1
|
Monroe JD, Basheer F, Gibert Y. Xmrks the Spot: Fish Models for Investigating Epidermal Growth Factor Receptor Signaling in Cancer Research. Cells 2021; 10:1132. [PMID: 34067095 PMCID: PMC8150686 DOI: 10.3390/cells10051132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Studies conducted in several fish species, e.g., Xiphophorus hellerii (green swordtail) and Xiphophorus maculatus (southern platyfish) crosses, Oryzias latipes (medaka), and Danio rerio (zebrafish), have identified an oncogenic role for the receptor tyrosine kinase, Xmrk, a gene product closely related to the human epidermal growth factor receptor (EGFR), which is associated with a wide variety of pathological conditions, including cancer. Comparative analyses of Xmrk and EGFR signal transduction in melanoma have shown that both utilize STAT5 signaling to regulate apoptosis and cell proliferation, PI3K to modulate apoptosis, FAK to control migration, and the Ras/Raf/MEK/MAPK pathway to regulate cell survival, proliferation, and differentiation. Further, Xmrk and EGFR may also modulate similar chemokine, extracellular matrix, oxidative stress, and microRNA signaling pathways in melanoma. In hepatocellular carcinoma (HCC), Xmrk and EGFR signaling utilize STAT5 to regulate cell proliferation, and Xmrk may signal through PI3K and FasR to modulate apoptosis. At the same time, both activate the Ras/Raf/MEK/MAPK pathway to regulate cell proliferation and E-cadherin signaling. Xmrk models of melanoma have shown that inhibitors of PI3K and MEK have an anti-cancer effect, and in HCC, that the steroidal drug, adrenosterone, can prevent metastasis and recover E-cadherin expression, suggesting that fish Xmrk models can exploit similarities with EGFR signal transduction to identify and study new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jerry D. Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| | - Faiza Basheer
- School of Medicine, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| |
Collapse
|
2
|
Kreß JKC, Jessen C, Marquardt A, Hufnagel A, Meierjohann S. NRF2 Enables EGFR Signaling in Melanoma Cells. Int J Mol Sci 2021; 22:ijms22083803. [PMID: 33916908 PMCID: PMC8067606 DOI: 10.3390/ijms22083803] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinases (RTK) are rarely mutated in cutaneous melanoma, but the expression and activation of several RTK family members are associated with a proinvasive phenotype and therapy resistance. Epidermal growth factor receptor (EGFR) is a member of the RTK family and is only expressed in a subgroup of melanomas with poor prognosis. The insight into regulators of EGFR expression and activation is important for the understanding of the development of this malignant melanoma phenotype. Here, we describe that the transcription factor NRF2, the master regulator of the oxidative and electrophilic stress response, mediates the expression and activation of EGFR in melanoma by elevating the levels of EGFR as well as its ligands EGF and TGFα. ChIP sequencing data show that NRF2 directly binds to the promoter of EGF, which contains a canonical antioxidant response element. Accordingly, EGF is induced by oxidative stress and is also increased in lung adenocarcinoma and head and neck carcinoma with mutationally activated NRF2. In contrast, regulation of EGFR and TGFA occurs by an indirect mechanism, which is enabled by the ability of NRF2 to block the activity of the melanocytic lineage factor MITF in melanoma. MITF effectively suppresses EGFR and TGFA expression and therefore serves as link between NRF2 and EGFR. As EGFR was previously described to stimulate NRF2 activity, the mutual activation of NRF2 and EGFR pathways was investigated. The presence of NRF2 was necessary for full EGFR pathway activation, as NRF2-knockout cells showed reduced AKT activation in response to EGF stimulation compared to controls. Conversely, EGF led to the nuclear localization and activation of NRF2, thereby demonstrating that NRF2 and EGFR are connected in a positive feedback loop in melanoma. In summary, our data show that the EGFR-positive melanoma phenotype is strongly supported by NRF2, thus revealing a novel maintenance mechanism for this clinically challenging melanoma subpopulation.
Collapse
Affiliation(s)
| | - Christina Jessen
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; (J.K.); (C.J.); (A.M.); (A.H.)
| | - André Marquardt
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; (J.K.); (C.J.); (A.M.); (A.H.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Anita Hufnagel
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; (J.K.); (C.J.); (A.M.); (A.H.)
| | - Svenja Meierjohann
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; (J.K.); (C.J.); (A.M.); (A.H.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
- Correspondence:
| |
Collapse
|
3
|
A Bispecific Inhibitor of the EGFR/ADAM17 Axis Decreases Cell Proliferation and Migration of EGFR-Dependent Cancer Cells. Cancers (Basel) 2020; 12:cancers12020411. [PMID: 32050662 PMCID: PMC7072247 DOI: 10.3390/cancers12020411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Dysregulated epidermal growth factor receptor (EGFR) is an oncogenic driver of many human cancers, promoting aberrant cell proliferation, migration, and survival. Pharmacological targeting of EGFR is often challenged by acquired mechanisms of resistance. Ligand-dependent mechanisms in EGFR wild-type cells rely on ligand or receptor overexpression, allowing cells to outcompete inhibitors and perpetuate signaling in an autocrine manner. Importantly, EGFR ligands are synthesized as membrane-bound precursors that must be solubilized to enable receptor-ligand interactions. The A disintegrin and metalloproteinase 17 (ADAM17) is considered the main sheddase of several EGFR ligands, and a potential pharmacological target. However, its broad substrate range and ubiquitous expression complicate its therapeutic targeting. Here, we present a novel bispecific fusion protein construct consisting of the inhibitory prodomain of ADAM17 (TPD), fused to an EGFR-targeting designed ankyrin repeat protein (DARPin). TPD is a natural inhibitor of ADAM17, maintaining the protease in a zymogen-like form. Meanwhile, the high affinity anti-EGFR DARPin E01 binds to EGFR and inhibits ligand binding. The resulting fusion protein E01-GS-TPD retained binding ability to both molecular targets EGFR and ADAM17. The large difference in affinity for each target resulted in enrichment of the fusion protein in EGFR-positive cells compared to EGFR-negative cells, suggesting a possible application in autocrine signaling inhibition. Accordingly, E01-GS-TPD decreased migration and proliferation of EGFR-dependent cell lines with no significant increase in apoptotic cell death. Finally, inhibition of proliferation was observed through EGFR ligand-dependent mechanisms as growth inhibition was not observed in EGFR mutant or KRAS mutant cell lines. The use of bispecific proteins targeting the EGFR/ADAM17 axis could be an innovative strategy for the treatment of EGFR-dependent cancers.
Collapse
|
4
|
Appenzeller S, Gesierich A, Thiem A, Hufnagel A, Jessen C, Kneitz H, Regensburger M, Schmidt C, Zirkenbach V, Bischler T, Schilling B, Siedel C, Goebeler ME, Houben R, Schrama D, Gehrig A, Rost S, Maurus K, Bargou R, Rosenwald A, Schartl M, Goebeler M, Meierjohann S. The identification of patient-specific mutations reveals dual pathway activation in most patients with melanoma and activated receptor tyrosine kinases in BRAF/NRAS wild-type melanomas. Cancer 2018; 125:586-600. [PMID: 30561760 DOI: 10.1002/cncr.31843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND Increasing knowledge of cancer genomes has triggered the development of specific targeted inhibitors, thus providing a valuable therapeutic pool. METHODS In this report, the authors analyze the presence of targetable alterations in 136 tumor samples from 92 patients with melanoma using a comprehensive approach based on targeted DNA sequencing and supported by RNA and protein analysis. Three topics of high clinical relevance are addressed: the identification of rare, activating alterations; the detection of patient-specific, co-occurring single nucleotide variants (SNVs) and copy number variations (CNVs) in parallel pathways; and the presence of cancer-relevant germline mutations. RESULTS The analysis of patient-matched blood and tumor samples was done with a custom-designed gene panel that was enriched for genes from clinically targetable pathways. To detect alterations with high therapeutic relevance for patients with unknown driver mutations, genes that are untypical for melanoma also were included. Among all patients, CNVs were identified in one-third of samples and contained amplifications of druggable kinases, such as CDK4, ERBB2, and KIT. Considering SNVs and CNVs, 60% of patients with metastases exhibited co-occurring activations of at least 2 pathways, thus providing a rationale for individualized combination therapies. Unexpectedly, 9% of patients carry potentially protumorigenic germline mutations frequently affecting receptor tyrosine kinases. Remarkably two-thirds of BRAF/NRAS wild-type melanomas harbor activating mutations or CNVs in receptor tyrosine kinases. CONCLUSIONS The results indicate that the integrated analysis of SNVs, CNVs, and germline mutations reveals new druggable targets for combination tumor therapy.
Collapse
Affiliation(s)
- Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Anja Gesierich
- Department of Dermatology, Venereology, and Allergology and Skin Cancer Center, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Thiem
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.,Department of Dermatology, Venereology, and Allergology and Skin Cancer Center, University Hospital Würzburg, Würzburg, Germany
| | - Anita Hufnagel
- Department of Physiological Chemistry, University of Würzburg, Würzburg, Germany
| | - Christina Jessen
- Department of Physiological Chemistry, University of Würzburg, Würzburg, Germany
| | - Hermann Kneitz
- Department of Dermatology, Venereology, and Allergology and Skin Cancer Center, University Hospital Würzburg, Würzburg, Germany
| | - Martina Regensburger
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.,Department of Physiological Chemistry, University of Würzburg, Würzburg, Germany
| | - Cornelia Schmidt
- Department of Physiological Chemistry, University of Würzburg, Würzburg, Germany
| | - Vanessa Zirkenbach
- Department of Physiological Chemistry, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology, and Allergology and Skin Cancer Center, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Siedel
- Department of Dermatology, Venereology, and Allergology and Skin Cancer Center, University Hospital Würzburg, Würzburg, Germany
| | | | - Roland Houben
- Department of Dermatology, Venereology, and Allergology and Skin Cancer Center, University Hospital Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venereology, and Allergology and Skin Cancer Center, University Hospital Würzburg, Würzburg, Germany
| | - Andrea Gehrig
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Simone Rost
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Katja Maurus
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | | | - Manfred Schartl
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.,Department of Physiological Chemistry, University of Würzburg, Würzburg, Germany.,Texas A&M Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, Texas
| | - Matthias Goebeler
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.,Department of Dermatology, Venereology, and Allergology and Skin Cancer Center, University Hospital Würzburg, Würzburg, Germany
| | - Svenja Meierjohann
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.,Department of Physiological Chemistry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
BRAF inhibition causes resilience of melanoma cell lines by inducing the secretion of FGF1. Oncogenesis 2018; 7:71. [PMID: 30237393 PMCID: PMC6147791 DOI: 10.1038/s41389-018-0082-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Approximately half of all melanoma patients harbour activating mutations in the serine/threonine kinase BRAF. This is the basis for one of the main treatment strategies for this tumor type, the targeted therapy with BRAF and MEK inhibitors. While the initial responsiveness to these drugs is high, resistance develops after several months, frequently at sites of the previously responding tumor. This indicates that tumor response is incomplete and that a certain tumor fraction survives even in drug-sensitive patients, e.g., in a therapy-induced senescence-like state. Here, we show in several melanoma cell lines that BRAF inhibition induces a secretome with stimulating effect on fibroblasts and naive melanoma cells. Several senescence-associated factors were found to be transcribed and secreted in response to BRAF or MEK inhibition, among them members of the fibroblast growth factor family. We identified the growth factor FGF1 as mediator of resilience towards BRAF inhibition, which limits the pro-apoptotic effects of the drug and activates fibroblasts to secrete HGF. FGF1 regulation was mediated by the PI3K pathway and by FRA1, a direct target gene of the MAPK pathway. When FGFR inhibitors were applied in parallel to BRAF inhibitors, resilience was broken, thus providing a rationale for combined therapeutical application.
Collapse
|
6
|
Schartl M, Shen Y, Maurus K, Walter R, Tomlinson C, Wilson RK, Postlethwait J, Warren WC. Whole Body Melanoma Transcriptome Response in Medaka. PLoS One 2015; 10:e0143057. [PMID: 26714172 PMCID: PMC4699850 DOI: 10.1371/journal.pone.0143057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/30/2015] [Indexed: 01/17/2023] Open
Abstract
The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
- Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, 97074, Würzburg, Germany
- * E-mail: (WCW); (MS)
| | - Yingjia Shen
- Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, United States of America
| | - Katja Maurus
- Physiological Chemistry, University of Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Ron Walter
- Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, United States of America
| | - Chad Tomlinson
- McDonnell Genome Institute at Washington University, 4444 Forest Park Blvd., St Louis, MO, 63108, United States of America
| | - Richard K. Wilson
- McDonnell Genome Institute at Washington University, 4444 Forest Park Blvd., St Louis, MO, 63108, United States of America
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR, 97403, United States of America
| | - Wesley C. Warren
- McDonnell Genome Institute at Washington University, 4444 Forest Park Blvd., St Louis, MO, 63108, United States of America
- * E-mail: (WCW); (MS)
| |
Collapse
|
7
|
Peroxiredoxin 6 triggers melanoma cell growth by increasing arachidonic acid-dependent lipid signalling. Biochem J 2015; 471:267-79. [PMID: 26285655 DOI: 10.1042/bj20141204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 08/18/2015] [Indexed: 01/02/2023]
Abstract
Tumour cells are reported to display an imbalance in the levels of ROS (reactive oxygen species). Frequently, elevated ROS production goes along with compensatory up-regulation of antioxidant enzymes. Accordingly, we found in a previous study that protein levels of several peroxiredoxins, including PRDX6 (peroxiredoxin 6), are highly elevated in experimentally induced melanomas. In the present study, we investigated the functional role of PRDX6 in human melanoma cells. PRDX6 is a bifunctional enzyme, which harbours iPLA2 (Ca(2+)-independent phospholipase A2) activity in addition to its peroxidase function. Our results show that PRDX6 is strongly expressed in most melanoma cells and its expression levels are maintained in a post-transcriptional manner, particularly by EGFR (epidermal growth factor receptor)-dependent signalling. PRDX6 enhances cell viability mainly by enhancing proliferation, which goes along with activation of Src family kinases. Interestingly, we were able to show that the phospholipase activity of the enzyme mediates the pro-proliferative effect of PRDX6. We identified AA (arachidonic acid) as a crucial effector of PRDX6-dependent proliferation and inducer of Src family kinase activation. These results support further the biological importance of the emerging field of lipid signalling in melanoma and highlight the particular functional relevance of PRDX6-dependent phospholipase activity.
Collapse
|
8
|
Abstract
Proteases regulate a myriad of cell functions, both in normal and disease states. In addition to protein turnover, they regulate a range of signaling processes, including those mediated by Eph receptors and their ephrin ligands. A variety of proteases is reported to directly cleave Ephs and/or ephrins under different conditions, to promote receptor and/or ligand shedding, and regulate receptor/ligand internalisation and signaling. They also cleave other adhesion proteins in response to Eph-ephrin interactions, to indirectly facilitate Eph-mediated functions. Proteases thus contribute to Eph/ephrin mediated changes in cell-cell and cell-matrix interactions, in cell morphology and in cell migration and invasion, in a manner which appears to be tightly regulated by, and co-ordinated with, Eph signaling. This review summarizes the current literature describing the function and regulation of protease activities during Eph/ephrin-mediated cell signaling.
Collapse
Affiliation(s)
- Lakmali Atapattu
- a Department of Biochemistry and Molecular Biology ; Monash University , Victoria ; Australia
| | | | | |
Collapse
|
9
|
Abstract
Glioblastoma multiforme is the most common and most lethal of all primary brain tumors. Even with the standard therapy, life expectancy is still poor, with an average survival of approximately 14 months following initial diagnosis. Hence, there is an urgent need for novel treatment strategies that inhibit proliferation and angiogenesis in high-grade gliomas. One such strategy consists of inhibiting receptor tyrosine kinases, including MET and/or its ligand hepatocyte growth factor (HGF). Because of their widespread involvement in human cancer, HGF and MET have emerged as promising therapeutic targets, and some inhibitory agents that target them have already entered clinical trials. In this paper, the authors highlight recent evidence implicating HGF/MET pathway deregulation in glioblastoma multiforme, discuss therapeutic approaches to inhibit HGF/MET signaling, and summarize ongoing clinical trials targeting this pathway.
Collapse
|
10
|
Haydn JM, Hufnagel A, Grimm J, Maurus K, Schartl M, Meierjohann S. The MAPK pathway as an apoptosis enhancer in melanoma. Oncotarget 2015; 5:5040-53. [PMID: 24970815 PMCID: PMC4148120 DOI: 10.18632/oncotarget.2079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inhibition of RAF/MEK/ERK signaling is beneficial for many patients with BRAF(V600E)-mutated melanoma. However, primary and secondary resistances restrict long-lasting therapy success. Combination therapies are therefore urgently needed. Here, we evaluate the cellular effect of combining a MEK inhibitor with a genotoxic apoptosis inducer. Strikingly, we observed that an activated MAPK pathway promotes in several melanoma cell lines the pro-apoptotic response to genotoxic stress, and MEK inhibition reduces intrinsic apoptosis. This goes along with MEK inhibitor induced increased RAS and P-AKT levels. The protective effect of the MEK inhibitor depends on PI3K signaling, which prevents the induction of pro-apoptotic PUMA that mediates apoptosis after DNA damage. We could show that the MEK inhibitor dependent feedback loop is enabled by several factors, including EGF receptor and members of the SPRED family. The simultaneous knockdown of SPRED1 and SPRED2 mimicked the effects of MEK inhibitor such as PUMA repression and protection from apoptosis. Our data demonstrate that MEK inhibition of BRAF(V600E)-positive melanoma cells can protect from genotoxic stress, thereby achieving the opposite of the intended anti-tumorigenic effect of the combination of MEK inhibitor with inducers of intrinsic apoptosis.
Collapse
Affiliation(s)
- Johannes M Haydn
- Department of Physiological Chemistry, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - Anita Hufnagel
- Department of Physiological Chemistry, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - Johannes Grimm
- Department of Physiological Chemistry, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - Katja Maurus
- Department of Physiological Chemistry, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - Manfred Schartl
- Department of Physiological Chemistry, Biocenter, University of Wurzburg, Wurzburg, Germany. Comprehensive Cancer Center Mainfranken, University Hospital Wurzburg, Germany
| | - Svenja Meierjohann
- Department of Physiological Chemistry, Biocenter, University of Wurzburg, Wurzburg, Germany. Comprehensive Cancer Center Mainfranken, University Hospital Wurzburg, Germany
| |
Collapse
|
11
|
Meierjohann S. Hypoxia-independent drivers of melanoma angiogenesis. Front Oncol 2015; 5:102. [PMID: 26000250 PMCID: PMC4419834 DOI: 10.3389/fonc.2015.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 12/28/2022] Open
Abstract
Tumor angiogenesis is a process which is traditionally regarded as the tumor’s response to low nutrient supply occurring under hypoxic conditions. However, hypoxia is not a pre-requisite for angiogenesis. The fact that even single tumor cells or small tumor cell aggregates are capable of attracting blood vessels reveals the early metastatic capability of tumor cells. This review sheds light on the hypoxia-independent mechanisms of tumor angiogenesis in melanoma.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Department of Physiological Chemistry, Biocenter, University of Würzburg , Würzburg , Germany ; Comprehensive Cancer Center Mainfranken, University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
12
|
Stock AM, Hahn SA, Troost G, Niggemann B, Zänker KS, Entschladen F. Induction of pancreatic cancer cell migration by an autocrine epidermal growth factor receptor activation. Exp Cell Res 2014; 326:307-14. [PMID: 24810090 DOI: 10.1016/j.yexcr.2014.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Pancreatic cancer is characterized by aggressive local invasion and early metastasis formation. Active migration of the pancreatic cancer cells is essential for these processes. We have shown previously that the pancreatic cancer cells lines CFPAC1 and IMIM-PC2 show high migratory activity, and we have investigated herein the reason for this observation. Cell migration was assessed using a three-dimensional, collagen-based assay and computer-assisted cell tracking. The expression of receptor tyrosine kinases was determined by flow-cytometry and cytokine release was measured by an enzyme-linked immunoassay. Receptor function was blocked by antibodies or pharmacological enzyme inhibitors. Both cells lines express the epidermal growth factor receptor (EGFR) as well as its family-member ErbB2 and the platelet-derived growth factor receptor (PDGFR)α, whereas only weak expression was detected for ErbB3 and no expression of PDGFRβ. Pharmacological inhibition of the EGFR or ErbB2 significantly reduced the migratory activity in both cell lines, as did an anti-EGFR antibody. Interestingly, combination of the latter with an anti-PDGFR antibody led to an even more pronounced reduction. Both cell lines release detectable amounts of EGF. Thus, the high migratory activity of the investigated pancreatic cancer cell lines is due to autocrine EGFR activation and possibly of other receptor tyrosine kinases.
Collapse
Affiliation(s)
- Anna-Maria Stock
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Stephan A Hahn
- Department of Molecular Gastroenterological Oncology, Centre of Clinical Research, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Gabriele Troost
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Bernd Niggemann
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Kurt S Zänker
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Frank Entschladen
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany.
| |
Collapse
|
13
|
Greenall SA, Donoghue JF, Gottardo NG, Johns TG, Adams TE. Glioma-specific Domain IV EGFR cysteine mutations promote ligand-induced covalent receptor dimerization and display enhanced sensitivity to dacomitinib in vivo. Oncogene 2014; 34:1658-66. [PMID: 24747966 DOI: 10.1038/onc.2014.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/03/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
Abstract
A feature of many gliomas is the amplification of the epidermal growth factor receptor (EGFR), resulting in its overexpression. Missense mutations or deletions within the extracellular domain are associated with this amplification and can lead to constitutive activation of the receptor, with the Domain I/II deletion, EGFRvIII, being the most common. These changes have also been associated with increased sensitivity to EGFR inhibition using small molecule inhibitors. We have expressed, in human glioma cells, EGFR containing four glioma-specific EGFR missense mutations within Domain IV (C620Y, C624F, C628Y and C636Y) to analyze their biological properties and sensitivity to EGFR inhibition. One of these mutants, C620Y, exhibited an enhanced basal phosphorylation, which was partially dependent on an EGFR-ligand autocrine loop. All Domain IV mutants responded equally as well as wildtype EGFR (wtEGFR) to ligand stimulation. Biochemical analysis revealed that a pre-formed, disulfide-bonded dimer associated with these mutations was underglycosylated, inactive and cytoplasmically retained. Ligand stimulation resulted in the formation of a tyrosine-phosphorylated, disulfide-bonded dimer for all Domain IV mutants but not for wtEGFR. Following treatment with the next-generation, irreversible pan-ErbB inhibitor dacomitinib, the C620Y, C624F and EGFRvIII mutants were inactivated, covalently dimerized and were retained in the cytoplasm, resulting in cell-surface receptor loss and, for C620Y and C624F, decreased binding of EGF. Dacomitinib treatment significantly reduced the in vivo growth of human glioma xenografts bearing C620Y, but not wtEGFR. Collectively, these data indicate that the unique biochemical traits of Domain IV EGFR cysteine mutants can be exploited for enhanced sensitivity to EGFR small molecule inhibitors, with potential clinical applications.
Collapse
Affiliation(s)
- S A Greenall
- 160;CSIRO Division of Materials Science and Engineering, Parkville, VIC, Australia
| | - J F Donoghue
- Oncogenic Signaling Laboratory and Brain Cancer Discovery Collaborative, Monash Institute of Medical Research, Clayton, VIC, Australia
| | - N G Gottardo
- Telethon Institute for Child Health Research and Brain Cancer Discovery Collaborative, Centre for Child Health Research, Subiaco, WA, Australia
| | - T G Johns
- Oncogenic Signaling Laboratory and Brain Cancer Discovery Collaborative, Monash Institute of Medical Research, Clayton, VIC, Australia
| | - T E Adams
- 160;CSIRO Division of Materials Science and Engineering, Parkville, VIC, Australia
| |
Collapse
|
14
|
High-throughput screening identifies aclacinomycin as a radiosensitizer of EGFR-mutant non-small cell lung cancer. Transl Oncol 2013; 6:382-91. [PMID: 23730419 DOI: 10.1593/tlo.13232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 02/02/2023] Open
Abstract
The endoplasmic reticulum (ER) provides a specialized environment for the folding and modification of trans-membrane proteins, including receptor tyrosine kinases (RTKs), which are vital for the growth and survival of malignancies. To identify compounds which disrupt the function of the ER and thus could potentially impair cancer cell survival signaling, we adapted a set of glycosylation-sensitive luciferase reporters for the development and optimization of a cell-based high-throughput screen (HTS). Secondary screens for false-positive luciferase activation and tertiary lectin-based and biochemical analyses were also devised for compound triage. Through a pilot screen of 2802 compounds from the National Cancer Institute (NCI) chemical libraries, we identified aclacinomycin (Acm) as a compound that preferentially affects ER function. We report that Acm reduces plasma membrane expression of glycoproteins including epidermal growth factor receptor (EGFR) and Met but does not inhibit N-linked glycosylation or generalized protein translation. Fluorescence microscopy co-localization experiments were also performed and demonstrated Acm accumulation in the ER in further support of the overall HTS design. The consequences of Acm treatment on cell survival were analyzed through clonogenic survival analysis. Consistent with the reduction of EGFR levels, pretreatment with Acm sensitizes the EGFR-mutant non-small cell lung cancer (NSCLC) cell lines HCC827 and HCC2935 to ionizing radiation and did not affect the sensitivity of the RTK-independent and KRAS-mutant A549 NSCLC cell line. Thus, Acm and similar compounds targeting the ER may represent a novel approach for radiosensitizing tumor cells dependent on RTK function.
Collapse
|
15
|
The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 2013; 45:567-72. [PMID: 23542700 PMCID: PMC3677569 DOI: 10.1038/ng.2604] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 03/01/2013] [Indexed: 01/23/2023]
Abstract
Several attributes intuitively considered to be typical mammalian features, such as complex behavior, live birth, and malignant diseases like cancer, also appeared several times independently in so-called “lower” vertebrates. The genetic mechanisms underlying the evolution of these elaborate traits are poorly understood. The platyfish, Xiphophorus maculatus, offers a unique model to better understand the molecular biology of such traits. Herein we detail sequencing of the platyfish genome. Integrating genome assembly with extensive genetic maps uncovered that fish, in contrast to mammals, exhibit an unexpected evolutionary stability of chromosomes. Genes associated with viviparity show signatures of positive selection identifying new putative functional domains and rare cases of parallel evolution. We also discovered that genes implicated in cognition possess an unexpected high rate of duplicate gene retention after the teleost genome duplication suggesting a hypothesis for the evolution of the great behavioral complexity in fish, which exceeds that in amphibians and reptiles.
Collapse
|