1
|
Wu HH, Leng S, Sergi C, Leng R. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci 2024; 25:5865. [PMID: 38892054 PMCID: PMC11172831 DOI: 10.3390/ijms25115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.
Collapse
Affiliation(s)
- Hong Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
2
|
Shaikh MAJ, Altamimi ASA, Afzal M, Gupta G, Singla N, Gilhotra R, Almalki WH, Kazmi I, Alzarea SI, Prasher P, Singh SK, Dua K. Unraveling the impact of miR-21 on apoptosis regulation in glioblastoma. Pathol Res Pract 2024; 254:155121. [PMID: 38262269 DOI: 10.1016/j.prp.2024.155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Glioblastoma is a prevalent form of carcinoma that exhibits a greater incidence rate across diverse demographics globally. Despite extensive global efforts, GBM continues to be a highly lethal disease that is characterized by a grim prognosis. There is a wealth of evidence suggesting that the pathophysiology of GBM is associated with the dysregulation of numerous cellular and molecular processes. The etiology of GBM may involve various cellular and molecular pathways, including EGFR, PDCD4, NF-κB, MAPK, matrix metalloproteinases, STAT, and Akt. MicroRNAs, short non-coding RNA molecules, regulate gene expression and mRNA translation after transcription but before translation to exert control over a wide range of biological functions. Extensive research has consistently demonstrated the upregulation of miRNA-21 in glioma, indicating its involvement in diverse biological pathways that facilitate tumor cell survival. By explaining the intricate interplay between miR-21 and the regulation of apoptosis in GBM, this review has the potential to significantly enhance our comprehension of the illness and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India.
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
4
|
Identification of Dysregulated microRNAs in Glioblastoma Stem-like Cells. Brain Sci 2023; 13:brainsci13020350. [PMID: 36831894 PMCID: PMC9953941 DOI: 10.3390/brainsci13020350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite multimodal therapy, median survival is poor at 12-15 months. At the molecular level, radio-/chemoresistance and resulting tumor progression are attributed to a small fraction of tumor cells, termed glioblastoma stem-like cells (GSCs). These CD133-expressing, self-renewing cells display the properties of multi-lineage differentiation, resulting in the heterogenous composition of GBM. MicroRNAs (miRNAs) as regulators of gene expression at the post-transcriptional level can alter many pathways pivotal to cancer stem cell fate. This study explored changes in the miRNA expression profiles in patient-derived GSCs altered on differentiation into glial fiber acid protein (GFAP)-expressing, astrocytic tumor cells using a polymerase chain reaction (PCR) array. Initially, 22 miRNAs showed higher expression in GSCs and 9 miRNAs in differentiated cells. The two most downregulated miRNAs in differentiated GSCs were miR-17-5p and miR-425-5p, whilst the most upregulated miRNAs were miR-223-3p and let-7-5p. Among those, miR-425-5p showed the highest consistency in an upregulation in all three GSCs. By transfection of a 425-5p miRNA mimic, we demonstrated downregulation of the GFAP protein in differentiated patient-derived GBM cells, providing potential evidence for direct regulation of miRNAs in the GSC/GBM cell transition.
Collapse
|
5
|
MicroRNAs as potential diagnostic markers of glial brain tumors. Noncoding RNA Res 2022; 7:242-247. [PMID: 36203525 PMCID: PMC9519791 DOI: 10.1016/j.ncrna.2022.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Gliomas are the most invasive brain tumors characterized by high mortality and recurrence rates. Glioblastoma (GBM), a grade IV brain tumor, is known for its heterogeneity and resistance to therapy. Modern diagnostics of various forms of malignant brain tumors is carried out mainly by imaging methods, such as magnetic resonance imaging, electroencephalography, positron emission tomography, and tumor biopsy is also used. The disadvantages of these methods are their inaccuracy and invasiveness, which entails certain risks for the patient's health, so modern science has stepped up the search for more reliable and safe methods for diagnosing gliomas, including the search for novel biomarkers. MicroRNA (miRNAs), a class of small non-coding RNA, perform the most important functions in various biological processes. In recent years, great progress in the study of miRNAs paths associated with the GBM pathogenesis has been achieved. MiRNAs molecules were identified as diagnostic and prognostic biomarkers, and can also serve as therapeutic targets and agents. This review provides current knowledge about the role of miRNAs in the pathogenesis of glial brain tumors, as well as the potential use of miRNAs as diagnostic and therapeutic targets for gliomas.
Collapse
|
6
|
Ghaffarian Zirak R, Tajik H, Asadi J, Hashemian P, Javid H. The Role of Micro RNAs in Regulating PI3K/AKT Signaling Pathways in Glioblastoma. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:122-136. [PMID: 35463721 PMCID: PMC9013863 DOI: 10.30699/ijp.2022.539029.2726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
Abstract
Glioblastoma is a type of brain cancer with aggressive and invasive nature. Such features result from increased proliferation and migration and also poor apoptosis of glioma cells leading to resistance to current treatments such as chemotherapy and radiotherapy. In recent studies, micro RNAs have been introduced as a novel target for treating glioblastoma via regulation of apoptotic signaling pathway, remarkably PI3K/AKT, which affect cellular functions and blockage or progression of the tumor. In this review, we focus on PI3K/AKT signaling pathway and other related apoptotic processes contributing to glioblastoma and investigate the role of micro RNAs interfering in apoptosis, invasion and proliferation of glioma through such apoptotic processes pathways. Databases NCBI, PubMed, and Web of Science were searched for published English articles using keywords such as 'miRNA OR microRNA', 'Glioblastoma', 'apoptotic pathways', 'PI3K and AKT', 'Caspase signaling Pathway' and 'Notch pathway'. Most articles were published from 7 May 2015 to 16 June 2020. This study focused on PI3K/AKT signaling pathway affecting glioma cells in separated subparts. Also, other related apoptotic pathways as the Caspase cycle and Notch have been also investigated. Nearly 40 miRNAs were found as tumor suppressors or onco-miRNA, and their targets, which regulated subcomponents participating in proliferation, invasion, and apoptosis of the tumoral cells. Our review reveals that miRNAs affect key molecules in signaling apoptotic pathways, partly PI3K/AKT, making them potential therapeutic targets to overcome the tumor. However, their utility as a novel treatment for glioblastoma requires further examination and investigation.
Collapse
Affiliation(s)
- Roshanak Ghaffarian Zirak
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hurie Tajik
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Science, Shahrekord, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Jahanbakhsh Asadi
- Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Fu ZJ, Chen Y, Xu YQ, Lin MA, Wen H, Chen YT, Pan PL. Regulation of miR-30b in cancer development, apoptosis, and drug resistance. Open Life Sci 2022; 17:102-106. [PMID: 35291564 PMCID: PMC8886600 DOI: 10.1515/biol-2022-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/08/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
miR-30b, which is encoded by the gene located on chromosome 8q24.22, plays an important role in a variety of diseases. In most types of tumors, miR-30b significantly inhibits the proliferation, migration, and invasion of cancer cells through the regulation of target genes. Moreover, miR-30b can inhibit the PI3K/AKT signaling pathway through the regulation of EGFR, AKT, Derlin-1, GNA13, SIX1, and other target genes, thus inhibiting the EMT process of tumor cells and promoting apoptosis. In addition, miR-30 plays a significant role in alleviating drug resistance in tumor cells. Although the use of miR-30b as a clinical diagnostic indicator or anticancer drug is still facing great difficulties in the short term, with the deepening of research, the potential application of miR-30b is emerging.
Collapse
Affiliation(s)
- Zhen-Jie Fu
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Yan Chen
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Yu-Qin Xu
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Mei-Ai Lin
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Hang Wen
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Yi-Tao Chen
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Pei-Lei Pan
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| |
Collapse
|
8
|
Yuan LQ, Zhang T, Xu L, Han H, Liu SH. miR-30c-5p inhibits glioma proliferation and invasion via targeting Bcl2. Transl Cancer Res 2022; 10:337-348. [PMID: 35116264 PMCID: PMC8798180 DOI: 10.21037/tcr-19-2957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 09/17/2020] [Indexed: 12/02/2022]
Abstract
Background Glioma is a highly malignant brain tumor, characterized by the poor prognosis and high recurrence rates. Previous studies have confirmed that miRNA-30c-5p is closely associated with tumor cell biological properties. The present study explored the biological role of miR-30c-5p in human glioma malignant behavior and underlying mechanisms. Methods Levels of miR-30c-5p were detected in glioma tissues and adjacent normal tissues. Two glioma cell lines including U87 and U251 were transfected with miR-30c-5p mimic or inhibitors. Cell proliferation was evaluated by MTT assay and colony formation assay. Cell apoptosis and invasive potential of glioma cells were assessed by flow cytometry and transwell assays, respectively. Luciferase reporter assay was performed to validate the target gene of miR-30c-5p. Results Levels of miR-30c-5p were dramatically decreased in glioma tissues as compared to the adjacent normal tissues. Upregulation of miR-30c-5p significantly suppressed cell growth and colony formation, and induced apoptosis in glioma cells. In contrast, inhibition of miR-30c-5p promoted the proliferation and inhibited apoptosis in tumor cells. Furthermore, miR-30c-5p strongly suppresses the invasion of glioma cells. Western blot showed that Bcl-2 was significantly decreased following treatment with miR-30c-5p mimics and increased after miR-30c-5p inhibitor treatment. Moreover, luciferase reporter assays indicated that transfection of miR-30c-5p led to a marked reduction of luciferase activity, but had no effect on Bcl-2 3'-UTR mutated fragment. Mechanically, miR-30c-5p promoted the activation of caspase 3 and caspase 9 in glioma cells. Furthermore, miR-30c-5p promoted apoptosis and inhibited colony formation and migration, and knockdown of Bcl2 further increased the number of apoptotic cells and suppressed colony formation and migration of glioma cells. By contrast, miR-30c-5p inhibitors decreased apoptosis and increased colony formation and migration, and restored Bcl2 expression further suppressed glioma cell apoptosis and enhanced colony formation and migration. Conclusions These results demonstrated that miR-30c-5p regulated growth, apoptosis and migration in glioma cells by targeting Bcl2, suggesting that miR-30c-5p might serve as a novel target for glioma therapy.
Collapse
Affiliation(s)
- Li-Qun Yuan
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tan Zhang
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Xu
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Han
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shi-Hai Liu
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Rencelj A, Gvozdenovic N, Cemazar M. MitomiRs: their roles in mitochondria and importance in cancer cell metabolism. Radiol Oncol 2021; 55:379-392. [PMID: 34821131 PMCID: PMC8647792 DOI: 10.2478/raon-2021-0042] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in almost all biological pathways. They regulate post-transcriptional gene expression by binding to the 3'untranslated region (3'UTR) of messenger RNAs (mRNAs). MitomiRs are miRNAs of nuclear or mitochondrial origin that are localized in mitochondria and have a crucial role in regulation of mitochondrial function and metabolism. In eukaryotes, mitochondria are the major sites of oxidative metabolism of sugars, lipids, amino acids, and other bio-macromolecules. They are also the main sites of adenosine triphosphate (ATP) production. CONCLUSIONS In the review, we discuss the role of mitomiRs in mitochondria and introduce currently well studied mitomiRs, their target genes and functions. We also discuss their role in cancer initiation and progression through the regulation of mRNA expression in mitochondria. MitomiRs directly target key molecules such as transporters or enzymes in cell metabolism and regulate several oncogenic signaling pathways. They also play an important role in the Warburg effect, which is vital for cancer cells to maintain their proliferative potential. In addition, we discuss how they indirectly upregulate hexokinase 2 (HK2), an enzyme involved in glucose phosphorylation, and thus may affect energy metabolism in breast cancer cells. In tumor tissues such as breast cancer and head and neck tumors, the expression of one of the mitomiRs (miR-210) correlates with hypoxia gene signatures, suggesting a direct link between mitomiR expression and hypoxia in cancer. The miR-17/92 cluster has been shown to act as a key factor in metabolic reprogramming of tumors by regulating glycolytic and mitochondrial metabolism. This cluster is deregulated in B-cell lymphomas, B-cell chronic lymphocytic leukemia, acute myeloid leukemia, and T-cell lymphomas, and is particularly overexpressed in several other cancers. Based on the current knowledge, we can conclude that there is a large number of miRNAs present in mitochondria, termed mitomiR, and that they are important regulators of mitochondrial function. Therefore, mitomiRs are important players in the metabolism of cancer cells, which need to be further investigated in order to develop a potential new therapies for cancer.
Collapse
Affiliation(s)
- Andrej Rencelj
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nada Gvozdenovic
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| |
Collapse
|
10
|
Scioli MG, Terriaca S, Fiorelli E, Storti G, Fabbri G, Cervelli V, Orlandi A. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci 2021; 22:10572. [PMID: 34638913 PMCID: PMC8508599 DOI: 10.3390/ijms221910572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor burden is a complex microenvironment where different cell populations coexist and have intense cross-talk. Among them, a heterogeneous population of tumor cells with staminal features are grouped under the definition of cancer stem cells (CSCs). CSCs are also considered responsible for tumor progression, drug resistance, and disease relapse. Furthermore, CSCs secrete a wide variety of extracellular vesicles (EVs) with different cargos, including proteins, lipids, ssDNA, dsDNA, mRNA, siRNA, or miRNA. EVs are internalized by other cells, orienting the microenvironment toward a protumorigenic and prometastatic one. Given their importance in tumor growth and metastasis, EVs could be exploited as a new therapeutic target. The inhibition of biogenesis, release, or uptake of EVs could represent an efficacious strategy to impair the cross-talk between CSCs and other cells present in the tumor microenvironment. Moreover, natural or synthetic EVs could represent suitable carriers for drugs or bioactive molecules to target specific cell populations, including CSCs. This review will discuss the role of CSCs and EVs in tumor growth, progression, and metastasis and how they affect drug resistance and disease relapse. Furthermore, we will analyze the potential role of EVs as a target or vehicle of new therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Giulia Fabbri
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| |
Collapse
|
11
|
Mahjoor M, Afkhami H, Mollaei M, Nasr A, Shahriary S, Khorrami S. MicroRNA-30c delivered by bone marrow-mesenchymal stem cells induced apoptosis and diminished cell invasion in U-251 glioblastoma cell line. Life Sci 2021; 279:119643. [PMID: 34048811 DOI: 10.1016/j.lfs.2021.119643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Glioblastoma multiform (GBM) is the most belligerent and prevalent brain malignancy among adults. Due to the blood-brain barrier (BBB), drug administration is confronted by massive challenges, making resectional surgery the only treatment pipeline. MicroRNAs have recently absorbed the attention of studies for correlating with the progression of various malignancies. miR-30c has been reported to play a role in cell proliferation, metabolism, and apoptosis process. For instance, miR-30c has been reported to regulate apoptosis through the TNF-related apoptosis-inducing ligand (TRAIL). miR-30c also targets IL-6, which further induces apoptosis. Besides, miR-30c inhibits glioma proliferation and its migratory ability. Besides, the overexpression of miR-30c arrested cells at G0 as well as dampening their migration and invasion. However, it has been shown that the expression level of miR-30c was low in glioma. MSCs can migrate toward tumor cells which is called tumor-tropism, in which they are capable of delivering engineered miR-30c based on gap junction and non-intimacy mechanisms. MATERIAL AND METHODS MiR-30c was cloned into pCDH-CMV-MCS-EF1-copGFP vector utilizing XbaI and EcoRI in order to construct pCDH-miR-30c. Then psPAX2, pMD2.G, and pCDH-miR-30c were co-transfected into Hek-293T to yield lenti-miR-30c virus particles. Next, bone marrow-mesenchymal stem cells (BM-MSCs) were Transduced with lenti-miR-30c. Thereafter, we co-cultured U-251 cell line with BM-MCSs-miR-30c and evaluated the apoptosis rate and the relative expression level of IL-6, Klf4, Sox2, c-Myc, and Oct4 using Real-Time PCR and flow cytometry. RESULTS Wound healing assays represented low migratory ability in U-251 cells treated with BM-MSCs-miR-30c. Plus, apoptosis assay using Annexin V/7AAD showed an increased number of apoptotic U-251 cells following the treatment. miR-30 targeted IL-6 and induced apoptosis. It also impacted on the self-renewal and the anti-apoptotic cluster of genes, namely Klf4, Sox2, c-Myc, and Oct4, to induce apoptosis and dwindle the migration and invasion.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Atieh Nasr
- Bachelor Student of Biochemistry, Department of Biochemistry, Islamic Azad University of Najafabad, Esfahan, Iran
| | - Shamin Shahriary
- Bachelor Student of Microbiology, Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Samaneh Khorrami
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Arghiani N, Matin MM. miR-21: A Key Small Molecule with Great Effects in Combination Cancer Therapy. Nucleic Acid Ther 2021; 31:271-283. [PMID: 33891511 DOI: 10.1089/nat.2020.0914] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of various cancers indicates the urgent need for finding accurate early diagnostic markers and more effective treatments for these malignancies. MicroRNAs (miRNAs) are small noncoding RNAs with great potentials to enter into cancer clinics as both diagnostic markers and therapeutic targets. miR-21 is elevated in many cancers, and promotes cell proliferation, metastasis, and drug resistance. In recent years, many studies have shown that targeting miR-21 combined with conventional chemotherapeutic agents could enhance their therapeutic efficacy, and overcome drug resistance and cancer recurrence both in vitro and in animal models. In this review, we first summarize the effects and importance of miR-21 in various cancers, and explore its function in drug resistance of cancer cells. Next, the challenges and prospects for clinical translation of anti-miR-21, as a therapeutic agent, will be discussed in combination cancer therapy.
Collapse
Affiliation(s)
- Nahid Arghiani
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Deng L, Zhai X, Liang P, Cui H. Overcoming TRAIL Resistance for Glioblastoma Treatment. Biomolecules 2021; 11:biom11040572. [PMID: 33919846 PMCID: PMC8070820 DOI: 10.3390/biom11040572] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows a promising therapeutic potential in cancer treatment as it exclusively causes apoptosis in a broad spectrum of cancer cells through triggering the extrinsic apoptosis pathway via binding to cognate death receptors, with negligible toxicity in normal cells. However, most cancers, including glioblastoma multiforme (GBM), display TRAIL resistance, hindering its application in clinical practice. Recent studies have unraveled novel mechanisms in regulating TRAIL-induced apoptosis in GBM and sought effective combinatorial modalities to sensitize GBM to TRAIL treatment, establishing pre-clinical foundations and the reasonable expectation that the TRAIL/TRAIL death receptor axis could be harnessed to treat GBM. In this review, we will revisit the status quo of the mechanisms of TRAIL resistance and emerging strategies for sensitizing GBM to TRAIL-induced apoptosis and also discuss opportunities of TRAIL-based combinatorial therapies in future clinical use for GBM treatment.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Xuan Zhai
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- Correspondence: (P.L.); (H.C.)
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Correspondence: (P.L.); (H.C.)
| |
Collapse
|
14
|
Zhang C, Pan X, Peng X, Liu K, Wang J, Zhao L, Chen X, Huang G, Li H, Ye J, Lai Y. miR-30b-5p up-regulation related to the dismal prognosis for patients with renal cell cancer. J Clin Lab Anal 2021; 35:e23599. [PMID: 33247622 PMCID: PMC7891535 DOI: 10.1002/jcla.23599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of renal cell carcinoma (RCC) is often made late since there is no early symptom, which thus results in dismal patient prognosis. As a result, new biomarkers are urgently needed and efforts should be made to identify their functions in predicting RCC prognosis. microRNAs (miRNAs) are a class of small noncoding RNAs that are about 20-22 nucleotides in length, and they have been demonstrated to function as prognostic markers in numerous tumors. This study aimed to assess the role of miR-30b-5p in predicting the prognosis of RCC postoperatively. In this study, RNA was extracted from 284 formalin-fixed and paraffin-embedded kidney cancer tissue samples. After cDNA synthesis, real-time quantitative PCR (RT-qPCR) was adopted for detecting the relative miR-30b-5p level. Then, the Kaplan-Meier method, Cox regression analysis, and the receiver operating characteristic curve analysis were applied in analyzing the miR-30b-5p effect on the prognosis for patients. Our findings indicated that, following adjustment for age, gender, tumor stage, and tumor size, patients with low miR-30b-5p expression had remarkably longer overall survival. Thus, the miR-30b-5p level might be related to RCC prognosis.
Collapse
Affiliation(s)
- Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Xiang Pan
- Department of UrologyAffiliated Hospital of Yangzhou UniversityYangzhouChina
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeGuangdong ShantouChina
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Anhui Medical UniversityHefeiChina
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Anhui Medical UniversityHefeiChina
| | - Xuan Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeGuangdong ShantouChina
| | - Guocheng Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeGuangdong ShantouChina
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
15
|
Aloizou AM, Pateraki G, Siokas V, Mentis AFA, Liampas I, Lazopoulos G, Kovatsi L, Mitsias PD, Bogdanos DP, Paterakis K, Dardiotis E. The role of MiRNA-21 in gliomas: Hope for a novel therapeutic intervention? Toxicol Rep 2020; 7:1514-1530. [PMID: 33251119 PMCID: PMC7677650 DOI: 10.1016/j.toxrep.2020.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Gliomas are the most common primary brain tumors in adults. They are generally very resistant to treatment and are therefore associated with negative outcomes. MicroRNAs (miRNAs) are small, non-coding RNA molecules that affect many cellular processes by regulating gene expression and, post-transcriptionally, the translation of mRNAs. MiRNA-21 has been consistently shown to be upregulated in glioma and research has shown that it is involved in a wide variety of biological pathways, promoting tumor cell survival and invasiveness. Furthermore, it has been implicated in resistance to treatment, both against chemotherapy and radiotherapy. In this review, we gathered the existent data on miRNA-21 and gliomas, in terms of its expression levels, association with grade and prognosis, the pathways it involves and its targets in glioma, and finally how it leads to treatment resistance. Furthermore, we discuss how this knowledge could be applied in clinical practice in the years to come. To our knowledge, this is the first review to assess in extent and depth the role of miRNA-21 in gliomas.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgia Pateraki
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A Mentis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - George Lazopoulos
- Department of Cardiothoracic Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panayiotis D Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis 40500, Larissa, Greece
| | - Konstantinos Paterakis
- Department of Neurosurgery, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
16
|
Han W, Cui H, Liang J, Su X. Role of MicroRNA-30c in cancer progression. J Cancer 2020; 11:2593-2601. [PMID: 32201529 PMCID: PMC7066027 DOI: 10.7150/jca.38449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) is a non-coding small RNA of a type of 18~24 nucleotide-regulated gene that has been discovered in recent years. It mainly degrades the target gene mRNA or inhibits its translation process through the complete or incomplete bindings with 3'UTR of target genes, followed by the regulation of individual development, apoptosis, proliferation, differentiation and other life activities through the post-transcriptional regulation. Among many miRNAs, the microRNA family, miR-30, plays diverse roles in these key process of neoplastic transformation, metastasis, and clinical outcomes in different cancer progression. As key member of miR-30, miR-30c is regulated by oncogenic transcription factors and cancer progression related genes. Recently, numerous studies have demonstrated that the aberrant expression of miR-30c was significantly associated with the majority of human cancer progression. In this review, the diverse roles of miR-30c in different cancer progression such as the cellular and molecular mechanisms, the potential applications in clinics were summarized to speculate the benefits of miR-30c over-expression in cancer treatment and prognosis.
Collapse
Affiliation(s)
- Wenyan Han
- Laboratory of the Second Affiliated Hospital of Inner Mongolia Medical University.No.1 Yingfang Road, Huimin District, Hohhot, Inner Mongolia, China
| | - Hongwei Cui
- Clinical Medical Research Center of the Affiliated Hospital/Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| | - Junqing Liang
- Department of Breast Oncology, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, 010000, Inner Mongolia, P.R. China
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital/Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| |
Collapse
|
17
|
Marin I, Ofek E, Bar J, Prisant N, Perelman M, Avivi C, Lavy-Shahaf G, Onn A, Katz R, Barshack I. MiR-21, EGFR and PTEN in non-small cell lung cancer: an in situ hybridisation and immunohistochemistry study. J Clin Pathol 2020; 73:636-641. [PMID: 32060074 DOI: 10.1136/jclinpath-2019-206420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/24/2022]
Abstract
AIMS To analyse microRNA (miR)-21 distribution and expression at the cellular level in non-small cell lung cancer (NSCLC). MiR-21 is an oncogenic microRNA overexpressed in NSCLC. In previous studies, overexpression of miR-21 was evaluated from the tumour bulk by quantitative reverse transcription PCR with results expressed on average across the entire cell population. METHODS We used in situ hybridisation and immunohistochemistry to assess the correlation between miR-21 levels and the expression of markers that may be possible targets (epidermal growth factor reaction) or may be involved in its upregulation (phosphatase and tensin homolog (PTEN), p53). The Pearson's χ2 tests was used to assess correlation with clinicopathological data and with miR-21 expression both in tumour and tumour stroma. RESULTS Cytoplasmic staining and expression of Mir-21 were detected in the tumours and in associated stromal cells. Expression was highest in the stroma immediately surrounding the tumour cells and decreased as the distance from the tumour increased. No expression of miR-21 was found in normal lung parenchyma and a significant association was found between tumour localised miR-21 and PTEN. CONCLUSIONS Presence of miR-21 in both cell tumour and stromal compartments of NSCLC and the relationship with PTEN confirms miR-21 as a microenvironment signalling molecule, possibly inducing epithelial mesenchymal transition and invasion by targeting PTEN in the stromal compartment possibly through exosomal transport. In situ immunohistochemical studies such as ours may help shed light on the complex interactions between miRNAs and its role in NSCLC biology.
Collapse
Affiliation(s)
- Irina Marin
- Pathology Department, Tel HaShomer Hospital, Tel Hashomer, Israel
| | - Efrat Ofek
- Pathology Department, Tel HaShomer Hospital, Tel Hashomer, Israel
| | - Jair Bar
- Thoracic Oncology Unit, Institute of Oncology, Tel HaShomer Hospital, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nadia Prisant
- Pathology Department, Tel HaShomer Hospital, Tel Hashomer, Israel
| | - Marina Perelman
- Pathology Department, Tel HaShomer Hospital, Tel Hashomer, Israel
| | - Camila Avivi
- Pathology Department, Tel HaShomer Hospital, Tel Hashomer, Israel
| | - Gitit Lavy-Shahaf
- Israel Center for Disease Control, Ministry of Health, Tel HaShomer Hospital, Tel Hashomer, Israel
| | - Amir Onn
- Thoracic Oncology Unit, Institute of Oncology, Tel HaShomer Hospital, Tel Hashomer, Israel
| | - Ruth Katz
- Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Iris Barshack
- Pathology Department, Tel HaShomer Hospital, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
18
|
Bhere D, Arghiani N, Lechtich ER, Yao Y, Alsaab S, Bei F, Matin MM, Shah K. Simultaneous downregulation of miR-21 and upregulation of miR-7 has anti-tumor efficacy. Sci Rep 2020; 10:1779. [PMID: 32019988 PMCID: PMC7000780 DOI: 10.1038/s41598-020-58072-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of miRNA expression has been implicated in cancer. Numerous strategies have been explored to modulate miR but sub-optimal delivery and inability to concurrently target multiple pathways involved in tumor progression have limited their efficacy. In this study, we explored the potential co-modulation of upregulated miR-21 and downregulated miR-7 to enhance therapeutic outcomes in heterogenic tumor types. We first engineered lentiviral (LV) and adeno-associated viral (AAV) vectors that preferentially express anti-sense miR against miR-21(miRzip-21) and show that modulating miR-21 via miRzip extensively targets tumor cell proliferation, migration and invasion in vitro in a broad spectrum of cancer types and has therapeutic efficacy in vivo. Next, we show a significantly increased expression of caspase-mediated apoptosis by simultaneously downregulating miR-21 and upregulating miR-7 in different tumor cells. In vivo co-treatment with AAV-miRzip-21 and AAV-miR-7 in mice bearing malignant brain tumors resulted in significantly decreased tumor burden with a corresponding increase in survival. To our knowledge, this is the first study that demonstrates the therapeutic efficacy of simultaneously upregulating miR-7 and downregulating miR-21 and establishes a roadmap towards clinical translation of modulating miRs for various cancer types.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nahid Arghiani
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Esther Revai Lechtich
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Alsaab
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Joint Center of Excellence in Biomedicine, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maryam M Matin
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
19
|
Zhang L, Jia X. Down-regulation of miR-30b-5p protects cardiomyocytes against hypoxia-induced injury by targeting Aven. Cell Mol Biol Lett 2019; 24:61. [PMID: 31768184 PMCID: PMC6873433 DOI: 10.1186/s11658-019-0187-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022] Open
Abstract
Background Ischemia/hypoxia-induced cardiomyocyte apoptosis has been considered as a main cause of myocardial infarction. Here, we aimed to investigate the functional role of miR-30b-5p in hypoxic cardiomyocytes. Methods AC16 human cardiomyocytes were cultured under hypoxia to simulate myocardial infarction. A qRT-PCR assay was performed to determine miR-30b-5p expression in hypoxic cardiomyocytes. Cell survival, injury and apoptosis were assessed by MTT, lactate dehydrogenase (LDH) release, and flow cytometry assays, respectively. The target gene of miR-30b-5p in hypoxic cardiomyocytes was validated by luciferase reporter assay and Western blotting. Results MiR-30b-5p expression was found to be significantly upregulated in hypoxic AC16 cells. The in vitro experiments showed that downregulation of miR-30b-5p effectively alleviated hypoxia-induced cardiomyocyte injury. Furthermore, Aven is a potential target gene of miR-30b-5p and its downregulation could partially reverse the influence of miR-30b-5p knockdown on AC16 cells under hypoxia. Conclusions Inhibition of miR-30b-5p could protect cardiomyocytes against hypoxia-induced injury by targeting Aven.
Collapse
Affiliation(s)
- Lanfang Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Baoding, 071000 Hebei People's Republic of China
| | - Xinwei Jia
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Baoding, 071000 Hebei People's Republic of China
| |
Collapse
|
20
|
Shao X, Zhang S, Tang Y, Kong W. Micro RNA‐30b (inhibitor) nanoparticles suppressed the lipopolysaccharide (LPS)‐induced acute kidney injury. IET Nanobiotechnol 2019; 13:923-927. [PMID: 31811760 DOI: 10.1049/iet-nbt.2019.0110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Xiang Shao
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| | - Suhua Zhang
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| | - Ying Tang
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| | - Weixin Kong
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| |
Collapse
|
21
|
The Role of Exo-miRNAs in Cancer: A Focus on Therapeutic and Diagnostic Applications. Int J Mol Sci 2019; 20:ijms20194687. [PMID: 31546654 PMCID: PMC6801421 DOI: 10.3390/ijms20194687] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Exosomes are extracellular vesicles released into biological fluids where they act as carriers of various molecules, including proteins, lipids, and RNAs, between cells, modulating or perturbing specific physiological processes. Recently, it has been suggested that tumoral cells release excessive amounts of exosomes that, through their cargo, promote tumor progression, stimulating growth, angiogenesis, metastasis, insensitivity to chemotherapy, and immune evasion. Increasing evidence highlights exosomal microRNAs (exo-miRNAs) as important players in tumorigenesis. MicroRNA (miRNA) are a class of small non-coding RNA able to regulate gene expression, targeting multiple mRNAs and inducing translational repression and/or mRNA degradation. Exo-miRNAs are highly stable and easily detectable in biological fluids, and for these reasons, miRNAs are potential cancer biomarkers useful diagnostically and prognostically. Furthermore, since exosomes are natural delivery systems between cells, they can be appropriately modified to carry therapeutic miRNAs to specific recipient cells. Here we summarize the main functions of exo-miRNAs and their possible role for diagnostic and therapeutic applications.
Collapse
|
22
|
Jian Y, Xu CH, Li YP, Tang B, Xie SH, Zeng EM. Down-regulated microRNA-30b-3p inhibits proliferation, invasion and migration of glioma cells via inactivation of the AKT signaling pathway by up-regulating RECK. Biosci Rep 2019; 39:BSR20182226. [PMID: 31270250 PMCID: PMC6692569 DOI: 10.1042/bsr20182226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
microRNAs (miRNAs) have been found to affect various cancers, and expression of numerous miRNAs is revealed in glioma. However, the role of microRNA-30b-3p (miR-30b-3p) in glioma remains elusive. Therefore, the present study aims to explore the specific mechanism by which miR-30b-3p influence the development of glioma in relation to the AKT signaling pathway. First, glioma cell lines were collected with miR-30b-3p and reversion-inducing cysteine-rich protein with kazal motifs (RECK) expression measured. The functional role of miR-30b-3p and RECK in glioma was determined via gain- and loss-of-function approaches. Subsequently, the expression of invasion- and migration-related factors (MMP-2 and MMP-9) and the AKT signaling pathway-related factors (AKT, p-AKT and PI3K-p85) was detected. Moreover, in vivo experiments were also conducted to investigate how miR-30b-3p influences in vivo tumorigenesis. The results showed that miR-30b-3p was up-regulated and RECK was down-regulated in glioma. RECK was a target gene of miR-30b-3p. Decreased miR-30b-3p and overexpressed RECK led to decreased expression of MMP-2, MMP-9 and p-AKT. Overexpressed RECK and LY294002 could decrease p-AKT and PI3K-p85 expression accompanied with unchanged expression of total protein of AKT. Additionally, proliferation, migration and invasion of glioma cells and tumor formation in nude mice were repressed owing to reduced expression of miR-30b-3p or elevated expression of RECK. In summary, miR-30b-3p inhibition suppresses metastasis of glioma cells by inactivating the AKT signaling pathway via RECK up-regulation, providing a new target for glioma treatment.
Collapse
Affiliation(s)
- Yan Jian
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Chun-Hua Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - You-Ping Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - She-Hao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| |
Collapse
|
23
|
Zare A, Ganji M, Omrani MD, Alipoor B, Ghaedi H. Gastric Cancer MicroRNAs Meta-signature. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:94-102. [PMID: 32215261 DOI: 10.22088/ijmcm.bums.8.2.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is one of the most common types of cancer and the second leading cause of cancer-associated mortality. Identification of novel biomarkers is critical to prolonging patient survival. MicroRNAs (miRNAs) proved to play diverse roles in the physiological and pathological state in cancers including GC. Herein we aimed at performing a meta-analysis on miRNA profiling studies that used microarray platforms. Relevant studies were retrieved from PubMed and GEO databases. We used the robust rank aggregation to perform the meta-analysis. Moreover, for meta-signature miRNAs target genes, we performed pathway enrichment and GO molecular function enrichment analysis. A total of 19 upregulated miRNAs and seven downregulated miRNAs in GC samples were identified. However, only three upregulated and one downregulated miRNA reached statistical significance after multiple test correction. Here we showed that hsa-miR-21-5p, hsa-miR-93-5p, hsa-miR-25-3p, and hsa-miR-375 are differentially expressed in GC samples.
Collapse
Affiliation(s)
- Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Ganji
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Para medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Guo Y, Hong W, Wang X, Zhang P, Körner H, Tu J, Wei W. MicroRNAs in Microglia: How do MicroRNAs Affect Activation, Inflammation, Polarization of Microglia and Mediate the Interaction Between Microglia and Glioma? Front Mol Neurosci 2019; 12:125. [PMID: 31133802 PMCID: PMC6522842 DOI: 10.3389/fnmol.2019.00125] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
The essential roles of microglia in maintaining homeostasis in the healthy brain and contributing to neuropathology are well documented. Emerging evidence suggests that epigenetic modulation regulates microglial behavior in both physiological and pathological conditions. MicroRNAs (miRNAs) are short, non-coding epigenetic regulators that repress target gene expression mostly via binding to 3'-untranslated region (3'-UTR) of mRNA in a Dicer-dependent manner. Dysregulation of certain miRNAs can contribute to microglial hyper-activation, persistent neuroinflammation, and abnormal macrophage polarization in the brain. These abnormal conditions can support the pathogenesis of neurological disorders such as glioma, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), stroke, ischemia, and spinal cord injury (SCI). However, the roles of miRNAs in microglia in health and neurological disease have not been systematically summarized. This review will first report the role of Dicer, a key endoribonulease that is responsible for most miRNA biogenesis in microglia. Second, we will focus on recent research about the function of miRNAs in activation, inflammation and polarization of microglia, respectively. In addition, potential crosstalk between microglia and glioma cells via miRNAs will be discussed in this part. Finally, the role of two essential miRNAs, miR-124, and miR-155, in microglia will be highlighted.
Collapse
Affiliation(s)
- Yawei Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wenming Hong
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinming Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Pengying Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Jiajie Tu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| |
Collapse
|
25
|
Lin X, Beckers E, Mc Cafferty S, Gansemans Y, Joanna Szymańska K, Chaitanya Pavani K, Catani JP, Van Nieuwerburgh F, Deforce D, De Sutter P, Van Soom A, Peelman L. Bovine Embryo-Secreted microRNA-30c Is a Potential Non-invasive Biomarker for Hampered Preimplantation Developmental Competence. Front Genet 2019; 10:315. [PMID: 31024625 PMCID: PMC6459987 DOI: 10.3389/fgene.2019.00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Recently, secreted microRNAs (miRNAs) have received a lot of attention since they may act as autocrine factors. However, how secreted miRNAs influence embryonic development is still poorly understood. We identified 294 miRNAs, 114 known, and 180 novel, in the conditioned medium of individually cultured bovine embryos. Of these miRNAs, miR-30c and miR-10b were much more abundant in conditioned medium of slow cleaving embryos compared to intermediate cleaving ones. MiR-10b, miR-novel-44, and miR-novel-45 were higher expressed in the conditioned medium of degenerate embryos compared to blastocysts, while the reverse was observed for miR-novel-113 and miR-novel-139. Supplementation of miR-30c mimics into the culture medium confirmed the uptake of miR-30c mimics by embryos and resulted in increased cell apoptosis, as also shown after delivery of miR-30c mimics in Madin-Darby bovine kidney cells (MDBKs). We also demonstrated that miR-30c directly targets Cyclin-dependent kinase 12 (CDK12) through its 3′ untranslated region (3′-UTR) and inhibits its expression. Overexpression and downregulation of CDK12 revealed the opposite results of the delivery of miRNA-30c mimics and inhibitor. The significant down-regulation of several tested DNA damage response (DDR) genes, after increasing miR-30c or reducing CDK12 expression, suggests a possible role for miR-30c in regulating embryo development through DDR pathways.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Beckers
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Séan Mc Cafferty
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | | | - João Portela Catani
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Petra De Sutter
- Department of Uro-Gynaecology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
26
|
Zhang Y, Chen J, Xue Q, Wang J, Zhao L, Han K, Zhang D, Hou L. Prognostic Significance of MicroRNAs in Glioma: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4015969. [PMID: 31032345 PMCID: PMC6457304 DOI: 10.1155/2019/4015969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/06/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Different microRNAs (miRs) have been demonstrated to relate with the outcome of glioma patients, while the conclusions are inconsistent. We perform a meta-analysis to clarify the relationship between different miRs and prognosis of glioma. METHODS Related studies were retrieved from PubMed, Embase, and Cochrane Library. Pooled hazard ratios (HRs) of different miRs expression for survival and 95% confidence intervals (CIs) were calculated using random-effects model. RESULTS A total of 15 miRs with 4708 glioma patients were ultimately included. Increased expression of miR-15b (HR, 1.584; 95% CI, 1.199-2.092), 21 (HR, 1.591; 95% CI, 1.278-1.981), 148a (HR, 1.122; 95% CI, 1.023-1.231), 196 (HR, 1.877; 95% CI, 1.033-3.411), 210 (HR, 1.251; 95% CI, 1.010-1.550), and 221 (HR, 1.269; 95% CI, 1.054-1.527) or decreased expression of miR-106a (HR, 0.809; 95% CI, 0.655-0.998) and 124 (HR, 0.833; 95% CI, 0.729-0.952) was correlated with poor outcome of glioma patients. CONCLUSIONS miR-15b, 21, 148a, 196, 210, 221, 106a, and 124 are valuable biomarkers for the prognosis of glioma which might be used in clinical settings.
Collapse
Affiliation(s)
- Yanming Zhang
- Second Sub-Team, Fourth Team, Undergraduate Management Team, Second Military Medical University, Shanghai, China
| | - Jigang Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Xue
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Zhao
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kaiwei Han
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
27
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
28
|
di Gennaro A, Damiano V, Brisotto G, Armellin M, Perin T, Zucchetto A, Guardascione M, Spaink HP, Doglioni C, Snaar-Jagalska BE, Santarosa M, Maestro R. A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness. Cell Death Differ 2018; 25:2165-2180. [PMID: 29666469 PMCID: PMC6262018 DOI: 10.1038/s41418-018-0103-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
Inactivation of p53 contributes significantly to the dismal prognosis of breast tumors, most notably triple-negative breast cancers (TNBCs). How the relief from p53 tumor suppressive functions results in tumor cell aggressive behavior is only partially elucidated. In an attempt to shed light on the implication of microRNAs in this context, we discovered a new signaling axis involving p53, miR-30a and ZEB2. By an in silico approach we identified miR-30a as a putative p53 target and observed that in breast tumors reduced miR-30a expression correlated with p53 inactivation, lymph node positivity and poor prognosis. We demonstrate that p53 binds the MIR30A promoter and induces the transcription of both miRNA strands 5p and 3p. Both miR-30a-5p and -3p showed the capacity of targeting ZEB2, a transcription factor involved in epithelial–mesenchymal transition (EMT), tumor cell migration and drug resistance. Intriguingly, we found that p53 does restrain ZEB2 expression via miR-30a. Finally, we provide evidence that the new p53/miR-30a/ZEB2 axis controls tumor cell invasion and distal spreading and impinges upon miR-200c expression. Overall, this study highlights the existence of a novel axis linking p53 to EMT via miR-30a, and adds support to the notion that miRNAs represent key elements of the complex network whereby p53 inactivation affects TNBC clinical behavior.
Collapse
Affiliation(s)
- Alessandra di Gennaro
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Valentina Damiano
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Giulia Brisotto
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Michela Armellin
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Tiziana Perin
- Pathology Unit, CRO Aviano National Cancer Institute, Aviano (PN), via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Antonella Zucchetto
- Unit of Cancer Epidemiology, CRO Aviano National Cancer Institute, Aviano (PN) via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Michela Guardascione
- Medical Oncology Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Herman P Spaink
- Molecular Cell Biology Department, Institute of Biology, Leiden University, Leiden, 2333CC, The Netherlands
| | - Claudio Doglioni
- Ateneo Vita-Salute, Department of Pathology, IRCCS Scientific Institute San Raffaele, Milan, 20132, Italy
| | - B Ewa Snaar-Jagalska
- Molecular Cell Biology Department, Institute of Biology, Leiden University, Leiden, 2333CC, The Netherlands
| | - Manuela Santarosa
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Roberta Maestro
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| |
Collapse
|
29
|
Zhang L, Li J, Cui L, Shang J, Tian F, Wang R, Xing G. MicroRNA-30b promotes lipopolysaccharide-induced inflammatory injury and alleviates autophagy through JNK and NF-κB pathways in HK-2 cells. Biomed Pharmacother 2018; 101:842-851. [PMID: 29635893 DOI: 10.1016/j.biopha.2018.02.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is an abrupt loss of kidney function. MicroRNA-30b (miR-30b) has been reported to be involved in the inflammatory reaction of a variety of diseases. However, the role of miR-30b in AKI remains unknown. In this research, we aimed to investigate the role of miR-30b in lipopolysaccharide (LPS)-induced kindey inflammatory injury in vitro and in vivo. METHODS In vitro, after miR-30b mimic/inhibitor transfection and/or LPS treatment, the viability, apoptosis, autophagy and inflammatory cytokines releases, as well as activation of c-Jun-N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) pathways were detected by cell counting kit-8 (CCK-8) assay, flow cytometry, qRT-PCR, enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. In vivo, after LPS treatment and/or anti-miR-30b administration, the levels of creatinine, the activities of alanine aminotransferase (ALT) and histologic scores, as well as concentrations of inflammatory cytokines were assessed by creatinine assay kit, ALT assay kit and ELISA, respectively. RESULTS LPS inhibited HK-2 cell viability and induced HK-2 cell apoptosis, autophagy and the releases of inflammatory cytokines. Overexpression of miR-30b promoted LPS-induced HK-2 cell viability inhibition, cell inflammatory cytokines releases, cell apoptosis induction and activation of JNK and NF-κB signaling pathways, but inhibited LPS-induced HK-2 cell autophagy. Suppression of miR-30b had opposite effects. Moreover, suppression of miR-30b alleviated the LPS-induced kidney injury in mice model by decreasing creatinine level, ALT activity and histologic scores, as well as concentrations of inflammatory cytokines. CONCLUSION miR-30b participated in the LPS-induced kindey inflammatory injury in vitro and in vivo.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, Shandong, China; Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Jun Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Li Cui
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Jinchun Shang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Fen Tian
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, Shandong, China.
| | - Guangqun Xing
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China.
| |
Collapse
|
30
|
Zhang X, Wang L, Liu Y, Huang W, Cheng D. MiR-760 enhances TRAIL sensitivity in non-small cell lung cancer via targeting the protein FOXA1. Biomed Pharmacother 2018; 99:523-529. [PMID: 29665655 DOI: 10.1016/j.biopha.2018.01.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading cause of death worldwide. TNF-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent with the ability to kill tumor cells while spare normal ones. MicroRNAs (miRNAs) are small, non-coding RNAs that play vital roles in carcinogenesis. Although miR-760 has been reported to be dysregulated in a variety of cancers, the role of miR-760 in NSCLC is not fully understood, and the relationship between miR-760 dysregulation and TRAIL sensitivity is still elusive. In the current study, we found that miR-760 is significantly downregulated in NSCLC tissues and cell lines. We also found that ectopic expression of miR-760, by targeting the FOXA1, enhanced TRAIL sensitivity in NSCLC cells. Correspondingly, silencing of FOXA1 also sensitized NSCLC cell to TRAIL-induced apoptosis and proliferation inhibition. In summary, these findings suggest that miR-760 should be considered as a tumor suppressor since it negatively regulates the oncogene protein FOXA1 and regulated TRAIL sensitivity in NSCLC cells.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lei Wang
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yu Liu
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weicong Huang
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dezhi Cheng
- Department of Thoracic, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
31
|
Qi B, Wang Y, Chen ZJ, Li XN, Qi Y, Yang Y, Cui GH, Guo HZ, Li WH, Zhao S. Down-regulation of miR-30a-3p/5p promotes esophageal squamous cell carcinoma cell proliferation by activating the Wnt signaling pathway. World J Gastroenterol 2017; 23:7965-7977. [PMID: 29259372 PMCID: PMC5725291 DOI: 10.3748/wjg.v23.i45.7965] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the potential role of microRNA-30a (miR-30a) in esophageal squamous cell carcinoma (ESCC).
METHODS Expression of miR-30a-3p/5p was analyzed using microarray data and fresh ESCC tissue samples. Both in vitro and in vivo assays were used to investigate the effects of miR-30a-3p/5p on ESCC cell proliferation. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was performed to explore underlying mechanisms involved in ESCC, and then, assays were carried out to verify the potential molecular mechanism of miR-30a in ESCC.
RESULTS Low expression of miR-30a-3p/5p was closely associated with advanced ESCC progression and poor prognosis of patients with ESCC. Knock-down of miR-30a-3p/5p promoted ESCC cell proliferation. Increased miR-30a-3p/5p expression inhibited the Wnt signaling pathway by targeting Wnt2 and Fzd2.
CONCLUSION Down-regulation of miR-30a-3p/5p promotes ESCC cell proliferation by activating the Wnt signaling pathway through inhibition of Wnt2 and Fzd2.
Collapse
Affiliation(s)
- Bo Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yan Wang
- Periodicals Publishing House, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Zhi-Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Xiang-Nan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Guang-Hui Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hai-Zhou Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei-Hao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
32
|
Fiore D, Donnarumma E, Roscigno G, Iaboni M, Russo V, Affinito A, Adamo A, De Martino F, Quintavalle C, Romano G, Greco A, Soini Y, Brunetti A, Croce CM, Condorelli G. miR-340 predicts glioblastoma survival and modulates key cancer hallmarks through down-regulation of NRAS. Oncotarget 2017; 7:19531-47. [PMID: 26799668 PMCID: PMC4991399 DOI: 10.18632/oncotarget.6968] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/01/2016] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults; with a survival rate of 12 months from diagnosis. However, a small subgroup of patients, termed long-term survivors (LTS), has a survival rate longer then 12–14 months. There is thus increasing interest in the identification of molecular signatures predicting glioblastoma prognosis and in how to improve the therapeutic approach. Here, we report miR-340 as prognostic tumor-suppressor microRNA for glioblastoma. We analyzed microRNA expression in > 500 glioblastoma patients and found that although miR-340 is strongly down-regulated in glioblastoma overall, it is up-regulated in LTS patients compared to short-term survivors (STS). Indeed, miR-340 expression predicted better prognosis in glioblastoma patients. Coherently, overexpression of miR-340 in glioblastoma cells was found to produce a tumor-suppressive activity. We identified NRAS mRNA as a critical, direct target of miR-340: in fact, miR-340 negatively influenced multiple aspects of glioblastoma tumorigenesis by down-regulating NRAS and downstream AKT and ERK pathways. Thus, we demonstrate that expression of miR-340 in glioblastoma is responsible for a strong tumor-suppressive effect in LTS patients by down-regulating NRAS. miR-340 may thus represent a novel marker for glioblastoma diagnosis and prognosis, and may be developed into a tool to improve treatment of glioblastoma.
Collapse
Affiliation(s)
- Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,IEOS, CNR, Naples, Italy
| | - Margherita Iaboni
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Valentina Russo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Assunta Adamo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Fabio De Martino
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Cristina Quintavalle
- Institute of Pathology, Molecular Pathology Division, University of Basel, Basel, Switzerland
| | - Giulia Romano
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Adelaide Greco
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy.,Ceinge, Biotecnologie Avanzate, Scarl, Naples, Italy
| | - Ylermi Soini
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
| | - Arturo Brunetti
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy.,Ceinge, Biotecnologie Avanzate, Scarl, Naples, Italy
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,IEOS, CNR, Naples, Italy
| |
Collapse
|
33
|
Tűzesi Á, Kling T, Wenger A, Lunavat TR, Jang SC, Rydenhag B, Lötvall J, Pollard SM, Danielsson A, Carén H. Pediatric brain tumor cells release exosomes with a miRNA repertoire that differs from exosomes secreted by normal cells. Oncotarget 2017; 8:90164-90175. [PMID: 29163818 PMCID: PMC5685739 DOI: 10.18632/oncotarget.21621] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/19/2017] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas (HGGs) are very aggressive brain tumors with a cancer stem cell component. Cells, including cancer stem cells, release vesicles called exosomes which contain small non-coding RNAs such as microRNAs (miRNAs). These are thought to play an important role in cell-cell communication. However, we have limited knowledge of the types of exosomal miRNAs released by pediatric HGG stem cells; a prerequisite for exploring their potential roles in HGG biology. Here we isolated exosomes released by pediatric glioma stem cells (GSCs) and compared their repertoire of miRNAs to genetically normal neural stem cells (NSCs) exosomes, as well as their respective cellular miRNA content. Whereas cellular miRNAs are similar, we find that the exosomal miRNA profiles differ between normal and tumor cells, and identify several differentially expressed miRNAs. Of particular interest is miR-1290 and miR-1246, which have previously been linked to 'stemness' and invasion in other cancers. We demonstrate that GSC-secreted exosomes influence the gene expression of receiving NSCs, particularly targeting genes with a role in cell fate and tumorigenesis. Thus, our study shows that GSCs and NSCs have similar cellular miRNA profiles, yet differ significantly in the repertoire of exosomal miRNAs and these could influence malignant features of HGG.
Collapse
Affiliation(s)
- Ágota Tűzesi
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teresia Kling
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Wenger
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Taral R. Lunavat
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Su Chul Jang
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Bertil Rydenhag
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Steven M. Pollard
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Anna Danielsson
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Donnarumma E, Fiore D, Nappa M, Roscigno G, Adamo A, Iaboni M, Russo V, Affinito A, Puoti I, Quintavalle C, Rienzo A, Piscuoglio S, Thomas R, Condorelli G. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 2017; 8:19592-19608. [PMID: 28121625 PMCID: PMC5386708 DOI: 10.18632/oncotarget.14752] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/27/2016] [Indexed: 12/02/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment. They may drive tumor progression, although the mechanisms involved are still poorly understood. Exosomes have emerged as important mediators of intercellular communication in cancer. They mediate horizontal transfer of microRNAs (miRs), mRNAs and proteins, thus affecting breast cancer progression. Differential expression profile analysis identified three miRs (miRs -21, -378e, and -143) increased in exosomes from CAFs as compared from normal fibroblasts. Immunofluorescence indicated that exosomes may be transferred from CAFs to breast cancer cells, releasing their cargo miRs. Breast cancer cells (BT549, MDA-MB-231, and T47D lines) exposed to CAF exosomes or transfected with those miRs exhibited a significant increased capacity to form mammospheres, increased stem cell and epithelial-mesenchymal transition (EMT) markers, and anchorage-independent cell growth. These effects were reverted by transfection with anti-miRs. Similarly to CAF exosomes, normal fibroblast exosomes transfected with miRs -21, -378e, and -143 promoted the stemness and EMT phenotype of breast cancer cells. Thus, we provided evidence for the first time of the role of CAF exosomes and their miRs in the induction of the stemness and EMT phenotype in different breast cancer cell lines. Indeed, CAFs strongly promote the development of an aggressive breast cancer cell phenotype.
Collapse
Affiliation(s)
| | - Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Martina Nappa
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Assunta Adamo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Margherita Iaboni
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Valentina Russo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Ilaria Puoti
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | | | | | | | - Renato Thomas
- Department of Surgical and Oncology, Clinica Mediterranea, Naples, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,IEOS, CNR, Naples, Italy
| |
Collapse
|
35
|
Zhang X, Zhang X, Hu S, Zheng M, Zhang J, Zhao J, Zhang X, Yan B, Jia L, Zhao J, Wu K, Yang A, Zhang R. Identification of miRNA-7 by genome-wide analysis as a critical sensitizer for TRAIL-induced apoptosis in glioblastoma cells. Nucleic Acids Res 2017; 45:5930-5944. [PMID: 28459998 PMCID: PMC5449600 DOI: 10.1093/nar/gkx317] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is still one of the most lethal forms of brain tumor despite of the improvements in treatments. TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. To define the novel pathways that regulate susceptibility to TRAIL in GBM cells, we performed a genome-wide expression profiling of microRNAs in GBM cell lines with the distinct sensitivity to TRAIL-induced apoptosis. We found that the expression pattern of miR-7 is closely correlated with sensitivity of GBM cells to TRAIL. Furthermore, our gain and loss of function experiments showed that miR-7 is a potential sensitizer for TRAIL-induced apoptosis in GBM cells. In the mechanistic study, we identified XIAP is a direct downstream gene of miR-7. Additionally, this regulatory axis could also exert in other types of tumor cells like hepatocellular carcinoma cells. More importantly, in the xenograft model, enforced expression of miR-7 in TRAIL-overexpressed mesenchymal stem cells increased apoptosis and suppressed tumor growth in an exosome dependent manner. In conclusion, we identify that miR-7 is a critical sensitizer for TRAIL-induced apoptosis, thus making it as a promising therapeutic candidate for TRAIL resistance in GBM cells.
Collapse
Affiliation(s)
- Xiao Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiang Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shijie Hu
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Minhua Zheng
- The State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jie Zhang
- Department of Radiological Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianhui Zhao
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaofang Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Yan
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lintao Jia
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Zhao
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Kaichun Wu
- The State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Angang Yang
- The State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
36
|
Wang SS, Feng L, Hu BG, Lu YF, Wang WM, Guo W, Suen CW, Jiao BH, Pang JX, Fu WM, Zhang JF. miR-133a Promotes TRAIL Resistance in Glioblastoma via Suppressing Death Receptor 5 and Activating NF-κB Signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:482-492. [PMID: 28918048 PMCID: PMC5560119 DOI: 10.1016/j.omtn.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 01/31/2023]
Abstract
Recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), as a novel cancer therapeutic, is being tested in phase II and III clinical trials; however, TRAIL resistance remains a big obstacle preventing its clinical application. Considering that TRAIL-induced apoptosis through death receptors DR4 and DR5, their activation may be an alternative pathway to suppress TRAIL resistance. In this study, a negative correlation between DR5 expression and TRAIL resistance was observed, and miR-133a was predicted to be the most promising candidate to suppress DR5 expression. Further investigation demonstrated that miR-133a knockdown dramatically suppressed TRAIL resistance in glioblastoma in vitro and in vivo. An NF-κB family member, phosphorylated IκBα (P-IκBα), was shown to be stimulated by miR-133a, leading to the activation of this signaling. Finally, miR-133a was found to be inversely correlated with DR5 expression in human clinical specimens. In conclusion, our data demonstrate that miR-133a promotes TRAIL resistance in glioblastoma by suppressing DR5 expression and activating NF-κB signaling.
Collapse
Affiliation(s)
- Shan-Shan Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, P.R. China; Guangdong University of Technology, Guangzhou 510515, P.R. China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Bao-Guang Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, P.R. China
| | - Ying-Fei Lu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Wei-Mao Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, P.R. China
| | - Wei Guo
- Shenzhen Ritzcon Biological Technology Co., Shenzhen, Guangdong, P.R. China
| | - Chun-Wai Suen
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Bao-Hua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jian-Xin Pang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China.
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China.
| | - Jin-Fang Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China; School of Medicine, South China University of Technology, Guangzhou 510000, P.R. China.
| |
Collapse
|
37
|
Abstract
Ischemic heart disease(IHD) is the leading cause of death worldwide. Despite the development of continuously improving therapeutic strategies, morbidity and mortality of patients with IHD remain relatively high. Exosomes are a subpopulation of vesicles that are universally recognized as major mediators in intercellular communication. Numerous preclinical studies have shown that these tiny vesicles were protective in IHD, through such actions as alleviating myocardial ischemia-reperfusion injury, promoting angiogenesis, inhibiting fibrosis, and facilitating cardiac regeneration. Our review focused on these beneficial exosome-mediated processes. In addition, we discuss in detail how to fully exploit the therapeutic potentials of exosomes in the field of IHD. Topics include identifying robust sources of exosomes, loading protective agents into exosomes, developing heart-specific exosomes, optimizing isolation methods, and translating the cardioprotective effects of exosomes into clinical practice. Finally, both the advantages and disadvantages of utilizing exosomes in clinical settings are addressed.
Collapse
Affiliation(s)
- Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
38
|
Liu W, Li H, Wang Y, Zhao X, Guo Y, Jin J, Chi R. MiR-30b-5p functions as a tumor suppressor in cell proliferation, metastasis and epithelial-to-mesenchymal transition by targeting G-protein subunit α-13 in renal cell carcinoma. Gene 2017; 626:275-281. [PMID: 28536082 DOI: 10.1016/j.gene.2017.05.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/04/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022]
Abstract
Increasing evidence has demonstrated that aberrant microRNAs (miRNAs) play important roles in the pathogenesis of most human malignancies. The purpose of this study was to explore the role of miR-30b-5p in human RCC. In the current study, we firstly found that the expression levels of miR-30b-5p were lower in both RCC tissues and cell lines. Then, we found that enforced miR-30b-5p expression and knockdown of GNA13 significantly suppressed the proliferation, invasion, migration and EMT of RCC cell lines. In addition, miR-30b-5p directly targeted GNA13 and repressed its expression. Furthermore, re-expression of GNA13 (without the 3'-UTR) could partially abrogate the miR-30b-5p-induced cell proliferation and metastasis inhibition. Taken together, these findings indicated that miR-30b-5p acts as a novel tumor suppressor to regulate RCC cell proliferation, metastasis and EMT through downregulation of GNA13 expression. Therefore, miR-30b-5p may be considered a potential biomarker for the diagnosis of RCC.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qindao University, Yantai 26400, PR China
| | - Honghong Li
- Department of Public health, The Affiliated Yantai Yuhuangding Hospital of Qindao University, Yantai 26400, PR China
| | - Yan Wang
- Department of Oncology, Yantai hospital of traditional Chinese Medicine, Yantai 26400, PR China
| | - Xinyao Zhao
- Department of Medical Imaging,Yantai Yantaishan Hospital, Yantai 264001, PR China
| | - Yuanying Guo
- School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Jing Jin
- Department of Ultrasound, Yantai Yantaishan Hospital, Yantai 264001, PR China
| | - Rongxiang Chi
- Nursing Department, Yantai Hospital of Traditional Chinese Medicine, 26400, Yantai 26400, PR China.
| |
Collapse
|
39
|
Li Z, Guo J, Ma Y, Zhang L, Lin Z. Oncogenic Role of MicroRNA-30b-5p in Glioblastoma Through Targeting Proline-Rich Transmembrane Protein 2. Oncol Res 2017; 26:219-230. [PMID: 28550683 PMCID: PMC7844647 DOI: 10.3727/096504017x14944585873659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) have been found to play promoting or suppressive roles in different human cancers. However, the exact regulatory mechanism of miR-30b in glioblastoma remains unknown. Here we have shown that the expression of miR-30b is significantly increased in glioblastoma tissues and cell lines. Moreover, a high expression of miR-30b is significantly associated with a shorter survival time for glioblastoma patients. Knockdown of miR-30b caused a significant reduction in the proliferation, migration, and invasion of U87 and A172 cells. Proline-rich transmembrane protein 2 (PRRT2) was further identified as a novel target gene of miR-30b, and its protein expression is negatively regulated by miR-30b in U87 and A172 cells. Furthermore, PRRT2 is significantly downregulated in glioblastoma tissues and cell lines, and we found an inverse correlation between miR-30b and PRRT2 expression in glioblastoma tissues. In addition, inhibition of PRRT2 reversed the suppressive effect of miR-30b downregulation on the malignant phenotypes of U87 and A172 cells. Accordingly, we demonstrated that miR-30b promotes glioblastoma cell proliferation, migration, and invasion via targeting PRRT2. Therefore, miR-30b may be used as a promising therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Zhongjun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, P.R. China
| | - Junxiu Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, P.R. China
| | - Yujie Ma
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Zhixiong Lin
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
40
|
Qin X, Chen J, Wu L, Liu Z. MiR-30b-5p acts as a tumor suppressor, repressing cell proliferation and cell cycle in human hepatocellular carcinoma. Biomed Pharmacother 2017; 89:742-750. [PMID: 28273636 DOI: 10.1016/j.biopha.2017.02.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/28/2017] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs have been verified to participate in various biological behaviors of different tumors, via multiple signaling pathways. Many kinds of microRNAs in hepatocellular carcinoma have been researched. However, miR-30b-5p hasn't been included. Our study aim at the impacts of miR-30b-5p on HCC and the pathway it mediating. The results showed miR-30b-5p was significant downregulated in HCC tissues and cell lines. With clinical data, we've discovered miR-30b-5p was correlated with several clinical pathological characteristics, such as survival time, tumor size, HBV infected, pathological stage, differentiation and intrahepatic metastasis. Also we illustrated miR-30b-5p repressed cell proliferation and cell cycle of HCC cell lines. For a further study, we figured out that miR-30b-5p mediated DNMT3A to repress proliferation, meanwhile it targeted USP37 for decelerating cell cycle. This discovery inferred miR-30b-5p a potential favorable biomarker and therapeutic target for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Xian Qin
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Jing Chen
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Long Wu
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Zhisu Liu
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
41
|
RNA Nanoparticle-Based Targeted Therapy for Glioblastoma through Inhibition of Oncogenic miR-21. Mol Ther 2017; 25:1544-1555. [PMID: 28109960 DOI: 10.1016/j.ymthe.2016.11.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/27/2022] Open
Abstract
Targeted inhibition of oncogenic miRNA-21 has been proposed to treat glioblastoma by rescuing tumor suppressors, PTEN and PDCD4. However, systemic delivery of anti-miR-21 sequences requires a robust and efficient delivery platform to successfully inhibit this druggable target. Three-way-junction (3WJ)-based RNA nanoparticles (RNP), artificially derived from pRNA of bacteriophage phi29 DNA packaging motor, was recently shown to target glioblastoma. Here, we report that multi-valent folate (FA)-conjugated 3WJ RNP constructed to harbor anti-miR-21 LNA sequences (FA-3WJ-LNA-miR21) specifically targeted and delivered anti-miR-21 LNA and knocked down miR-21 expression in glioblastoma cells in vitro and in vivo with favorable biodistribution. Systemically injected FA-3WJ-LNA-miR21 RNP efficiently rescued PTEN and PDCD4, resulting in glioblastoma cell apoptosis and tumor growth regression. Overall survival rate was also significantly improved by FA-3WJ-LNA-miR21 RNP. These results are indicative of the clinical benefit of FA-3WJ RNP-based gene therapy for the successful targeted therapy of developing and even recurring glioblastoma.
Collapse
|
42
|
An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 2017; 7:38-51. [PMID: 28119807 PMCID: PMC5237711 DOI: 10.1016/j.apsb.2016.09.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/30/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance (MDR) remains a major clinical obstacle to successful cancer treatment. Although diverse mechanisms of MDR have been well elucidated, such as dysregulation of drugs transporters, defects of apoptosis and autophagy machinery, alterations of drug metabolism and drug targets, disrupti on of redox homeostasis, the exact mechanisms of MDR in a specific cancer patient and the cross-talk among these different mechanisms and how they are regulated are poorly understood. MicroRNAs (miRNAs) are a new class of small noncoding RNAs that could control the global activity of the cell by post-transcriptionally regulating a large variety of target genes and proteins expression. Accumulating evidence shows that miRNAs play a key regulatory role in MDR through modulating various drug resistant mechanisms mentioned above, thereby holding much promise for developing novel and more effective individualized therapies for cancer treatment. This review summarizes the various MDR mechanisms and mainly focuses on the role of miRNAs in regulating MDR in cancer treatment.
Collapse
Affiliation(s)
- Xin An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Cesar Sarmiento
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding authors..
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding authors..
| |
Collapse
|
43
|
Bin L, Zhang M, Lixia L, Aimin Z, Hua Y, Yanhong S, Yang Y, Feng G, Bo L, Yonggang Z, Huiping T. Down-regulation of miRNA-30c predicts poor prognosis in Colorectal Cancer patients. REV ROMANA MED LAB 2016. [DOI: 10.1515/rrlm-2016-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Background: MiRNA-30c was a tumor suppressor in several human cancers, however, its association with clinicopathological features and prognosis in colorectal cancer (CRC) is unclear.
Materials and Methods: The expression level of miRNA-30c in 192 pairs of colorectal cancer and adjacent normal tissues was detected by Quantitative RT-PCR, the association between miRNA-30c expression and clinical characteristics and prognosis were statistically analyzed.
Results: miRNA-30c was significantly lower in CRC tissues specimens compared with matched normal adjacent tissue (P<0.001). MiRNA-30c was positively correlated with tumor size (P=0.012), TMN stage (P=0.002) and lymph node metastasis (P=0.004). The univariate analysis showed CRC patients with low miRNA-30c had distinctly shorter overall survival (P<0.001) than patients with high miRNA-30c expression level. The multivariate analysis was performed and informed that low miRNA-30c expression (P<0.001) might be an independent prognostic predictor for poor prognosis.
Conclusion: miRNA-30c could predict the prognosis of colorectal cancer which is helpful to choose reasonable treatment measures.
Collapse
Affiliation(s)
- Liu Bin
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Meng Zhang
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Liu Lixia
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Zang Aimin
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Yang Hua
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Shang Yanhong
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Yang Yang
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Gao Feng
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Liu Bo
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Zhang Yonggang
- The Affiliated Hospital of Hebei University, Baoding, China
| | - Tian Huiping
- The Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
44
|
Prioritizing cancer-related microRNAs by integrating microRNA and mRNA datasets. Sci Rep 2016; 6:35350. [PMID: 27734929 PMCID: PMC5062133 DOI: 10.1038/srep35350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/28/2016] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of target genes, and they are involved in cancer initiation and progression. Even though many cancer-related miRNAs were identified, their functional impact may vary, depending on their effects on the regulation of other miRNAs and genes. In this study, we propose a novel method for the prioritization of candidate cancer-related miRNAs that may affect the expression of other miRNAs and genes across the entire biological network. For this, we propose three important features: the average expression of a miRNA in multiple cancer samples, the average of the absolute correlation values between the expression of a miRNA and expression of all genes, and the number of predicted miRNA target genes. These three features were integrated using order statistics. By applying the proposed approach to four cancer types, glioblastoma, ovarian cancer, prostate cancer, and breast cancer, we prioritized candidate cancer-related miRNAs and determined their functional roles in cancer-related pathways. The proposed approach can be used to identify miRNAs that play crucial roles in driving cancer development, and the elucidation of novel potential therapeutic targets for cancer treatment.
Collapse
|
45
|
Zhu J, Zhou Q, Tan S. Targeting miRNAs associated with surface expression of death receptors to modulate TRAIL resistance in breast cancer. Cancer Lett 2016; 383:154-160. [PMID: 27693456 DOI: 10.1016/j.canlet.2016.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/22/2016] [Accepted: 09/02/2016] [Indexed: 01/07/2023]
Abstract
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) is capable of inducing apoptosis upon engagement of its death receptors (DRs) 4 and 5. TRAIL therapy has garnered intense interest as one of the most promising agents for cancer therapy, for its selective induction of tumor-cell apoptosis while low toxicity to most normal cells. However, a variety of breast cancer cell lines could be resistant to TRAIL-induced apoptosis. Absence of DR4 and DR5 on the breast cancer cell surface has been proposed to be critically involved in resistance to TRAIL and its agonistic antibodies. Moreover, endocytosis and autophagy in breast cancer cells could induce TRAIL resistance through downregulation of surface DR4/5. MicroRNAs (miRNAs), as endogenously expressed small non-coding RNAs, function as regulators of gene expression and involve tremendous biological processes including drug resistance. In this review, we highlight recent advances in the functional role of miRNAs in endocytosis and autophagy pathways. This review aims to present that, through regulation of critical molecules involved in autophagy and endocytosis, miRNAs could lead to mislocalization of DR4/5 in breast cancer cells and therefore play an important role in TRAIL-mediated apoptosis and TRAIL resistance.
Collapse
Affiliation(s)
- Juanjuan Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiujing Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuhua Tan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
46
|
Migration-prone glioma cells show curcumin resistance associated with enhanced expression of miR-21 and invasion/anti-apoptosis-related proteins. Oncotarget 2016; 6:37770-81. [PMID: 26473373 PMCID: PMC4741964 DOI: 10.18632/oncotarget.6092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022] Open
Abstract
In study, the expression patterns and functional differences between an original glioma cell population (U251 and U87) and sublines (U251-P10, U87-P10) that were selected to be migration-prone were investigated. The expressions levels of VEGF and intracellular adhesion molecule-1 (ICAM-1) were increased in the migration-prone sublines as well as in samples from patients with high-grade glioma when compared to those with low-grade glioma. In addition, cells of the migration-prone sublines showed increased expression of the oncogenic microRNA. miR-21, which was also associated with more advanced clinical pathological stages in the patient tissue specimens. Treatment of U251 cells with an miR-21 mimic dramatically enhanced the migratory activity and expression of anti-apoptotic proteins. Furthermore, treatment with curcumin decreased the miR-21 level and anti-apoptotic protein expression, and increased the expression of pro-apoptosis proteins and microtubule-associated protein light chain 3-II (LC3-II) in U251 cells. The migration-prone sublines showed decreased induction of cell death markers in response to curcumin treatment. Finally, U251-P10 cells showed resistance against curcumin treatment. These results suggest that miR-21 is associated with regulation of the migratory ability and survival in human glioma cells. These findings suggest novel mechanisms of malignancy and new potential combinatorial strategies for the management of malignant glioma.
Collapse
|
47
|
MicroRNAs in non-small cell lung cancer and idiopathic pulmonary fibrosis. J Hum Genet 2016; 62:57-65. [PMID: 27488441 DOI: 10.1038/jhg.2016.98] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
Abstract
In spite of advances in the diagnosis and current molecular target therapies of lung cancer, this disease remains the most common cause of cancer-related death worldwide. Approximately 80% of lung cancers is non-small cell lung cancer (NSCLC), and 5-year survival rate of the disease is ~20%. On the other hand, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown etiology. IPF is refractory to treatment and has a very low survival rate. Moreover, IPF is frequently associated with lung cancer. However, the common mechanisms shared by these two diseases remain poorly understood. In the post-genome sequence era, the discovery of noncoding RNAs, particularly microRNAs (miRNAs), has had a major impact on most biomedical fields, and these small molecules have been shown to contribute to the pathogenesis of NSCLC and IPF. Investigation of novel RNA networks mediated by miRNAs has improved our understanding of the molecular mechanisms of these diseases. This review summarizes our current knowledge on aberrantly expressed miRNAs regulating NSCLC and IPF based on miRNA expression signatures.
Collapse
|
48
|
Yang XJ, Si RH, Liang YH, Ma BQ, Jiang ZB, Wang B, Gao P. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway. World J Gastroenterol 2016; 22:3978-3991. [PMID: 27099441 PMCID: PMC4823248 DOI: 10.3748/wjg.v22.i15.3978] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if mir-30d inhibits the autophagy response to Helicobacter pylori (H. pylori) invasion and increases H. pylori intracellular survival.
METHODS: The expression of mir-30d was detected by quantitative polymerase chain reaction (PCR), and autophagy level was examined by transmission electron microscopy, western blot, and GFP-LC3 puncta assay in human AGS cells and GES-1 cells. Luciferase reporter assay was applied to confirm the specificity of mir-30d regulation on the expression of several core molecules involved in autophagy pathway. The expression of multiple core proteins were analyzed at both the mRNA and protein level, and the intracellular survival of H. pylori after different treatments was detected by gentamicin protection assay.
RESULTS: Autophagy level was increased in AGS and GES-1 cells in response to H. pylori infection, which was accompanied by upregulation of mir-30d expression (P < 0.05, vs no H. pylori infection). In the two gastric epithelial cell lines, mimic mir-30d was found to repress the autophagy process, whereas mir-30d inhibitor increased autophagy response to H. pylori invasion. mir-30d mimic decreased the luciferase activity of wild type reporter plasmids carrying the 3′ untranslated region (UTR) of all five tested genes (ATG2B, ATG5, ATG12, BECN1, and BNIP3L), whereas it had no effect on the mutant reporter plasmids. These five genes are core genes of autophagy pathway, and their expression was reduced significantly after mir-30d mimic transfection (P < 0.05, vs control cells without mir-30d mimic treatment). Mir-30d mimic transfection and direct inhibition of autophagy increased the intracellular survival of H. pylori in AGS cells.
CONCLUSION: Mir-30d increases intracellular survival of H. pylori in gastric epithelial cells through inhibition of multiple core proteins in the autophagy pathway.
Collapse
|
49
|
Lee TJ, Haque F, Shu D, Yoo JY, Li H, Yokel RA, Horbinski C, Kim TH, Kim SH, Kwon CH, Nakano I, Kaur B, Guo P, Croce CM. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget 2016; 6:14766-76. [PMID: 25885522 PMCID: PMC4558114 DOI: 10.18632/oncotarget.3632] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/01/2015] [Indexed: 12/14/2022] Open
Abstract
Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues.
Collapse
Affiliation(s)
- Tae Jin Lee
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Farzin Haque
- Department of Pharmaceutical Sciences, Nanobiotechnology Center, Markey Cancer Center, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Dan Shu
- Department of Pharmaceutical Sciences, Nanobiotechnology Center, Markey Cancer Center, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Ji Young Yoo
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, OH, USA
| | - Hui Li
- Department of Pharmaceutical Sciences, Nanobiotechnology Center, Markey Cancer Center, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Robert A Yokel
- Department of Pharmaceutical Sciences, Nanobiotechnology Center, Markey Cancer Center, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Craig Horbinski
- Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Tae Hyong Kim
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, OH, USA.,ProteomeTech Inc., Seoul, Korea
| | - Sung-Hak Kim
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, OH, USA
| | - Chang-Hyuk Kwon
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, OH, USA.,Neurosciences Research Program, Aurora Health Care Inc., Milwaukee, WI, USA
| | - Ichiro Nakano
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, OH, USA
| | - Balveen Kaur
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, OH, USA
| | - Peixuan Guo
- Department of Pharmaceutical Sciences, Nanobiotechnology Center, Markey Cancer Center, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
50
|
miR-30 family promotes migratory and invasive abilities in CD133(+) pancreatic cancer stem-like cells. Hum Cell 2016; 29:130-7. [PMID: 26965588 DOI: 10.1007/s13577-016-0137-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is a deadly disease with a poor prognosis. Recently, miRNAs have been reported to be abnormally expressed in several cancers and play a role in cancer development and progression. However, the role of miRNA in cancer stem cells remains unclear. Therefore, our aim was to investigate the role of miRNA in the CD133(+) pancreatic cancer cell line Capan-1M9 because CD133 is a putative marker of pancreatic cancer stem cells. Using miRNA microarray, we found that the expression level of the miR-30 family decreased in CD133 genetic knockdown shCD133 Capan-1M9 cells. We focused on miR-30a, -30b, and -30c in the miR-30 family and created pancreatic cancer cell sublines, each transfected with these miRNAs. High expression of miR-30a, -30b, or -30c had no effect on cell proliferation and sphere forming. In contrast, these sublines were resistant to gemcitabine, which is a standard anticancer drug for pancreatic cancer, and in addition, promoted migration and invasion. Moreover, mesenchymal markers were up-regulated by these miRNAs, suggesting that mesenchymal phenotype is associated with an increase in migration and invasion. Thus, our study demonstrated that high expression of the miR-30 family modulated by CD133 promotes migratory and invasive abilities in CD133(+) pancreatic cancer cells. These findings suggest that targeted therapies to the miR-30 family contribute to the development of novel therapies for CD133(+) pancreatic cancer stem cells.
Collapse
|