1
|
Guan X, Ruan Y, Che X, Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Radic Biol Med 2024; 210:120-129. [PMID: 37977211 DOI: 10.1016/j.freeradbiomed.2023.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Tumour cells often display an active metabolic profile, leading to the intracellular accumulation of reactive oxygen species. As a member of the peroxidase family, peroxiredoxin 1 (PRDX1) functions generally in protecting against cell damage caused by H2O2. Additionally, PRDX1 plays a role as a molecular chaperone in various malignant tumours, exhibiting either tumour-promoting or tumour-suppressing effects. Currently, PRDX1-targeting drugs have demonstrated in vitro anticancer effects, indicating the potential of PRDX1 as a molecular target. Here we discussed the diverse functions of PRDX1 in tumour biology and provided a comprehensive analysis of the therapeutic potential of targeting PRDX1 signalling across various types of cancer.
Collapse
Affiliation(s)
- Xin Guan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyin Ruan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Che
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Szeliga M, Rola R. Conoidin A, a Covalent Inhibitor of Peroxiredoxin 2, Reduces Growth of Glioblastoma Cells by Triggering ROS Production. Cells 2023; 12:1934. [PMID: 37566013 PMCID: PMC10417327 DOI: 10.3390/cells12151934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Compounds that cause oxidative stress have recently gained considerable interest as potential anticancer treatment modalities. Nevertheless, their efficiency may be diminished by the antioxidant systems often upregulated in cancer cells. Peroxiredoxins (PRDXs) are antioxidant enzymes that scavenge peroxides and contribute to redox homeostasis. They play a role in carcinogenesis and are upregulated in several cancer types. Here, we assessed the expression pattern of PRDX1 and PRDX2 in glioblastoma (GBM) and examined the efficacy of their inhibitors in GBM cell lines and patient-derived GBM cells. Both PRDX1 and PRDX2 were upregulated in GBM compared to non-tumor brain tissues and their considerable amounts were observed in GBM cells. Adenanthin, a compound inhibiting PRDX1 activity, slightly decreased GBM cell viability, while conoidin A (CONA), a covalent PRDX2 inhibitor, displayed high toxicity in GBM cells. CONA elevated the intracellular reactive oxygen species (ROS) level. Pre-treatment with an ROS scavenger protected cells from CONA-induced death, indicating that ROS accumulation plays a crucial role in this phenomenon. Menadione or celecoxib, both of which are ROS-inducing agents, potentiated the anticancer activity of CONA. Collectively, our results unveil PRDX1 and PRDX2 as potential targets for GBM therapy, and substantiate the further exploration of their inhibitors.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Radosław Rola
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 8 Jaczewskiego Str., 20-090 Lublin, Poland
| |
Collapse
|
3
|
Wen J, Huang Q, Yao J, Wei W, Li Z, Zhang H, Chang S, Pei H, Cao Y, Li H. Focusing on scRNA-seq-Derived T Cell-Associated Genes to Identify Prognostic Signature and Immune Microenvironment Status in Low-Grade Glioma. Mediators Inflamm 2023; 2023:3648946. [PMID: 37292257 PMCID: PMC10247320 DOI: 10.1155/2023/3648946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 06/10/2023] Open
Abstract
Background The clinical outcomes of low-grade glioma (LGG) are associated with T cell infiltration, but the specific contribution of heterogeneous T cell types remains unclear. Method To study the different functions of T cells in LGG, we mapped the single-cell RNA sequencing results of 10 LGG samples to obtain T cell marker genes. In addition, bulk RNA data of 975 LGG samples were collected for model construction. Algorithms such as TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER, XCELL, and EPIC were used to depict the tumor microenvironment landscape. Subsequently, three immunotherapy cohorts, PRJEB23709, GSE78820, and IMvigor210, were used to explore the efficacy of immunotherapy. Results The Human Primary Cell Atlas was used as a reference dataset to identify each cell cluster; a total of 15 cell clusters were defined and cells in cluster 12 were defined as T cells. According to the distribution of T cell subsets (CD4+ T cell, CD8+ T cell, Naïve T cell, and Treg cell), we selected the differentially expressed genes. Among the CD4+ T cell subsets, we screened 3 T cell-related genes, and the rest were 28, 4, and 13, respectively. Subsequently, according to the T cell marker genes, we screened six genes for constructing the model, namely, RTN1, HERPUD1, MX1, SEC61G, HOPX, and CHI3L1. The ROC curve showed that the predictive ability of the prognostic model for 1, 3, and 5 years was 0.881, 0.817, and 0.749 in the TCGA cohort, respectively. In addition, we found that risk scores were positively correlated with immune infiltration and immune checkpoints. To this end, we obtained three immunotherapy cohorts to verify their predictive ability of immunotherapy effects and found that high-risk patients had better clinical effects of immunotherapy. Conclusion This single-cell RNA sequencing combined with bulk RNA sequencing may elucidate the composition of the tumor microenvironment and pave the way for the treatment of low-grade gliomas.
Collapse
Affiliation(s)
- Jiayu Wen
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100020, China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100020, China
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Qiaoyi Huang
- Graduate College, Beijing University of Chinese Medicine, Beijing 100020, China
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Jiuxiu Yao
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Wei Wei
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100020, China
| | - Zehui Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Huiqin Zhang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Surui Chang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Hao Li
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100020, China
| |
Collapse
|
4
|
Identification of Prognostic and Predictive Biomarkers and Druggable Targets among 205 Antioxidant Genes in 21 Different Tumor Types via Data-Mining. Pharmaceutics 2023; 15:pharmaceutics15020427. [PMID: 36839749 PMCID: PMC9959161 DOI: 10.3390/pharmaceutics15020427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: Oxidative stress is crucial in carcinogenesis and the response of tumors to treatment. Antioxidant genes are important determinants of resistance to chemotherapy and radiotherapy. We hypothesized that genes involved in the oxidative stress response may be valuable as prognostic biomarkers for the survival of cancer patients and as druggable targets. (2) Methods: We mined the KM Plotter and TCGA Timer2.0 Cistrome databases and investigated 205 antioxidant genes in 21 different tumor types within the context of this investigation. (3) Results: Of 4347 calculations with Kaplan-Meier statistics, 84 revealed statistically significant correlations between high gene expression and worse overall survival (p < 0.05; false discovery rate ≤ 5%). The tumor types for which antioxidant gene expression was most frequently correlated with worse overall survival were renal clear cell carcinoma, renal papillary cell carcinoma, and hepatocellular carcinoma. Seventeen genes were clearly overexpressed in tumors compared to their corresponding normal tissues (p < 0.001), possibly qualifying them as druggable targets (i.e., ALOX5, ALOX5AP, EPHX4, G6PD, GLRX3, GSS, PDIA4, PDIA6, PRDX1, SELENOH, SELENON, STIP1, TXNDC9, TXNDC12, TXNL1, TXNL4A, and TXNRD1). (4) Conclusions: We concluded that a sub-set of antioxidant genes might serve as prognostic biomarkers for overall survival and as druggable targets. Renal and liver tumors may be the most suitable entities for this approach.
Collapse
|
5
|
Kılıç N, Boyacıoğlu Ö, Saltoğlu GT, Bulduk EB, Kurt G, Korkusuz P. Thioredoxin System and miR-21, miR-23a/b and let-7a as Potential Biomarkers for Brain Tumor Progression: Preliminary Case Data. World Neurosurg 2022; 167:e1299-e1309. [PMID: 36096386 DOI: 10.1016/j.wneu.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The thioredoxin system and microRNAs (miRNAs) are potential targets for both cancer progression and treatment. However, the role of miRNAs and their relation with the expression profile of thioredoxin system in brain tumor progression remains unclear. METHODS In this study, we aimed to determine the expression profiles of redox components Trx-1, TrxR-1 and PRDX-1, and oncogenic miR-21, miR-23a/b and let-7a and oncosuppressor miR-125 in different brain tumor tissues and their association with increasing tumor grade. We studied Trx-1, TrxR-1, and PRDX-1 messenger RNA expression levels by quantitative real-time polymerase chain reaction and protein levels by Western blot and miR-23a, miR-23b, miR-125a, miR-21, and let-7a miRNA expression levels by quantitative real-time polymerase chain reaction in 16 glioma, 15 meningioma, 5 metastatic, and 2 benign tumor samples. We also examined Trx-1, TrxR-1, and PRDX-1 protein levels in serum samples of 36 patients with brain tumor and 37 healthy volunteers by enzyme-linked immunosorbent assay. RESULTS We found that Trx-1, TrxR-1, and PRDX-1 presented high messenger RNA expression but low protein expression in low-grade brain tumor tissues, whereas they showed higher protein expression in sera of patients with low-grade brain tumors. miR-23b, miR-21, miR-23a, and let-7a were highly expressed in low-grade brain tumor tissues and positively correlated with the increase in thioredoxin system activity. CONCLUSIONS Our findings showed that Trx-1, TrxR-1, miR-21, miR-23a/b, and let-7a might be used for brain tumor diagnosis in the clinic. Further prospective studies including molecular pathway analyses are required to validate the miRNA/Trx system regulatory axis in brain tumor progression.
Collapse
Affiliation(s)
- Nedret Kılıç
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Gölbaşı, Ankara, Turkey.
| | - Özge Boyacıoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Gölbaşı, Ankara, Turkey; Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey
| | - Gamze Turna Saltoğlu
- Department of Biochemistry, Faculty of Medicine, Kırşehir Ahi Evran University, Bağbaşı, Kırşehir, Turkey
| | - Erkut Baha Bulduk
- Department of Neurosurgery, Faculty of Medicine, Atılım University, Gölbaşı, Ankara, Turkey
| | - Gökhan Kurt
- Department of Neurosurgery, Faculty of Medicine, Gazi University, Beşevler, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, Turkey
| |
Collapse
|
6
|
Mathieu V, Superchi S, Masi M, Scafato P, Kornienko A, Evidente A. In Vitro Effects of Fungal Phytotoxins on Cancer Cell Viability: First Insight into Structure Activity Relationship of a Potent Metabolite of Cochliobolus australiensis Radicinin. Toxins (Basel) 2022; 14:toxins14080517. [PMID: 36006179 PMCID: PMC9415302 DOI: 10.3390/toxins14080517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/18/2023] Open
Abstract
Natural compounds have always represented an important source for new drugs. Although fungi represent one such viable source, to date, no fungal metabolite has been marketed as an anticancer drug. Based on our work with phytotoxins as potential chemical scaffolds and our recent findings involving three phytopathogenic fungi, i.e., Cochliobolus australiensis, Kalmusia variispora and Hymenoscyphus fraxineus, herein, we evaluate the in vitro anti-cancer activity of the metabolites of these fungi by MTT assays on three cancer cell models harboring various resistance levels to chemotherapeutic drugs. Radicinin, a phytotoxic dihydropyranopyran-4,5-dione produced by Cochliobolus australiensis, with great potential for the biocontrol of the invasive weed buffelgrass (Cenchrus ciliaris), showed significant anticancer activity in the micromolar range. Furthermore, a SAR study was carried out using radicinin, some natural analogues and hemisynthetic derivatives prepared by synthetic methods developed as part of work aimed at the potential application of these molecules as bioherbicides. This investigation opens new avenues for the design and synthesis of novel radicinin analogues as potential anticancer agents.
Collapse
Affiliation(s)
- Veronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Accès 2, 1050 Ixelles, Belgium
- ULB Cancer Research Center, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
- Correspondence: (V.M.); (P.S.)
| | - Stefano Superchi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Marco Masi
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.E.)
| | - Patrizia Scafato
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Correspondence: (V.M.); (P.S.)
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA;
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.E.)
| |
Collapse
|
7
|
Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022; 154:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.
Collapse
|
8
|
Szeliga M. Comprehensive analysis of the expression levels and prognostic values of PRDX family genes in glioma. Neurochem Int 2021; 153:105256. [PMID: 34968631 DOI: 10.1016/j.neuint.2021.105256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Gliomas are a histologically and molecularly heterogeneous group of neoplasms accounting for 80% of malignant primary brain tumors. Growing evidence suggests that production of reactive oxygen species (ROS) is linked to glioma pathogenesis, although it is still unclear whether it is a cause or an effect of this process. Peroxiredoxins (PRDXs), a family of six antioxidant proteins, may promote or inhibit carcinogenesis, depending on the tumor type and stage. The current knowledge on their expression, regulation and functions in glioma is scarce. In this study, a comprehensive analysis of PRDXs expression in distinct glioma subtypes and non-tumor brain tissues was conducted using gene expression data from The Cancer Genome Atlas (TCGA), REpository for Molecular BRAin NeoplasiaDaTa (REMBRANDT), The Chinese Glioma Atlas (CGGA) and Gene Expression Omnibus (GEO) datasets. The association between gene expression and patient survival was investigated. DNA methylation, mutations, copy number alterations of deregulated PRDXs as well as the correlation between gene expression and tumor-infiltrating immune cells were assessed. The analysis revealed overexpression of PRDX1, PRDX4, and PRDX6 in most histological glioma types compared to the non-tumor tissues, while PRDX2, PRDX3 and PRDX5 expression remained unaltered. The expression of PRDX4 and PRDX6 was higher in mesenchymal than proneural and classical glioma subtypes. Moreover, lower expression of PRDX1, PRDX4 and PRDX6 was observed in tumors with a glioma CpG island methylator phenotype (G-CIMP) compared to non-G-CIMP tumors, as well as in isocitrate dehydrogenase (IDH) mutant and 1p/19q co-deleted gliomas compared to the wild-type counterparts. High expression of PRDX1, PRDX4 or PRDX6 correlated with poor survival of glioma patients. PRDX1 and PRDX6 displayed a positive correlation with different immune cell population in low grade gliomas and, to a lesser extent, in glioblastoma. PRDX1 expression exhibited negative correlation with DNA methylation. These results indicate that high expression of PRDX1, PRDX4 and PRDX6 is associated with poor outcome in gliomas.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
9
|
Cheng L, Yuan M, Li S, Lian Z, Chen J, Lin W, Zhang J, Zhong S. Identification of an IFN-β-associated gene signature for the prediction of overall survival among glioblastoma patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:925. [PMID: 34350240 PMCID: PMC8263857 DOI: 10.21037/atm-21-1986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Background Brain glioblastoma multiforme (GBM) is the most common primary malignant intracranial tumor. The prognosis of this disease is extremely poor. While the introduction of β-interferon (IFN-β) regimen in the treatment of gliomas has significantly improved the outcome of patients; The mechanism by which IFN-β induces increased TMZ sensitivity has not been described. Therefore, the main objective of the study was to elucidate the molecular mechanisms responsible for the beneficial effect of IFNβ in GBM. Methods Messenger RNA expression profiles and clinicopathological data were downloaded from The Cancer Genome Atlas (TCGA) GBM and GSE83300 dataset from the Gene Expression Omnibus. Univariate Cox regression analysis and lasso Cox regression model established a novel 4-gene IFN-β signature (peroxiredoxin 1, Sec61 subunit beta, X-ray repair cross-complementing 5, and Bcl-2-like protein 2) for GBM prognosis prediction. Further, GBM samples (n=50) and normal brain tissues (n=50) were then used for real-time polymerase chain reaction experiments. Gene set enrichment analysis (GSEA) was performed to further understand the underlying molecular mechanisms. Pearson correlation was applied to calculate the correlation between the long non-coding RNAs (lncRNAs) and IFN-β-associated genes. An lncRNA with a correlation coefficient |R2|>0.3 and P<0.05 was considered to be an IFN-β-associated lncRNA. Results Patients in the high-risk group had significantly poorer survival than patients in the low-risk group. The signature was found to be an independent prognostic factor for GBM survival. Furthermore, GSEA revealed several significantly enriched pathways, which might help explain the underlying mechanisms. Our study identified a novel robust 4-gene IFN-β signature for GBM prognosis prediction. The signature might contain potential biomarkers for metabolic therapy and treatment response prediction for GBM patients. Conclusions In the present study, we established a novel IFN-β-associated gene signature to predict the overall survival of GBM patients, which may help in clinical decision making for individual treatment.
Collapse
Affiliation(s)
- Lijing Cheng
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali University, Dali, China.,Clinical Medical School, Dali University, Dali, China
| | - Meiling Yuan
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali University, Dali, China.,Clinical Medical School, Dali University, Dali, China
| | - Shu Li
- Department of Neurology, Jinshan Hospital, Benxi Jinshan Affiliated Hospital of Dalian Medical University, Benxi, China
| | - Zhiying Lian
- Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Junjing Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Weibiao Lin
- Department of Neurosurgery, Zhongshan City People's Hospital, Zhongshan, China
| | - Jianbo Zhang
- Department of Neurosurgery, Zhongshan City People's Hospital, Zhongshan, China
| | - Shupeng Zhong
- Department of Oncology, Zhongshan City People's Hospital, Zhongshan, China
| |
Collapse
|
10
|
Li Z, Cai S, Li H, Gu J, Tian Y, Cao J, Yu D, Tang Z. Developing a lncRNA Signature to Predict the Radiotherapy Response of Lower-Grade Gliomas Using Co-expression and ceRNA Network Analysis. Front Oncol 2021; 11:622880. [PMID: 33767991 PMCID: PMC7985253 DOI: 10.3389/fonc.2021.622880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Lower-grade glioma (LGG) is a type of central nervous system tumor that includes WHO grade II and grade III gliomas. Despite developments in medical science and technology and the availability of several treatment options, the management of LGG warrants further research. Surgical treatment for LGG treatment poses a challenge owing to its often inaccessible locations in the brain. Although radiation therapy (RT) is the most important approach in this condition and offers more advantages compared to surgery and chemotherapy, it is associated with certain limitations. Responses can vary from individual to individual based on genetic differences. The relationship between non-coding RNA and the response to radiation therapy, especially at the molecular level, is still undefined. METHODS In this study, using The Cancer Genome Atlas dataset and bioinformatics, the gene co-expression network that is involved in the response to radiation therapy in lower-grade gliomas was determined, and the ceRNA network of radiotherapy response was constructed based on three databases of RNA interaction. Next, survival analysis was performed for hub genes in the co-expression network, and the high-efficiency biomarkers that could predict the prognosis of patients with LGG undergoing radiotherapy was identified. RESULTS We found that some modules in the co-expression network were related to the radiotherapy responses in patients with LGG. Based on the genes in those modules and the three databases, we constructed a ceRNA network for the regulation of radiotherapy responses in LGG. We identified the hub genes and found that the long non-coding RNA, DRAIC, is a potential molecular biomarker to predict the prognosis of radiotherapy in LGG.
Collapse
Affiliation(s)
- Zhongyang Li
- School of Radiation Medicine and Protection, Soochow University Medical College (SUMC), Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Provincial Key Laboratory of Geriatrics Prevention and Translational Medicine, School of Public Health, Soochow University Medical College, Suzhou, China
| | - Jincheng Gu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Provincial Key Laboratory of Geriatrics Prevention and Translational Medicine, School of Public Health, Soochow University Medical College, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Soochow University Medical College (SUMC), Suzhou, China
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Dong Yu
- School of Radiation Medicine and Protection, Soochow University Medical College (SUMC), Suzhou, China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Provincial Key Laboratory of Geriatrics Prevention and Translational Medicine, School of Public Health, Soochow University Medical College, Suzhou, China
| |
Collapse
|
11
|
Olivier C, Oliver L, Lalier L, Vallette FM. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Front Mol Biosci 2021; 7:620677. [PMID: 33585565 PMCID: PMC7873048 DOI: 10.3389/fmolb.2020.620677] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Glioblastomas (GBM) are the most common primary brain tumor with a median survival of 15 months. A population of cells with stem cell properties (glioblastoma stem cells, GSCs) drives the initiation and progression of GBM and is localized in specialized microenvironments which support their behavior. GBM are characterized as extremely resistant to therapy, resulting in tumor recurrence. Reactive oxygen species (ROS) control the cellular stability by influencing different signaling pathways. Normally, redox systems prevent cell oxidative damage; however, in gliomagenesis, the cellular redox mechanisms are highly impaired. Herein we review the dual nature of the redox status in drug resistance. ROS generation in tumor cells affects the cell cycle and is involved in tumor progression and drug resistance in GBM. However, excess ROS production has been found to induce cell death programs such as apoptosis and autophagy. Since GBM cells have a high metabolic rate and produce high levels of ROS, metabolic adaptation in these cells plays an essential role in resistance to oxidative stress-induced cell death. Finally, the microenvironment with the stromal components participates in the enhancement of the oxidative stress to promote tumor progression and drug resistance.
Collapse
Affiliation(s)
- Christophe Olivier
- Faculté des Sciences Pharmaceutiques et Biologiques, Nantes, France.,Université de Nantes, INSERM, CRCINA, Nantes, France
| | - Lisa Oliver
- Université de Nantes, INSERM, CRCINA, Nantes, France.,CHU de Nantes, Nantes, France
| | - Lisenn Lalier
- Université de Nantes, INSERM, CRCINA, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| | - François M Vallette
- Université de Nantes, INSERM, CRCINA, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| |
Collapse
|
12
|
Pellerino A, Bruno F, Internò V, Rudà R, Soffietti R. Current clinical management of elderly patients with glioma. Expert Rev Anticancer Ther 2020; 20:1037-1048. [PMID: 32981392 DOI: 10.1080/14737140.2020.1828867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The incidence of gliomas is increasing in elderly patients. Clinical factors, such as age, performance status, and comorbidities contribute when choosing adequate treatment in older patients. AREAS COVERED This review covers the main pathological and molecular features of gliomas in elderly patients, as well as the neurological and geriatric assessment to select patients for surgery and antineoplastic treatments. The results from the most relevant clinical trials in both lower-grade (LGGs) and high-grade gliomas (HGGs) are reviewed. EXPERT OPINION Different clinical and biological factors need to be integrated into prognostic scales in order to better stratify the elderly population. Both Stupp and Perry regimens can be proposed to fit patients with GBM aged < 70 years. Conversely, for patients aged ≥ 70 years, the Perry regimen should be preferred. For unfit and frail patients, temozolomide alone when MGMT is methylated or hypofractionated RT alone when MGMT is unmethylated, are the optimal choice. Few data are available regarding the optimal management of elderly patients with LGGs. The benefit of an extensive resection and presence of methylation of the MGMT promoter need to be further investigated to confirm their role in improving the OS.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| | - Francesco Bruno
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro , Bari, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| |
Collapse
|
13
|
Zhang X, Gao F, Li N, Zhang J, Dai L, Yang H. Peroxiredoxins and Immune Infiltrations in Colon Adenocarcinoma: Their Negative Correlations and Clinical Significances, an In Silico Analysis. J Cancer 2020; 11:3124-3143. [PMID: 32231717 PMCID: PMC7097948 DOI: 10.7150/jca.38057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/04/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Peroxiredoxins (PRDXs) were reported to be associated with inflammation response in previous studies. In colon adenocarcinoma (COAD), however, their correlations and clinical significance were unclear. Methods: The RNA-seq data of 452 COAD patients with clinical information was downloaded from The Cancer Genome Atlas (TCGA) and transcripts per million (TPM) normalized. Comparisons of relative expressions of PRDXs between COAD tumor and normal controls were applied. PRDXs dy-regulations in COAD were validated via Oncomine, Human Protein Atlas (HPA) and Gene Expression Omnibus (GEO) repository. Through Tumor Immune Estimation Resource (TIMER), the immune estimation of TCGA-COAD patients was downloaded and the dy-regulated PRDXs were analyzed for their correlations with immune infiltrations in COAD. The TCGA-COAD patients were divided into younger group (age≤65 years) and older group (age>65 years) to investigate the prognostic roles of age, TNM stage, dy-regulated PRDXs and the immune infiltrations in different age groups through Kaplan-Meier survival and Cox regression analyses. Results: Three of the PRDX members showed their expressional differences both at protein and mRNA level. PRDX2 was consistently up-regulated while PRDX6 down-regulated in COAD. PRDX1 was overexpressed (mRNA) while nuclear absent (protein) in the tumor tissues. PRDX1 overexpression and PRDX6 under-expression were also shown in the stem-like colonospheres from colon cancer cells. Via TIMER, PRDX1, PRDX2, and PRDX6 were found to be negatively correlated with the immune infiltrations in COAD. Both in the younger and older patients, TNM stage had prognostic effects on their overall survival (OS) and recurrence-free survival (RFS). CD4+ T cell had independent unfavorable effects on OS of the younger patients while age had similar effects on RFS of the older ones. CD8+ T cell was independently prognostic for RFS in the two groups. Conclusions: Late diagnosis indicated poor prognosis in COAD and dy-regulated PRDXs w might be new markers for its early diagnosis. Age was prognostic and should be considered in the treatments of the older patients. Dy-regulated PRDXs were negatively correlated with immune infiltration levels. CD4+ T cell and CD8+ T cell infiltrations were prognostic in COAD and their potential as immune targets needed further investigation.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China.,Medical Laboratory Center, Henan Medical College, Zhengzhou, Henan Province, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fenglan Gao
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China
| | - Jinzhong Zhang
- Medical Laboratory Center, Henan Medical College, Zhengzhou, Henan Province, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongmei Yang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China.,Medical Laboratory Center, Henan Medical College, Zhengzhou, Henan Province, China
| |
Collapse
|
14
|
Cancer-Associated Function of 2-Cys Peroxiredoxin Subtypes as a Survival Gatekeeper. Antioxidants (Basel) 2018; 7:antiox7110161. [PMID: 30423872 PMCID: PMC6262534 DOI: 10.3390/antiox7110161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells are abnormal cells that do not comply with tissue homeostasis but undergo uncontrolled proliferation. Such abnormality is driven mostly by somatic mutations on oncogenes and tumor suppressors. Cancerous mutations show intra-tumoral heterogeneity across cancer types and eventually converge into the self-activation of proliferative signaling. While transient production of intracellular reactive oxygen species (ROS) is essential for cell signaling, its persistent production is cytotoxic. Thus, cancer cells require increased levels of intracellular ROS for continuous proliferation, but overexpress cellular peroxidase enzymes, such as 2-Cys peroxiredoxins, to maintain ROS homeostasis. However, suppression of 2-Cys peroxiredoxins has also been reported in some metastatic cancers. Hence, the cancer-associated functions of 2-Cys peroxiredoxins must be illuminated in the cellular context. In this review, we describe the distinctive signaling roles of 2-Cys peroxiredoxins beyond their intrinsic ROS-scavenging role in relation to cancer cell death and survival.
Collapse
|
15
|
Wirthschaft P, Bode J, Simon AEM, Hoffmann E, van Laack R, Krüwel T, Dietrich F, Bucher D, Hahn A, Sahm F, Breckwoldt MO, Kurz FT, Hielscher T, Fischer B, Dross N, Ruiz de Almodovar C, von Deimling A, Herold-Mende C, Plass C, Boulant S, Wiestler B, Reifenberger G, Lichter P, Wick W, Tews B. A PRDX1-p38α heterodimer amplifies MET-driven invasion of IDH-wildtype and IDH-mutant gliomas. Int J Cancer 2018; 143:1176-1187. [PMID: 29582423 DOI: 10.1002/ijc.31404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/12/2018] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
The Peroxiredoxin 1 (PRDX1) gene maps to chromosome arm 1p and is hemizygously deleted and epigenetically silenced in isocitrate dehydrogenase 1 or 2 (IDH)-mutant and 1p/19q-codeleted oligodendroglial tumors. In contrast, IDH-wildtype astrocytic gliomas including glioblastomas mostly lack epigenetic silencing and express PRDX1 protein. In our study, we investigated how PRDX1 contributes to the infiltrative growth of IDH-wildtype gliomas. Focusing on p38α-dependent pathways, we analyzed clinical data from 133 patients of the NOA-04 trial cohort to look for differences in the gene expression profiles of gliomas with wildtype or mutant IDH. Biochemical interaction studies as well as in vitro and ex vivo migration studies were used to establish a biological role of PRDX1 in maintaining pathway activity. Whole-brain high-resolution ultramicroscopy and survival analyses of pre-clinical mouse models for IDH-wildtype gliomas were then used for in vivo confirmation. Based on clinical data, we found that the absence of PRDX1 is associated with changes in the expression of MET/HGF signaling components. PRDX1 forms a heterodimer with p38α mitogen-activated protein kinase 14 (MAPK14), stabilizing phospho-p38α in glioma cells. This process amplifies hepatocyte growth factor (HGF)-mediated signaling and stimulates actin cytoskeleton dynamics that promote glioma cell migration. Whole-brain high-resolution ultramicroscopy confirms these findings, indicating that PRDX1 promotes glioma brain invasion in vivo. Finally, reduced expression of PRDX1 increased survival in mouse glioma models. Thus, our preclinical findings suggest that PRDX1 expression levels may serve as a molecular marker for patients who could benefit from targeted inhibition of MET/HGF signaling.
Collapse
Affiliation(s)
- Peter Wirthschaft
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Anika E M Simon
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Elisa Hoffmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Rebecca van Laack
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Fabio Dietrich
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Delia Bucher
- Schaller Research Group at Cell Networks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, DKFZ, Heidelberg, Germany
| | - Artur Hahn
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Michael O Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernd Fischer
- Junior Research Group Computational Genome Biology, DKFZ, Heidelberg, Germany
| | - Nicolas Dross
- Centre for Organismal Studies, Nikon Imaging Center at the University of Heidelberg, Heidelberg, Germany
| | - Carmen Ruiz de Almodovar
- Heidelberg University Biochemistry Center BZH, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at Cell Networks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, DKFZ, Heidelberg, Germany
| | - Benedikt Wiestler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Hospital Düsseldorf, and DKTK, DKFZ Heidelberg, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Peter Lichter
- Division of Molecular Genetics, DKFZ, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| |
Collapse
|
16
|
Yu W, Wu J, Ning ZL, Liu QY, Quan RL. High Expression of Peroxiredoxin 1 Is Associated with Epithelial-Mesenchymal Transition Marker and Poor Prognosis in Gastric Cancer. Med Sci Monit 2018; 24:2259-2270. [PMID: 29656298 PMCID: PMC5917825 DOI: 10.12659/msm.908722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Recent studies show that peroxiredoxin 1 (Prdx1) contributes to the progression and poor prognosis of carcinoma through multiple mechanisms. However, there is little information on its expression and prognostic value in gastric cancer. This study investigated the expression of Prdx1 in gastric cancer, along with evaluating its clinical-pathological and prognostic importance. Material/Methods A total of 189 pairs of gastric cancer and paracarcinomatous tissues were assessed for Prdx1 expression and its association with clinical characteristics. The molecular mechanism was further investigated through in vitro experimentation. Results The mRNA and protein levels of Prdx1 in the GC tissues were higher than in the peri-tumor tissues. We also found that high Prdx1 expression was positively correlated with the lymph node invasion and poor prognosis. It also served as an autonomous prognostic factor for patients with gastric cancer. Moreover, Prdx1 regulates the invasion and metastasis of GC cell lines through inhibiting E-Ca expression. Conclusions Prdx1 can promote epithelial-mesenchymal transition and gastric cancer progression. Therefore, it might be a therapeutic target and prognostic indicator for gastric cancer patients.
Collapse
Affiliation(s)
- Wei Yu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Jing Wu
- Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Zhong-Liang Ning
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Qiao-Yu Liu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Rui-Liang Quan
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| |
Collapse
|
17
|
Substituted Caffeic and Ferulic Acid Phenethyl Esters: Synthesis, Leukotrienes Biosynthesis Inhibition, and Cytotoxic Activity. Molecules 2017; 22:molecules22071124. [PMID: 28684707 PMCID: PMC6152019 DOI: 10.3390/molecules22071124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor that correlates with short patient survival and for which therapeutic options are limited. Polyphenolic compounds, including caffeic acid phenethyl ester (CAPE, 1a), have been investigated for their anticancer properties in several types of cancer. To further explore these properties in brain cancer cells, a series of caffeic and ferulic acid esters bearing additional oxygens moieties (OH or OCH3) were designed and synthesized. (CAPE, 1a), but not ferulic acid phenethyl ester (FAPE, 1b), displayed substantial cytotoxicity against two glioma cell lines. Some but not all selected compounds derived from both (CAPE, 1a) and (FAPE, 1b) also displayed cytotoxicity. All CAPE-derived compounds were able to significantly inhibit 5-lipoxygenase (5-LO), however FAPE-derived compounds were largely ineffective 5-LO inhibitors. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds in cancer models and provides additional leads in the development of novel therapeutic strategies in gliomas.
Collapse
|
18
|
Morrison R, Lodge T, Evidente A, Kiss R, Townley H. Ophiobolin A, a sesterpenoid fungal phytotoxin, displays different mechanisms of cell death in mammalian cells depending upon the cancer cell origin. Int J Oncol 2017; 50:773-786. [PMID: 28112374 PMCID: PMC5358713 DOI: 10.3892/ijo.2017.3858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Herein we have undertaken a systematic analysis of the effects of the fungal derivative ophiobolin A (OphA) on eight cancer cell lines from different tissue types. The LD50 for each cell line was determined and the change in cell size determined. Flow cytometric analysis and western blotting were used to assess the cell death markers for early apoptosis, late apoptosis and necrosis, and the involvement of the caspase signalling pathway. Alterations in calcium levels and reactive oxygen species were assessed due to their integral involvement in intracellular signalling. Subsequently, the endoplasmic reticulum (ER) and mitochondrial responses were investigated more closely. The extent of ER swelling, and the upregulation of proteins involved in the unfolded protein responses (UPR) were seen to vary according to cell line. The mitochondria were also shown to behave differently in response to the OphA in the different cell lines in terms of the change in membrane potential, the total area of mitochondria in the cell and the number of mitochondrial bifurcations. The data obtained in the present study indicate that the cancer cell lines tested are unable to successfully activate the ER stress/UPR responses, and that the mitochondria appear to be a central player in OphA-induced cancer cell death.
Collapse
Affiliation(s)
- Rachel Morrison
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Tiffany Lodge
- Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Universita di Napoli Federico II Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Experimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Helen Townley
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Ow SH, Chua PJ, Bay BH. Epigenetic regulation of peroxiredoxins: Implications in the pathogenesis of cancer. Exp Biol Med (Maywood) 2016; 242:140-147. [PMID: 27633575 DOI: 10.1177/1535370216669834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peroxiredoxin I to VI (PRX I-VI), a family of highly conserved antioxidants, has been implicated in numerous diseases. There have been reports that PRXs are expressed aberrantly in a variety of tumors, implying that they could play an important role in carcinogenesis. Epigenetic mechanisms such as DNA methylation, histone modifications, and microRNAs have been reported to modulate expression of PRXs. In addition, the use of epigenetic regulators, such as histone deacetylases, has been demonstrated to restore PRX to normal levels, indicating that the reversible nature of epigenetics can be exploited for future treatments.
Collapse
Affiliation(s)
- Suet-Hui Ow
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Pei-Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
20
|
Ding C, Fan X, Wu G. Peroxiredoxin 1 - an antioxidant enzyme in cancer. J Cell Mol Med 2016; 21:193-202. [PMID: 27653015 PMCID: PMC5192802 DOI: 10.1111/jcmm.12955] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs), a ubiquitous family of redox‐regulating proteins, are reported of potential to eliminate various reactive oxygen species (ROS). As a major member of the antioxidant enzymes, PRDX1 can become easily over‐oxidized on its catalytically active cysteine induced by a variety of stimuli in vitro and in vivo. In nucleus, oligomeric PRDX1 directly associates with p53 or transcription factors such as c‐Myc, NF‐κB and AR, and thus affects their bioactivities upon gene regulation, which in turn induces or suppresses cell death. Additionally, PRDX1 in cytoplasm has anti‐apoptotic potential through direct or indirect interactions with several ROS‐dependent (redox regulation) effectors, including ASK1, p66Shc, GSTpi/JNK and c‐Abl kinase. PRDX1 is proven to be a versatile molecule regulating cell growth, differentiation and apoptosis. Recent studies have found that PRDX1 and/or PRDX1‐regulated ROS‐dependent signalling pathways play an important role in the progression and metastasis of human tumours, particularly in breast, oesophageal and lung cancers. In this paper, we review the structure, effector functions of PRDX1, its role in cancer and the pivotal role of ROS in anticancer treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Sun YL, Cai JQ, Liu F, Bi XY, Zhou LP, Zhao XH. Aberrant expression of peroxiredoxin 1 and its clinical implications in liver cancer. World J Gastroenterol 2015; 21:10840-10852. [PMID: 26478675 PMCID: PMC4600585 DOI: 10.3748/wjg.v21.i38.10840] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/02/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression characteristics of peroxiredoxin 1 (PRDX1) mRNA and protein in liver cancer cell lines and tissues.
METHODS: The RNA sequencing data from 374 patients with liver cancer were obtained from The Cancer Genome Atlas. The expression and clinical characteristics of PRDX1 mRNA were analyzed in this dataset. The Kaplan-Meier and Cox regression survival analysis was performed to determine the relationship between PRDX1 levels and patient survival. Subcellular fractionation and Western blotting were used to demonstrate the expression of PRDX1 protein in six liver cancer cell lines and 29 paired fresh tissue specimens. After bioinformatics prediction, a putative post-translational modification form of PRDX1 was observed using immunofluorescence under confocal microscopy and immunoprecipitation analysis in liver cancer cells.
RESULTS: The mRNA of PRDX1 gene was upregulated about 1.3-fold in tumor tissue compared with the adjacent non-tumor control (P = 0.005). Its abundance was significantly higher in men than women (P < 0.001). High levels of PRDX1 mRNA were associated with a shorter overall survival time (P = 0.04) but not with recurrence-free survival. The Cox regression analysis demonstrated that patients with high PRDX1 mRNA showed about 1.9-fold increase of risk for death (P = 0.03). In liver cancer cells, PRDX1 protein was strongly expressed with multiple different bands. PRDX1 in the cytosol fraction existed near the theoretical molecular weight, whereas two higher molecular weight bands were present in the membrane/organelle and nuclear fractions. Importantly, the theoretical PRDX1 band was increased, whereas the high molecular weight form was decreased in tumor tissues. Subsequent experiments revealed that the high molecular weight bands of PRDX1 might result from the post-translational modification by small ubiquitin-like modifier-1 (SUMO1).
CONCLUSION: PRDX1 was overexpressed in the tumor tissues of liver cancer and served as an independent poor prognostic factor for overall survival. PRDX1 can be modified by SUMO to play specific roles in hepatocarcinogenesis.
Collapse
|
22
|
Li G, Xie B, Li X, Chen Y, Xu Y, Xu-Welliver M, Zou L. Downregulation of peroxiredoxin-1 by β-elemene enhances the radiosensitivity of lung adenocarcinoma xenografts. Oncol Rep 2015; 33:1427-33. [PMID: 25607351 DOI: 10.3892/or.2015.3732] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/23/2014] [Indexed: 12/23/2022] Open
Abstract
β-elemene, the active component of elemene (1-methyl-1-vinyl-2,4-diisopropenyl-cyclohexane), is a naturally occurring compound isolated from the traditional Chinese medicinal herb Curcuma wenyujin. Studies have confirmed that β-elemene enhances the radiosensitivity of lung cancer cell lines such as A549, by multiple pathways; however, their underlying mechanisms and pathways are yet to be elucidated. In the present study, two-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry were used to profile the different proteins in A549 cell xenograft models of both treatment groups. The protein/mRNA expression was assessed by reverse transcription-polymerase chain reaction and western blotting techniques in tumor samples from all treatment groups. As a critical player in redox regulation of cancer cells, inhibition of peroxiredoxin-1 (Prx-1) may be an effective option for enhancing the tumor response to radiation. We further verified Prx-1 expression at the transcription and translation levels. β-elemene at a dose of 45 mg/kg had little effect on the Prx-1 protein expression, which was correlated with a moderate antitumor effect. However, a 45 mg/kg dose of β-elemene significantly inhibited the Prx-1 mRNA expression, thereby suggesting a possible influence on the transcriptional process, and radiation significantly increased the Prx-1 mRNA/protein expression compared to the control group (p<0.01). Notably, Prx-1 mRNA/protein expression was significantly lower in the β-elemene/radiation co-treatment group compared to the baseline levels in the control group (p<0.01). These results suggest that radiation-induced Prx-1 expression is directly or indirectly suppressed by β-elemene, thus suggesting a new pathway by which to reverse radioresistance.
Collapse
Affiliation(s)
- Guoquan Li
- Department of Radiation Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Bingbing Xie
- Department of Radiation Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xiaolong Li
- Radiation Oncology Center, People's Liberation Army No. 323 Hospital, Xi'an, Shanxi 710000, P.R. China
| | - Yinghai Chen
- Department of Radiation Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yinghui Xu
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116001, P.R. China
| | - Meng Xu-Welliver
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210-1219, USA
| | - Lijuan Zou
- Department of Radiation Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
23
|
Peroxiredoxin 1 promotes tumorigenesis through regulating the activity of mTOR/p70S6K pathway in esophageal squamous cell carcinoma. Med Oncol 2015; 32:455. [PMID: 25579166 DOI: 10.1007/s12032-014-0455-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 01/16/2023]
Abstract
The biological function of Peroxiredoxin 1 (Prdx1) in cancer is still ambiguous, and its mechanism has not been elucidated so far. Previous studies have shown that Prdx1 functions as tumor suppressor in several types of cancers, but other studies have indicated that it is overexpressed in some types of human cancers, and inhibition of Prdx1 by shRNA contributes to radiosensitivity and chemosensitivity. In this study, a suppression subtractive hybridization cDNA library between esophageal squamous cell carcinoma (ESCC) cell line EC9706 and noncancerous esophageal epithelial cell line Het-1A was constructed, and 11 tumorigenesis-associated genes including Prdx1 were isolated. In addition, we further confirmed that Prdx1 was overexpressed in ESCC cells at the level of protein compared with Het-1A (P < 0.05). Inhibition of Prdx1 by shRNA lentivirus decreased cell proliferation and invasion, and induced cell apoptosis, but did not affect cell cycle distribution of EC9706 cells (P > 0.05). Importantly, the total proteins of mTOR and p70S6K, as well as the activity of mTOR/p70S6K signaling pathway, were decreased in Prdx1-depletion EC9706 cells. Furthermore, the activity of mTOR/p70S6K signaling pathway was increased in Prdx1-overexpressing Het-1A cells. These findings mentioned above demonstrate that Prdx1 may be involved in tumorigenesis through regulation of mTOR/p70S6K pathway in ESCC.
Collapse
|
24
|
Bai Y, Zhang QG, Wang XH. Downregulation of TES by hypermethylation in glioblastoma reduces cell apoptosis and predicts poor clinical outcome. Eur J Med Res 2014; 19:66. [PMID: 25498217 PMCID: PMC4279594 DOI: 10.1186/s40001-014-0066-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/17/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gliomas are the most common human brain tumors. Glioblastoma, also known as glioblastoma multiform (GBM), is the most aggressive, malignant, and lethal glioma. The investigation of prognostic and diagnostic molecular biomarkers in glioma patients to provide direction on clinical practice is urgent. Recent studies demonstrated that abnormal DNA methylation states play a key role in the pathogenesis of this kind of tumor. In this study, we want to identify a novel biomarker related to glioma initiation and find the role of the glioma-related gene. METHODS We performed a methylation-specific microarray on the promoter region to identify methylation gene(s) that may affect outcome of GBM patients. Normal and GBM tissues were collected from Tiantan Hospital. Genomic DNA was extracted from these tissues and analyzed with a DNA promoter methylation microarray. Testis derived transcript (TES) protein expression was analyzed by immunohistochemistry in paraffin-embedded patient tissues. Western blotting was used to detect TES protein expression in the GBM cell line U251 with or without 5-aza-dC treatment. Cell apoptosis was evaluated by flow cytometry analysis using Annexin V/PI staining. RESULTS We found that the TES promoter was hypermethylated in GBM compared to normal brain tissues under DNA promoter methylation microarray analysis. The GBM patients with TES hypermethylation had a short overall survival (P <0.05, log-rank test). Among GBM samples, reduced TES protein level was detected in 33 (89.2%) of 37 tumor tissues by immunohistochemical staining. Down regulation of TES was also correlated with worse patient outcome (P <0.05, log-rank test). Treatment on the GBM cell line U251 with 5-aza-dC can greatly increase TES expression, confirming the hypermethylation of TES promoter in GBM. Up-regulation of TES prompts U251 apoptosis significantly. This study demonstrated that both TES promoter hypermethylation and down-regulated protein expression significantly correlated with worse patient outcome. Treatment on the GBM cell line (U251) with 5-aza-dC can highly release TES expression resulting in significant apoptosis in these cells. CONCLUSIONS Our findings suggest that the TES gene is a novel tumor suppressor gene and might represent a valuable prognostic marker for glioblastoma, indicating a potential target for future GBM therapy.
Collapse
Affiliation(s)
- Yu Bai
- Department of Blood transfusion, The Central Hospital of China Aerospace Corporation, Beijing, 100049, China.
| | - Quan-Geng Zhang
- Department of Immunology, Capital Medical University, Beijing, 100069, China.
| | - Xin-Hua Wang
- Department of Blood transfusion, The Central Hospital of China Aerospace Corporation, Beijing, 100049, China.
| |
Collapse
|
25
|
Poschmann G, Grzendowski M, Stefanski A, Bruns E, Meyer HE, Stühler K. Redox proteomics reveal stress responsive proteins linking peroxiredoxin-1 status in glioma to chemosensitivity and oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:624-31. [PMID: 25484280 DOI: 10.1016/j.bbapap.2014.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/16/2022]
Abstract
The combined deletion of chromosomal arms 1p and 19q has been described as a prognostic marker for oligodendroglial tumors. These tumors show a better response to chemotherapy and radiotherapy. Recently, we found a lower abundance of peroxiredoxin 1 (PRDX1) in oligodendroglial tumors with 1p/19q deletion, suggesting a potential role of this enzyme in the clearance of therapy induced reactive oxygen species (ROS). Here, we confirmed the importance of PRDX1 in tumor cell survival by PRDX1 knockdown and overexpression in A-172 cells treated with the alkylating agent bis-chloroethyl nitrosourea (BCNU). Overexpression of PRDX1 resulted in a higher resistance of cells to BCNU treatment. In addition, BCNU challenged cells showed higher levels of ROS in PRDX1 knockdown cells. We applied a modified version of the redox two dimensional difference gel electrophoresis approach to analyze ROS mediated effects on protein thiols after BCNU treatment by labeling protein thiols with fluorescent dyes. Altogether eleven proteins were identified showing PRDX1 dependent altered labeling, many of them have been previously linked to stress response processes. Furthermore, 30 additional potentially redox active proteins were identified. The majority of them is involved in therapy associated processes like cellular stress response, DNA damage and regulation of cell death and therewith suggests that tumor cells maintain a network of redox sensitive proteins to escape chemotherapy. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany.
| | - Michael Grzendowski
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany; Roche Diagnostics GmbH, Mannheim, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany
| | - Eva Bruns
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany
| | - Helmut Erich Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany
| |
Collapse
|
26
|
González-González M, Garcia J, Alcazar JA, Gutiérrez ML, Gónzalez LM, Bengoechea O, Abad MM, Santos-Briz A, Blanco O, Martín M, Rodríguez A, Fuentes M, Muñoz-Bellvis L, Orfao A, Sayagues JM. Association between the cytogenetic profile of tumor cells and response to preoperative radiochemotherapy in locally advanced rectal cancer. Medicine (Baltimore) 2014; 93:e153. [PMID: 25474426 PMCID: PMC4616389 DOI: 10.1097/md.0000000000000153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neoadjuvant radiochemotherapy to locally advanced rectal carcinoma patients has proven efficient in a high percentage of cases. Despite this, some patients show nonresponse or even disease progression. Recent studies suggest that different genetic alterations may be associated with sensitivity versus resistance of rectal cancer tumor cells to neoadjuvant therapy. We investigated the relationship between intratumoral pathways of clonal evolution as assessed by interphase fluorescence in situ hybridization (51 different probes) and response to neoadjuvant radiochemotherapy, evaluated by Dworak criteria in 45 rectal cancer tumors before (n = 45) and after (n = 31) treatment. Losses of chromosomes 1p (44%), 8p (53%), 17p (47%), and 18q (38%) and gains of 1q (49%) and 13q (75%) as well as amplification of 8q (38%) and 20q (47%) chromosomal regions were those specific alterations found at higher frequencies. Significant association (P < 0.05) was found between alteration of 1p, 1q, 11p, 12p, and 17p chromosomal regions and degree of response to neoadjuvant therapy. A clear association was observed between cytogenetic profile of the ancestral tumor cell clone and response to radiochemotherapy; cases presenting with del(17p) showed a poor response to neoadjuvant treatment (P = 0.03), whereas presence of del(1p) was more frequently observed in responder patients (P = 0.0002). Moreover, a significantly higher number of copies of chromosomes 8q (P = 0.004), 13q (P = 0.003), and 20q (P = 0.002) were found after therapy versus paired pretreatment rectal cancer samples. Our results point out the existence of an association between tumor cytogenetics and response to neoadjuvant therapy in locally advanced rectal cancer. Further studies in larger series of patients are necessary to confirm our results.
Collapse
Affiliation(s)
- María González-González
- From the Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Hospital Universitario de Salamanca-IBSAL, Universidad de Salamanca (MG-G, MLG, MF, AO, MS); Servicio de Cirugía General y Aparato digestivo (JC, JAA, LMG, LM-B); Servicio de Patología, (OB, MMA, AS-B, OB); Servicio de Radio-diagnóstico, Hospital Universitario de Salamanca-IBSAL (MM); and Servicio de Oncología Radioterápica, Hospital Universitario de Salamanca (AR), Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim TH, Song J, Kim SH, Parikh AK, Mo X, Palanichamy K, Kaur B, Yu J, Yoon SO, Nakano I, Kwon CH. Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro Oncol 2014; 16:1354-64. [PMID: 24879047 PMCID: PMC4165421 DOI: 10.1093/neuonc/nou088] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 04/12/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDS Piperlongumine, a natural plant product, kills multiple cancer types with little effect on normal cells. Piperlongumine raises intracellular levels of reactive oxygen species (ROS), a phenomenon that may underlie the cancer-cell killing. Although these findings suggest that piperlongumine could be useful for treating cancers, the mechanism by which the drug selectively kills cancer cells remains unknown. METHODS We treated multiple high-grade glioma (HGG) sphere cultures with piperlongumine and assessed its effects on ROS and cell-growth levels as well as changes in downstream signaling. We also examined the levels of putative piperlongumine targets and their roles in HGG cell growth. RESULTS Piperlongumine treatment increased ROS levels and preferentially killed HGG cells with little effect in normal brain cells. Piperlongumine reportedly increases ROS levels after interactions with several redox regulators. We found that HGG cells expressed higher levels of the putative piperlongumine targets than did normal neural stem cells (NSCs). Furthermore, piperlongumine treatment in HGG cells, but not in normal NSCs, increased oxidative inactivation of peroxiredoxin 4 (PRDX4), an ROS-reducing enzyme that is overexpressed in HGGs and facilitates proper protein folding in the endoplasmic reticulum (ER). Moreover, piperlongumine exacerbated intracellular ER stress, an effect that was mimicked by suppressing PRDX4 expression. CONCLUSIONS Our results reveal that the mechanism by which piperlongumine preferentially kills HGG cells involves PRDX4 inactivation, thereby inducing ER stress. Therefore, piperlongumine treatment could be considered as a novel therapeutic option for HGG treatment.
Collapse
Affiliation(s)
- Tae Hyong Kim
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Jieun Song
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Sung-Hak Kim
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Arav Krishnavadan Parikh
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Xiaokui Mo
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Kamalakannan Palanichamy
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Balveen Kaur
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Jianhua Yu
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Sung Ok Yoon
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Ichiro Nakano
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Chang-Hyuk Kwon
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| |
Collapse
|
28
|
Tabatabai G, Stupp R, Wick W, Weller M. Malignant astrocytoma in elderly patients: where do we stand? Curr Opin Neurol 2014; 26:693-700. [PMID: 24152817 DOI: 10.1097/wco.0000000000000037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Age is inversely correlated with clinical outcome and a strong prognostic factor for the course of most primary brain tumors including malignant astrocytoma, i.e. anaplastic astrocytoma and glioblastoma. We here review available clinical outcome data and discuss future directions of clinical research. RECENT FINDINGS The standard of care in patients with malignant astrocytoma above the range of 65-70 years was considered radiotherapy, preferentially using a hypofractionated regimen (15 × 2.66 Gy). Two phase III clinical trials, the NOA-08 and Nordic trials, demonstrated that temozolomide (TMZ) therapy alone was not inferior to radiotherapy alone, and methylation of the O-methylguanine-DNA-methyltransferase (MGMT) gene promoter was predictive with a methylated MGMT promoter indicating a benefit from TMZ chemotherapy. Ongoing clinical trials in this patient population include the National Cancer Institute of Canada/European Organisation for Research and Treatment of Cancer intergroup trial, investigating the combination of hypofractionated radiotherapy and TMZ chemotherapy, and the Swiss ARTE trial, investigating the combination of bevacizumab and hypofractionated radiotherapy. Recent translational studies indicate that prognostically favorable factors in malignant astrocytoma from younger patients are virtually absent in the elderly. SUMMARY Current standard of care for elderly patients with malignant astrocytoma involves a treatment strategy based on the MGMT gene promoter methylation status. The role of combined radiotherapy and TMZ chemotherapy and a potential role for the addition of anti-VEGF therapy to radiotherapy are currently addressed in ongoing trials. The lack of favorable prognostic factors in tumor tissue might in part explain the poorer clinical outcome of elderly patients.
Collapse
Affiliation(s)
- Ghazaleh Tabatabai
- aDepartment of Neurology bDepartment of Medical Oncology, University Hospital Zurich, Zurich, Switzerland cDepartment of Neurooncology, National Center for Tumor Disease and Neurology Clinic, University Hospital Heidelberg, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | |
Collapse
|
29
|
Peroxiredoxin 1 is involved in disassembly of flagella and cilia. Biochem Biophys Res Commun 2014; 444:420-6. [PMID: 24480440 DOI: 10.1016/j.bbrc.2014.01.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 01/20/2014] [Indexed: 11/20/2022]
Abstract
Cilia/flagella are evolutionarily conserved cellular organelles. In this study, we demonstrated that Dunaliella salina Peroxiredoxin 1 (DsPrdx1) localized to the flagella and basal bodies, and was involved in flagellar disassembly. The link between DsPrdx1 and flagella of Dunaliella salina (D. salina) encouraged us to explore the function of its human homologue, Homo sapiens Peroxiredoxin 1 (HsPrdx1) in development and physiology. Our results showed that HsPrdx1 was overexpressed, and cilia were lost in esophageal squamous cell carcinoma (ESCC) cells compared with the non-cancerous esophageal epithelial cells Het-1A. Furthermore, when HsPrdx1 was knocked down by short hairpin RNA (shRNA) lentivirus in ESCC cells, the phenotype of cilia lost can be reversed, and the expression levels of tumor suppressor genes LKB1 and p-AMPK were increased, and the activity of the oncogene Aurora A was inhibited compared with those in cells transfected with scrambe-shRNA lentivirus. These findings firstly showed that Prdx1 is involved in disassembly of flagella and cilia, and suggested that the abnormal expression of the cilia-related gene including Prdx1 may affect both ciliogenesis and cancernogenesis.
Collapse
|
30
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
31
|
Mur P, Mollejo M, Ruano Y, de Lope ÁR, Fiaño C, García JF, Castresana JS, Hernández-Laín A, Rey JA, Meléndez B. Codeletion of 1p and 19q determines distinct gene methylation and expression profiles in IDH-mutated oligodendroglial tumors. Acta Neuropathol 2013; 126:277-89. [PMID: 23689617 DOI: 10.1007/s00401-013-1130-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/04/2023]
Abstract
Oligodendroglial tumors (OTs) are primary brain tumors that show variable clinical and biological behavior. The 1p/19q codeletion is frequent in these tumors, indicating a better prognosis and/or treatment response. Recently, the prognostically favorable CpG island methylator phenotype (CIMP) in gliomas (G-CIMP+) was associated with mutations in the isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 (IDH) genes, as opposed to G-CIMP- tumors, highlighting the relevance of epigenetic mechanisms. We performed a whole-genome methylation study in 46 OTs, and a gene expression study of 25 tumors, correlating the methylation and transcriptomic profiles with molecular and clinical variables. Here, we identified two different epigenetic patterns within the previously described main G-CIMP+ profile. Both IDH mutation-associated methylation profiles featured one group of OTs with 1p/19q loss (CD-CIMP+), most of which were pure oligodendrogliomas, and a second group with intact 1p/19q and frequent TP53 mutation (CIMP+), most of which exhibited a mixed histopathology. A third group of OTs lacking the CIMP profile (CIMP-), and with a wild-type IDH and an intact 1p/19q, similar to the G-CIMP- subgroup, was also observed. The three CIMP groups presented a significantly better (CD-CIMP+), intermediate (CIMP+) or worse (CIMP-) prognosis. Furthermore, transcriptomic analyses revealed CIMP-specific gene expression signatures, indicating the impact of genetic status (IDH mutation, 1p/19q codeletion, TP53 mutation) on gene expression, and pointing to candidate biomarkers. Therefore, the CIMP profiles contributed to the identification of subgroups of OTs characterized by different prognoses, histopathologies, molecular features and gene expression signatures, which may help in the classification of OTs.
Collapse
|
32
|
Bury M, Novo-Uzal E, Andolfi A, Cimini S, Wauthoz N, Heffeter P, Lallemand B, Avolio F, Delporte C, Cimmino A, Dubois J, Van Antwerpen P, Zonno MC, Vurro M, Poumay Y, Berger W, Evidente A, De Gara L, Kiss R, Locato V. Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity. Int J Oncol 2013; 43:575-85. [PMID: 23754298 DOI: 10.3892/ijo.2013.1979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/21/2013] [Indexed: 11/06/2022] Open
Abstract
Ophiobolin A, a sesterterpenoid produced by plant pathogenic fungi, was purified from the culture extract of Drechslera gigantea and tested for its growth-inhibitory activity in both plant and mammalian cells. Ophiobolin A induced cell death in Nicotiana tabacum L. cv. Bright Yellow 2 (TBY-2) cells at concentrations ≥10 µM, with the TBY-2 cells showing typical features of apoptosis-like cell death. At a concentration of 5 µM, ophiobolin A did not affect plant cell viability but prevented cell proliferation. When tested on eight cancer cell lines, concentrations <1 µM of ophiobolin A inhibited growth by 50% after 3 days of culture irrespective of their multidrug resistance (MDR) phenotypes and their resistance levels to pro-apoptotic stimuli. It is, thus, unlikely that ophiobolin A exerts these in vitro growth-inhibitory effects in cancer cells by activating pro-apoptotic processes. Highly proliferative human keratinocytes appeared more sensitive to the growth-inhibitory effects of ophiobolin A than slowly proliferating ones. Ophiobolin A also displayed significant antitumor activity at the level of mouse survival when assayed at 10 mg/kg in the B16F10 mouse melanoma model with lung pseudometastases. Ophiobolin A could, thus, represent a novel scaffold to combat cancer types that display various levels of resistance to pro-apoptotic stimuli and/or various MDR phenotypes.
Collapse
Affiliation(s)
- Marina Bury
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress. Br J Cancer 2013; 109:983-93. [PMID: 23880827 PMCID: PMC3749568 DOI: 10.1038/bjc.2013.396] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022] Open
Abstract
Objective: We have previously identified peroxiredoxin-3 (PRDX-3) as a cell-surface protein that is androgen regulated in the LNCaP prostate cancer (PCa) cell line. PRDX-3 is a member of the peroxiredoxin family that are responsible for neutralising reactive oxygen species. Experimental design: PRDX-3 expression was examined in tissue from 32 patients using immunohistochemistry. Subcellular distribution was determined using confocal microscopy. PRDX-3 expression was determined in antiandrogen-resistant cell lines by western blotting and quantitative RT–PCR. The pathways of PRDX-3 overexpression and knockdown on apoptosis and response to oxidative stress were investigated using protein arrays. Results: PRDX-3 is upregulated in a number of endocrine-regulated tumours; in particular in PCa and prostatic intraepithelial neoplasia. Although the majority of PRDX-3 is localised to the mitochondria, we have confirmed that PRDX-3 at the cell membrane is androgen regulated. In antiandrogen-resistant LNCaP cell lines, PRDX-3 is upregulated at the protein but not RNA level. Resistant cells also possess an upregulation of the tricarboxylic acid (TCA) pathway and resistance to H2O2-induced apoptosis through a failure to activate pro-apoptotic pathways. Knockdown of PRDX-3 restored H2O2 sensitivity. Conclusion: Our results suggest that PRDX-3 has an essential role in regulating oxidation-induced apoptosis in antiandrogen-resistant cells. PRDX-3 may have potential as a therapeutic target in castrate-independent PCa.
Collapse
|
34
|
Hegi ME, Stupp R. Neuro-oncology: in search of molecular markers of glioma in elderly patients. Nat Rev Neurol 2013; 9:424-5. [PMID: 23817351 DOI: 10.1038/nrneurol.2013.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Wiestler B, Claus R, Hartlieb SA, Schliesser MG, Weiss EK, Hielscher T, Platten M, Dittmann LM, Meisner C, Felsberg J, Happold C, Simon M, Nikkhah G, Papsdorf K, Steinbach JP, Sabel M, Grimm C, Weichenhan D, Tews B, Reifenberger G, Capper D, Müller W, Plass C, Weller M, Wick W. Malignant astrocytomas of elderly patients lack favorable molecular markers: an analysis of the NOA-08 study collective. Neuro Oncol 2013; 15:1017-26. [PMID: 23595628 DOI: 10.1093/neuonc/not043] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The number of patients age >65 years with malignant gliomas is increasing. Prognosis of these patients is worse compared with younger patients. To determine biological differences among malignant gliomas of different age groups and help to explain the survival heterogeneity seen in the NOA-08 trial, the prevalence and impact of recently established biomarkers for outcome in younger patients were characterized in elderly patients. METHODS Prevalences of mutations of isocitrate dehydrogenase 1 (IDH1) and histone H3.3 (H3F3A), the glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and methylation of alkylpurine DNA N-glycosylase (APNG) and peroxiredoxin 1 (PRDX1) promoters were determined in a representative biomarker subset (n = 126 patients with anaplastic astrocytoma or glioblastoma) from the NOA-08 trial. RESULTS IDH1 mutations (R132H) were detected in only 3/126 patients, precluding determination of an association between IDH mutation and outcome. These 3 patients also displayed the G-CIMP phenotype. None of the IDH1 wild-type tumors were G-CIMP positive. Mutations in H3F3A were absent in all 103 patients sequenced for H3F3A. MassARRAY analysis of the APNG promoter revealed generally low methylation levels and failed to confirm any predictive properties for benefit from alkylating chemotherapy. Neither did PRDX1 promoter methylation show differential methylation or association with outcome in this cohort. In a 170-patient cohort from The Cancer Genome Atlas database matched for relevant prognostic factors, age ≥65 years was strongly associated with shorter survival. CONCLUSIONS Despite an age-independent stable frequency of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter hypermethylation, tumors in this age group largely lack prognostically favorable markers established in younger glioblastoma patients, which likely contributes to the overall worse prognosis of elderly patients. However, the survival differences hint at fundamental further differences among malignant gliomas of different age groups.
Collapse
|
36
|
Fusicoccin a, a phytotoxic carbotricyclic diterpene glucoside of fungal origin, reduces proliferation and invasion of glioblastoma cells by targeting multiple tyrosine kinases. Transl Oncol 2013; 6:112-23. [PMID: 23544164 DOI: 10.1593/tlo.12409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly cancer that possesses an intrinsic resistance to pro-apoptotic insults, such as conventional chemotherapy and radiotherapy, and diffusely invades the brain parenchyma, which renders it elusive to total surgical resection. We found that fusicoccin A, a fungal metabolite from Fusicoccum amygdali, decreased the proliferation and migration of human GBM cell lines in vitro, including several cell lines that exhibit varying degrees of resistance to pro-apoptotic stimuli. The data demonstrate that fusicoccin A inhibits GBM cell proliferation by decreasing growth rates and increasing the duration of cell division and also decreases two-dimensional (measured by quantitative video microscopy) and three-dimensional (measured by Boyden chamber assays) migration. These effects of fusicoccin A treatment translated into structural changes in actin cytoskeletal organization and a loss of GBM cell adhesion. Therefore, fusicoccin A exerts cytostatic effects but low cytotoxic effects (as demonstrated by flow cytometry). These cytostatic effects can partly be explained by the fact that fusicoccin inhibits the activities of a dozen kinases, including focal adhesion kinase (FAK), that have been implicated in cell proliferation and migration. Overexpression of FAK, a nonreceptor protein tyrosine kinase, directly correlates with the invasive phenotype of aggressive human gliomas because FAK promotes cell proliferation and migration. Fusicoccin A led to the down-regulation of FAK tyrosine phosphorylation, which occurred in both normoxic and hypoxic GBM cell culture conditions. In conclusion, the current study identifies a novel compound that could be used as a chemical template for generating cytostatic compounds designed to combat GBM.
Collapse
|
37
|
Sahm F, Lass U, Herold-Mende C, von Deimling A, Hartmann C, Mueller W. Analysis of CIC-associated CpG island methylation in oligoastrocytoma. Neuropathol Appl Neurobiol 2013; 39:831-6. [PMID: 23521081 DOI: 10.1111/nan.12045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/15/2013] [Indexed: 11/29/2022]
Abstract
AIMS Combined deletion of the whole chromosomal arms 1p and 19q is a frequent event in oligodendroglial tumours. Recent identification of recurrent mutations in CIC on 19q and FUBP1 on 1p and their mutational patterns suggest a loss of function of the respective proteins. Surprisingly, oligoastrocytomas harbouring identical genetic characteristics regarding 1p/19q codeletion and frequent IDH1/2 mutations have been shown to carry CIC mutations in a significantly lower number of cases. The present study investigates whether epigenetic modification may result in silencing of CIC. METHODS As IDH1/2 mutation-mediated DNA hypermethylation is a prominent feature of these tumours, we analysed a set of CIC wild-type oligoastrocytomas and other diffuse gliomas with regard to 1p/19q status for presence of CIC-associated CpG island methylation by methylation-specific PCR. RESULTS Both methylation-specific PCR and subsequent bisulphite-sequencing of selected cases revealed an unmethylated status in all samples. CONCLUSION Despite the hypermethylator phenotype in IDH1/2 mutant tumours and recent detection of gene silencing particularly on retained alleles in oligodendroglial tumours, hypermethylation of CIC-associated CpG islands does not provide an alternative mechanism of functional CIC protein abrogation.
Collapse
Affiliation(s)
- F Sahm
- Department of Neuropathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology G380, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Espada L, Meo-Evoli N, Sancho P, Real S, Fabregat I, Ambrosio S, Tauler A. ROS production is essential for the apoptotic function of E2F1 in pheochromocytoma and neuroblastoma cell lines. PLoS One 2012; 7:e51544. [PMID: 23251571 PMCID: PMC3520901 DOI: 10.1371/journal.pone.0051544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/02/2012] [Indexed: 12/04/2022] Open
Abstract
In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator.
Collapse
Affiliation(s)
- Lilia Espada
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Nathalie Meo-Evoli
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
- Cancer and Metabolism Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
| | - Patricia Sancho
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
| | - Sebastian Real
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Isabel Fabregat
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Facultat de Medicina, Campus Universitaride Bellvitge - IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalunya, Spain
| | - Santiago Ambrosio
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Facultat de Medicina, Campus Universitaride Bellvitge - IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalunya, Spain
| | - Albert Tauler
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
- Cancer and Metabolism Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
- * E-mail:
| |
Collapse
|