756-9966-31-63] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/27/2012] [Indexed: 02/04/2023]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a multitalented protein that exploits its kinase activity to modulate key molecular pathways in cancer to restrain tumor growth and induce response to therapies. HIPK2 phosphorylates oncosuppressor p53 for apoptotic activation. In addition, also p53-independent apoptotic pathways are regulated by HIPK2 and can be exploited for anticancer purpose too. Therefore, HIPK2 activity is considered a central switch in targeting tumor cells toward apoptosis upon genotoxic damage and the preservation and/or restoration of HIPK2 function is crucial for an efficient tumor response to therapies. As a proof of principle, HIPK2 knockdown impairs p53 function, induces chemoresistance, angiogenesis, and tumor growth in vivo, on the contrary, HIPK2 overexpression activates apoptotic pathways, counteracts hypoxia, inhibits angiogenesis, and induces chemosensitivity both in p53-dependent and -independent ways. The role of HIPK2 in restraining tumor development was also confirmed by studies with HIPK2 knockout mice. Recent findings demonstrated that HIPK2 inhibitions do exist in tumors and depend by several mechanisms including HIPK2 cytoplasmic localization, protein degradation, and loss of heterozygosity (LOH), recapitulating the biological outcome obtained by RNA interference studies in tumor cells, such as p53 inactivation, resistance to therapies, apoptosis inhibition, and tumor progression. These findings may lead to new diagnostic and therapeutic approaches for treating cancer patients. This review will focus on the last updates about HIPK2 contribution in tumorigenesis and cancer treatment.
Collapse
Affiliation(s)
- Gabriella D'Orazi
- Department of Medical, Oral, and Biotechnological Sciences, University "G, d'Annunzio", Chieti 66013, Italy.
| | | | | |
Collapse
|
34
|
Homeodomain-interacting protein kinase regulates Hippo pathway-dependent tissue growth. Curr Biol 2012; 22:1587-94. [PMID: 22840515 DOI: 10.1016/j.cub.2012.06.075] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
Abstract
The Salvador-Warts-Hippo (SWH) pathway is an evolutionarily conserved regulator of tissue growth that is deregulated in human cancer. Upstream SWH pathway components convey signals from neighboring cells via a core kinase cassette to the transcription coactivator Yorkie (Yki). Yki controls tissue growth by modulating activity of transcription factors including Scalloped (Sd). To date, five SWH pathway kinases have been identified, but large-scale phosphoproteome studies suggest that unidentified SWH pathway kinases exist. To identify such kinases, we performed an RNA interference screen and isolated homeodomain-interacting protein kinase (Hipk). Unlike previously identified SWH pathway kinases, Hipk is unique in its ability to promote, rather than repress, Yki activity and does so in parallel to the Yki-repressive kinase, Warts (Wts). Hipk is required for basal Yki activity and is likely to regulate Yki function by promoting its accumulation in the nucleus. Like many SWH pathway proteins, Hipk's function is evolutionarily conserved as its closest human homolog, HIPK2, promotes activity of the Yki ortholog YAP in a kinase-dependent fashion. Further, HIPK2 promotes YAP abundance, suggesting that the mechanism by which HIPK2 regulates YAP has diverged in mammals.
Collapse
|
35
|
Rinaldo C, Moncada A, Gradi A, Ciuffini L, D'Eliseo D, Siepi F, Prodosmo A, Giorgi A, Pierantoni GM, Trapasso F, Guarguaglini G, Bartolazzi A, Cundari E, Schininà ME, Fusco A, Soddu S. HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody. Mol Cell 2012; 47:87-98. [PMID: 22658722 DOI: 10.1016/j.molcel.2012.04.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/29/2012] [Accepted: 04/26/2012] [Indexed: 11/25/2022]
Abstract
Failure in cytokinesis, the final step in cell division, by generating tetra- and polyploidization promotes chromosomal instability, a hallmark of cancer. Here we show that HIPK2, a kinase involved in cell fate decisions in development and response to stress, controls cytokinesis and prevents tetraploidization through its effects on histone H2B. HIPK2 binds and phosphorylates histone H2B at S14 (H2B-S14(P)), and the two proteins colocalize at the midbody. HIPK2 depletion by targeted gene disruption or RNA interference results in loss of H2B-S14(P) at the midbody, prevention of cell cleavage, and tetra- and polyploidization. In HIPK2 null cells, restoration of wild-type HIPK2 activity or expression of a phosphomimetic H2B-S14D derivative abolishes cytokinesis defects and rescues cell proliferation, showing that H2B-S14(P) is required for a faithful cytokinesis. Overall, our data uncover mechanisms of a critical HIPK2 function in cytokinesis and in the prevention of tetraploidization.
Collapse
Affiliation(s)
- Cinzia Rinaldo
- Laboratorio di Oncogenesi Molecolare, Dipartimento di Oncologia Sperimentale, Istituto Nazionale dei Tumori Regina Elena, 00158 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress. Mol Cell 2012; 46:472-83. [PMID: 22503103 DOI: 10.1016/j.molcel.2012.03.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/19/2012] [Accepted: 03/08/2012] [Indexed: 12/26/2022]
Abstract
Moderate concentrations of reactive oxygen species (ROS) serve as coregulatory signaling molecules, whereas exceedingly high concentrations trigger cell death. Here, we identify ROS-induced acetylation of the proapoptotic kinase HIPK2 as a molecular mechanism that controls the threshold discerning sensitivity from resistance toward ROS-mediated cell death. SUMOylation of HIPK2 at permissive ROS concentrations allows the constitutive association of HDAC3 and keeps HIPK2 in the nonacetylated state. Elevated ROS concentrations prevent SUMOylation of HIPK2 and, consequently, reduce association of HDAC3, thus leading to the acetylation of HIPK2. Reconstitution experiments showed that HIPK2-dependent genes cause decreased ROS levels. Although a nonacetylatable HIPK2 mutant enhanced ROS-induced cell death, an acetylation-mimicking variant ensured cell survival even under conditions of high oxidative stress.
Collapse
|