1
|
Qin RS, Li CT, Chen F, Luo S, Wang C, Li J, Xu S, Kang M, Hu HW. AURKA inhibition shows promise as a therapeutic strategy for ARID1A-mutant colorectal cancer. Discov Oncol 2024; 15:556. [PMID: 39402330 PMCID: PMC11473479 DOI: 10.1007/s12672-024-01433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Mutations in ARID1A frequently occur in colorectal cancer (CRC) cells. However, there are currently no clinical treatment options specifically addressing this aberration. The preliminary in vitro experiments revealed a synthetic lethal interaction between ARID1A and Aurora kinase A (AURKA) in colorectal cancer (CRC) cells. METHODS We collected samples from 80 CRC patients and evaluated the efficacy of AURKA inhibitor (AURKAi) using the ATP-tumor chemosensitivity assay (ATP-TCA) on untreated ARID1A-proficient (ARID1A +) and ARID1A-deficient (ARID1A-) CRC patient samples. In addition, we validated this result by a clonogenic assay. Additionally, we examined the effects of AURKA inhibitors on cell cycle progression and apoptosis in ARID1A + and ARID1A- CRC patient samples using flow cytometry. RESULTS The results showed that AURKAi selectively inhibited the growth of ARID1A- CRC cells. Furthermore, AURKA inhibitors significantly increased G2/M arrest and induced apoptosis in ARID1A- cells. CONCLUSION We believe that AURKAi hold promise as potential therapeutics for ARID1A mutation colorectal cancer patients.
Collapse
Affiliation(s)
- Rong-Sheng Qin
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Chun-Tao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affilitaed Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Fei Chen
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Shu Luo
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Chao Wang
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Jie Li
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, No.12 Changjiaxiang Road, Mianyang, 621000, Sichuan, China
| | - Shan Xu
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, No.12 Changjiaxiang Road, Mianyang, 621000, Sichuan, China.
- Department of Oncology, Mianyang Fulin Hospital, No. 100, East Section, Puming South Road, High-Tech Zone, Mianyang, 621000, Sichuan, China.
| | - MingWei Kang
- Department of Oncology, Mianyang Fulin Hospital, No. 100, East Section, Puming South Road, High-Tech Zone, Mianyang, 621000, Sichuan, China
| | - Hao-Wen Hu
- Department of Gastrointestinal Surgical, Suining first people's hospital, No.2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China.
| |
Collapse
|
2
|
Akinjiyan FA, Nassief G, Phillipps J, Adeyelu T, Elliott A, Abdulla F, Zhou AY, Souroullas G, Kim KB, Vanderwalde A, Park SJ, Ansstas G. ARID2 mutations may relay a distinct subset of cutaneous melanoma patients with different outcomes. Sci Rep 2024; 14:3444. [PMID: 38341515 PMCID: PMC10858967 DOI: 10.1038/s41598-024-54136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
ARID genes encode subunits of SWI/SNF chromatin remodeling complexes and are frequently mutated in human cancers. We investigated the correlation between ARID mutations, molecular features, and clinical outcomes in melanoma patients. Cutaneous melanoma samples (n = 1577) were analyzed by next-generation sequencing. Samples were stratified by pathogenic/likely pathogenic mutation in ARID genes (ARID1A/2/1B/5B). PD-L1 expression was assessed using IHC (SP142; positive (+): ≥ 1%). Tumor mutation burden (TMB)-high was defined as ≥ 10 mutations/Mb. Transcriptomic signatures predictive of response to immune checkpoint inhibitors-interferon gamma and T-cell inflamed score were calculated. Real-world overall survival (OS) information was obtained from insurance claims data, with Kaplan-Meier estimates calculated from time of tissue collection until last date of contact. Mann-Whitney U, Chi-square, and Fisher exact tests were applied where appropriate, with p values adjusted for multiple comparisons. ARID2 mutations were more prevalent in cutaneous melanoma compared to ARID1A (11.0%: n = 451 vs 2.8%: n = 113), with concurrent ARID1A/ARID2 mutation in 1.1% (n = 46) of samples. ARID mutations were associated with a high prevalence of RAS pathway mutations-NF1 (ARID1A, 52.6%; ARID2, 48.5%; ARID1A/2, 63.6%; and ARID-WT, 13.3%; p < 0.0001) and KRAS (ARID1A, 3.5%; ARID2, 3.1%; ARID1A/2, 6.5%; and ARID-WT, 1.0%; p = 0.018)), although BRAF mutations were less common in ARID-mutated cohorts (ARID1A, 31.9%; ARID2, 35.6%; ARID1A/2, 26.1%; and ARID-WT, 50.4%; p < 0.0001). TMB-high was more common in ARID-mutated samples (ARID1A, 80.9%; ARID2, 89.9%; ARID1A/2, 100%; and ARID-WT, 49.4%; p < 0.0001), while PD-L1 positivity was similar across subgroups (ARID1A, 43.8%; ARID2, 51.1%; ARID1A/2, 52.5%; and ARID-WT, 44.9%; p = 0.109). Patients with ARID1A mutations had a higher prevalence of dMMR/MSI-H compared to those with ARID-WT (2.7% vs 0.2%, p = 0.030). Median IFN-γ and T-cell signatures were higher in ARID2-mutated samples compared to ARID-WT (IFN-γ: - 0.15 vs - 0.21, p = 0.0066; T-cell: 23.5 vs - 18.5, p = 0.041). ARID2-mutated patients had improved survival compared to ARID-WT; (HR: 1.22 (95% CI 1.0-1.5), p = 0.022). No additional OS benefit was observed with anti-PD-1 therapy for ARID2 mutation compared to ARID-WT. Melanoma patients with ARID mutations exhibited higher prevalence of markers associated with ICI response, including TMB-H, and immune-related signatures. Our data also suggests improved survival outcome in patients with ARID2 mutations, irrespective of anti-PD1 therapy.
Collapse
Affiliation(s)
- Favour A Akinjiyan
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | - George Nassief
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | - Jordan Phillipps
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | | | | | | | - Alice Y Zhou
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | - George Souroullas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | - Kevin B Kim
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | - Soo J Park
- Division of Hematology/Oncology, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Hein KZ, Stephen B, Fu S. Therapeutic Role of Synthetic Lethality in ARID1A-Deficient Malignancies. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:41-52. [PMID: 38327752 PMCID: PMC10846636 DOI: 10.36401/jipo-22-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/28/2023] [Accepted: 09/21/2023] [Indexed: 02/09/2024]
Abstract
AT-rich interaction domain 1A (ARID1A), a mammalian switch/sucrose nonfermenting complex subunit, modulates several cellular processes by regulating chromatin accessibility. It is encoded by ARID1A, an immunosuppressive gene frequently disrupted in a many tumors, affecting the proliferation, migration, and invasion of cancer cells. Targeting molecular pathways and epigenetic regulation associated with ARID1A loss, such as inhibiting the PI3K/AKT pathway or modulating Wnt/β-catenin signaling, may help suppress tumor growth and progression. Developing epigenetic drugs like histone deacetylase or DNA methyltransferase inhibitors could restore normal chromatin structure and function in cells with ARID1A loss. As ARID1A deficiency correlates with enhanced tumor mutability, microsatellite instability, high tumor mutation burden, increased programmed death-ligand 1 expression, and T-lymphocyte infiltration, ARID1A-deficient cells can be a potential therapeutic target for immune checkpoint inhibitors that warrants further exploration. In this review, we discuss the role of ARID1A in carcinogenesis, its crosstalk with other signaling pathways, and strategies to make ARID1A-deficient cells a potential therapeutic target for patients with cancer.
Collapse
Affiliation(s)
- Kyaw Z. Hein
- Department of Internal Medicine, HCA Florida Westside Hospital, Plantation, FL, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Li JJ, Lee CS. The Role of the AT-Rich Interaction Domain 1A Gene ( ARID1A) in Human Carcinogenesis. Genes (Basel) 2023; 15:5. [PMID: 38275587 PMCID: PMC10815128 DOI: 10.3390/genes15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) (SWI/SNF) complex uses energy from ATP hydrolysis to mobilise nucleosomes on chromatin. Components of SWI/SNF are mutated in 20% of all human cancers, of which mutations in AT-rich binding domain protein 1A (ARID1A) are the most common. ARID1A is mutated in nearly half of ovarian clear cell carcinoma and around one-third of endometrial and ovarian carcinomas of the endometrioid type. This review will examine in detail the molecular functions of ARID1A, including its role in cell cycle control, enhancer regulation, and the prevention of telomerase activity. ARID1A has key roles in the maintenance of genomic integrity, including DNA double-stranded break repair, DNA decatenation, integrity of the cohesin complex, and reduction in replication stress, and is also involved in mismatch repair. The role of ARID1A loss in the pathogenesis of some of the most common human cancers is discussed, with a particular emphasis on gynaecological cancers. Finally, several promising synthetic lethal strategies, which exploit the specific vulnerabilities of ARID1A-deficient cancer cells, are briefly mentioned.
Collapse
Affiliation(s)
- Jing Jing Li
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2010, Australia
| |
Collapse
|
5
|
Gonzalez-Salinas F, Herrera-Gamboa J, Rojo R, Trevino V. Heterozygous Knockout of ARID4B Using CRISPR/Cas9 Attenuates Some Aggressive Phenotypes in a Breast Cancer Cell Line. Genes (Basel) 2023; 14:2184. [PMID: 38137006 PMCID: PMC10743217 DOI: 10.3390/genes14122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is one of the leading causes of death in women around the world. Over time, many genes and mutations that are associated with the development of this disease have been identified. However, the specific role of many genes has not yet been fully elucidated. Higher ARID4B expression has been identified as a risk factor for diverse cancer types. Silencing experiments also showed that ARID4B is associated with developing cancer-associated characteristics. However, no transcriptomic studies have shown the overall cellular effect of loss of function in breast cancer in humans. This study addresses the impact of loss-of-function mutations in breast cancer MCF-7 cells. Using the CRISPR/Cas9 system, we generated mutations that caused heterozygous truncated proteins, isolating three monoclonal lines carrying insertions and deletions in ARID4B. We observed reduced proliferation and migration in in vitro experiments. In addition, from RNA-seq assays, a differential expression analysis shows known and novel deregulated cancer-associate pathways in mutated cells supporting the impact of ARID4B. For example, we found the AKT-PI3K pathway to be altered at the transcript level but through different genes than those reported for ARID4B. Our transcriptomic results also suggest new insights into the role of ARID4B in aggressiveness by the epithelial-to-mesenchymal transition and TGF-β pathways and in metabolism through cholesterol and mevalonate pathways. We also performed exome sequencing to show that no off-target effects were apparent. In conclusion, the ARID4B gene is associated with some aggressive phenotypes in breast cancer cells.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
| | - Jessica Herrera-Gamboa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo Leon, San Nicolas de los Garza 66455, Nuevo Leon, Mexico
| | - Rocio Rojo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City 14380, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
- Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo Leon, Mexico
- Tecnologico de Monterrey, oriGen Project, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
6
|
Li Y, Liu Y, Yang K, Jin L, Yang J, Huang S, Liu Y, Hu B, Liu R, Liu W, Liu A, Zheng Q, Zhang Y. Impact of ARID1A and TP53 mutations in pediatric refractory or relapsed mature B-Cell lymphoma treated with CAR-T cell therapy. Cancer Cell Int 2023; 23:281. [PMID: 37981695 PMCID: PMC10657579 DOI: 10.1186/s12935-023-03122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has been used to treat pediatric refractory or relapsed mature B-cell non-Hodgkin lymphoma (r/r MB-NHL) with significantly improved outcomes, but a proportion of patients display no response or experience relapse after treatment. To investigate whether tumor-intrinsic somatic genetic alterations have an impact on CAR-T cell treatment, the genetic features and treatment outcomes of 89 children with MB-NHL were analyzed. METHODS 89 pediatric patients treated at multiple clinical centers of the China Net Childhood Lymphoma (CNCL) were included in this study. Targeted next-generation sequencing for a panel of lymphoma-related genes was performed on tumor samples. Survival rates and relapse by genetic features and clinical factors were analyzed. Survival curves were calculated using a log-rank (Mantel-Cox) test. The Wilcox sum-rank test and Fisher's exact test were applied to test for group differences. RESULTS A total of 89 driver genes with somatic mutations were identified. The most frequently mutated genes were TP53 (66%), ID3 (55%), and ARID1A (31%). The incidence of ARID1A mutation and co-mutation of TP53 and ARID1A was high in patients with r/r MB-NHL (P = 0.006; P = 0.018, respectively). CAR-T cell treatment significantly improved survival in r/r MB-NHL patients (P = 0.00081), but patients with ARID1A or ARID1A and TP53 co-mutation had poor survival compared to those without such mutations. CONCLUSION These results indicate that children with MB-NHL harboring ARID1A or TP53 and ARID1A co-mutation are insensitive to initial conventional chemotherapy and subsequent CAR-T cell treatment. Examination of ARID1A and TP53 mutation status at baseline might have prognostic value, and risk-adapted or more effective therapies should be considered for patients with these high-risk genetic alterations.
Collapse
Affiliation(s)
- Yang Li
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Yang Liu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Keyan Yang
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Ling Jin
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jing Yang
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Shuang Huang
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Ying Liu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Bo Hu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Rong Liu
- Department of Hematology/Oncology, Capital institute of pediatric, Beijing, China
| | - Wei Liu
- Department of Hematology/Oncology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ansheng Liu
- Department of Hematology/Oncology, Xian Children's Hospital, Xi'An, China
| | - Qinlong Zheng
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Yonghong Zhang
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China.
| |
Collapse
|
7
|
Fontana B, Gallerani G, Salamon I, Pace I, Roncarati R, Ferracin M. ARID1A in cancer: Friend or foe? Front Oncol 2023; 13:1136248. [PMID: 36890819 PMCID: PMC9987588 DOI: 10.3389/fonc.2023.1136248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
ARID1A belongs to a class of chromatin regulatory proteins that function by maintaining accessibility at most promoters and enhancers, thereby regulating gene expression. The high frequency of ARID1A alterations in human cancers has highlighted its significance in tumorigenesis. The precise role of ARID1A in cancer is highly variable since ARID1A alterations can have a tumor suppressive or oncogenic role, depending on the tumor type and context. ARID1A is mutated in about 10% of all tumor types including endometrial, bladder, gastric, liver, biliopancreatic cancer, some ovarian cancer subtypes, and the extremely aggressive cancers of unknown primary. Its loss is generally associated with disease progression more often than onset. In some cancers, ARID1A loss is associated with worse prognostic features, thus supporting a major tumor suppressive role. However, some exceptions have been reported. Thus, the association of ARID1A genetic alterations with patient prognosis is controversial. However, ARID1A loss of function is considered conducive for the use of inhibitory drugs which are based on synthetic lethality mechanisms. In this review we summarize the current knowledge on the role of ARID1A as tumor suppressor or oncogene in different tumor types and discuss the strategies for treating ARID1A mutated cancers.
Collapse
Affiliation(s)
- Beatrice Fontana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Irene Salamon
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Ilaria Pace
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Roberta Roncarati
- Istituto di Genetica Molecolare ”Luigi Luca Cavalli-Sforza“ – Consiglio Nazionale delle Ricerce (CNR), Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
8
|
Molina Pimienta L, Salgado Sánchez JC, Hernández Cuello I. Implicaciones en el tratamiento de pacientes con cáncer de mama y alteraciones en ARID1A. UNIVERSITAS MÉDICA 2023. [DOI: 10.11144/javeriana.umed64-1.tpcm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
ARID1A (AT-rich interaction domain 1A) es una subunidad de los complejos SWI/SNF específicamente mutada en ~20 % de los cánceres humanos primarios. La inactivación de ARID1A a través de mutaciones somáticas y otros mecanismos epigenéticos da como resultado la pérdida de las funciones de guardián y cuidador en las células, lo que promueve la iniciación del tumor. Se ha documentado una correlación entre mutaciones de pérdida de función en ARID1A y la presencia de mutaciones activadoras en PIK3CA, pérdida de la expresión de PTEN y la pérdida de la función de p53. Las mutaciones de ARID1A estaban presentes en el 2,5 % de todos los cánceres de mama; no obstante, el porcentaje de cáncer de mama con mutaciones en ARID1A aumenta en los cánceres metastásicos un 12 %, o en los inflamatorios, un 10 %. La pérdida de la función de la ARID1A en cáncer de mama se adquiere con mayor frecuencia posterior al tratamiento y está asociada con la resistencia al tratamiento hormonal y con agentes quimioterapéuticos. Además, conduce a una reparación deficiente de las rupturas de doble cadena, que sensibilizan las células a los inhibidores de PARP. Por último, las alteraciones en ARID1A podrían ser un biomarcador de respuesta a inhibidores de punto de control.
Collapse
|
9
|
Stubbs FE, Flynn BP, Rivers CA, Birnie MT, Herman A, Swinstead EE, Baek S, Fang H, Temple J, Carroll JS, Hager GL, Lightman SL, Conway-Campbell BL. Identification of a novel GR-ARID1a-P53BP1 protein complex involved in DNA damage repair and cell cycle regulation. Oncogene 2022; 41:5347-5360. [PMID: 36344675 PMCID: PMC9734058 DOI: 10.1038/s41388-022-02516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
ARID1a (BAF250), a component of human SWI/SNF chromatin remodeling complexes, is frequently mutated across numerous cancers, and its loss of function has been putatively linked to glucocorticoid resistance. Here, we interrogate the impact of siRNA knockdown of ARID1a compared to a functional interference approach in the HeLa human cervical cancer cell line. We report that ARID1a knockdown resulted in a significant global decrease in chromatin accessibility in ATAC-Seq analysis, as well as affecting a subset of genome-wide GR binding sites determined by analyzing GR ChIP-Seq data. Interestingly, the specific effects on gene expression were limited to a relatively small subset of glucocorticoid-regulated genes, notably those involved in cell cycle regulation and DNA repair. The vast majority of glucocorticoid-regulated genes were largely unaffected by ARID1a knockdown or functional interference, consistent with a more specific role for ARID1a in glucocorticoid function than previously speculated. Using liquid chromatography-mass spectrometry, we have identified a chromatin-associated protein complex comprising GR, ARID1a, and several DNA damage repair proteins including P53 binding protein 1 (P53BP1), Poly(ADP-Ribose) Polymerase 1 (PARP1), DNA damage-binding protein 1 (DDB1), DNA mismatch repair protein MSH6 and splicing factor proline and glutamine-rich protein (SFPQ), as well as the histone acetyltransferase KAT7, an epigenetic regulator of steroid-dependent transcription, DNA damage repair and cell cycle regulation. Not only was this protein complex ablated with both ARID1a knockdown and functional interference, but spontaneously arising DNA damage was also found to accumulate in a manner consistent with impaired DNA damage repair mechanisms. Recovery from dexamethasone-dependent cell cycle arrest was also significantly impaired. Taken together, our data demonstrate that although glucocorticoids can still promote cell cycle arrest in the absence of ARID1a, the purpose of this arrest to allow time for DNA damage repair is hindered.
Collapse
Affiliation(s)
- Felicity E Stubbs
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, US National Institutes of Health, 41 Medlars Drive, Bethesda, MD, 20892, USA
| | - Benjamin P Flynn
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Caroline A Rivers
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Matthew T Birnie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Andrew Herman
- Flow Cytometry Facility, Faculty of Life Sciences, School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Erin E Swinstead
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, US National Institutes of Health, 41 Medlars Drive, Bethesda, MD, 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, US National Institutes of Health, 41 Medlars Drive, Bethesda, MD, 20892, USA
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jillian Temple
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, US National Institutes of Health, 41 Medlars Drive, Bethesda, MD, 20892, USA
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Becky L Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
10
|
ARID1A expression in hepatocellular carcinoma and relation to tumor recurrence after microwave ablation. Clin Exp Hepatol 2022; 8:49-59. [PMID: 35415261 PMCID: PMC8984801 DOI: 10.5114/ceh.2022.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aim of the study AT-rich interactive domain 1A (ARID1A) is a subunit of the switch/sucrose non-fermentable chromatin remodeling complex, which is commonly mutated in human cancers. The clinical and pathological significance of ARID1A alteration in hepatocellular carcinoma (HCC) has not yet been clarified. The present study aimed to evaluate the clinical significance of the ARID1A gene signature in HCC and its relation to the likelihood of tumor recurrence after microwave ablation (MWA). Material and methods This study included 50 patients with cirrhotic HCC of Barcelona Clinic Liver Cancer stages 0/A eligible for MWA. Tumor and peri-tumor biopsies were obtained just prior to MWA and assessed for tumor pathological grade and ARID1A expression by immunohistochemistry. Patients were followed for one year after complete tumor ablation to detect any recurrence. Results Tumor size (MCp = 0.010) and α-fetoprotein level (p = 0.013) can effectively predict the response to MWA. Nuclear expression of ARID1A was significantly lower in HCC compared to the corresponding peri-tumor cirrhotic liver tissues (p = 0.002), but no significant difference in ARID1A cytoplasmic expression was found. Nuclear ARID1A expression level in HCC showed a significantly negative relation to tumor size (MCp = 0.006), pathological grade (MCp = 0.046) and post-MWA tumor recurrence (FEp = 0.041). Conclusions ARID1A loss may enhance HCC aggressiveness and post-MWA tumor recurrence. ARID1A could be a potential target to select HCC patients for future therapies.
Collapse
|
11
|
Loss of ARID1A expression is associated with systemic inflammation markers and has important prognostic significance in gastric cancer. J Cancer Res Clin Oncol 2022; 148:1583-1595. [PMID: 35294647 DOI: 10.1007/s00432-022-03971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND The tumor suppressor gene AT-rich interactive domain 1A (ARID1A) and systemic inflammatory response (SIR) have been reported to be related to the sensitivity to immunotherapy. This study intended to explore the relationship between ARID1A expression and SIR, and to further elucidate the prognostic value of ARID1A expression in gastric cancer (GC). METHODS The mRNA and protein expression of ARID1A were detected in 272 formalin-fixed paraffin-embedded (FFPE) tumor tissues. The data of nine systemic inflammation markers were collected 1 week before gastrectomy. Univariate and multivariate COX analysis were used to screen out independent predictors of GC. RESULTS Negative expression of ARID1A protein was related to GC with deficient mismatch repair (dMMR) (p = 0.033), positive programmed cell death-ligand 1 (PD-L1) (p = 0.005) and lower albumin level (p = 0.0064). Low expression of ARID1A mRNA was common in GC with abnormal E-cadherin (p = 0.020) and a higher platelet/lymphocyte ratio (PLR) (p = 0.0391). Multivariate COX analysis showed that the expression of ARID1A protein (p = 0.023), age (p = 0.004), T stage (p = 0.009) and N stage (p = 0.009) were independent predictors of GC. The nomogram established by independent predictors can accurately evaluate the survival risk of patients with GC. CONCLUSIONS The loss of ARID1A protein expression was associated with the dMMR subtype and high expression of PD-L1 in GC. Negative ARID1A protein and low expression of mRNA were associated with aberrant systemic inflammatory markers. The expression of ARID1A protein had important prognostic significance in GC.
Collapse
|
12
|
Qadir J, Majid S, Khan MS, Rashid F, Wani MD, Bhat SA. Implication of ARID1A Undercurrents and PDL1, TP53 Overexpression in Advanced Gastric Cancer. Pathol Oncol Res 2021; 27:1609826. [PMID: 34924820 PMCID: PMC8677663 DOI: 10.3389/pore.2021.1609826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022]
Abstract
AT-rich interactive domain-containing protein 1A (ARID1A), TP53 and programmed cell death-ligand 1 (PDL1) are involved in several protein interactions that regulate the expression of various cancer-related genes involved in the progression of the cell cycle, cell proliferation, DNA repair, and apoptosis. In addition, gene expression analysis identified some common downstream targets of ARID1A and TP53. It has been established that tumors formed by ARID1A-deficient cancer cells exhibited elevated PDL1 expression. However, the aberrations in these molecules have not been studied in this population especially in Gastric Cancer (GC). In this backdrop we aimed to investigate the role of the ARID1A mutation and expression of ARID1A, TP53 and PDL1 genes in the etiopathogenesis of Gastric Cancer (GC) in the ethnic Kashmiri population (North India). The study included 103 histologically confirmed GC cases. The mutations, if any, in exon-9 of ARID1A gene was analysed by Polymerase Chain Reaction (PCR) followed by Sanger sequencing. The mRNA expression of the ARID1A, TP53 and PDL1 genes was analysed by Quantitative real time-PCR (qRT-PCR). We identified a nonsense mutation (c.3219; C > T) in exon-9 among two GC patients (∼2.0%), which introduces a premature stop codon at protein position 1073. The mRNA expression of the ARID1A, TP53 and PDL1 gene was significantly reduced in 25.3% and elevated in 47.6 and 39.8% of GC cases respectively with a mean fold change of 0.63, 2.93 and 2.43. The data revealed that reduced mRNA expression of ARID1A and elevated mRNA expression of TP53 and PDL1 was significantly associated with the high-grade and advanced stage of cancer. Our study proposes that ARAD1A under-expression and overexpression of TP53 and PDL1 might be crucial for tumor progression with TP53 and PDL1 acting synergistically.
Collapse
Affiliation(s)
- Jasiya Qadir
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Mosin Saleem Khan
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Fouzia Rashid
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Mumtaz Din Wani
- Department of Surgery, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | | |
Collapse
|
13
|
Cheng X, Zhao JX, Dong F, Cao XC. ARID1A Mutation in Metastatic Breast Cancer: A Potential Therapeutic Target. Front Oncol 2021; 11:759577. [PMID: 34804958 PMCID: PMC8599951 DOI: 10.3389/fonc.2021.759577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Abstract
Distant metastasis is the principal cause of mortality for breast cancer patients. Targeting specific mutations that have been acquired during the evolution process of advanced breast cancer is a potential means of enhancing the clinical efficacy of treatment strategies. In metastatic breast cancer, ARID1A is the most prevalent mutation of the SWI/SNF complex, which regulates DNA repair, recombination, and gene transcription. The low expression of ARID1A is associated with poor disease-free survival and overall survival of patients with luminal A or HER2-rich breast cancer. In addition, ARID1A plays a prominent role in maintaining luminal characteristics and has an advantage for identifying responses to treatment, including endocrine therapies, HDAC inhibitors and CDK4/6 inhibitors. The therapeutic vulnerabilities initiated by ARID1A alterations encourage us to explore new approaches to cope with ARID1A mutant-related drug resistance or metastasis. In this review, we describe the mutation profiles of ARID1A in metastatic breast cancer and the structure and function of ARID1A and the SWI/SNF complex as well as discuss the potential mechanisms of ARID1A-mediated endocrine resistance and therapeutic potential.
Collapse
Affiliation(s)
- Xuan Cheng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jian-Xiong Zhao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Feng Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
14
|
Odnokoz O, Wavelet-Vermuse C, Hophan SL, Bulun S, Wan Y. ARID1 proteins: from transcriptional and post-translational regulation to carcinogenesis and potential therapeutics. Epigenomics 2021; 13:809-823. [PMID: 33890484 PMCID: PMC8738980 DOI: 10.2217/epi-2020-0414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ARID1 proteins are mutually exclusive subunits of the BRG1/BRM-associated factor (BAF) complexes that play an important role in chromatin remodeling and regulate many fundamental cell functions. The role of ARID1s is well defined as a tumor-suppressive. The cancer cells evolve different mechanisms to downregulate ARID1s and inactivate their functions. ARID1s are frequently mutated in human cancer. The recent findings of ARID1A/B downregulation at transcriptional and translational levels along with their low levels in human cancers indicate the significance of regulatory mechanisms of ARID1s in cancers. In this review, we present the current knowledge on the regulation and alterations of ARID1 protein expression in human cancers and indicate the importance of regulators of ARID1s as a prognostic marker and in potential therapeutic strategies.
Collapse
Affiliation(s)
- Olena Odnokoz
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cindy Wavelet-Vermuse
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shelby L Hophan
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Serdar Bulun
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Author for correspondence: Tel.: +1 312 503 2769;
| |
Collapse
|
15
|
Ji XL, Liu X, Wang Z, Fang YC. Expression of ARID1A in polycystic ovary syndrome and its effect on the proliferation and apoptosis of ovarian granulosa cells. ANNALES D'ENDOCRINOLOGIE 2020; 81:521-529. [PMID: 33290750 DOI: 10.1016/j.ando.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The purpose of the present study was to clarify the expression of ARID1A in polycystic ovary syndrome (PCOS) and its effect on ovarian granulosa cells (GCs). METHODS Serum samples were collected from PCOS patients to detect the expression of ARID1A by qRT-PCR. Then, mouse and human ovarian GCs were isolated and divided into several groups according to difference in transfection, and the following experiments were performed: MTT assay, flow cytometry, qRT-PCR, radioimmunoassay, and Western blotting. RESULTS ARID1A was down-regulated in the serum of PCOS patients and ovarian GCs from PCOS mice. Human and mouse ovarian GCs in the ARID1A group and in cells that were exposed to LY294002, a PI3/Akt pathway inhibitor, showed decreased proliferation and increased apoptosis compared to those in the mock group, and a higher percentage of G0/G1 phase with a lower percentage of S phase or G2/M. Moreover, the expression of steroid metabolism-related genes (3βHSD,Cyp11a1, StAR and Cyp19a1) in both human and mice PCOS GCs was down-regulatedresulting in lower estradiol (E2) and progesterone (P) 48h accumulation. In addition, protein expression of cleaved caspase-3, a main executor of apoptosis, was increased while expression of p-Akt/Akt and cyclin D1 was decreased in GCs from human and mice PCOS. However, the levels of the above indicators in the si-ARID1A group showed inverse changes. Furthermore, LY29400 treatment could reverse the effect of si-ARID1A on the ovarian GCs. CONCLUSION ARID1A was down-regulated in GCs cells form PCOS women and from PCOS animal models, while ARID1A overexpression can suppress the PI3K/Akt pathway to inhibit proliferation and promote apoptosis in ovarian granulosa cells.
Collapse
Affiliation(s)
- Xiao-Ling Ji
- Department of Gynecology area 1, Weifang People's Hospital, No. 151, Guangwen Street, Weifang, 261041, Shandong, China
| | - Xia Liu
- Department of Obstetrics, Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Zhe Wang
- Department of Gynecology area 1, Weifang People's Hospital, No. 151, Guangwen Street, Weifang, 261041, Shandong, China
| | - Ying-Chun Fang
- Department of Gynecology area 1, Weifang People's Hospital, No. 151, Guangwen Street, Weifang, 261041, Shandong, China.
| |
Collapse
|
16
|
Silva-Oliveira R, Pereira FF, Petronilho S, Martins AT, Lameirinhas A, Constâncio V, Caldas-Ribeiro I, Salta S, Lopes P, Antunes L, Castro F, de Sousa SP, Henrique R, Jerónimo C. Clinical Significance of ARID1A and ANXA1 in HER-2 Positive Breast Cancer. J Clin Med 2020; 9:E3911. [PMID: 33276477 PMCID: PMC7761245 DOI: 10.3390/jcm9123911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND trastuzumab is considered the standard of care for human epidermal growth factor receptor-2 (HER-2+) breast cancer patients. Regardless of the benefits of its use, many early-stage patients eventually recur, and usually, the disease progresses within a year. Since about half of the HER-2+ patients do not respond to trastuzumab, new biomarkers of prognosis and prediction are warranted to allow a better patient stratification. Annexin A1 (ANXA1) was previously reported to contribute to trastuzumab resistance through AKT activation. An association between adenine thymine-rich interactive domain 1A (ARID1A) loss and ANXA1 upregulation was also previously suggested by others. METHODS in this study, we examined tissue samples from 215 HER-2+ breast cancer patients to investigate the value of ARID1A and ANXA1 protein levels in trastuzumab response prediction and patient outcome. Expression of ARID1A and ANXA1 were assessed by immunohistochemistry. RESULTS contrary to what was expected, no inverse association was found between ARID1A and ANXA1 expression. HER-2+ (non-luminal) tumours displayed higher ANXA1 expression than luminal B-like (HER-2+) tumours. Concerning trastuzumab resistance, ARID1A and ANXA1 proteins did not demonstrate predictive value as biomarkers. Nevertheless, an association was depicted between ANXA1 expression and breast cancer mortality and relapse. CONCLUSIONS overall, our results suggest that ANXA1 may be a useful prognostic marker in HER-2+ patients. Additionally, its ability to discriminate between HER-2+ (non-luminal) and luminal B-like (HER-2+) patients might assist in patient stratification regarding treatment strategy.
Collapse
Affiliation(s)
- Rita Silva-Oliveira
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Filipa Ferreira Pereira
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.F.P.); (S.P.d.S.)
| | - Sara Petronilho
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Teresa Martins
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Lameirinhas
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Vera Constâncio
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Inês Caldas-Ribeiro
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Sofia Salta
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Paula Lopes
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Luís Antunes
- Cancer Epidemiology Group—Research Center & Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Fernando Castro
- Breast Cancer Clinic and Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Susana Palma de Sousa
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.F.P.); (S.P.d.S.)
| | - Rui Henrique
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Samartzis EP, Labidi-Galy SI, Moschetta M, Uccello M, Kalaitzopoulos DR, Perez-Fidalgo JA, Boussios S. Endometriosis-associated ovarian carcinomas: insights into pathogenesis, diagnostics, and therapeutic targets-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1712. [PMID: 33490224 PMCID: PMC7812165 DOI: 10.21037/atm-20-3022a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endometriosis is a benign gynecologic condition affecting up to one woman out of ten of reproductive age. It is defined by the presence of endometrial-like tissue in localizations outside of the uterine cavity. It often causes symptoms such as chronic pain, most frequently associated with the menstrual cycle, and infertility, but may also be oligo- or asymptomatic. There is evidence that some ovarian carcinoma (OC) histotypes, mainly the ovarian clear cell (OCCC) and endometrioid (EnOC) carcinoma, may arise from endometriosis. The most frequent genomic alterations in these carcinomas are mutations in the AT-rich interacting domain containing protein 1A (ARID1A) gene, a subunit of the SWI/SNF chromatin remodeling complex, and alterations in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway, which frequently co-occur. In ARID1A deficient cancers preclinical experimental data suggest different targetable mechanisms including epigenetic regulation, cell cycle, genomic instability, the PI3K/AKT/mTOR pathway, inflammatory pathways, immune modulation, or metabolic alterations as potential precision oncology approaches. Most of these strategies are relying on the concept of synthetic lethality in which tumors deficient in ARID1A are more sensitive to the different compounds. Some of these approaches are currently being or have recently been investigated in early clinical trials. The remarkably frequent occurrence of these mutations in endometriosis-associated ovarian cancer, the occurrence in a relatively young population, and the high proportion of platinum-resistant disease certainly warrants further investigation of precision oncology opportunities in this population. Furthermore, advanced knowledge about oncogenic mutations involved in endometriosis-associated ovarian carcinomas may be potentially useful for early cancer detection. However, this approach may be complicated by the frequent occurrence of somatic mutations in benign endometriotic tissue as recent studies suggest. In this narrative review of the current literature, we will discuss the data available on endometriosis-associated ovarian carcinoma, with special emphasis on epidemiology, diagnosis and molecular changes that could have therapeutic implications and clinical applicability in the future.
Collapse
Affiliation(s)
- Eleftherios P Samartzis
- Department of Gynecology and Gynecological Cancer Center, University Hospital Zurich, Zurich, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland.,Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Mario Uccello
- Northampton General Hospital NHS Trust, Cliftonville, Northampton, UK
| | - Dimitrios R Kalaitzopoulos
- Department of Gynecology and Gynecological Cancer Center, University Hospital Zurich, Zurich, Switzerland.,Department of Gynecology and Obstetrics, Kantonsspital Schaffhausen, Schaffhausen, Switzerland
| | - J Alejandro Perez-Fidalgo
- Department of Medical Oncology, Hospital Clinico Universitario de Valencia, INCLIVA, CIBERONC, Valencia, Spain
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK.,AELIA Organization, 9th Km Thessaloniki - Thermi, Thessaloniki, Greece
| |
Collapse
|
18
|
Marcum RD, Reyes AA, He Y. Structural Insights into the Evolutionarily Conserved BAF Chromatin Remodeling Complex. BIOLOGY 2020; 9:biology9070146. [PMID: 32629987 PMCID: PMC7408276 DOI: 10.3390/biology9070146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
The switch/sucrose nonfermentable (SWI/SNF) family of proteins acts to regulate chromatin accessibility and plays an essential role in multiple cellular processes. A high frequency of mutations has been found in SWI/SNF family subunits by exome sequencing in human cancer, and multiple studies support its role in tumor suppression. Recent structural studies of yeast SWI/SNF and its human homolog, BAF (BRG1/BRM associated factor), have provided a model for their complex assembly and their interaction with nucleosomal substrates, revealing the molecular function of individual subunits as well as the potential impact of cancer-associated mutations on the remodeling function. Here we review the structural conservation between yeast SWI/SNF and BAF and examine the role of highly mutated subunits within the BAF complex.
Collapse
Affiliation(s)
- Ryan D. Marcum
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA; (R.D.M.); (A.A.R.)
| | - Alexis A. Reyes
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA; (R.D.M.); (A.A.R.)
- Interdisciplinary Biological Sciences Program, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA; (R.D.M.); (A.A.R.)
- Interdisciplinary Biological Sciences Program, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, 676 N. St. Clair, Chicago, IL 60611, USA
- Correspondence:
| |
Collapse
|
19
|
D'Afonseca V, Arencibia AD, Echeverría-Vega A, Cerpa L, Cayún JP, Varela NM, Salazar M, Quiñones LA. Identification of Altered Genes in Gallbladder Cancer as Potential Driver Mutations for Diagnostic and Prognostic Purposes: A Computational Approach. Cancer Inform 2020; 19:1176935120922154. [PMID: 32546937 PMCID: PMC7249562 DOI: 10.1177/1176935120922154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prognostic markers for cancer can assist in the evaluation of survival probability of patients and help clinicians to assess the available treatment modalities. Gallbladder cancer (GBC) is a rare tumor that causes 165 087 deaths in the world annually. It is the most common cancer of the biliary tract and has a particularly high incidence in Chile, Japan, and northern India. Currently, there is no accurate diagnosis test or effective molecular markers for GBC identification. Several studies have focused on the discovery of genetic alterations in important genes associated with GBC to propose novel diagnosis pathways and to create prognostic profiles. To achieve this, we performed data-mining of GBC in public repositories, harboring 133 samples of GBC, allowing us to describe relevant somatic mutations in important genes and to propose a genetic alteration atlas for GBC. In our results, we reported the 14 most altered genes in GBC: arid1a, arid2, atm, ctnnb1, erbb2, erbb3, kmt2c, kmt2d, kras, pik3ca, smad4, tert, tp53, and znf521 in samples from Japan, the United States, Chile, and China. Missense mutations are common among these genes. The annotations of many mutations revealed their importance in cancer development. The observed annotations mentioned that several mutations found in this repository are probably oncogenic, with a putative loss-of-function. In addition, they are hotspot mutations and are probably linked to poor prognosis in other cancers. We identified another 11 genes, which presented a copy number alteration in gallbladder database samples, which are ccnd1, ccnd3, ccne1, cdk12, cdkn2a, cdkn2b, erbb2, erbb3, kras, mdm2, and myc. The findings reported here can help to detect GBC cancer through the development of systems based on genetic alterations, for example, the development of a mutation panel specifically for GBC diagnosis, as well as the creation of prognostic profiles to accomplish the development of GBC and its prevalence.
Collapse
Affiliation(s)
- Vívian D'Afonseca
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ariel D Arencibia
- Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Alex Echeverría-Vega
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Leslie Cerpa
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DBOC), Faculty of Medicine, University of Chile, Santiago, Chile.,Latin-American network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Juan P Cayún
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DBOC), Faculty of Medicine, University of Chile, Santiago, Chile.,Latin-American network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Nelson M Varela
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DBOC), Faculty of Medicine, University of Chile, Santiago, Chile.,Latin-American network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Marcela Salazar
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Luis A Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DBOC), Faculty of Medicine, University of Chile, Santiago, Chile.,Latin-American network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| |
Collapse
|
20
|
Qadir J, Majid S, Khan MS, Rashid F, Wani MD, Din I, Bashir H. AT-rich Interaction Domain 1A Gene Variations: Genetic Associations and Susceptibility to Gastric Cancer Risk. Pathol Oncol Res 2020; 26:2237-2246. [PMID: 32377988 DOI: 10.1007/s12253-020-00815-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
AT-rich interaction domain containing protein 1A (ARID1A), has recently emerged as a novel class of gene which acts as a potent tumor suppressor in numerous types of cancers such as Gastric, Breast, Ovarian, Colorectal, Lung cancers. ARID1A is involved in the regulation of various cellular processes such as proliferation, differentiation and DNA repair, yet its association with the susceptibility of cancer remains unknown. Here, we aimed to analyse the association of the ARID1A variants (Pro912Thr, Gln944Lys and Gln920Ter) with the risk of Gastric cancer (GC) in Kashmiri population. The study included 103 confirmed cases of GC and 163 normal controls. The genotypes were studied using Polymerase Chain Reaction. Different bioinformatic predictive tools were also used to analyse the possible effect of these SNP's on the resultant protein. The Pro912Thr and Gln920Ter variants of ARID1A showed significant difference in genotypic and allelic frequencies between the GC cases and controls (P < 0.05), whereas, the data did not reveal any correlation between Gln944Lys variant and Gastric cancer risk. Both Pro912Thr and Gln920Ter SNP's follow "Dominant mode of inheritance". In Silico analysis predicted that amino acid substitution of Pro912Thr SNP decreases the protein stability thus changing the functional properties of resultant protein, so backing the possibility of damaging effect of this SNP. Our study suggests that Pro912Thr and Gln920Ter SNP's of ARD1A gene are associated with increased risk of GC in Kashmiri population.
Collapse
Affiliation(s)
- Jasiya Qadir
- Department of Biochemistry and Research Centre University of Kashmir, Government Medical College Srinagar and Associated Hospitals , Srinagar, 190010, India
| | - Sabhiya Majid
- Department of Biochemistry and Research Centre University of Kashmir, Government Medical College Srinagar and Associated Hospitals , Srinagar, 190010, India.
| | - Mosin S Khan
- Department of Biochemistry and Research Centre University of Kashmir, Government Medical College Srinagar and Associated Hospitals , Srinagar, 190010, India
| | - Fouzia Rashid
- Department of Clinical Biochemistry, University of Kashmir, 190006, Srinagar, India
| | - Mumtaz Din Wani
- Department of Surgery, Government Medical College Srinagar and Associated Hospitals, 190010, Srinagar, India
| | - Inshah Din
- Department of Biochemistry and Research Centre University of Kashmir, Government Medical College Srinagar and Associated Hospitals , Srinagar, 190010, India
| | - Haamid Bashir
- Department of Biochemistry and Research Centre University of Kashmir, Government Medical College Srinagar and Associated Hospitals , Srinagar, 190010, India
| |
Collapse
|
21
|
Erfani M, Hosseini SV, Mokhtari M, Zamani M, Tahmasebi K, Alizadeh Naini M, Taghavi A, Carethers JM, Koi M, Brim H, Mokarram P, Ashktorab H. Altered ARID1A expression in colorectal cancer. BMC Cancer 2020; 20:350. [PMID: 32334542 PMCID: PMC7183124 DOI: 10.1186/s12885-020-6706-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background ARID1A has been described as a tumor suppressor gene, participating in chromatin re-modeling, epithelial-mesenchymal-transition and many other cellular and molecular processes. It has been cited as a contribute in tumorigenesis. The role of ARID1A in CRC is not yet defined. Aim To investigate the role of ARID1A methylation and CNV in its expression in CRC cell lines and to examine the relationship between ARID1A status with survival and clinicopathologic characteristics in patients with CRC. Methods We used RT-PCR to determine both CNV and expression of ARID1A from six CRC cell lines. We used MSP to evaluate methylation of ARID1A. IHC was used to assess ARID1A protein expression. We also evaluated MSI and EMAST status in 18 paired CRC and adjacent normal tissues. 5AzadC was used to assess effect of DNA demethylation on ARID1A expression. Statistical analysis was performed to establish correlations between ARID1A expression and other parameters. Results Among the 18 CRC tumors studied, 7 (38.8%) and 5 tumors (27.7%) showed no or low ARID1A expression, respectively. We observed no significant difference in ARID1A expression for overall patient survival, and no difference between clinicopathological parameters including MSI and EMAST. However, lymphatic invasion was more pronounced in the low/no ARID1A expression group when compared to moderate and high expression group (33% VS. 16.6% respectively. ARID1A promoter methylation was observed in 4/6 (66%) cell lines and correlated with ARID1A mRNA expression level ranging from very low in SW48, to more pronounced in HCT116 and HT-29/219. Treatment with the methyltransferase inhibitor 5-Azacytidine (5-aza) resulted in a 25.4-fold and 6.1-fold increase in ARID1A mRNA expression in SW48 and SW742 cells, respectively, while there was no change in SW480 and LS180 cells. No ARID1A CNV was observed in the CRC cell lines. Conclusion ARID1A expression is downregulated in CRC tissues which correlates with it being a tumor suppressor protein. This finding confirms ARID1A loss of expression in CRC development. Our in-vitro results suggest high methylation status associates with reduced ARID1A expression and contributes to CRC tumorigenesis. However, there was no significant association between ARID1A loss of expression and clinicopathological characteristics. Future in-vivo analysis is warranted to further establish ARID1A role in colorectal neoplastic transformation.
Collapse
Affiliation(s)
- Mehran Erfani
- Autophagy Research Center and Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Vahid Hosseini
- Colorectal Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Tahmasebi
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash Alizadeh Naini
- Department of Internal Medicine, Gastroenterology division, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Taghavi
- Department of Internal Medicine, Gastroenterology division, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - John M Carethers
- Departments of Internal Medicine and Human Genetics, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109-5368, USA
| | - Minoru Koi
- Departments of Internal Medicine and Human Genetics, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109-5368, USA
| | - Hassan Brim
- Cancer Center and Department of Medicine, Howard University, College of Medicine, 2041 Georgia Avenue, N.W., Washington, D.C., 20060, USA
| | - Pooneh Mokarram
- Autophagy Research Center and Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran. .,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hassan Ashktorab
- Cancer Center and Department of Medicine, Howard University, College of Medicine, 2041 Georgia Avenue, N.W., Washington, D.C., 20060, USA.
| |
Collapse
|
22
|
Cao Q, Wang C, Ding Y, Xu D, Qian S, Shen H, Qi J. ARID1A upregulation predicts better survival in patients with urothelial bladder carcinoma. J Int Med Res 2020; 48:300060519895687. [PMID: 31891283 PMCID: PMC7783253 DOI: 10.1177/0300060519895687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective AT-rich interactive domain-containing protein 1A (ARID1A) is frequently
mutated or deficient in various types of tumors. However, the role of ARID1A
in bladder cancer remains unclear. We aimed to evaluate ARID1A expression
and its biological role and correlation with prognosis in patients with
urothelial bladder carcinoma (BUC). Methods ARID1A expression levels in BUC and normal tissues were assessed by
immunohistochemistry and correlated with clinicopathological characteristics
and patient outcomes. Downregulation of ARID1A was mimicked by transfection
with small interfering RNA in T24 bladder cancer cells, and the effects on
cell proliferation and migration were evaluated. Results ARID1A expression was significantly reduced in BUC tissues and was
significantly associated with T stage and AJCC stage. Upregulation of ARID1A
predicted a better prognosis in BUC patients. ARID1A expression and lymph
node status were identified as independent prognostic factors for overall
survival. Silencing of ARID1A promoted the proliferation of
BUC cells. Conclusions ARID1A may represent a novel diagnostic and prognostic biomarker in patients
with BUC.
Collapse
Affiliation(s)
- Qifeng Cao
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding Xu
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Subo Qian
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Shen
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Qi
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Somsuan K, Peerapen P, Boonmark W, Plumworasawat S, Samol R, Sakulsak N, Thongboonkerd V. ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma. FASEB J 2019; 33:12226-12239. [PMID: 31424966 DOI: 10.1096/fj.201802720rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Down-regulation/mutation of AT-rich interactive domain 1A (ARID1A), a novel tumor suppressor gene, has been reported in various cancers. Nevertheless, its role in renal cell carcinoma (RCC) remained unclear and underinvestigated. We thus evaluated carcinogenesis effects of ARID1A knockdown in nonmalignant Madin-Darby canine kidney (MDCK) renal cells using small interfering RNA (siRNA) against ARID1A (siARID1A). The siARID1A-transfected cells had decreased cell death, increased cell proliferation, and cell cycle shift (from G0/G1 to G2/M) compared with those transfected with controlled siRNA (siControl). Additionally, the siARID1A-transfected cells exhibited epithelial-mesenchymal transition (EMT) shown by greater spindle index, increased mesenchymal markers (fibronectin/vimentin), and decreased epithelial markers (E-cadherin/zonula occludens-1). Moreover, the siARID1A-transfected cells had increases in migratory activity, nuclear size, self-aggregated multicellular spheroid size, invasion capability, chemoresistance (to docetaxel), Snail family transcriptional repressor 1 expression, and TGF-β1 secretion. All of these siARID1A-knockdown effects on the carcinogenic features were reproducible in malignant RCC (786-O) cells, which exhibited a higher degree of carcinogenic phenotypes compared with the nonmalignant MDCK cells. Finally, immunohistochemistry showed obvious decrease in ARID1A protein expression in human RCC tissues (n = 23) compared with adjacent normal renal tissues (n = 23). These data indicate that ARID1A down-regulation triggers EMT and carcinogenesis features of renal cells in vitro, and its role in RCC could be proven in human tissues.-Somsuan, K., Peerapen, P., Boonmark, W., Plumworasawat, S., Samol, R., Sakulsak, N., Thongboonkerd, V. ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma.
Collapse
Affiliation(s)
- Keerakarn Somsuan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ratirath Samol
- Department of Anatomical Pathology, Sawanpracharak Hospital, Nakorn Sawan, Thailand
| | - Natthiya Sakulsak
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. Nat Commun 2019; 10:3554. [PMID: 31391455 PMCID: PMC6686004 DOI: 10.1038/s41467-019-11403-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue. PIK3CA mutations and ARID1A loss co-exist in endometrial neoplasms. Here, the authors show that these co-mutations drive gene expression profiles correlated with differential chromatin accessibility and ARID1A binding in the endometrial epithelium, resulting in partial EMT and myometrial invasion.
Collapse
|
25
|
Chiang A, Tan CZ, Kuonen F, Hodgkinson LM, Chiang F, Cho RJ, South AP, Tang JY, Chang ALS, Rieger KE, Oro AE, Sarin KY. Genetic Mutations Underlying Phenotypic Plasticity in Basosquamous Carcinoma. J Invest Dermatol 2019; 139:2263-2271.e5. [PMID: 31207229 DOI: 10.1016/j.jid.2019.03.1163] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/02/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022]
Abstract
Basosquamous carcinoma (BSC) is an aggressive skin neoplasm with the features of both basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). While genetic drivers of BCC and SCC development have been extensively characterized, BSC has not been well studied, and it remains unclear whether these tumors originally derive from BCC or SCC. In addition, it is unknown which molecular pathways mediate the reprogramming of tumor keratinocytes toward basaloid or squamatized phenotypes. We sought to characterize the genomic alterations underlying sporadic BSC to elucidate the derivation of these mixed tumors. We identifed frequent Hedgehog (Hh) pathway mutations in BSCs, implicating Hh deregulation as the primary driving event in BSC. Principal component analysis of BCC and SCC driver genes further demonstrate the genetic similarity between BCC and BSC. In addition, 45% of the BSCs harbor recurrent mutations in the SWI/SNF complex gene, ARID1A, and evolutionary analysis revealed that ARID1A mutations occur after PTCH1 but before SCC driver mutations, indicating that ARID1A mutations may bestow plasticity enabling squamatization. Finally, we demonstrate mitogen-activated protein kinase pathway activation and the loss of Hh signaling associated with the squamatization of BSCs. Overall, these results support the genetic derivation of BSCs from BCCs and highlight potential factors involved in modulating tumor reprogramming between basaloid and squamatized phenotypes.
Collapse
Affiliation(s)
- Audris Chiang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; University of California, Irvine School of Medicine, Irvine, California, USA
| | - Caroline Z Tan
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - François Kuonen
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Luqman M Hodgkinson
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Felicia Chiang
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California, USA
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Kerri E Rieger
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Anthony E Oro
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
26
|
Yang Y, Wang X, Yang J, Duan J, Wu Z, Yang F, Zhang X, Xiao S. Loss of ARID1A promotes proliferation, migration and invasion via the Akt signaling pathway in NPC. Cancer Manag Res 2019; 11:4931-4946. [PMID: 31213911 PMCID: PMC6549766 DOI: 10.2147/cmar.s207329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background: AT-rich interactive domain-containing protein 1A (ARID1A) is a member of the switch/sucrose nonfermentable chromatin remodeling complex, which has been observed to be mutated in various tumors. The loss of ARID1A is reported to be frequently associated with PI3K/Akt pathway activation. Objective: The roles of ARID1A in nasopharyngeal carcinoma (NPC) have not been reported until now. The aim of this research was to explore the clinical significance and potential mechanism of ARID1A in NPC development and progression. Methods: ARID1A expression levels were investigated in human NPC tissues and cell lines. The effects of ARID1A knockdown on nasopharyngeal cancer cell proliferation, migration and invasion were evaluated in vitro using CCK8, wound healing, transwell and flow cytometry assays. The expression of relevant proteins was evaluated by Western blot assays. Results: In this study, ARID1A was significantly downregulated in NPC tissues and cells. Furthermore, low ARID1A expression was significantly associated with aggressive clinicopathological characteristics and poor survival in NPC patients. Depletion of endogenous ARID1A by siRNA promoted proliferation, migration and invasion in CNE1 and HNE1 cells. Additionally, ARID1A knockdown increased the phosphorylation of Akt in NPC cells. High levels of p-Akt were also observed in NPC biopsies and correlated with ARID1A downregulation. These results imply that the loss of ARID1A could activate Akt signaling. In addition, MK-2206 (a highly selective inhibitor of Akt) partially suppressed NPC cell proliferation, migration and invasion, which were induced by ARID1A knockdown. Conclusion: Our findings indicate that ARID1A plays an essential role in modulating the Akt pathway, functions as a tumor suppressor in NPC and may be a potential target for NPC treatment.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Xiaoyu Wang
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Junjun Yang
- Department of Stomatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, People's Republic of China
| | - Jingling Duan
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Zhen Wu
- Xiangya Medical College of South Central University, Changsha 413000, People's Republic of China
| | - Fan Yang
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Shengjun Xiao
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, People's Republic of China
| |
Collapse
|
27
|
Zhang L, Wang C, Yu S, Jia C, Yan J, Lu Z, Chen J. Loss of ARID1A Expression Correlates With Tumor Differentiation and Tumor Progression Stage in Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2019; 17:1533034618754475. [PMID: 29486633 PMCID: PMC5833159 DOI: 10.1177/1533034618754475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the AT-rich interactive domain 1A gene, which encodes a subunit of the Switch/Sucrose nonfermentable chromatin remodeling complex, can result in loss of protein expression and are associated with different cancers. Here, we used immunohistochemistry to investigate the significance of AT-rich interactive domain 1A loss in 73 pancreatic ductal adenocarcinoma cases with paired paracancerous normal pancreatic tissues. The relationship between levels of the AT-rich interactive domain 1A protein product, BAF250a, and clinicopathological parameters in the 73 pancreatic cancer specimens was also analyzed. We found that the expression of AT-rich interactive domain 1A in normal pancreatic tissue was higher than that in tumor tissue. Loss of AT-rich interactive domain 1A expression in pancreatic tumors was associated with tumor differentiation (P = .002) and tumor stage (P = .048). Meanwhile, BAF250a protein levels were not related to lymph node metastasis, distant metastasis, sex, or age and were not associated with survival. Transfection of the pancreatic cancer cell lines AsPC-1 and PANC-1 with small-interfering RNA specific for AT-rich interactive domain 1A resulted in elevated messenger RNA and protein expression levels of B-cell lymphoma-2 (Bcl-2), CyclinD1, and Kirsten rat sarcoma viral oncogene (KRAS). The AT-rich interactive domain 1A expression level in the cells was increased following microRNA-31 (miR-31) inhibitor transfection. Our data provide additional evidence that AT-rich interactive domain 1A might function as a tumor suppressor gene in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Li Zhang
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Cuiping Wang
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Shuangni Yu
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Congwei Jia
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Jie Yan
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Zhaohui Lu
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Jie Chen
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Han L, Madan V, Mayakonda A, Dakle P, Woon TW, Shyamsunder P, Nordin HBM, Cao Z, Sundaresan J, Lei I, Wang Z, Koeffler HP. Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia 2019; 33:2291-2305. [PMID: 30858552 PMCID: PMC6756219 DOI: 10.1038/s41375-019-0438-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
Precise regulation of chromatin architecture is vital to physiological processes including hematopoiesis. ARID1A is a core component of the mammalian SWI/SNF complex, which is one of the ATP-dependent chromatin remodeling complexes. To uncover the role of ARID1A in hematopoietic development, we utilized hematopoietic cell-specific deletion of Arid1a in mice. We demonstrate that ARID1A is essential for maintaining the frequency and function of hematopoietic stem cells and its loss impairs the differentiation of both myeloid and lymphoid lineages. ARID1A deficiency led to a global reduction in open chromatin and ensuing transcriptional changes affected key genes involved in hematopoietic development. We also observed that silencing of ARID1A affected ATRA-induced differentiation of NB4 cells, suggesting its role in granulocytic differentiation of human leukemic cells. Overall, our study provides a comprehensive elucidation of the function of ARID1A in hematopoiesis and highlights the central role of ARID1A-containing SWI/SNF complex in maintaining chromatin dynamics in hematopoietic cells.
Collapse
Affiliation(s)
- Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Teoh Weoi Woon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Zeya Cao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Janani Sundaresan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore, Singapore
| |
Collapse
|
29
|
Bi C, Liu M, Rong W, Wu F, Zhang Y, Lin S, Liu Y, Wu J, Wang L. High Beclin-1 and ARID1A expression corelates with poor survival and high recurrence in intrahepatic cholangiocarcinoma: a histopathological retrospective study. BMC Cancer 2019; 19:213. [PMID: 30849962 PMCID: PMC6408801 DOI: 10.1186/s12885-019-5429-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background Although surgical resection provides a cure for patients with intrahepatic cholangiocarcinoma (ICC), the risk of mortality and recurrence remains high. Several biomarkers are reported to be associated with the prognosis of ICC, including Beclin-1, ARID1A, carbonic anhydrase IX (CA9) and isocitrate dehydrogenase 1 (IDH1), but results are inconsistent. Therefore, a histopathological retrospective study was performed to simultaneously investigate the relationship of these four potential biomarkers with clinicopathological parameters and their prognostic values in patients with ICC. Methods A total of 113 patients with ICC were enrolled from Cancer Hospital of Chinese Academy of Medical Sciences between January 1999 and June 2015. The expression of Beclin-1, ARID1A, IDH1 and CA9 were determined by immunohistochemical staining. The prognostic values of the four biomarkers were analyzed by Cox regression and the Kaplan-Meier method. Results Beclin-1, ARID1A, CA9 and IDH1 were highly expressed in ICC tumor tissues. Higher mortality was positively associated with Beclin-1 expression (HR = 2.39, 95% CI = 1.09–5.24) and higher recurrence was positively associated with ARID1A expression (HR = 1.71, 95% CI = 1.06–2.78). Neither CA9 nor IDH1 expression was significantly associated with mortality or disease recurrence. Kaplan-Meier survival curves showed that ICC patients with higher Beclin-1 and ARID1A expression had a lower survival rate and a worse recurrence rate than patients with low Beclin-1 and ARID1A expression (p < 0.05). Conclusions High Beclin-1 and ARIDIA expression are strongly associated with poor prognosis in ICC patients, and thus Beclin-1 and ARID1A should be simultaneously considered as potential prognostic biomarkers for ICC patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-5429-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yang Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shengtao Lin
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yunhe Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
30
|
Cui Y, Bai X, Niu M, Qin Y, Zhang X, Pang D. Upregulated expression of AT-rich interactive domain-containing protein 1B predicts poor prognosis in patients with triple-negative breast cancer. Oncol Lett 2019; 17:3289-3295. [PMID: 30867762 PMCID: PMC6396229 DOI: 10.3892/ol.2019.9961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
The expression of AT-rich interactive domain-containing protein 1B (ARID1B) was investigated in triple-negative breast cancer (TNBC). The association between ARID1B protein expression and the prognosis of patients with TNBC was investigated. The expression of ARID1B was examined in TNBC (n=142) and adjacent normal breast tissues (n=64) using immunohistochemical staining prior to the patients receiving any treatment. Furthermore, the association between ARID1B protein expression and various clinicopathological features was analyzed, including the survival status of patients with TNBC. Of the 142 TNBC tissues, ARID1B was highly expressed in 89 (62.7%) and poorly expressed in 53 (37.3%). ARID1B expression was associated with lymph node metastasis status, histological grade and p53 expression. ARID1B expression was upregulated significantly in the nuclei of TNBC cells compared with those of normal mammary epithelial cells. This upregulation was associated with a decreased progression-free survival rate (P=0.002) and overall survival rate (P=0.003). The results of the present study indicate that significant association exists between the nuclear expression of ARID1B and adverse prognosis in TNBC. Therefore, ARID1B may be a useful prognostic biomarker in TNBC.
Collapse
Affiliation(s)
- Yan Cui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China.,Department of Urology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xianan Bai
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Ming Niu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yu Qin
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
31
|
Kinali B, Senoglu M, Karadag FK, Karadag A, Middlebrooks EH, Oksuz P, Sandal E, Turk C, Diniz G. Hypoxia-Inducible Factor 1α and AT-Rich Interactive Domain-Containing Protein 1A Expression in Pituitary Adenomas: Association with Pathological, Clinical, and Radiological Features. World Neurosurg 2019; 121:e716-e722. [DOI: 10.1016/j.wneu.2018.09.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
|
32
|
Wu C, Lyu J, Yang EJ, Liu Y, Zhang B, Shim JS. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells. Nat Commun 2018; 9:3212. [PMID: 30097580 PMCID: PMC6086874 DOI: 10.1038/s41467-018-05694-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
ARID1A, a component of the SWI/SNF chromatin remodeling complex, is a tumor suppressor with a high frequency of inactivating mutations in many cancers. Therefore, ARID1A deficiency has been exploited therapeutically for treating cancer. Here we show that ARID1A has a synthetic lethal interaction with aurora kinase A (AURKA) in colorectal cancer (CRC) cells. Pharmacological and genetic perturbations of AURKA selectively inhibit the growth of ARID1A-deficient CRC cells. Mechanistically, ARID1A occupies the AURKA gene promoter and negatively regulates its transcription. Cells lacking ARID1A show enhanced AURKA transcription, which leads to the persistent activation of CDC25C, a key protein for G2/M transition and mitotic entry. Inhibiting AURKA activity in ARID1A-deficient cells significantly increases G2/M arrest and induces cellular multinucleation and apoptosis. This study shows a novel synthetic lethality interaction between ARID1A and AURKA and indicates that pharmacologically inhibiting the AURKA-CDC25C axis represents a novel strategy for treating CRC with ARID1A loss-of-function mutations.
Collapse
Affiliation(s)
- Changjie Wu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, 999078, Taipa, Macau SAR, China
| | - Junfang Lyu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, 999078, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, 999078, Taipa, Macau SAR, China
| | - Yifan Liu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, 999078, Taipa, Macau SAR, China
| | - Baoyuan Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, 999078, Taipa, Macau SAR, China
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, 999078, Taipa, Macau SAR, China.
| |
Collapse
|
33
|
ARID1A and CEBPα cooperatively inhibit UCA1 transcription in breast cancer. Oncogene 2018; 37:5939-5951. [PMID: 29980791 DOI: 10.1038/s41388-018-0371-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
|
34
|
Shanks A, Choi J, Karur V. Dramatic response to cyclin D-dependent kinase 4/6 inhibitor in refractory poorly differentiated neuroendocrine carcinoma of the breast. Proc (Bayl Univ Med Cent) 2018; 31:352-354. [PMID: 29904310 DOI: 10.1080/08998280.2018.1463041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 01/17/2023] Open
Abstract
Neuroendocrine tumors are a rare subset of breast carcinomas. Commonly, platinum-based doublet is used as a systemic treatment option for high-grade neuroendocrine carcinomas from lung, gastrointestinal, and genitourinary origins. In comparison to other breast cancers, neuroendocrine carcinomas have unique genomic features and different treatment strategies. We present a patient with high-grade neuroendocrine carcinoma of the breast who had a successful and durable response to the cyclin D-dependent kinase (CDK) 4/6 inhibitor palbociclib in conjunction with endocrine therapy. This patient was refractory to commonly used platinum-based chemotherapy as well as hormone-based treatment. To date, this is the first published case of use of CDK 4/6 inhibitor in primary neuroendocrine carcinoma of the breast.
Collapse
Affiliation(s)
| | - Julia Choi
- Texas A&M College of Medicine, Temple, Texas.,Department of Hematology and Oncology, Baylor Scott and White, Temple, Texas
| | - Vinit Karur
- Texas A&M College of Medicine, Temple, Texas.,Department of Hematology and Oncology, Baylor Scott and White, Temple, Texas
| |
Collapse
|
35
|
Yang L, Yang G, Ding Y, Dai Y, Xu S, Guo Q, Xie A, Hu G. Inhibition of PI3K/AKT Signaling Pathway Radiosensitizes Pancreatic Cancer Cells with ARID1A Deficiency in Vitro. J Cancer 2018; 9:890-900. [PMID: 29581767 PMCID: PMC5868153 DOI: 10.7150/jca.21306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 01/29/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is among the most aggressive human cancers, and is resistant to regular chemotherapy and radiotherapy. The AT-rich interactive domain containing protein 1A (ARID1A) gene, a crucial chromatin remodeling gene, mutates frequently in a broad spectrum of cancers, including pancreatic cancer. Recent evidence suggests that ARID1A acts as tumor suppressor and plays an important role in DNA damage repair (DDR). However, the effect of ARID1A on the radiosensitivity of pancreatic cancer remains unclear. Herein, we investigated the involvement of ARID1A depletion in the radioresistance of pancreatic cancer cells, and explored the underlying mechanisms. The results reveal that knockdown of ARID1A enhances the radioresistance of pancreatic cancer cells through suppressing apoptosis, impairing G2-M checkpoint arrest, strengthening DDR, and accompanying activation of PI3K/AKT signaling pathway. Moreover, upon inhibition of PI3K/AKT pathway by PI3K-inhibitor LY294002 or AKT-inhibitor mk2206, the radiosensitivity of ARID1A-deficient pancreatic cancer cells is improved in vitro via increased apoptosis and weakened DDR. Taken together, these data suggest that loss of ARID1A expression enhances radioresistance of pancreatic cancer through activation of PI3K/AKT pathway, which maybe a promising target for radiosensitization of ARID1A-deficient pancreatic cancer.
Collapse
Affiliation(s)
- Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingjun Ding
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 N 10 th St, Oklahoma City, OK, US, 73104
| | - Yuhong Dai
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sanpeng Xu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiuyun Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Aini Xie
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
36
|
Lu WC, Liu CJ, Tu HF, Chung YT, Yang CC, Kao SY, Chang KW, Lin SC. miR-31 targets ARID1A and enhances the oncogenicity and stemness of head and neck squamous cell carcinoma. Oncotarget 2018; 7:57254-57267. [PMID: 27528032 PMCID: PMC5302987 DOI: 10.18632/oncotarget.11138] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
miR-31 is oncogenic for head and neck squamous cell carcinoma (HNSCC). Proteins containing the AT-rich interacting domain (ARID) modulate the accessibility of chromatin to the transcription machinery needed for gene expression. In this study, we showed that miR-31 was able to target ARID1A in HNSCC. HNSCC tumors had an inverse miR-31 and ARID1A expression. miR-31 associated oncogenicities were rescued by ARID1A expression in HNSCC cells. Furthermore, ARID1A repressed the stemness properties and transcriptional activity of Nanog/OCT4/Sox2/EpCAM via the protein's affinity for AT-rich sites within promoters. HNSCC patients with tumors having high level of miR-31 expression and high levels of Nanog/OCT4/Sox2/EpCAM expression, together with low level of ARID1A expression, were found to have the worst survival. This study provides novel mechanistic clues demonstrating that miR-31 inhibits ARID1A and that this enriches the oncogenicity and stemness of HNSCC.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsi-Feng Tu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Tung Chung
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
37
|
Lin YF, Tseng IJ, Kuo CJ, Lin HY, Chiu IJ, Chiu HW. High-level expression of ARID1A predicts a favourable outcome in triple-negative breast cancer patients receiving paclitaxel-based chemotherapy. J Cell Mol Med 2018; 22:2458-2468. [PMID: 29392887 PMCID: PMC5867090 DOI: 10.1111/jcmm.13551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022] Open
Abstract
Paclitaxel‐based chemotherapy is a common strategy to treat patients with triple‐negative breast cancer (TNBC). As paclitaxel resistance is still a clinical issue in treating TNBCs, identifying molecular markers for predicting pathologic responses to paclitaxel treatment is thus urgently needed. Here, we report that an AT‐rich interaction domain 1A (ARID1A) transcript is up‐regulated in paclitaxel‐sensitive TNBC cells but down‐regulated in paclitaxel‐resistant cells upon paclitaxel treatment. Moreover, ARID1A expression was negatively correlated with the IC50 concentration of paclitaxel in the tested TNBC cell lines. Kaplan‐Meier analyses revealed that ARID1A down‐regulation was related to a poorer response to paclitaxel‐based chemotherapy in patients with TNBCs as measured by the recurrence‐free survival probability. The pharmaceutical inhibition with p38MAPK‐specific inhibitor SCIO‐469 revealed that p38MAPK‐related signalling axis regulates ARID1A expression and thereby modulates paclitaxel sensitivity in TNBC cells. These findings suggest that ARID1A could be used as a prognostic factor to estimate the pathological complete response for TNBC patients who decide to receive paclitaxel‐based chemotherapy.
Collapse
Affiliation(s)
- Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ing-Jy Tseng
- School of Gerontology Healthy Management, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Breast Surgery and General Surgery, Department of Surgery, Cardinal Tien Hospital, Xindian District, New Taipei City, Taiwan
| | - I-Jen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
38
|
Arnaud O, Le Loarer F, Tirode F. BAFfling pathologies: Alterations of BAF complexes in cancer. Cancer Lett 2018; 419:266-279. [PMID: 29374542 DOI: 10.1016/j.canlet.2018.01.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 01/08/2023]
Abstract
To activate or repress specific genes, chromatin is constantly modified by chromatin-remodeling complexes. Among these complexes, the SWItch/Sucrose Non-Fermenting (SWI/SNF) complex, also referred to as BRG1-Associated Factor (BAF) complex, moves the nucleosome along chromatin using energy provided by ATP hydrolysis. In mammalian organisms, the SWI/SNF complex is composed of 10-15 subunits, depending on cell type, and a defect in one of these subunits can have dramatic consequences. In this review we will focus on the alterations identified in the SWI/SNF (BAF) complex subunits that lead to cancerous pathologies. While SMARCB1 was the first mutated subunit to be reported in a majority of malignant rhabdoid tumors, the advent of next-generation sequencing allowed the discovery of mutations in various SWI/SNF subunits within a broad spectrum of cancers. In most cases, the mutation leads to a loss of expression or to a truncated subunit unable to perform its function. Even though it is now commonly acknowledged that approximately 20% of all cancers present a mutation in a SWI/SNF subunit, some cancers are associated to a specific alteration of a SWI/SNF subunit, which acts either as tumor suppressor genes or as oncogenes, and therefore constitute diagnostic or prognostic biomarkers. Consistently, therapeutic strategies targeting SWI/SNF subunits or the genes affected downstream have been revealed to treat cancers.
Collapse
Affiliation(s)
- Ophelie Arnaud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008, Lyon, France
| | | | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008, Lyon, France; Department of Translational Research and Innovation, Centre Léon Bérard, F-69008, Lyon, France.
| |
Collapse
|
39
|
Bassiouny D, Ismiil N, Dubé V, Han G, Cesari M, Lu FI, Slodkowska E, Parra-Herran C, Chiu HF, Naeim M, Li N, Khalifa M, Nofech-Mozes S. Comprehensive Clinicopathologic and Updated Immunohistochemical Characterization of Primary Ovarian Mucinous Carcinoma. Int J Surg Pathol 2018; 26:306-317. [PMID: 29338553 DOI: 10.1177/1066896917752861] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The distinction of primary mucinous ovarian carcinoma (PMOC) from other primaries or secondaries is essential for selecting therapeutic options and prognostication. We aimed to characterize the immunohistochemical profile of 36 PMOCs using an extended immunohistochemical panel, with clinicopathologic features and outcome. PAX8 was negative in 30 (83.3%), and SATB2 was negative in 32/35. HNF1B, AMACR, and napsin-A were detected in 33 (91.7%), 35 (97.2%), and 0 (0%), respectively. MMR proteins and ARID1A were retained in 100%; PTEN was lost in 4 (11.1%). P53 was aberrant in 10 (27.8%); none overexpressed p16. HER2 was positive in 6/35 (17.1%). Most PMOCs had a favorable outcome. However, recurrence is usually fatal. The typical tumor profile was CK7+, CK20+/-, CDX2+/-, PAX8-, ER-, PgR-, and SATB2-. HER2 positivity suggests a possible target for therapy in advanced disease.
Collapse
Affiliation(s)
- Dina Bassiouny
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada.,3 Mansoura University, Mansoura, Egypt
| | - Nadia Ismiil
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| | - Valerie Dubé
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| | - Guangming Han
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| | - Matthew Cesari
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| | - Fang-I Lu
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| | - Elzbieta Slodkowska
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| | - Carlos Parra-Herran
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| | - Hak Fai Chiu
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Magda Naeim
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nim Li
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mahmoud Khalifa
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| | - Sharon Nofech-Mozes
- 1 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression. Cell Death Dis 2018; 9:12. [PMID: 29317648 PMCID: PMC5849037 DOI: 10.1038/s41419-017-0020-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 12/29/2022]
Abstract
Infection with Helicobacter pylori (H. pylori) and the resulting gastric inflammation is regarded as the strongest risk factor for gastric carcinogenesis and progression. NF-κB plays an important role in linking H. pylori-mediated inflammation to cancer. However, the underlying mechanisms are poorly understood. In this study, we find that H. pylori infection induces miR-223-3p expression in H. pylori CagA-dependent manner. NF-κB stimulates miR-223-3p expression via directly binding to the promoter of miR-223-3p and is required for H. pylori CagA-mediated upregulation of miR-223-3p. miR-223-3p promotes the proliferation and migration of gastric cancer cells by directly targeting ARID1A and decreasing its expression. Furthermore, miR-223-3p/ARID1A axis is involved in CagA-induced cell proliferation and migration. In the clinical setting, the level of miR-223-3p is upregulated, while ARID1A is downregulated significantly in human gastric cancer tissues compared with the corresponding noncancerous tissues. The expression level of miR-223-3p is significantly higher in H. pylori-positive gastric cancer tissues than that in H. pylori-negative tissues. Moreover, a negative correlation between miR-223-3p and ARID1A expression is found in the gastric cancer tissues. Taken together, our findings suggested NF-κB/miR-223-3p/ARID1A axis may link the process of H. pylori-induced chronic inflammation to gastric cancer, thereby providing a new insight into the mechanism underlying H. pylori-associated gastric diseases.
Collapse
|
41
|
Chromatin remodeling gene AT-rich interactive domain-containing protein 1A suppresses gastric cancer cell proliferation by targeting PIK3CA and PDK1. Oncotarget 2018; 7:46127-46141. [PMID: 27323812 PMCID: PMC5216786 DOI: 10.18632/oncotarget.10060] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor gene AT-rich interactive domain-containing protein 1A (ARID1A) was frequently mutated in cancers. The modulation mechanism of ARID1A for PI3K/AKT signaling in gastric cancer (GC) remains elusive. Here, we found that depletion of endogenous ARID1A enhanced the in vitro proliferation, colony formation, cellular growth, nutrient uptake and in vivo xenograft tumor growth of GC cells. PI3K/AKT activation by ARID1A-silencing was profiled using a phospho-protein antibody array. The phosphorylation of PDK1, AKT, GSK3β and 70S6K, and the protein and mRNA expressions of PI3K and PDK1, were upregulated by ARID1A-silencing. Chromatin immunoprecipitation and luciferase reporter assay revealed that ARID1A-involved SWI/SNF complex inhibited PIK3CA and PDK1 transcription by direct binding to their promoters. Serial deletion mutation analyses revealed that the ARID1A central region containing the HIC1-binding domain, but not the ARID DNA-binding domain and the C-terminal domain, was essential for the inhibition of GC cell growth, PI3K/AKT pathway phosphorylation and its transcriptional modulation activity of PIK3CA and PDK1. The proliferation, cellular growth and glucose consumption of ARID1A-deficient GC cells were efficiently prohibited by allosteric inhibitors mk2206 and LY294002, which targeting AKT and PI3K, respectively. Both inhibitors also downregulated the phosphorylation of PI3K/AKT pathway in ARID1A-deficient GC cells. Such cells were sensitized to the treatment of LY294002, and AT7867, another inhibitor of AKT and p70S6K. The administration of LY294002 alone inhibited the in vivo growth of ARID1A- deficient GC cells in mouse xenograft model. Our study provides a novel insight into the modulatory function and mechanism of ARID1A in PI3K/AKT signaling in GC.
Collapse
|
42
|
Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst) 2017; 56:166-173. [PMID: 28641940 PMCID: PMC5547906 DOI: 10.1016/j.dnarep.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases.
Collapse
Affiliation(s)
- Naoko Shima
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States.
| | - Kayla D Pederson
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States
| |
Collapse
|
43
|
Hu Z, Yau C, Ahmed AA. A pan-cancer genome-wide analysis reveals tumour dependencies by induction of nonsense-mediated decay. Nat Commun 2017; 8:15943. [PMID: 28649990 PMCID: PMC5490262 DOI: 10.1038/ncomms15943] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Nonsense-mediated decay (NMD) eliminates transcripts with premature termination codons. Although NMD-induced loss-of-function has been shown to contribute to the genesis of particular cancers, its global functional consequence in tumours has not been characterized. Here we develop an algorithm to predict NMD and apply it on somatic mutations reported in The Cancer Genome Atlas. We identify more than 73 K mutations that are predicted to elicit NMD (NMD-elicit). NMD-elicit mutations in tumour suppressor genes (TSGs) are associated with significant reduction in gene expression. We discover cancer-specific NMD-elicit signatures in TSGs and cancer-associated genes. Our analysis reveals a previously unrecognized dependence of hypermutated tumours on hypofunction of genes that are involved in chromatin remodelling and translation. Half of hypermutated stomach adenocarcinomas are associated with NMD-elicit mutations of the translation initiators LARP4B and EIF5B. Our results unravel strong therapeutic opportunities by targeting tumour dependencies on NMD-elicit mutations.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, UK
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Christopher Yau
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahmed Ashour Ahmed
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, UK
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
44
|
Onder S, Fayda M, Karanlık H, Bayram A, Şen F, Cabioglu N, Tuzlalı S, İlhan R, Yavuz E. Loss of ARID1A expression is associated with poor prognosis in invasive micropapillary carcinomas of the breast: A clinicopathologic and immunohistochemical study with long-term survival analysis. Breast J 2017; 23:638-646. [DOI: 10.1111/tbj.12823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Semen Onder
- Department of Pathology; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - Merdan Fayda
- Department of Radiation Oncology; Institute of Oncology; Istanbul University; Istanbul Turkey
| | - Hasan Karanlık
- Surgical Oncology Unit; Institute of Oncology; Istanbul University; Istanbul Turkey
| | - Aysel Bayram
- Department of Pathology; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - Fatma Şen
- Department of Medical Oncology; Institute of Oncology; Istanbul University; Istanbul Turkey
| | - Neslihan Cabioglu
- Department of General Surgery; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - Sıtkı Tuzlalı
- Department of Pathology; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - Rıdvan İlhan
- Department of Pathology; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - Ekrem Yavuz
- Department of Pathology; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| |
Collapse
|
45
|
Agnihotri S, Jalali S, Wilson MR, Danesh A, Li M, Klironomos G, Krieger JR, Mansouri A, Khan O, Mamatjan Y, Landon-Brace N, Tung T, Dowar M, Li T, Bruce JP, Burrell KE, Tonge PD, Alamsahebpour A, Krischek B, Agarwalla PK, Bi WL, Dunn IF, Beroukhim R, Fehlings MG, Bril V, Pagnotta SM, Iavarone A, Pugh TJ, Aldape KD, Zadeh G. The genomic landscape of schwannoma. Nat Genet 2016; 48:1339-1348. [PMID: 27723760 DOI: 10.1038/ng.3688] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
Schwannomas are common peripheral nerve sheath tumors that can cause debilitating morbidities. We performed an integrative analysis to determine genomic aberrations common to sporadic schwannomas. Exome sequence analysis with validation by targeted DNA sequencing of 125 samples uncovered, in addition to expected NF2 disruption, recurrent mutations in ARID1A, ARID1B and DDR1. RNA sequencing identified a recurrent in-frame SH3PXD2A-HTRA1 fusion in 12/125 (10%) cases, and genomic analysis demonstrated the mechanism as resulting from a balanced 19-Mb chromosomal inversion on chromosome 10q. The fusion was associated with male gender predominance, occurring in one out of every six men with schwannoma. Methylation profiling identified distinct molecular subgroups of schwannomas that were associated with anatomical location. Expression of the SH3PXD2A-HTRA1 fusion resulted in elevated phosphorylated ERK, increased proliferation, increased invasion and in vivo tumorigenesis. Targeting of the MEK-ERK pathway was effective in fusion-positive Schwann cells, suggesting a possible therapeutic approach for this subset of tumors.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Animals
- Cell Line, Tumor
- DNA Methylation
- DNA Mutational Analysis
- DNA, Neoplasm
- Ear Neoplasms/genetics
- Exome
- Female
- Gene Fusion
- Genome, Human
- High-Temperature Requirement A Serine Peptidase 1
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mutation
- Neurilemmoma/genetics
- RNA, Neoplasm
- Sequence Analysis, DNA
- Sequence Analysis, RNA
- Serine Endopeptidases/genetics
- Spinal Neoplasms/genetics
- Vestibule, Labyrinth
Collapse
Affiliation(s)
- Sameer Agnihotri
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shahrzad Jalali
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark R Wilson
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mira Li
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - George Klironomos
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonathan R Krieger
- SPARC Biocentre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alireza Mansouri
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Osaama Khan
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yasin Mamatjan
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Natalie Landon-Brace
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Takyee Tung
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Dowar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tiantian Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kelly E Burrell
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter D Tonge
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amir Alamsahebpour
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Boris Krischek
- Department of Neurosurgery, University Hospital of Cologne, Cologne Germany
| | - Pankaj Kumar Agarwalla
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ian F Dunn
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael G Fehlings
- Department of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Vera Bril
- Department of Medicine (Neurology), and the Elizabeth Raab Neurofibromatosis Program, University of Toronto, Toronto, Ontario, Canada
| | - Stefano M Pagnotta
- Department of Science and Technology, Università degli Studi del Sannio, Benevento, Italy
- Department of Pathology and Cell Biology and Neurology, Columbia University, New York, New York, USA
| | - Antonio Iavarone
- Department of Pathology and Cell Biology and Neurology, Columbia University, New York, New York, USA
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth D Aldape
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology, Maryland Anderson Cancer Center, Houston, Texas, USA
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Cheng F, Zhao J, Hanker AB, Brewer MR, Arteaga CL, Zhao Z. Transcriptome- and proteome-oriented identification of dysregulated eIF4G, STAT3, and Hippo pathways altered by PIK3CA H1047R in HER2/ER-positive breast cancer. Breast Cancer Res Treat 2016; 160:457-474. [PMID: 27771839 PMCID: PMC10183099 DOI: 10.1007/s10549-016-4011-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/05/2016] [Indexed: 01/25/2023]
Abstract
PURPOSE Phosphatidylinositol 3-kinase (PI3K)/AKT pathway aberrations are common in human breast cancer. Furthermore, PIK3CA mutations are commonly associated with resistance to anti-epidermal growth factor receptor 2 (HER2) or anti-estrogen receptor (ER) agents in HER2 or ER positive (HER2+/ER+) breast cancer. Hence, deciphering the underlying mechanisms of PIK3CA mutations in HER2+/ER+ breast cancer would provide novel insights into elucidating resistance to anti-HER2/ER therapies. METHODS In this study, we systematically investigated the biological consequences of PIK3CA H1047R in HER2+/ER+ breast cancer by uniquely incorporating mRNA transcriptomic data from The Cancer Genome Atlas and proteomic data from reverse-phase protein arrays. RESULTS Our integrative bioinformatics analyses revealed that several important pathways such as STAT3 and VEGF/hypoxia were selectively altered by PIK3CA H1047R in HER2+/ER+ breast cancer. Protein differential expression analysis indicated that an elevated eIF4G might promote tumor angiogenesis and growth via regulation of the hypoxia-activated switch in HER2+ PIK3CA H1047R breast cancer. We observed hypo-phosphorylation of EGFR in HER2+ PIK3CA H1047R breast cancer versus HER2+PIK3CAwild-type (PIK3CA WT). In addition, ER and PIK3CA H1047R might cooperate to activate STAT3, MAPK, AKT, and Hippo pathways in ER+ PIK3CA H1047R breast cancer. A higher YAPpS127 level was observed in ER+ PIK3CA H1047R patients than that in an ER+ PIK3CA WT subgroup. By examining breast cancer cell lines having both microarray gene expression and drug treatment data from the Genomics of Drug Sensitivity in Cancer and the Stand Up to Cancer datasets, we found that the elevated YAP1 mRNA expression was associated with the resistance of BCL-2 family inhibitors, but with the sensitivity to MEK/MAPK inhibitors in breast cancer cells. CONCLUSIONS In summary, these findings shed light on the functional consequences of PIK3CA H1047R-driven breast tumorigenesis and resistance to the existing therapeutic agents in HER2+/ER+ breast cancer.
Collapse
Affiliation(s)
- Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Center for Complex Networks Research, Northeastern University, Boston, MA, 02115, USA
| | - Junfei Zhao
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ariella B Hanker
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Monica Red Brewer
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Carlos L Arteaga
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA. .,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
47
|
Goldman AR, Bitler BG, Schug Z, Conejo-Garcia JR, Zhang R, Speicher DW. The Primary Effect on the Proteome of ARID1A-mutated Ovarian Clear Cell Carcinoma is Downregulation of the Mevalonate Pathway at the Post-transcriptional Level. Mol Cell Proteomics 2016; 15:3348-3360. [PMID: 27654507 PMCID: PMC5098034 DOI: 10.1074/mcp.m116.062539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 12/24/2022] Open
Abstract
Inactivating mutations in ARID1A, which encodes a subunit of the SWI/SNF chromatin-remodeling complex, are found in over half of ovarian clear cell carcinoma cases and more broadly across most types of cancers. To identify ARID1A-dependent changes in intracellular signaling pathways, we performed proteome analyses of isogenic ovarian clear cell carcinoma cell lines with or without ARID1A expression. Knockout of ARID1A in an ovarian clear cell carcinoma cell line with wild-type ARID1A, OVCA429, primarily resulted in downregulation of the mevalonate pathway, an important metabolic pathway involved in isoprenoid synthesis, cholesterol synthesis, and other downstream pathways. In a complementary experiment, expression of wild-type ARID1A in an ovarian clear cell carcinoma cell line containing mutated ARID1A, OVISE, affected the mevalonate pathway in a reciprocal manner. A striking aspect of these analyses was that, although only 5% of the detected proteome showed significant abundance changes, most proteins in the mevalonate pathway were coordinately affected by ARID1A status. There were generally corresponding changes when comparing the proteomics data to our previously published microarray data for ectopic expression of ARID1A in the OVISE cell line. However, ARID1A-dependent changes were not detected for genes within the mevalonate pathway. This discrepancy suggests that the mevalonate pathway is not regulated directly by ARID1A-mediated transcription and may be regulated post-transcriptionally. We conclude that ARID1A status indirectly influences the mevalonate pathway and probably influences other processes including glycogen metabolism and 14-3-3-mediated signaling. Further, our findings demonstrate that changes in mRNA levels are sometimes poor indicators of signaling pathways affected by gene manipulations in cancer cells.
Collapse
Affiliation(s)
- Aaron R Goldman
- From the ‡Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Benjamin G Bitler
- §Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Zachary Schug
- From the ‡Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Jose R Conejo-Garcia
- ¶Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Rugang Zhang
- §Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - David W Speicher
- From the ‡Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104; .,‖The Center for Systems and Computational Biology, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| |
Collapse
|
48
|
Pavel AB, Vasile CI. Identifying cancer type specific oncogenes and tumor suppressors using limited size data. J Bioinform Comput Biol 2016; 14:1650031. [PMID: 27712196 DOI: 10.1142/s0219720016500311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is a complex and heterogeneous genetic disease. Different mutations and dysregulated molecular mechanisms alter the pathways that lead to cell proliferation. In this paper, we explore a method which classifies genes into oncogenes (ONGs) and tumor suppressors. We optimize this method to identify specific (ONGs) and tumor suppressors for breast cancer, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and colon adenocarcinoma (COAD), using data from the cancer genome atlas (TCGA). A set of genes were previously classified as ONGs and tumor suppressors across multiple cancer types (Science 2013). Each gene was assigned an ONG score and a tumor suppressor score based on the frequency of its driver mutations across all variants from the catalogue of somatic mutations in cancer (COSMIC). We evaluate and optimize this approach within different cancer types from TCGA. We are able to determine known driver genes for each of the four cancer types. After establishing the baseline parameters for each cancer type, we identify new driver genes for each cancer type, and the molecular pathways that are highly affected by them. Our methodology is general and can be applied to different cancer subtypes to identify specific driver genes and improve personalized therapy.
Collapse
Affiliation(s)
- Ana B Pavel
- 1 Graduate Program in Bioinformatics, Boston University, 24 Cummington Mall, MA 02215, Boston, USA
| | - Cristian I Vasile
- 2 Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Curigliano G, Gómez Pardo P, Meric-Bernstam F, Conte P, Lolkema MP, Beck JT, Bardia A, Martínez García M, Penault-Llorca F, Dhuria S, Tang Z, Solovieff N, Miller M, Di Tomaso E, Hurvitz SA. Ribociclib plus letrozole in early breast cancer: A presurgical, window-of-opportunity study. Breast 2016; 28:191-8. [PMID: 27336726 DOI: 10.1016/j.breast.2016.06.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Cyclin D-cyclin-dependent kinase (CDK) 4/6-inhibitor of CDK4/6-retinoblastoma (Rb) pathway hyperactivation is associated with hormone receptor-positive (HR+) breast cancer (BC). This study assessed the biological activity of ribociclib (LEE011; CDK4/6 inhibitor) plus letrozole compared with single-agent letrozole in the presurgical setting. MATERIALS AND METHODS Postmenopausal women (N = 14) with resectable, HR+, human epidermal growth factor receptor 2-negative (HER2-) early BC were randomized 1:1:1 to receive 2.5 mg/day letrozole alone (Arm 1), or with 400 or 600 mg/day ribociclib (Arm 2 or 3). Circulating tumor DNA and tumor biopsies were collected at baseline and, following 14 days of treatment, prior to or during surgery. The primary objective was to assess antiproliferative response per Ki67 levels in Arms 2 and 3 compared with Arm 1. Additional assessments included safety, pharmacokinetics, and genetic profiling. RESULTS Mean decreases in the Ki67-positive cell fraction from baseline were: Arm 1 69% (range 38-100%; n = 2), Arm 2 96% (range 78-100%; n = 6), Arm 3 92% (range 75-100%; n = 3). Decreased phosphorylated Rb levels and CDK4, CDK6, CCND2, CCND3, and CCNE1 gene expression were observed following ribociclib treatment. Ribociclib and letrozole pharmacokinetic parameters were consistent with single-agent data. The ribociclib plus letrozole combination was well tolerated, with no Grade 3/4 adverse events over the treatment. CONCLUSION The results suggest absence of a drug-drug interaction between ribociclib and letrozole and indicate ribociclib plus letrozole may reduce Ki67 expression in HR+, HER2- BC (NCT01919229).
Collapse
Affiliation(s)
- G Curigliano
- Istituto Europeo di Oncologia, via Ripamonti 435, 20141, Milan, Italy.
| | - P Gómez Pardo
- Servicio Oncologia Médica, Vall d'Hebron University Hospital, Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - F Meric-Bernstam
- The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | - P Conte
- Istituto Oncologico Veneto, Via Gattamelata 64, 35128, Padua, Italy; University of Padova, Via Giustiniani 22, 35121, Padua, Italy
| | - M P Lolkema
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands; Erasmus Medical Center Cancer Institute, Erasmus Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - J T Beck
- Highlands Oncology Group, 3232 N North Hills Blvd, Fayetteville, AR, 72703, USA
| | - A Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - M Martínez García
- Oncología Médica, Hospital del Mar, Passeig Marítim 25-29, 08003, Barcelona, Spain
| | - F Penault-Llorca
- Centre Jean Perrin, Unicancer and EA 4677 Université d'Auvergne, 58 rue Montalembert, 63011, Clermont-Ferrand, France
| | - S Dhuria
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936-1080, USA
| | - Z Tang
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936-1080, USA
| | - N Solovieff
- Novartis Institutes for BioMedical Research, 230 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - M Miller
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936-1080, USA
| | - E Di Tomaso
- Novartis Institutes for BioMedical Research, 230 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - S A Hurvitz
- University of California, Los Angeles, 2825 Santa Monica Blvd, Suite 211, Santa Monica, CA, 90404, USA
| |
Collapse
|
50
|
The Chromatin Remodeling Component Arid1a Is a Suppressor of Spontaneous Mammary Tumors in Mice. Genetics 2016; 203:1601-11. [PMID: 27280691 DOI: 10.1534/genetics.115.184879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/04/2016] [Indexed: 12/16/2022] Open
Abstract
Human cancer genome studies have identified the SWI/SNF chromatin remodeling complex member ARID1A as one of the most frequently altered genes in several tumor types. Its role as an ovarian tumor suppressor has been supported in compound knockout mice. Here, we provide genetic and functional evidence that Arid1a is a bona fide mammary tumor suppressor, using the Chromosome aberrations occurring spontaneously 3 (Chaos3) mouse model of sporadic breast cancer. About 70% of mammary tumors that formed in these mice contained a spontaneous deletion removing all or part of one Arid1a allele. Restoration of Arid1a expression in a Chaos3 mammary tumor line with low Arid1a levels greatly impaired its ability to form tumors following injection into cleared mammary glands, indicating that ARID1A insufficiency is crucial for maintenance of these Trp53-proficient tumors. Transcriptome analysis of tumor cells before and after reintroduction of Arid1a expression revealed alterations in growth signaling and cell-cycle checkpoint pathways, in particular the activation of the TRP53 pathway. Consistent with the latter, Arid1a reexpression in tumor cells led to increased p21 (Cdkn1a) expression and dramatic accumulation of cells in G2 phase of the cell cycle. These results not only provide in vivo evidence for a tumor suppressive and/or maintenance role in breast cancer, but also indicate a potential opportunity for therapeutic intervention in ARID1A-deficient human breast cancer subtypes that retain one intact copy of the gene and also maintain wild-type TRP53 activity.
Collapse
|