1
|
Kumar S, Talluri S, Zhao J, Liao C, Potluri LB, Buon L, Mu S, Shi J, Chakraborty C, Tai YT, Samur MK, Munshi NC, Shammas MA. ABL1 kinase plays an important role in spontaneous and chemotherapy-induced genomic instability in multiple myeloma. Blood 2024; 143:996-1005. [PMID: 37992230 PMCID: PMC11662223 DOI: 10.1182/blood.2023021225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT Genomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth. Moreover, inhibiting ABL1 reduces the HR activity and genomic instability caused by melphalan, a chemotherapeutic agent used in MM treatment, and increases melphalan's efficacy and cytotoxicity in vivo in a subcutaneous tumor model. In these tumors, nilotinib inhibits endogenous as well as melphalan-induced HR activity. These data demonstrate that inhibiting ABL1 using the clinically approved drug nilotinib reduces MM cell growth, reduces genomic instability in live cell fraction, increases the cytotoxicity of melphalan (and similar chemotherapeutic agents), and can potentially prevent or delay progression in patients with MM.
Collapse
Affiliation(s)
- Subodh Kumar
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Srikanth Talluri
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jiangning Zhao
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Chengcheng Liao
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Lakshmi B. Potluri
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Leutz Buon
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shidai Mu
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jialan Shi
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Chandraditya Chakraborty
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yu-Tzu Tai
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mehmet K. Samur
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nikhil C. Munshi
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Masood A. Shammas
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
2
|
Wu N, Song Y, Zhu Y, Pang L, Chen Z, Chen X. Rad51 and Systemic Inflammatory Indicators as Novel Prognostic Markers in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338231216333. [PMID: 38258400 PMCID: PMC10807337 DOI: 10.1177/15330338231216333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND RAD51 is a central protein involved in homologous recombination, which has been linked to cancer development and progression. systemic inflammatory indicator markers such as neutrophil-to-lymphocyte ratio and lymphocyte-to-monocyte ratio have also been implicated in cancer. However, the relationship between Rad51 and these inflammatory markers in esophageal cancer patients undergoing esophagectomy is not yet understood. METHODS We retrospectively observed 320 esophageal cancer patients who underwent esophagectomy. We collected clinical characteristics, postoperative complications, and survival analysis data and analyzed the relationship between Rad51 expression, inflammatory markers, and prognosis. RESULTS We found significant linear relationships among the inflammatory markers. There were also close relationships between Rad51 expression and neutrophil-to-lymphocyte ratio or C-reactive protein. Patients with low lymphocyte percentage were more likely to have low Rad51 expression (P = .026), high C-reactive protein (P = .007), and high neutrophil-to-lymphocyte ratio (P = .006). Low lymphocyte-to-monocyte ratio was associated with poor overall survival and was an independent prognostic factor (HR = 2.214; 95% confidence interval: 1.044-4.695, P = .038). In patients without lymph node metastases, low albumin (HR= 0.131; 95% confidence interval: 0.025-0.687, P = .016), high neutrophil-to-lymphocyte ratio (HR = 0.002; 95% confidence interval: 0.000-0.221, P = .009), and high Rad51 expression (HR = 14.394; 95% confidence interval: 2.217-97.402, P = .006) were associated with poor overall survival. CONCLUSIONS Our study found a close correlation between elevated Rad51 expression and inflammatory markers. High Rad51 expression, high neutrophil-to-lymphocyte ratio, and low lymphocyte-to-monocyte ratio are associated with lower survival rates. The combined assessment of Rad51 and inflammatory markers can be useful for preoperative assessment and prognostic evaluation in esophageal squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Ning Wu
- Department of Cardiothoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, China
| | - Yang Song
- Department of Cardiothoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, China
| | - Yongjun Zhu
- Department of Cardiothoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, China
| | - Liewen Pang
- Department of Cardiothoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, China
| | - Zhiming Chen
- Department of Cardiothoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, China
| | - Xiaofeng Chen
- Department of Cardiothoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Huang L, Xu W, Yan D, Shi X, Zhang S, Chen M, Dai L. Identification of a RAD51B enhancer variant for susceptibility and progression to glioma. Cancer Cell Int 2023; 23:246. [PMID: 37858068 PMCID: PMC10585866 DOI: 10.1186/s12935-023-03100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND RAD51B plays a significant role in homologous recombination-mediated repair of DNA double-strand breaks. Many enhancer variants are involved in cancer development and progression. However, the significance of enhancer variants of RAD51B in glioma susceptibility and progression remains unclear. METHODS A case-control study consisting of 1056 individuals was conducted to evaluate the associations of enhancer variants of RAD51B with glioma susceptibility and progression. Sequenom MassARRAY technology was used for genotyping. The function of enhancer variants was explored by biochemical assays. RESULTS A significantly decreased risk of glioma was associated with rs6573816 GC genotype compared with rs6573816 GG genotype (OR = 0.66, 95% CI 0.45-0.97; P = 0.034). Multivariable Cox regression revealed that rs6573816 was significantly associated with glioma progression in a sex-dependent manner. Worse PFS was found in the male patients with high grade glioma carrying rs6573816 GC or CC genotype (HR = 2.28, 95% CI 1.14-4.57; P = 0.020). The rs6573816 C allele repressed enhancer activity by affecting transcription factor POU2F1 binding, which resulted in lower expression of RAD51B. Remarkably attenuated expression of RAD51B was observed following POU2F1 knockdown. Consistently, positive correlation between the expression of POU2F1 and RAD51B was found in lymphoblastic cells and glioma tissues. CONCLUSIONS These results indicate that an enhancer variant of RAD51B rs6573816 influences enhancer activity by changing a POU2F1 binding site and confers susceptibility and progression to glioma.
Collapse
Affiliation(s)
- Liming Huang
- Department of Oncology, The Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, #602 Bayiqizhong Road, Fuzhou, 350004, China.
| | - Wenshen Xu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Danfang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xi Shi
- Department of Medical Oncology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Meiqin Chen
- Department of Oncology, The Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, #602 Bayiqizhong Road, Fuzhou, 350004, China
| | - Lian Dai
- Department of Medicine, The Third Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, #363 Guobin Road, Fuzhou, 350108, China.
| |
Collapse
|
4
|
Kumar S, Zhao J, Talluri S, Buon L, Mu S, Potluri LB, Liao C, Shi J, Chakraborty C, Gonzalez GB, Tai YT, Patel J, Pal J, Mashimo H, Samur MK, Munshi NC, Shammas MA. Elevated APE1 Dysregulates Homologous Recombination and Cell Cycle Driving Genomic Evolution, Tumorigenesis, and Chemoresistance in Esophageal Adenocarcinoma. Gastroenterology 2023; 165:357-373. [PMID: 37178737 PMCID: PMC10524563 DOI: 10.1053/j.gastro.2023.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND & AIMS The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jiangning Zhao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Leutz Buon
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Shidai Mu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Lakshmi B Potluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Chengcheng Liao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jialan Shi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Gabriel B Gonzalez
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jaymin Patel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jagannath Pal
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Hiroshi Mashimo
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Masood A Shammas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts.
| |
Collapse
|
5
|
Liao C, Talluri S, Zhao J, Mu S, Kumar S, Shi J, Buon L, Munshi NC, Shammas MA. RAD51 Is Implicated in DNA Damage, Chemoresistance and Immune Dysregulation in Solid Tumors. Cancers (Basel) 2022; 14:cancers14225697. [PMID: 36428789 PMCID: PMC9688595 DOI: 10.3390/cancers14225697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In normal cells, homologous recombination (HR) is tightly regulated and plays an important role in the maintenance of genomic integrity and stability through precise repair of DNA damage. RAD51 is a recombinase that mediates homologous base pairing and strand exchange during DNA repair by HR. Our previous data in multiple myeloma and esophageal adenocarcinoma (EAC) show that dysregulated HR mediates genomic instability. Purpose of this study was to investigate role of HR in genomic instability, chemoresistance and immune dysregulation in solid tumors including colon and breast cancers. METHODS The GEO dataset were used to investigate correlation of RAD51 expression with patient survival and expression of various immune markers in EAC, breast and colorectal cancers. RAD51 was inhibited in cancer cell lines using shRNAs and a small molecule inhibitor. HR activity was evaluated using a plasmid-based assay, DNA breaks assessed by evaluating expression of γ-H2AX (a marker of DNA breaks) and p-RPA32 (a marker of DNA end resection) using Western blotting. Genomic instability was monitored by investigating micronuclei (a marker of genomic instability). Impact of RAD51 inhibitor and/or a DNA-damaging agent was assessed on viability and apoptosis in EAC, breast and colon cancer cell lines in vitro and in a subcutaneous tumor model of EAC. Impact of RAD51 inhibitor on expression profile was monitored by RNA sequencing. RESULTS Elevated RAD51 expression correlated with poor survival of EAC, breast and colon cancer patients. RAD51 knockdown in cancer cell lines inhibited DNA end resection and strand exchange activity (key steps in the initiation of HR) as well as spontaneous DNA breaks, whereas its overexpression increased DNA breaks and genomic instability. Treatment of EAC, colon and breast cancer cell lines with a small molecule inhibitor of RAD51 inhibited DNA breaking agent-induced DNA breaks and genomic instability. RAD51 inhibitor potentiated cytotoxicity of DNA breaking agent in all cancer cell types tested in vitro as well as in a subcutaneous model of EAC. Evaluation by RNA sequencing demonstrated that DNA repair and cell cycle related pathways were induced by DNA breaking agent whereas their induction either prevented or reversed by RAD51 inhibitor. In addition, immune-related pathways such as PD-1 and Interferon Signaling were also induced by DNA breaking agent whereas their induction prevented by RAD51 inhibitor. Consistent with these observations, elevated RAD51 expression also correlated with that of genes involved in inflammation and other immune surveillance. CONCLUSIONS Elevated expression of RAD51 and associated HR activity is involved in spontaneous and DNA damaging agent-induced DNA breaks and genomic instability thus contributing to chemoresistance, immune dysregulation and poor prognosis in cancer. Therefore, inhibitors of RAD51 have great potential as therapeutic agents for EAC, colon, breast and probably other solid tumors.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Srikanth Talluri
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Jiangning Zhao
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Shidai Mu
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Subodh Kumar
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Jialan Shi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Leutz Buon
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
| | - Nikhil C. Munshi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Masood A. Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Correspondence:
| |
Collapse
|
6
|
Shkundina IS, Gall AA, Dick A, Cocklin S, Mazin AV. New RAD51 Inhibitors to Target Homologous Recombination in Human Cells. Genes (Basel) 2021; 12:genes12060920. [PMID: 34208492 PMCID: PMC8235719 DOI: 10.3390/genes12060920] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022] Open
Abstract
Targeting DNA repair proteins with small-molecule inhibitors became a proven anti-cancer strategy. Previously, we identified an inhibitor of a major protein of homologous recombination (HR) RAD51, named B02. B02 inhibited HR in human cells and sensitized them to chemotherapeutic drugs in vitro and in vivo. Here, using a medicinal chemistry approach, we aimed to improve the potency of B02. We identified the B02 analog, B02-isomer, which inhibits HR in human cells with significantly higher efficiency. We also show that B02-iso sensitizes triple-negative breast cancer MDA-MB-231 cells to the PARP inhibitor (PARPi) olaparib.
Collapse
Affiliation(s)
- Irina S. Shkundina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (I.S.S.); (A.D.); (S.C.)
| | | | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (I.S.S.); (A.D.); (S.C.)
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (I.S.S.); (A.D.); (S.C.)
| | - Alexander V. Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (I.S.S.); (A.D.); (S.C.)
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Correspondence:
| |
Collapse
|
7
|
Kumar S, Buon L, Talluri S, Roncador M, Liao C, Zhao J, Shi J, Chakraborty C, Gonzalez G, Tai YT, Prabhala R, Samur MK, Munshi NC, Shammas MA. Integrated genomics and comprehensive validation reveal drivers of genomic evolution in esophageal adenocarcinoma. Commun Biol 2021; 4:617. [PMID: 34031527 PMCID: PMC8144613 DOI: 10.1038/s42003-021-02125-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is associated with a marked genomic instability, which underlies disease progression and development of resistance to treatment. In this study, we used an integrated genomics approach to identify a genomic instability signature. Here we show that elevated expression of this signature correlates with poor survival in EAC as well as three other cancers. Knockout and overexpression screens establish the relevance of these genes to genomic instability. Indepth evaluation of three genes (TTK, TPX2 and RAD54B) confirms their role in genomic instability and tumor growth. Mutational signatures identified by whole genome sequencing and functional studies demonstrate that DNA damage and homologous recombination are common mechanisms of genomic instability induced by these genes. Our data suggest that the inhibitors of TTK and possibly other genes identified in this study have potential to inhibit/reduce growth and spontaneous as well as chemotherapy-induced genomic instability in EAC and possibly other cancers. Subodh Kumar et al. identify a gene signature correlated with genomic instability and poor survival in esophageal adenocarcinoma (EAC), using a combination of integrative genomic analysis of patient data and laboratory validation in cell line models and mice. They find that inhibitors of some of the identified proteins, including TTK, could be used to reduce genomic evolution as well as inhibit growth of EAC cells.
Collapse
Affiliation(s)
- Subodh Kumar
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | - Leutz Buon
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | | | - Chengcheng Liao
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | - Jiangning Zhao
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | - Jialan Shi
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Gabriel Gonzalez
- Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Rao Prabhala
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Nikhil C Munshi
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Masood A Shammas
- Dana Farber Cancer Institute, Boston, MA, USA. .,Veterans Administration Healthcare System, Boston, MA, USA.
| |
Collapse
|
8
|
Kay JE, Corrigan JJ, Armijo AL, Nazari IS, Kohale IN, Torous DK, Avlasevich SL, Croy RG, Wadduwage DN, Carrasco SE, Dertinger SD, White FM, Essigmann JM, Samson LD, Engelward BP. Excision of mutagenic replication-blocking lesions suppresses cancer but promotes cytotoxicity and lethality in nitrosamine-exposed mice. Cell Rep 2021; 34:108864. [PMID: 33730582 PMCID: PMC8527524 DOI: 10.1016/j.celrep.2021.108864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
N-Nitrosodimethylamine (NDMA) is a DNA-methylating agent that has been discovered to contaminate water, food, and drugs. The alkyladenine DNA glycosylase (AAG) removes methylated bases to initiate the base excision repair (BER) pathway. To understand how gene-environment interactions impact disease susceptibility, we study Aag-knockout (Aag-/-) and Aag-overexpressing mice that harbor increased levels of either replication-blocking lesions (3-methyladenine [3MeA]) or strand breaks (BER intermediates), respectively. Remarkably, the disease outcome switches from cancer to lethality simply by changing AAG levels. To understand the underlying basis for this observation, we integrate a suite of molecular, cellular, and physiological analyses. We find that unrepaired 3MeA is somewhat toxic, but highly mutagenic (promoting cancer), whereas excess strand breaks are poorly mutagenic and highly toxic (suppressing cancer and promoting lethality). We demonstrate that the levels of a single DNA repair protein tip the balance between blocks and breaks and thus dictate the disease consequences of DNA damage.
Collapse
Affiliation(s)
- Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Amanda L Armijo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Ilana S Nazari
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Ishwar N Kohale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | | | | - Robert G Croy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Dushan N Wadduwage
- The John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - John M Essigmann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
| |
Collapse
|
9
|
Kay JE, Mirabal S, Briley WE, Kimoto T, Poutahidis T, Ragan T, So PT, Wadduwage DN, Erdman SE, Engelward BP. Analysis of mutations in tumor and normal adjacent tissue via fluorescence detection. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:108-123. [PMID: 33314311 PMCID: PMC7880898 DOI: 10.1002/em.22419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Inflammation is a major risk factor for many types of cancer, including colorectal. There are two fundamentally different mechanisms by which inflammation can contribute to carcinogenesis. First, reactive oxygen and nitrogen species (RONS) can damage DNA to cause mutations that initiate cancer. Second, inflammatory cytokines and chemokines promote proliferation, migration, and invasion. Although it is known that inflammation-associated RONS can be mutagenic, the extent to which they induce mutations in intestinal stem cells has been little explored. Furthermore, it is now widely accepted that cancer is caused by successive rounds of clonal expansion with associated de novo mutations that further promote tumor development. As such, we aimed to understand the extent to which inflammation promotes clonal expansion in normal and tumor tissue. Using an engineered mouse model that is prone to cancer and within which mutant cells fluoresce, here we have explored the impact of inflammation on de novo mutagenesis and clonal expansion in normal and tumor tissue. While inflammation is strongly associated with susceptibility to cancer and a concomitant increase in the overall proportion of mutant cells in the tissue, we did not observe an increase in mutations in normal adjacent tissue. These results are consistent with opportunities for de novo mutations and clonal expansion during tumor growth, and they suggest protective mechanisms that suppress the risk of inflammation-induced accumulation of mutant cells in normal tissue.
Collapse
Affiliation(s)
- Jennifer E. Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Sheyla Mirabal
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Takafumi Kimoto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | | | - Peter T. So
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Dushan N. Wadduwage
- The John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, MA
- Center for Advanced Imaging, Harvard University, Cambridge, MA, USA
| | - Susan E. Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
10
|
Liao C, Zhao J, Kumar S, Chakraborty C, Talluri S, Munshi NC, Shammas MA. RAD51 Inhibitor Reverses Etoposide-Induced Genomic Toxicity and Instability in Esophageal Adenocarcinoma Cells. ARCHIVES OF CLINICAL TOXICOLOGY 2020; 2:3-9. [PMID: 32968740 PMCID: PMC7508453 DOI: 10.46439/toxicology.2.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aim: In normal cells, homologous recombination (HR) is strictly regulated and precise and plays an important role in preserving genomic integrity by accurately repairing DNA damage. RAD51 is the recombinase which mediates homologous base pairing and strand exchange during DNA repair by HR. We have previously reported that HR is spontaneously elevated (or dysregulated) in esophageal adenocarcinoma (EAC) and contributes to ongoing genomic changes and instability. The purpose of this study was to evaluate the impact of RAD51 inhibitor on genomic toxicity caused by etoposide, a chemotherapeutic agent. Methods: EAC cell lines (FLO-1 and OE19) were cultured in the presence of RAD51 inhibitor and/or etoposide, and impact on cell viability, apoptosis and genomic integrity/stability investigated. Genomic integrity/stability was monitored by evaluating cells for γ-H2AX (a marker for DNA breaks), phosphorylated RPA32 (a marker of DNA end resection which is a distinct step in the initiation of HR) and micronuclei (a marker of genomic instability). Results: Treatment with etoposide, a chemotherapeutic agent, was associated with marked genomic toxicity (as evident from increase in DNA breaks) and genomic instability in both EAC cell lines. Consistently, the treatment was also associated with apoptotic cell death. A small molecule inhibitor of RAD51 increased cytotoxicity while reducing genomic toxicity and instability caused by etoposide, in both EAC cell lines. Conclusion: RAD51 inhibitors have potential to increase cytotoxicity while reducing harmful genomic impact of chemotherapy.
Collapse
Affiliation(s)
- Chengcheng Liao
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| | | | - Subodh Kumar
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| | | | - Srikanth Talluri
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| | - Nikhil C Munshi
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA.,Harvard Medical School, USA
| | - Masood A Shammas
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| |
Collapse
|
11
|
Kay J, Thadhani E, Samson L, Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst) 2019; 83:102673. [PMID: 31387777 DOI: 10.1016/j.dnarep.2019.102673] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022]
Abstract
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.
Collapse
Affiliation(s)
- Jennifer Kay
- Department of Biological Engineering, United States.
| | | | - Leona Samson
- Department of Biological Engineering, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | | |
Collapse
|
12
|
Hartfiel S, Häfner M, Perez RL, Rühle A, Trinh T, Debus J, Huber PE, Nicolay NH. Differential response of esophageal cancer cells to particle irradiation. Radiat Oncol 2019; 14:119. [PMID: 31286978 PMCID: PMC6615091 DOI: 10.1186/s13014-019-1326-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Radiation therapy is a mainstay in the treatment of esophageal cancer (EC) patients, and photon radiotherapy has proved beneficial both in the neoadjuvant and the definitive setting. However, regarding the still poor prognosis of many EC patients, particle radiation employing a higher biological effectiveness may help to further improve patient outcomes. However, the influence of clinically available particle radiation on EC cells remains largely unknown. Methods Patient-derived esophageal adenocarcinoma and squamous cell cancer lines were treated with photon and particle irradiation using clinically available proton (1H), carbon (12C) or oxygen (16O) beams at the Heidelberg Ion Therapy Center. Histology-dependent clonogenic survival was calculated for increasing physical radiation doses, and resulting relative biological effectiveness (RBE) was calculated for each radiation modality. Cell cycle effects caused by photon and particle radiation were assessed, and radiation-induced apoptosis was measured in adenocarcinoma and squamous cell EC samples by activated caspase-3 and sub-G1 populations. Repair kinetics of DNA double strand breaks induced by photon and particle radiation were investigated. Results While both adenocarcinoma EC cell lines demonstrated increasing sensitivities for 1H, 12C and 16O radiation, the two squamous cell carcinoma lines exhibited a more heterogeneous response to photon and particle treatment; average RBE values were calculated as 1.15 for 1H, 2.3 for 12C and 2.5 for 16O irradiation. After particle irradiation, squamous cell EC samples reacted with an increased and prolonged block in G2 phase of the cell cycle compared to adenocarcinoma cells. Particle radiation resulted in an incomplete repair of radiation-induced DNA double strand breaks in both adenocarcinoma and squamous cell carcinoma samples, with the levels of initial strand break induction correlating well with the individual cellular survival after photon and particle radiation. Similarly, EC samples demonstrated heterogeneous levels of radiation-induced apoptosis that also corresponded to the observed cellular survival of individual cell lines. Conclusions Esophageal cancer cells exhibit differential responses to irradiation with photons and 1H, 12C and 16O particles that were independent of tumor histology. Therefore, yet unknown molecular markers beyond histology may help to establish which esophageal cancer patients benefit from the biological effects of particle treatment. Electronic supplementary material The online version of this article (10.1186/s13014-019-1326-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Hartfiel
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Matthias Häfner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Ramon Lopez Perez
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Thuy Trinh
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Radiation Oncology, University Medical Center Freiburg, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
13
|
Nandi B, Talluri S, Kumar S, Yenumula C, Gold JS, Prabhala R, Munshi NC, Shammas MA. The roles of homologous recombination and the immune system in the genomic evolution of cancer. ACTA ACUST UNITED AC 2018; 5. [PMID: 30873294 PMCID: PMC6411307 DOI: 10.15761/jts.1000282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of factors, whether extracellular (mutagens/carcinogens and viruses in the environment, chronic inflammation and radiation associated with the environment and/or electronic devices/machines) and/or intracellular (oxidative metabolites of food, oxidative stress due to inflammation, acid production, replication stress, DNA replication/repair errors, and certain hormones, cytokines, growth factors), pose a constant threat to the genomic integrity of a living cell. However, in the normal cellular environment multiple biological pathways including DNA repair, cell cycle, apoptosis and the immune system work in a precise, regulated (tightly controlled), timely and concerted manner to ensure genomic integrity, stability and proper functioning of a cell. If damage to DNA takes place, it is efficiently and accurately repaired by the DNA repair systems. Homologous recombination (HR) which utilizes either a homologous chromosome (in G1 phase) or a sister chromatid (in G2) as a template to repair the damage, is known to be the most precise repair system. HR in G2 which utilizes a sister chromatid as a template is also called an error free repair system. If DNA damage in a cell is so extensive that it overwhelms the repair system/s, the cell is eliminated by apoptosis. Thus, multiple pathways ensure that genome of a cell is intact and stable. However, constant exposure to DNA damage and/or dysregulation of DNA repair mechanism/s poses a risk of mutation and cancer. Oncogenesis, which seems to be a multistep process, is associated with acquisition of a number of genomic changes that enable a normal cell to progress from benign to malignant transformation. Transformed/cancer cells are recognized and killed by the immune system. However, the ongoing acquisition of new genomic changes enables cancer cells to survive/escape immune attack, evolve into a more aggressive phenotype, and eventually develop resistance to therapy. Although DNA repair (especially the HR) and the immune system play unique roles in preserving genomic integrity of a cell, they can also contribute to DNA damage, genomic instability and oncogenesis. The purpose of this article is to highlight the roles of DNA repair (especially HR) and the immune system in genomic evolution, with special focus on gastrointestinal cancer.
Collapse
Affiliation(s)
- B Nandi
- Harvard Medical School and Brigham and Women's Hospital, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - S Talluri
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - S Kumar
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Harvard Medical School and Brigham and Women's Hospital, USA
| | - C Yenumula
- Harvard Medical School and Brigham and Women's Hospital, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - J S Gold
- Harvard Medical School and Brigham and Women's Hospital, USA.,Surgery Services, VA Healthcare System, West Roxbury, MA, USA
| | - R Prabhala
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - N C Munshi
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Harvard Medical School and Brigham and Women's Hospital, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - M A Shammas
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
14
|
Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance. Blood Cancer J 2018; 8:92. [PMID: 30301882 PMCID: PMC6177467 DOI: 10.1038/s41408-018-0129-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
We have previously reported that homologous recombination (HR) is dysregulated in multiple myeloma (MM) and contributes to genomic instability and development of drug resistance. We now demonstrate that base excision repair (BER) associated apurinic/apyrimidinic (AP) nucleases (APEX1 and APEX2) contribute to regulation of HR in MM cells. Transgenic as well as chemical inhibition of APEX1 and/or APEX2 inhibits HR activity in MM cells, whereas the overexpression of either nuclease in normal human cells, increases HR activity. Regulation of HR by AP nucleases could be attributed, at least in part, to their ability to regulate recombinase (RAD51) expression. We also show that both nucleases interact with major HR regulators and that APEX1 is involved in P73-mediated regulation of RAD51 expression in MM cells. Consistent with the role in HR, we also show that AP-knockdown or treatment with inhibitor of AP nuclease activity increases sensitivity of MM cells to melphalan and PARP inhibitor. Importantly, although inhibition of AP nuclease activity increases cytotoxicity, it reduces genomic instability caused by melphalan. In summary, we show that APEX1 and APEX2, major BER proteins, also contribute to regulation of HR in MM. These data provide basis for potential use of AP nuclease inhibitors in combination with chemotherapeutics such as melphalan for synergistic cytotoxicity in MM.
Collapse
|
15
|
Somatic DNA Copy-Number Alterations Detection for Esophageal Adenocarcinoma Using Digital Polymerase Chain Reaction. Methods Mol Biol 2018. [PMID: 29600372 DOI: 10.1007/978-1-4939-7734-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Somatic copy-number alterations are commonly found in cancer and play key roles in activating oncogenes and deactivating tumor suppressor genes. Digital polymerase chain reaction is an effective way to detect the changes in copy number. In esophageal adenocarcinoma, detection of somatic copy-number alterations could predict the prognosis of patients as well as the response to therapy. This chapter will review the methods involved in digital polymerase chain reaction for the research or potential clinical applications in esophageal adenocarcinoma.
Collapse
|
16
|
siRNA Library Screening Identifies a Druggable Immune-Signature Driving Esophageal Adenocarcinoma Cell Growth. Cell Mol Gastroenterol Hepatol 2018; 5:569-590. [PMID: 29930979 PMCID: PMC6009761 DOI: 10.1016/j.jcmgh.2018.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Effective therapeutic approaches are urgently required to tackle the alarmingly poor survival outcomes in esophageal adenocarcinoma (EAC) patients. EAC originates from within the intestinal-type metaplasia, Barrett's esophagus, a condition arising on a background of gastroesophageal reflux disease and associated inflammation. METHODS This study used a druggable genome small interfering RNA (siRNA) screening library of 6022 siRNAs in conjunction with bioinformatics platforms, genomic studies of EAC tissues, somatic variation data of EAC from The Cancer Genome Atlas data of EAC, and pathologic and functional studies to define novel EAC-associated, and targetable, immune factors. RESULTS By using a druggable genome library we defined genes that sustain EAC cell growth, which included an unexpected immunologic signature. Integrating Cancer Genome Atlas data with druggable siRNA targets showed a striking concordance and an EAC-specific gene amplification event associated with 7 druggable targets co-encoded at Chr6p21.1. Over-representation of immune pathway-associated genes supporting EAC cell growth included leukemia inhibitory factor, complement component 1, q subcomponent A chain (C1QA), and triggering receptor expressed on myeloid cells 2 (TREM2), which were validated further as targets sharing downstream signaling pathways through genomic and pathologic studies. Finally, targeting the triggering receptor expressed on myeloid cells 2-, C1q-, and leukemia inhibitory factor-activated signaling pathways (TYROBP-spleen tyrosine kinase and JAK-STAT3) with spleen tyrosine kinase and Janus-activated kinase inhibitor fostamatinib R788 triggered EAC cell death, growth arrest, and reduced tumor burden in NOD scid gamma mice. CONCLUSIONS These data highlight a subset of genes co-identified through siRNA targeting and genomic studies of expression and somatic variation, specifically highlighting the contribution that immune-related factors play in support of EAC development and suggesting their suitability as targets in the treatment of EAC.
Collapse
Key Words
- ATCC, American Type Culture Collection
- BE, Barrett’s esophagus
- Barrett’s Esophagus
- EAC, esophageal adenocarcinoma
- ERBB2, erb-b2 receptor tyrosine kinase 2
- ESCC, esophageal squamous cell carcinoma
- Esophageal Adenocarcinoma
- FCS, fetal calf serum
- GEM, gene expression microarray
- GERD, gastroesophageal reflux disease
- GO, gene ontology
- HGD, high-grade dysplastic
- IL, interleukin
- Inflammation
- JAK-STAT, Janus kinase/signal transducer-and-activator of transcription
- LIF, leukemia inhibitory factor
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- PBS, phosphate-buffered saline
- RA, rheumatoid arthritis
- SV, somatic variation
- SYK, spleen tyrosine kinase
- TCGA, The Cancer Genome Atlas
- TREM2, triggering receptor expressed on myeloid cells 2
- Therapeutic Targets
- VEGFA, vascular endothelial growth factor A
- mRNA, messenger RNA
- siRNA, small interfering RNA
Collapse
|
17
|
Ahmad GR, Kumar S, Ahmad D, Shammas MA. Risk Assessment to Evaluate if Crayons Complying with the Consumer Product Safety Improvement Act of 2008 for Lead, Also Comply with California Proposition 65. Front Public Health 2017. [PMID: 28626747 PMCID: PMC5454070 DOI: 10.3389/fpubh.2017.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Gulzar R Ahmad
- InfoTox International Inc., Riverside, CA, United States
| | - Subodh Kumar
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, United States
| | - Dildar Ahmad
- InfoTox International Inc., Riverside, CA, United States
| | - Masood A Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, United States
| |
Collapse
|
18
|
Variation in Recombination Rate: Adaptive or Not? Trends Genet 2017; 33:364-374. [DOI: 10.1016/j.tig.2017.03.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/30/2023]
|
19
|
Kimoto T, Kay JE, Li N, Engelward BP. Recombinant cells in the lung increase with age via de novo recombination events and clonal expansion. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:135-145. [PMID: 28370323 PMCID: PMC5827959 DOI: 10.1002/em.22082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/29/2017] [Accepted: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Homologous recombination (HR) is a critical DNA repair pathway, which is usually error-free, but can sometimes lead to cancer-promoting mutations. Despite the importance of HR as a driver of mutations, the spontaneous frequency of such mutations has proven difficult to study. To gain insight to location, cell type, and subsequent proliferation of mutated cells, we used the Rosa26 Direct Repeat (RaDR) mice for in situ detection and quantification of recombinant cells in the lung. We developed a method for automated enumeration of recombinant cells in lung tissue using the Metafer 4 slide-scanning platform. The mean spontaneous HR frequencies of the lung tissue in young and aged mice were 2 × 10-6 and 30 × 10-6 , respectively, which is consistent with our previous reports that mutated cells accumulate with age. In addition, by using the capability of Metafer 4 to mark the position of fluorescent cells, we found that recombinant cells from the aged mice formed clusters in the lung tissue, likely due to clonal expansion of a single mutant cell. The recombinant cells primarily consisted of alveolar epithelial type II or club (previously known as Clara) cells, both of which have the potential to give rise to cancer. This approach to tissue image analysis reveals the location and cell types that have undergone HR. Being able to quantify mutant cells in situ within lung tissue opens doors to studies of exposure-induced mutations and clonal expansion, giving rise to new opportunities for understanding how genetic and environmental factors cause tumorigenic mutations. Environ. Mol. Mutagen. 58:135-145, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takafumi Kimoto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jennifer E. Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Na Li
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Block MD4 Level 3, 117597, Singapore
- Singapore-MIT Alliance for Research and Technology, Infectious Diseases Interdisciplinary Group, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602, Singapore
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
20
|
Unmack JL, Bud Jenkins VC, Shammas MA. Redefining Board Certified Toxicologist by Consumer Products Safety Commission May Increase Potential Risk of Exposure to Carcinogens among Consumers in United States of America. Front Public Health 2017; 5:29. [PMID: 28293552 PMCID: PMC5328997 DOI: 10.3389/fpubh.2017.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Masood A. Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- *Correspondence: Masood A. Shammas, ,
| |
Collapse
|
21
|
Pal J, Nanjappa P, Kumar S, Shi J, Buon L, Munshi NC, Shammas MA. Impact of RAD51C-mediated Homologous Recombination on Genomic Integrity in Barrett's Adenocarcinoma Cells. ACTA ACUST UNITED AC 2017; 6:2286-2295. [PMID: 29399538 PMCID: PMC5796564 DOI: 10.17554/j.issn.2224-3992.2017.06.687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In normal cells, RAD51-mediated homologous recombination (HR) is a
precise DNA repair mechanism which plays a key role in the maintenance of
genomic integrity and stability. However, elevated (dysregulated) RAD51 is
implicated in genomic instability and is a potential target for treatment of
certain cancers, including Barrett’s adenocarcinoma (BAC). In this
study, we investigated genomic impact and translational significance of
moderate vs. strong suppression of RAD51 in BAC cells. METHODS BAC cells (FLO-1 and OE33) were transduced with non-targeting control
(CS) or RAD51-specific shRNAs, mediating a moderate (40–50%)
suppression or strong (80-near 100%) suppression of the gene. DNA
breaks, spontaneous or following exposure to DNA damaging agent, were
examined by comet assay and 53BP1 staining. Gene expression was monitored by
microarrays (Affymetrix). Homologous recombination (HR) and single strand
annealing (SSA) activities were measured using plasmid based assays. RESULTS We show that although moderate suppression consistenly
inhibits/reduces HR activity, the strong suppression is associated with
increase in HR activity (by ~15 – ≥ 50% in various
experiments), suggesting activation of RAD51-independent pathway. Contrary
to moderate suppression, a strong suppression of RAD51 is associated with a
significant induced DNA breaks as well as altered expression of genes
involved in detection/processing of DNA breaks and apoptosis. Stronger RAD51
suppression was also associated with mutagenic single strand annealing
mediated HR. Suppression of RAD51C inhibited RAD51-independent
(SSA-mediated) HR in BAC cells. CONCLUSION Elevated (dysregulated) RAD51 in BAC is implicated in both the repair
of DNA breaks as well as ongoing genomic rearrangements. Moderate
suppression of this gene reduces HR activity, whereas strong or near
complete suppression of this gene activates RAD51C-dependent HR involving a
mechanism known as single strand annealing (SSA). SSA-mediated HR, which is
a mutagenic HR pathway, further disrupts genomic integrity by increasing DNA
breaks in BAC cells.
Collapse
Affiliation(s)
- Jagannath Pal
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Multi-disciplinary Research Units (MRUs), Pt J.N.M. Medical College, Raipur, CG, India
| | - Purushothama Nanjappa
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| | - Subodh Kumar
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| | - Jialan Shi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Department of Medicine, Harvard Medical School, Boston, MA, the United States
| | - Leutz Buon
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States
| | - Nikhil C Munshi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Department of Medicine, Harvard Medical School, Boston, MA, the United States
| | - Masood A Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| |
Collapse
|
22
|
Zhu X, Pan Q, Huang N, Wu J, Zhen N, Sun F, Li Z, Yang Q. RAD51 regulates CHK1 stability via autophagy to promote cell growth in esophageal squamous carcinoma cells. Tumour Biol 2016; 37:10.1007/s13277-016-5455-6. [PMID: 27743378 DOI: 10.1007/s13277-016-5455-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/23/2016] [Indexed: 01/04/2023] Open
Abstract
The serine/threonine protein kinase CHK1 has been reported to bind to the recombinase RAD51 and facilitates its assembly in DNA damage sites via phosphorylation. However, the role of RAD51 in regulating the expression of CHK1 has never been explored. Here, we show that RAD51 is highly upregulated in esophageal squamous tumor tissues and its DMC1 domain significantly promotes cell growth of esophageal cancer (EC) cells through CHK1. To gain the mechanistic insights, firstly, in the presence of 3-methyladenine (3MA), an autophagy inhibitor, we found that the reduction of CHK1 and the inhibition of cell growth in RAD51-deficient EC109 cells were strikingly restored. Subsequently, the autophagy-related experiments revealed that RAD51 negatively participated in autophagy. Moreover, results from in vitro clonogenic survival assays showed that RAD51 depletion greatly enabled EC cells to resist the autophagy inhibitors 3MA and hydroxychloroquine (HCQ) treatments. Above all, our studies firstly highlight a direct role of RAD51 in autophagy process and characterize its functional domain in cell growth regulation. Moreover, our data firstly shed insights into the possible application of autophagy inhibitors in treating RAD51 overexpressed EC patients.
Collapse
Affiliation(s)
- Xinyi Zhu
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qiuhui Pan
- Central Laboratory, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Jianchun Wu
- Department of oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Ni Zhen
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Zhi Li
- Department of Clinical Laboratory Medicine, Yangpu Hospital of Tongji University, Shanghai, 200090, China.
| | - Qingyuan Yang
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
23
|
Gavande NS, VanderVere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR, Pawelczak KS, Turchi JJ. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol Ther 2016; 160:65-83. [PMID: 26896565 DOI: 10.1016/j.pharmthera.2016.02.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The repair of DNA damage is a complex process that relies on particular pathways to remedy specific types of damage to DNA. The range of insults to DNA includes small, modest changes in structure including mismatched bases and simple methylation events to oxidized bases, intra- and interstrand DNA crosslinks, DNA double strand breaks and protein-DNA adducts. Pathways required for the repair of these lesions include mismatch repair, base excision repair, nucleotide excision repair, and the homology directed repair/Fanconi anemia pathway. Each of these pathways contributes to genetic stability, and mutations in genes encoding proteins involved in these pathways have been demonstrated to promote genetic instability and cancer. In fact, it has been suggested that all cancers display defects in DNA repair. It has also been demonstrated that the ability of cancer cells to repair therapeutically induced DNA damage impacts therapeutic efficacy. This has led to targeting DNA repair pathways and proteins to develop anti-cancer agents that will increase sensitivity to traditional chemotherapeutics. While initial studies languished and were plagued by a lack of specificity and a defined mechanism of action, more recent approaches to exploit synthetic lethal interaction and develop high affinity chemical inhibitors have proven considerably more effective. In this review we will highlight recent advances and discuss previous failures in targeting DNA repair to pave the way for future DNA repair targeted agents and their use in cancer therapy.
Collapse
Affiliation(s)
- Navnath S Gavande
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | | - Hilary D Hinshaw
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shadia I Jalal
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Catherine R Sears
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States; NERx Biosciences, Indianapolis, IN 46202, United States; Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
24
|
Shammas MA, Rajput SA, Ahmad D, Ahmed M, Mustafa Z, Ahmad G. Inclusion of “Toxicological Review Expiry Dates” in Art Material Labels May Further Reduce the Risk of Chronic Toxicity, Including That of Cancer. Front Oncol 2016; 6:4. [PMID: 26835419 PMCID: PMC4720026 DOI: 10.3389/fonc.2016.00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/03/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Masood A. Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- *Correspondence: Masood A. Shammas, ,
| | | | | | - Masood Ahmed
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Zahid Mustafa
- University of California Riverside, Riverside, CA, USA
| | | |
Collapse
|
25
|
Pusung M, Zeki S, Fitzgerald R. Genomics of Esophageal Cancer and Biomarkers for Early Detection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:237-63. [PMID: 27573775 DOI: 10.1007/978-3-319-41388-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In-depth molecular characterization of esophageal oncogenesis has improved over the recent years. Advancement in molecular biology and bioinformatics has led to better understanding of its genomic landscape. More specifically, analysis of its pathogenesis at the genetic level has uncovered the involvement of a number of tumor suppressor genes, cell cycle regulators, and receptor tyrosine kinases. Due to its poor prognosis, the development of clinically applicable biomarkers for diagnosis, progression, and treatment has been the focus of many research studies concentrating on upper gastrointestinal malignancies. As in other cancers, early detection and subsequent intervention of the preneoplastic condition significantly improves patient outcomes. Currently, clinically approved surveillance practices heavily depend on expensive, invasive, and sampling-error-prone endoscopic procedures. There is, therefore, a great demand to establish clearly reliable biomarkers that could identify those patients at higher risk of neoplastic progression and hence would greatly benefit from further monitoring and/or intervention. This chapter will present the most recent advances in the analysis of the esophageal cancer genome serving as basis for biomarker development.
Collapse
Affiliation(s)
- Mark Pusung
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
26
|
Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet 2015; 11:e1004901. [PMID: 25647331 PMCID: PMC4372043 DOI: 10.1371/journal.pgen.1004901] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022] Open
Abstract
Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. People with chronic inflammatory conditions have a markedly increased risk for cancer. In addition, many cancers have an inflammatory microenvironment that promotes tumor growth. Here, we show that inflammatory infiltration synergizes with tissue regeneration to induce DNA sequence rearrangements in vivo. Chronically inflamed issues that are continuously regenerating are thus at an increased risk for mutagenesis and malignant transformation. Further, rapidly dividing tumor cells in an inflammatory microenvironment can also acquire mutations, which have been shown to contribute to drug resistance and disease recurrence. Finally, inflammation-induced tissue regeneration sensitizes tissues to DNA damaging environmental exposures and chemotherapeutics. The work described here thus increases our understanding of how inflammation leads to genetic changes that drive cancer formation and recurrence.
Collapse
Affiliation(s)
- Orsolya Kiraly
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Werner Olipitz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
- * E-mail:
| |
Collapse
|
27
|
O'Sullivan KE, Phelan JJ, O'Hanlon C, Lysaght J, O'Sullivan JN, Reynolds JV. The role of inflammation in cancer of the esophagus. Expert Rev Gastroenterol Hepatol 2014; 8:749-60. [PMID: 24857183 DOI: 10.1586/17474124.2014.913478] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Esophageal adenocarcinoma is the eighth most common malignancy worldwide. The overall prognosis is poor, with 5-year survival ranges of approximately 15-25%, and 30-50% for patients who can be treated with curative intent. There has been a marked increase in incidence of esophageal adenocarcinoma over the last 30 years, with chronic and severe reflux, diet and obesity identified as principal factors fuelling this rise in the West. Esophageal adenocarcinoma is an exemplar model of an inflammation-associated cancer. The key molecular pathways driving tumor development and influencing tumor biology are the subject of considerable research efforts, and is the principal focus of this review. In addition, the diverse range of changes occurring in the local immune response, tissue microenvironment, metabolic profile, intracellular signaling mechanisms and microRNA signatures are discussed, as well as novel targeted therapies.
Collapse
Affiliation(s)
- Katie E O'Sullivan
- Department of Surgery, Institute of Molecular Medicine, St. James Hospital, Dublin 8, Ireland
| | | | | | | | | | | |
Collapse
|
28
|
Kiraly O, Gong G, Roytman MD, Yamada Y, Samson LD, Engelward BP. DNA glycosylase activity and cell proliferation are key factors in modulating homologous recombination in vivo. Carcinogenesis 2014; 35:2495-502. [PMID: 25155011 DOI: 10.1093/carcin/bgu177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cancer susceptibility varies between people, affected by genotoxic exposures, genetic makeup and physiological state. Yet, how these factors interact among each other to define cancer risk is largely unknown. Here, we uncover the interactive effects of genetical, environmental and physiological factors on genome rearrangements driven by homologous recombination (HR). Using FYDR mice to quantify HR-driven rearrangements in pancreas tissue, we show that DNA methylation damage (induced by methylnitrosourea) and cell proliferation (induced by thyroid hormone) each induce HR and together act synergistically to induce HR-driven rearrangements in vivo. These results imply that developmental or regenerative proliferation as well as mitogenic exposures may sensitize tissues to DNA damaging exposures. We exploited mice genetically deficient in alkyl-adenine DNA glycosylase (Aag) to analyse the relative contributions of unrepaired DNA base lesions versus intermediates formed during base excision repair (BER). Remarkably, results show that, in the pancreas, Aag is a major driver of spontaneous HR, indicating that BER intermediates (including abasic sites and single strand breaks) are more recombinogenic than the spontaneous base lesions removed by Aag. Given that mammals have about a dozen DNA glycosylases, these results point to BER as a major source of pressure on the HR pathway in vivo. Taken together, methylation damage, cell proliferation and Aag interact to define the risk of HR-driven sequence rearrangements in vivo. These data identify important sources of sequence changes in a cancer-relevant organ, and advance the effort to identify populations at high-risk for cancer.
Collapse
Affiliation(s)
- Orsolya Kiraly
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
| | - Megan D Roytman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
| | - Yoshiyuki Yamada
- Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| |
Collapse
|
29
|
Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo. PLoS Genet 2014; 10:e1004299. [PMID: 24901438 PMCID: PMC4046920 DOI: 10.1371/journal.pgen.1004299] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/24/2014] [Indexed: 01/15/2023] Open
Abstract
Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals. Cancer is a disease of the genome, caused by accumulated genetic changes, such as point mutations and large-scale sequence rearrangements. Homologous recombination (HR) is a critical DNA repair pathway. While generally accurate, HR between misaligned sequences or between homologous chromosomes can lead to insertions, deletions, and loss of heterozygosity, all of which are known to promote cancer. Indeed, most cancers harbor sequence changes caused by HR, and genetic and environmental conditions that induce or suppress HR are often carcinogenic. To enable studies of HR in vivo, we created the Rosa26 Direct Repeat-Green Fluorescent Protein (RaDR-GFP) mice that carry an integrated transgenic recombination reporter targeted to the ubiquitously expressed Rosa26 locus. Being able to detect recombinant cells by fluorescence reveals that the frequency of recombination is highly variable among tissues. Furthermore, new recombination events accumulate over time, which contributes to our understanding of why our risk for cancer increases with age. This mouse model provides new understanding of this important DNA repair pathway in vivo, and also enables future studies of genetic, environmental and physiological factors that impact the risk of HR-induced sequence rearrangements in vivo.
Collapse
|
30
|
Pal J, Gold JS, Munshi NC, Shammas MA. Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target. Transl Res 2013; 162:364-70. [PMID: 24090770 PMCID: PMC3834232 DOI: 10.1016/j.trsl.2013.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022]
Abstract
The purpose of this review is to highlight the importance of telomeres, the mechanisms implicated in their maintenance, and their role in the etiology as well as the treatment of human esophageal cancer. We will also discuss the role of telomeres in the maintenance and preservation of genomic integrity, the consequences of telomere dysfunction, and the various factors that may affect telomere health in esophageal tissue predisposing it to oncogenesis. There has been growing evidence that telomeres, which can be affected by various intrinsic and extrinsic factors, contribute to genomic instability, oncogenesis, as well as proliferation of cancer cells. Telomeres are the protective DNA-protein complexes at chromosome ends. Telomeric DNA undergoes progressive shortening with age leading to cellular senescence and/or apoptosis. If senescence/apoptosis is prevented as a consequence of specific genomic changes, continued proliferation leads to very short (ie, dysfunctional) telomeres that can potentially cause genomic instability, thus, increasing the risk for activation of telomere maintenance mechanisms and oncogenesis. Like many other cancers, esophageal cancer cells have short telomeres and elevated telomerase, the enzyme that maintains telomeres in most cancer cells. Homologous recombination, which is implicated in the alternate pathway of telomere elongation, is also elevated in Barrett's-associated esophageal adenocarcinoma. Evidence from our laboratory indicates that both telomerase and homologous recombination contribute to telomere maintenance, DNA repair, and the ongoing survival of esophageal cancer cells. This indicates that telomere maintenance mechanisms may potentially be targeted to make esophageal cancer cells static. The rate at which telomeres in healthy cells shorten is determined by a number of intrinsic and extrinsic factors, including those associated with lifestyle. Avoidance of factors that may directly or indirectly injure esophageal tissue including its telomeric and other genomic DNA can not only reduce the risk of development of esophageal cancer but may also have positive impact on overall health and lifespan.
Collapse
Affiliation(s)
- Jagannath Pal
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Jason S. Gold
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Nikhil C. Munshi
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Masood A. Shammas
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
31
|
Subramanyam S, Jones WT, Spies M, Spies MA. Contributions of the RAD51 N-terminal domain to BRCA2-RAD51 interaction. Nucleic Acids Res 2013; 41:9020-32. [PMID: 23935068 PMCID: PMC3799448 DOI: 10.1093/nar/gkt691] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
RAD51 DNA strand exchange protein catalyzes the central step in homologous recombination, a cellular process fundamentally important for accurate repair of damaged chromosomes, preservation of the genetic integrity, restart of collapsed replication forks and telomere maintenance. BRCA2 protein, a product of the breast cancer susceptibility gene, is a key recombination mediator that interacts with RAD51 and facilitates RAD51 nucleoprotein filament formation on single-stranded DNA generated at the sites of DNA damage. An accurate atomistic level description of this interaction, however, is limited to a partial crystal structure of the RAD51 core fused to BRC4 peptide. Here, by integrating homology modeling and molecular dynamics, we generated a structure of the full-length RAD51 in complex with BRC4 peptide. Our model predicted previously unknown hydrogen bonding patterns involving the N-terminal domain (NTD) of RAD51. These interactions guide positioning of the BRC4 peptide within a cavity between the core and the NTDs; the peptide binding separates the two domains and restricts internal dynamics of RAD51 protomers. The model’s depiction of the RAD51-BRC4 complex was validated by free energy calculations and in vitro functional analysis of rationally designed mutants. All generated mutants, RAD51E42A, RAD51E59A, RAD51E237A, RAD51E59A/E237A and RAD51E42A/E59A/E237A maintained basic biochemical activities of the wild-type RAD51, but displayed reduced affinities for the BRC4 peptide. Strong correlation between the calculated and experimental binding energies confirmed the predicted structure of the RAD51-BRC4 complex and highlighted the importance of RAD51 NTD in RAD51-BRCA2 interaction.
Collapse
Affiliation(s)
- Shyamal Subramanyam
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA, Center for the Physics of Living Cells, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA, Department of Biochemistry, Carver College of Medicine, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA and Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
32
|
Targeting homologous recombination and telomerase in Barrett's adenocarcinoma: impact on telomere maintenance, genomic instability and tumor growth. Oncogene 2013; 33:1495-505. [PMID: 23604115 PMCID: PMC3940666 DOI: 10.1038/onc.2013.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
Homologous recombination (HR), a mechanism to accurately repair DNA in normal cells, is deregulated in cancer. Elevated/deregulated HR is implicated in genomic instability and telomere maintenance, which are critical lifelines of cancer cells. We have previously shown that HR activity is elevated and significantly contributes to genomic instability in BAC. The purpose of this study was to evaluate therapeutic potential of HR inhibition, alone and in combination with telomerase inhibition, in BAC. We demonstrate that telomerase inhibition in BAC cells increases HR activity, RAD51 expression, and association of RAD51 to telomeres. Suppression of HR leads to shorter telomeres as well as markedly reduced genomic instability in BAC cells over time. Combination of HR suppression (whether transgenic or chemical) with telomerase inhibition, causes a significant increase in telomere attrition and apoptotic death in all BAC cell lines tested, relative to either treatment alone. A subset of treated cells also stain positive for β-galactosidase, indicating senescence. The combined treatment is also associated with decline in S-phase and a strong G2/M arrest, indicating massive telomere attrition. In a subcutaneous tumor model, the combined treatment resulted in the smallest tumors, which were even smaller (P=0.001) than those resulted from either treatment alone. Even the tumors removed from these mice had significantly reduced telomeres and evidence of apoptosis. We therefore conclude that although telomeres are elongated by telomerase, elevated RAD51/HR assist in their maintenance/stabilization in BAC cells. Telomerase inhibitor prevents telomere elongation but induces RAD51/HR, which contribute to telomere maintenance/stabilization and prevention of apoptosis, reducing the efficacy of treatment. Combining HR inhibition with telomerase, makes telomeres more vulnerable to degradation and significantly increases/expedites their attrition, leading to apoptosis. We therefore demonstrate that a therapy, targeting HR and telomerase, has potential to prevent both the tumor growth and genomic evolution in BAC.
Collapse
|
33
|
Tennstedt P, Fresow R, Simon R, Marx A, Terracciano L, Petersen C, Sauter G, Dikomey E, Borgmann K. RAD51 overexpression is a negative prognostic marker for colorectal adenocarcinoma. Int J Cancer 2012; 132:2118-26. [PMID: 23065657 DOI: 10.1002/ijc.27907] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/13/2012] [Indexed: 12/31/2022]
Abstract
RAD51 is the central protein in the homologous recombination pathway and is therefore of great relevance in terms of both therapy resistance as well as genomic stability. By using a tissue microarray analysis of 1,213 biopsies taken from colorectal adenocarcinomas (CRCs), we investigated whether RAD51 expression can be used as a prognostic marker as well as potential associations between this and the expression of other proteins known to be related to CRC. Strong RAD51 expression was observed in 1% of CRC, moderate in 11%, weak in 34% and no expression in 44%. No correlation was found between RAD51 expression and clinicopathological parameters. RAD51 expression correlated significantly (p = 0.001) with overall survival, with a median survival of 11 months for patients with strong, 46 with moderate, 76 with weak and 68 with negative expression. Multivariate analyses revealed that in addition to tumor stage (p < 0.0001) and nodal status (p < 0.0001), RAD51 expression is also an independent prognostic parameter (p = 0.011). Strong RAD51 expression was found to be associated with the loss of the two DNA mismatch repair proteins MSH (p = 0.0003), MLH (p = 0.002) and β-catenin (p = 0.012) as well as with elevated p21 (p = 0.003) and EGFR expression (p = 0.0001). However, a correlation with overall survival could only be found for EGFR expression (p = 0.008), although no added benefit in risk stratification could be determined when evaluated together with RAD51. Overexpression of RAD51 is a predictor of poor outcome in CRC. This finding indicated the promise of future studies using RAD51 as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Pierre Tennstedt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kiesel P, Bodemer W, Gibson T, Zischler H, Kaup FJ. Prion infected rhesus monkeys to study differential transcription of Alu DNA elements and editing of Alu transcripts in neuronal cells and blood cells. J Med Primatol 2012; 41:176-82. [PMID: 22380733 DOI: 10.1111/j.1600-0684.2012.00535.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Rhesus monkeys were used as a non-human primate model to study small non-coding RNA after infection with human sporadic and variant Creutzfeldt-Jakob prions. METHODS Tissue-specific Alu DNA element transcription and editing of transcripts were assessed in neuronal - and blood cells (Buffy Coat). RESULTS Tissue/cell-specific transcription and editing patterns were obtained. Active Alu DNA elements belonged to several Alu DNA families, they could be located on several chromosomes, and their genomic sites were identified. Deamination by adenosine deaminase acting on RNA and apolipoprotein B editing complex was found. CONCLUSIONS Different Alu transcription and editing programmes exist and may depend on the infection status.
Collapse
Affiliation(s)
- P Kiesel
- German Primate Center, Goettingen, Germany
| | | | | | | | | |
Collapse
|
35
|
Pal J, Fulciniti M, Nanjappa P, Buon L, Tai YT, Tassone P, Munshi NC, Shammas MA. Targeting PI3K and RAD51 in Barrett's adenocarcinoma: impact on DNA damage checkpoints, expression profile and tumor growth. Cancer Genomics Proteomics 2012; 9:55-66. [PMID: 22399496 PMCID: PMC5536098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog 1 (AKT) signaling in cancer is implicated in various survival pathways including regulation of recombinase (RAD51). In this study, we evaluated PI3K and RAD51 as targets in Barrett's adenocarcinoma (BAC) cells both in vitro and in vivo. BAC cell lines (OE19, OE33, and FLO-1) were cultured in the presence of PI3K inhibitor (wortmannin) and the impact on growth and expression of AKT, phosphorylated-AKT (P-AKT), and RAD51 was determined. Wortmannin induced growth arrest and apoptosis in two BAC cell lines (OE33 and OE19), which had relatively higher expression of AKT. FLO-1 cells, with lower AKT expression, were less sensitive to treatment and investigated further. In FLO-1 cells, wortmannin suppressed ataxia telangiectasia and Rad3-related protein (ATR)-checkpoint kinase 1 (CHK1)-mediated checkpoint and multiple DNA repair genes, whereas RAD51 and CHK2 were not affected. Western blotting confirmed that RAD51 was suppressed by wortmannin in OE33 and OE19 cells, but not in FLO-1 cells. Suppression of RAD51 in FLO-1 cells down-regulated the expression of CHK2 and CHK1, and reduced the proliferative potential. Finally, the suppression of RAD51 in FLO-1 cells, significantly increased the anticancer activity of wortmannin in these cells, both in vitro and in vivo. We show that PI3K signaling and hsRAD51, through distinct roles in DNA damage response and repair pathways, provide survival advantage to BAC cells. In cells with inherent low expression of AKT, RAD51 is unaffected by PI3K suppression and provides an additional survival pathway. Simultaneous suppression of PI3K and RAD51, especially in cells with lower AKT expression, can significantly reduce their proliferative potential.
Collapse
Affiliation(s)
- Jagannath Pal
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Shammas MA. Repetitive sequences, genomic instability and Barrett's esophageal adenocarcinoma. Mob Genet Elements 2011; 1:208-212. [PMID: 22479688 DOI: 10.4161/mge.1.3.17456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/22/2011] [Indexed: 11/19/2022] Open
Abstract
Barrett's esophageal adenocarcinoma (BAC) is a cancer associated with heartburn. If gastroesophageal reflux is not treated, the exposure to acid over the years, leads to a premalignant condition known as Barrett's esophagus (BE) which then progresses through low grade and high grade dysplasias to Barrett's adenocarcinoma. Genomic instability, which seems to arise early at BE stage, leads to accrual of mutational changes which underlie the the succession of histological and physiological changes associated with this disease. Genomic instability is therefore an important target for prevention and treatment of cancer and it is important to elucidate the mechanisms associated with this problem. We have shown that elevated/deregulated homologous recombination mediates genomic instability in cancer. Recently we also demonstrated that the mutational rates of individual chromosomes in BAC cells correlate with their ALU frequency. The aims of this article are to briefly discuss different types of repetitive sequences and highlight their importance in physiology of normal and cancer cells, especially BAC.
Collapse
Affiliation(s)
- Masood A Shammas
- Department of Medical Oncology; Harvard (Dana Farber) Cancer Institute; Boston, MA USA; VA Boston Healthcare System; West Roxbury, MA USA
| |
Collapse
|
37
|
Nagathihalli NS, Nagaraju G. RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:209-18. [PMID: 21807066 DOI: 10.1016/j.bbcan.2011.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 11/30/2022]
Abstract
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Nagaraj S Nagathihalli
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232-6860, USA.
| | | |
Collapse
|