1
|
Maiques O, Sallan MC, Laddach R, Pandya P, Varela A, Crosas-Molist E, Barcelo J, Courbot O, Liu Y, Graziani V, Arafat Y, Sewell J, Rodriguez-Hernandez I, Fanshawe B, Jung-Garcia Y, Imbert PR, Grasset EM, Albrengues J, Santacana M, Macià A, Tarragona J, Matias-Guiu X, Marti RM, Tsoka S, Gaggioli C, Orgaz JL, Fruhwirth GO, Wallberg F, Betteridge K, Reyes-Aldasoro CC, Haider S, Braun A, Karagiannis SN, Elosegui-Artola A, Sanz-Moreno V. Matrix mechano-sensing at the invasive front induces a cytoskeletal and transcriptional memory supporting metastasis. Nat Commun 2025; 16:1394. [PMID: 39952917 PMCID: PMC11829002 DOI: 10.1038/s41467-025-56299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix (ECM) controls tumour dissemination. We characterise ECM organization in human and mouse tumours, identifying three regions: tumour body, proximal invasive front and distal invasive front. Invasive areas show increased matrix density, fibre thickness, length, and alignment, with unique radial fibre orientation at the distal invasive front correlating with amoeboid invasive features. Using patient samples and murine models, we find that metastases recapitulate ECM features of the primary tumour. Ex vivo culture of murine cancer cells isolated from the different tumour regions reveals a spatial cytoskeletal and transcriptional memory. Several in vitro models recapitulate the in vivo ECM organisation showing that increased matrix induces 3D confinement supporting Rho-ROCK-Myosin II activity, while radial orientation enhances directional invasion. Spatial transcriptomics identifies a mechano-inflammatory program associated with worse prognosis across multiple tumour types. These findings provide mechanistic insights into how ECM organization shapes local invasion and distant metastasis.
Collapse
Affiliation(s)
- Oscar Maiques
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marta C Sallan
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, SE1 9RT, London, UK
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Pahini Pandya
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Adrian Varela
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eva Crosas-Molist
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Jaume Barcelo
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Olivia Courbot
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Yanbo Liu
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Vittoria Graziani
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Youssef Arafat
- Department of Computer Science, City St George's, University of London, London, UK
| | - Joanne Sewell
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Irene Rodriguez-Hernandez
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Bruce Fanshawe
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Yaiza Jung-Garcia
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Paul Rc Imbert
- CMR Advanced Bio-imaging Facility, Centre for Microvascular Research, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eloise M Grasset
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jean Albrengues
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Maria Santacana
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
| | - Anna Macià
- Oncologic Pathology Group, IRBLleida, Departments of Experimental Medicine and Basic Medical Sciences, University of Lleida, Lleida, 25198, Spain
| | - Jordi Tarragona
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
- Oncologic Pathology Group, IRBLleida, Departments of Experimental Medicine and Basic Medical Sciences, University of Lleida, Lleida, 25198, Spain
- Department of Pathology, Hospital Universitari de Bellvitge University of Barcelona, IDIBELL, CIBERONC, L'Hospitalet-, Barcelona, 08907, Spain
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, CIBERONC, University of Lleida, CIBERONC, IRB Lleida, Lleida, 25198, Spain
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Cedric Gaggioli
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jose L Orgaz
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, 28029, Madrid, Spain
| | - Gilbert O Fruhwirth
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Fredrik Wallberg
- Quell Therapeutics, Translation & Innovation Hub, 84 Wood Ln, London, W12 0BZ, UK
- Light Microscopy Facility, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Kai Betteridge
- Light Microscopy Facility, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Constantino Carlos Reyes-Aldasoro
- Department of Computer Science, City St George's, University of London, London, UK
- Integrated Pathology Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Syed Haider
- Breast Cancer Research Bioinformatics Group, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Andrejs Braun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, SE1 9RT, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | | | - Victoria Sanz-Moreno
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK.
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK.
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
2
|
Jia W, Czabanka M, Broggini T. Cell blebbing novel therapeutic possibilities to counter metastasis. Clin Exp Metastasis 2024; 41:817-828. [PMID: 39222238 PMCID: PMC11607095 DOI: 10.1007/s10585-024-10308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cells constantly reshape there plasma membrane and cytoskeleton during physiological and pathological processes (Hagmann et al. in J Cell Biochem 73:488-499, 1999). Cell blebbing, the formation of bulges or protrusions on the cell membrane, is related to mechanical stress, changes in intracellular pressure, chemical signals, or genetic anomalies. These membrane bulges interfere with the force balance of actin filaments, microtubules, and intermediate filaments, the basic components of the cytoskeleton (Charras in J Microsc 231:466-478, 2008). In the past, these blebs with circular structures were considered apoptotic markers (Blaser et al. in Dev Cell 11:613-627, 2006). Cell blebbing activates phagocytes and promotes the rapid removal of intrinsic compartments. However, recent studies have revealed that blebbing is associated with dynamic cell reorganization and alters the movement of cells in-vivo and in-vitro (Charras and Paluch in Nat Rev Mol Cell Biol 9:730-736, 2008). During tumor progression, blebbing promotes invasion of cancer cells into blood, and lymphatic vessels, facilitating tumor progression and metastasis (Weems et al. in Nature 615:517-525, 2023). Blebbing is a dominant feature of tumor cells generally absent in normal cells. Restricting tumor blebbing reduces anoikis resistance (survival in suspension) (Weems et al. in Nature 615:517-525, 2023). Hence, therapeutic intervention with targeting blebbing could be highly selective for proliferating pro-metastatic tumor cells, providing a novel therapeutic pathway for tumor metastasis with minimal side effects. Here, we review the association between cell blebbing and tumor cells, to uncover new research directions and strategies for metastatic cancer therapy. Finaly, we aim to identify the druggable targets of metastatic cancer in relation to cell blebbing.
Collapse
Affiliation(s)
- Weiyi Jia
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
3
|
Anderson SM, Kelly M, Odde DJ. Glioblastoma Cells Use an Integrin- and CD44-Mediated Motor-Clutch Mode of Migration in Brain Tissue. Cell Mol Bioeng 2024; 17:121-135. [PMID: 38737451 PMCID: PMC11082118 DOI: 10.1007/s12195-024-00799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Glioblastoma (GBM) is an aggressive malignant brain tumor with 2 year survival rates of 6.7% (Stupp et al. in J Clin Oncol Off J Am Soc Clin Oncol 25:4127-4136, 2007; Mohammed et al. in Rep Pract Oncol Radiother 27:1026-1036, 2002). One key characteristic of the disease is the ability of glioblastoma cells to migrate rapidly and spread throughout healthy brain tissue (Lefranc et al. in J Clin Oncol Off J Am Soc Clin Oncol 23:2411-2422, 2005; Hoelzinger et al. in J Natl Cancer Inst 21:1583-1593, 2007). To develop treatments that effectively target cell migration, it is important to understand the fundamental mechanism driving cell migration in brain tissue. Several models of cell migration have been proposed, including the motor-clutch, bleb-based motility, and osmotic engine models. Methods Here we utilized confocal imaging to measure traction dynamics and migration speeds of glioblastoma cells in mouse organotypic brain slices to identify the mode of cell migration. Results We found that nearly all cell-vasculature interactions reflected pulling, rather than pushing, on vasculature at the cell leading edge, a finding consistent with a motor-clutch mode of migration, and inconsistent with an osmotic engine model or confined bleb-based migration. Reducing myosin motor activity, a key component in the motor-clutch model, was found to decrease migration speed at high doses for all cell types including U251 and 6 low-passage patient-derived xenograft lines (3 proneural and 3 mesenchymal subtypes). Variable responses were found at low doses, consistent with a motor-clutch mode of migration which predicts a biphasic relationship between migration speed and motor-to-clutch ratio. Targeting of molecular clutches including integrins and CD44 slowed migration of U251 cells. Conclusions Overall we find that glioblastoma cell migration is most consistent with a motor-clutch mechanism to migrate through brain tissue ex vivo, and that both integrins and CD44, as well as myosin motors, play an important role in constituting the adhesive clutch. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00799-x.
Collapse
Affiliation(s)
- Sarah M. Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
4
|
Anderson SM, Kelly M, Odde DJ. Glioblastoma cells use an integrin- and CD44-mediated motor-clutch mode of migration in brain tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563458. [PMID: 37961475 PMCID: PMC10634749 DOI: 10.1101/2023.10.23.563458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with 2-year survival rates of 6.7% [1], [2]. One key characteristic of the disease is the ability of glioblastoma cells to migrate rapidly and spread throughout healthy brain tissue[3], [4]. To develop treatments that effectively target cell migration, it is important to understand the fundamental mechanism driving cell migration in brain tissue. Here we utilized confocal imaging to measure traction dynamics and migration speeds of glioblastoma cells in mouse organotypic brain slices to identify the mode of cell migration. Through imaging cell-vasculature interactions and utilizing drugs, antibodies, and genetic modifications to target motors and clutches, we find that glioblastoma cell migration is most consistent with a motor-clutch mechanism to migrate through brain tissue ex vivo, and that both integrins and CD44, as well as myosin motors, play an important role in constituting the adhesive clutch.
Collapse
Affiliation(s)
- Sarah M Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Rzewnicka A, Krysiak J, Pawłowska R, Żurawiński R. Visualization of Cellular Membranes in 2D and 3D Conditions Using a New Fluorescent Dithienothiophene S,S-Dioxide Derivative. Int J Mol Sci 2023; 24:ijms24119620. [PMID: 37298572 DOI: 10.3390/ijms24119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular membranes play a key role in cell communication with the extracellular environment and neighboring cells. Any changes, including their composition, packing, physicochemical properties and formation of membrane protrusions may affect cells feature. Despite its great importance, tracking membrane changes in living cells is still a challenge. For investigation of processes related to tissue regeneration and cancer metastasis, such as the induction of epithelial-mesenchymal transition, increased cell motility, and blebbing, the possibility to conduct prolonged observation of membrane changes is beneficial, albeit difficult. A particular challenge is conducting this type of research under detachment conditions. In the current manuscript, a new dithienothiophene S,S-dioxide (DTTDO) derivative is presented as an effective dye for staining the membranes of living cells. The synthetic procedures, physicochemical properties, and biological activity of the new compound are presented herein. In addition to the labeling of the membranes in a monolayer culture, its usefulness for visualization of membranes under detachment conditions is also demonstrated. Obtained data have proven that a new DTTDO derivative may be used to stain membranes in various types of experimental procedures, from traditional 2D cell cultures to unanchored conditions. Moreover, due to the specific optical properties, the background signal is reduced and, thus, observation may be performed without washing.
Collapse
Affiliation(s)
- Aneta Rzewnicka
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Jerzy Krysiak
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Róża Pawłowska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Remigiusz Żurawiński
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
6
|
Schick J, Raz E. Blebs—Formation, Regulation, Positioning, and Role in Amoeboid Cell Migration. Front Cell Dev Biol 2022; 10:926394. [PMID: 35912094 PMCID: PMC9337749 DOI: 10.3389/fcell.2022.926394] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
In the context of development, tissue homeostasis, immune surveillance, and pathological conditions such as cancer metastasis and inflammation, migrating amoeboid cells commonly form protrusions called blebs. For these spherical protrusions to inflate, the force for pushing the membrane forward depends on actomyosin contraction rather than active actin assembly. Accordingly, blebs exhibit distinct dynamics and regulation. In this review, we first examine the mechanisms that control the inflation of blebs and bias their formation in the direction of the cell’s leading edge and present current views concerning the role blebs play in promoting cell locomotion. While certain motile amoeboid cells exclusively form blebs, others form blebs as well as other protrusion types. We describe factors in the environment and cell-intrinsic activities that determine the proportion of the different forms of protrusions cells produce.
Collapse
|
7
|
Abstract
Bleb-driven cell migration plays important roles in diverse biological processes. Here, we present the mechanism for polarity establishment and maintenance in blebbing cells in vivo. We show that actin polymerization defines the leading edge, the position where blebs form. We show that the cell front can direct the formation of the rear by facilitating retrograde flow of proteins that limit the generation of blebs at the opposite aspect of the cell. Conversely, localization of bleb-inhibiting proteins at one aspect of the cell results in the establishment of the cell front at the opposite side. These antagonistic interactions result in robust polarity that can be initiated in a random direction, or oriented by a chemokine gradient. To study the mechanisms controlling front-rear polarity in migrating cells, we used zebrafish primordial germ cells (PGCs) as an in vivo model. We find that polarity of bleb-driven migrating cells can be initiated at the cell front, as manifested by actin accumulation at the future leading edge and myosin-dependent retrograde actin flow toward the other side of the cell. In such cases, the definition of the cell front, from which bleb-inhibiting proteins such as Ezrin are depleted, precedes the establishment of the cell rear, where those proteins accumulate. Conversely, following cell division, the accumulation of Ezrin at the cleavage plane is the first sign for cell polarity and this aspect of the cell becomes the cell back. Together, the antagonistic interactions between the cell front and back lead to a robust polarization of the cell. Furthermore, we show that chemokine signaling can bias the establishment of the front-rear axis of the cell, thereby guiding the migrating cells toward sites of higher levels of the attractant. We compare these results to a theoretical model according to which a critical value of actin treadmilling flow can initiate a positive feedback loop that leads to the generation of the front-rear axis and to stable cell polarization. Together, our in vivo findings and the mathematical model, provide an explanation for the observed nonoriented migration of primordial germ cells in the absence of the guidance cue, as well as for the directed migration toward the region where the gonad develops.
Collapse
|
8
|
Chao F, Song Z, Wang S, Ma Z, Zhuo Z, Meng T, Xu G, Chen G. Novel circular RNA circSOBP governs amoeboid migration through the regulation of the miR-141-3p/MYPT1/p-MLC2 axis in prostate cancer. Clin Transl Med 2021; 11:e360. [PMID: 33784000 PMCID: PMC8002909 DOI: 10.1002/ctm2.360] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metastatic prostate cancer is a fatal disease despite multiple new approvals in recent years. Recent studies revealed that circular RNAs (circRNAs) can be involved in cancer metastasis. Defining the role of circRNAs in prostate cancer metastasis and discovering therapeutic targets that block cancer metastasis is of great significance for the treatment of prostate cancer. METHODS The circSOBP levels in prostate cancer (PCa) were determined by qRT-PCR. We evaluated the function of circSOBP using a transwell assay and nude mice lung metastasis models. Immunofluorescence assay and electron microscopic assay were applied to determine the phenotypes of prostate cancer cells' migration. We used fluorescence in situ hybridization assay to determine the localization of RNAs. Dual luciferase and rescue assays were applied to verify the interactions between circSOBP, miR-141-3p, MYPT1, and phosphomyosin light chain (p-MLC2). RESULTS We observed that circSOBP level was significantly lower in PCa specimens compared with adjacent noncancerous prostate specimens, and was correlated with the grade group of PCa. Overexpression of circSOBP suppressed PCa migration and invasion in vitro and metastasis in vivo. CircSOBP depletion increased migration and invasion and induced amoeboid migration of PCa cells. Mechanistically, circSOBP bound miR-141-3p and regulated the MYPT1/p-MLC2 axis. Moreover, the depletion of MYPT1 reversed the inhibitory effect of circSOBP on the migration and invasion of PCa cells. Complementary intronic Alu elements induced but were not necessary for the formation of circSOBP. The nuclear export of circSOBP was mediated by URH49. CONCLUSION Our results suggest that circSOBP suppresses amoeboid migration of PCa cells and inhibits migration and invasion through sponging miR-141-3p and regulating the MYPT1/p-MLC2 axis.
Collapse
Affiliation(s)
- Fan Chao
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
- Department of SurgeryShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhenyu Song
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Shiyu Wang
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
- Department of SurgeryShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhe Ma
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Zhiyuan Zhuo
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Ting Meng
- Research Center for Clinical MedicineJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Guoxiong Xu
- Research Center for Clinical MedicineJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Gang Chen
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
- Department of SurgeryShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| |
Collapse
|
9
|
Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive Structures. Int J Mol Sci 2021; 22:ijms22041821. [PMID: 33673054 PMCID: PMC7918886 DOI: 10.3390/ijms22041821] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
There is ample evidence that, instead of a binary switch, epithelial-mesenchymal transition (EMT) in cancer results in a flexible array of phenotypes, each one uniquely suited to a stage in the invasion-metastasis cascade. The phenotypic plasticity of epithelium-derived cancer cells gives them an edge in surviving and thriving in alien environments. This review describes in detail the actin cytoskeleton and E-cadherin-based adherens junction rearrangements that cancer cells need to implement in order to achieve the advantageous epithelial/mesenchymal phenotype and plasticity of migratory phenotypes that can arise from partial EMT.
Collapse
|
10
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Vanderboor CMG, Thibeault PE, Nixon KCJ, Gros R, Kramer J, Ramachandran R. Proteinase-Activated Receptor 4 Activation Triggers Cell Membrane Blebbing through RhoA and β-Arrestin. Mol Pharmacol 2020; 97:365-376. [PMID: 32234808 DOI: 10.1124/mol.119.118232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
Proteinase-activated receptors (PARs) are a four-member family of G-protein-coupled receptors that are activated via proteolysis. PAR4 is a member of this family that is cleaved and activated by serine proteinases such as thrombin, trypsin, and cathepsin-G. PAR4 is expressed in a variety of tissues and cell types, including platelets, vascular smooth muscle cells, and neuronal cells. In studying PAR4 signaling and trafficking, we observed dynamic changes in the cell membrane, with spherical membrane protrusions that resemble plasma membrane blebbing. Since nonapoptotic membrane blebbing is now recognized as an important regulator of cell migration, cancer cell invasion, and vesicular content release, we sought to elucidate the signaling pathway downstream of PAR4 activation that leads to such events. Using a combination of pharmacological inhibition and CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing approaches, we establish that PAR4-dependent membrane blebbing occurs independently of the Gα q/11- and Gα i-signaling pathways and is dependent on signaling via the β-arrestin-1/2 and Ras homolog family member A (RhoA) signaling pathways. Together these studies provide further mechanistic insight into PAR4 regulation of cellular function. SIGNIFICANCE STATEMENT: We find that the thrombin receptor PAR4 triggers cell membrane blebbing in a RhoA-and β-arrestin-dependent manner. In addition to identifying novel cellular responses mediated by PAR4, these data provide further evidence for biased signaling in PAR4 since membrane blebbing was dependent on some, but not all, signaling pathways activated by PAR4.
Collapse
Affiliation(s)
- Christina M G Vanderboor
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Pierre E Thibeault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kevin C J Nixon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jamie Kramer
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
13
|
Gladilin E, Ohse S, Boerries M, Busch H, Xu C, Schneider M, Meister M, Eils R. TGFβ-induced cytoskeletal remodeling mediates elevation of cell stiffness and invasiveness in NSCLC. Sci Rep 2019; 9:7667. [PMID: 31113982 PMCID: PMC6529472 DOI: 10.1038/s41598-019-43409-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Importance of growth factor (GF) signaling in cancer progression is widely acknowledged. Transforming growth factor beta (TGFβ) is known to play a key role in epithelial-to-mesenchymal transition (EMT) and metastatic cell transformation that are characterized by alterations in cell mechanical architecture and behavior towards a more robust and motile single cell phenotype. However, mechanisms mediating cancer type specific enhancement of cell mechanical phenotype in response to TGFβ remain poorly understood. Here, we combine high-throughput mechanical cell phenotyping, microarray analysis and gene-silencing to dissect cytoskeletal mediators of TGFβ-induced changes in mechanical properties of on-small-cell lung carcinoma (NSCLC) cells. Our experimental results show that elevation of rigidity and invasiveness of TGFβ-stimulated NSCLC cells correlates with upregulation of several cytoskeletal and motor proteins including vimentin, a canonical marker of EMT, and less-known unconventional myosins. Selective probing of gene-silenced cells lead to identification of unconventional myosin MYH15 as a novel mediator of elevated cell rigidity and invasiveness in TGFβ-stimulated NSCLC cells. Our experimental results provide insights into TGFβ-induced cytoskeletal remodeling of NSCLC cells and suggest that mediators of elevated cell stiffness and migratory activity such as unconventional cytoskeletal and motor proteins may represent promising pharmaceutical targets for restraining invasive spread of lung cancer.
Collapse
Affiliation(s)
- E Gladilin
- German Cancer Research Center, Div. Bioinformatics and Omics Data Analytics, Mathematikon - Berliner Str. 41, 69120, Heidelberg, Germany. .,University Heidelberg, BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben Corrensstrasse 3, 06466, Seeland, Germany.
| | - S Ohse
- University of Freiburg, Institute of Molecular Medicine and Cell Research (IMMZ), Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - M Boerries
- University of Freiburg, Institute of Molecular Medicine and Cell Research (IMMZ), Stefan-Meier-Str. 17, 79104, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Biometry, Epidemiology and Medical Bioinformatics and Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstrasse 153, 79110, Freiburg, Germany
| | - H Busch
- University of Freiburg, Institute of Molecular Medicine and Cell Research (IMMZ), Stefan-Meier-Str. 17, 79104, Freiburg, Germany.,University of Lübeck, Institute of Experimental Dermatology, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - C Xu
- Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany
| | - M Schneider
- Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - M Meister
- Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany
| | - R Eils
- Center for Digital Health, Berlin Institute of Health, and Charité Universitätsmedizin Berlin, Kapelle-Ufer 2, 10117, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Cruz-Ortega JS, Boucard AA. Actin cytoskeleton remodeling defines a distinct cellular function for adhesion G protein-coupled receptors ADGRL/latrophilins 1, 2 and 3. Biol Open 2019; 8:bio.039826. [PMID: 30926595 PMCID: PMC6503996 DOI: 10.1242/bio.039826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latrophilins represent a subgroup of the adhesion G protein-coupled receptor family, which bind to actin-associated scaffolding proteins. They are expressed in various tissues, suggesting that they might participate in biological processes that are ubiquitous. Here we focus on actin cytoskeleton dynamics to explore the role of latrophilins in mammalian cells. Individual overexpression of each latrophilin isoform comparably increased cell volume while modifying the net profile of F-actin-dependent cell extensions, as evaluated by confocal microscopy analysis. Latrophilin deletion mutants evidenced that direct coupling to the intracellular machinery was a requirement for modulating cell extensions. The association between latrophilins and the actin cytoskeleton was detected by co-immunoprecipitation assays and corroborated with immunocytochemistry analysis. Consistent with the destabilization of F-actin structures, latrophilin isoforms constitutively induced a prominent increase in the activity of actin-depolymerizing factor, cofilin. Intercellular adhesion events stabilized by heterophilic Teneurin-4 trans-interactions disrupted latrophilin colocalization with F-actin and led to an isoform-specific rescue of cell extensions. Thus, we find that the actin cytoskeleton machinery constitutes an important component of constitutive as well as ligand-induced signaling for latrophilins. This article has an associated First Person interview with the first author of the paper. Summary: Synapses involve the adhesion function of latrophilins within existing neuronal extensions. We show that latrophilins engage the actin cytoskeleton, both constitutively and upon ligand stimulation, to dictate cell extension patterns.
Collapse
Affiliation(s)
- Judith S Cruz-Ortega
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City 07360, México
| | - Antony A Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City 07360, México
| |
Collapse
|
15
|
ANXA2 Tyr23 and FLNA Ser2152 phosphorylation associate with poor prognosis in hepatic carcinoma revealed by quantitative phosphoproteomics analysis. J Proteomics 2019; 200:111-122. [PMID: 30951906 DOI: 10.1016/j.jprot.2019.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Hepatoma is one of the most common malignant tumors, and most patients have very poor prognosis. Early prediction and intervention of the hepatoma recurrence/metastasis are the most effective way to improve the patients' clinical outcomes. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) based quantitative phospho-proteomics approach to identify biomarkers associated with hepatoma recurrence/metastasis in hepatoma cell lines with increasing metastasis ability. In total, 75 phosphorylated peptides corresponding to 60 phosphoproteins were significantly dysregulated and the participated biological processes of these phosphoproteins were tightly associated with tumor metastasis. Further signaling pathway analysis revealed that key signaling pathways which play crucial roles in cancer metastasis have been significantly over activated in the highly metastatic cells. Furthermore, the phosphorylation of FLNASer2152 and ANXA2Tyr23 were validated to be significantly up regulated in the high-metastatic cells comparing with the low-metastatic cells. By further investigation the clinical significance of the phosphorylation of FLNASer2152 and ANXA2Tyr23 in large-scale clinical samples, revealed that the over phosphorylation of FLNASer2152 and ANXA2Tyr23 were associated with poor prognosis and might be potential prognostic biomarkers for the primary hepatoma. When FLNASer2152 combined with ANXA2Tyr23, it had a better prognostic value for both OS and TTR.
Collapse
|
16
|
Chikina AS, Svitkina TM, Alexandrova AY. Time-resolved ultrastructure of the cortical actin cytoskeleton in dynamic membrane blebs. J Cell Biol 2018; 218:445-454. [PMID: 30541746 PMCID: PMC6363452 DOI: 10.1083/jcb.201806075] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/14/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Membrane blebbing accompanies various cellular processes, including cytokinesis, apoptosis, and cell migration, especially invasive migration of cancer cells. Blebs are extruded by intracellular pressure and are initially cytoskeleton-free, but they subsequently assemble the cytoskeleton, which can drive bleb retraction. Despite increasing appreciation of physiological significance of blebbing, the molecular and, especially, structural mechanisms controlling bleb dynamics are incompletely understood. We induced membrane blebbing in human HT1080 fibrosarcoma cells by inhibiting the Arp2/3 complex. Using correlative platinum replica electron microscopy, we characterize cytoskeletal architecture of the actin cortex in cells during initiation of blebbing and in blebs at different stages of their expansion-retraction cycle. The transition to blebbing in these conditions occurred through an intermediate filopodial stage, whereas bleb initiation was biased toward filopodial bases, where the cytoskeleton exhibited local weaknesses. Different stages of the bleb life cycle (expansion, pausing, and retraction) are characterized by specific features of cytoskeleton organization that provide implications about mechanisms of cytoskeleton assembly and bleb retraction.
Collapse
Affiliation(s)
- Aleksandra S Chikina
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Department of Biology, University of Pennsylvania, Philadelphia, PA
| | | | - Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| |
Collapse
|
17
|
Greening DW, Simpson RJ. Understanding extracellular vesicle diversity – current status. Expert Rev Proteomics 2018; 15:887-910. [DOI: 10.1080/14789450.2018.1537788] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Australia
| | - Richard J. Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Australia
| |
Collapse
|
18
|
Gong X, Didan Y, Lock JG, Strömblad S. KIF13A-regulated RhoB plasma membrane localization governs membrane blebbing and blebby amoeboid cell migration. EMBO J 2018; 37:embj.201898994. [PMID: 30049714 PMCID: PMC6120662 DOI: 10.15252/embj.201898994] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
Membrane blebbing‐dependent (blebby) amoeboid migration can be employed by lymphoid and cancer cells to invade 3D‐environments. Here, we reveal a mechanism by which the small GTPase RhoB controls membrane blebbing and blebby amoeboid migration. Interestingly, while all three Rho isoforms (RhoA, RhoB and RhoC) regulated amoeboid migration, each controlled motility in a distinct manner. In particular, RhoB depletion blocked membrane blebbing in ALL (acute lymphoblastic leukaemia), melanoma and lung cancer cells as well as ALL cell amoeboid migration in 3D‐collagen, while RhoB overexpression enhanced blebbing and 3D‐collagen migration in a manner dependent on its plasma membrane localization and down‐stream effectors ROCK and Myosin II. RhoB localization was controlled by endosomal trafficking, being internalized via Rab5 vesicles and then trafficked either to late endosomes/lysosomes or to Rab11‐positive recycling endosomes, as regulated by KIF13A. Importantly, KIF13A depletion not only inhibited RhoB plasma membrane localization, but also cell membrane blebbing and 3D‐migration of ALL cells. In conclusion, KIF13A‐mediated endosomal trafficking modulates RhoB plasma membrane localization to control membrane blebbing and blebby amoeboid migration.
Collapse
Affiliation(s)
- Xiaowei Gong
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yuliia Didan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - John G Lock
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
19
|
Clathrin-Independent Endocytosis Suppresses Cancer Cell Blebbing and Invasion. Cell Rep 2017; 20:1893-1905. [DOI: 10.1016/j.celrep.2017.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023] Open
|
20
|
Weng NJH, Talbot P. The P2X7 receptor is an upstream regulator of dynamic blebbing and a pluripotency marker in human embryonic stem cells. Stem Cell Res 2017; 23:39-49. [PMID: 28672157 DOI: 10.1016/j.scr.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
New methods are needed to reduce dynamic blebbing which inhibits cell attachment and survival during passaging of pluripotent stem cells. We tested the hypothesis that activation of the P2X7 receptor by extracellular ATP during passaging initiates dynamic blebbing. The P2X7 receptor was present in human embryonic stem cells (hESC), but not in differentiating cells. Extracellular ATP concentrations were 14× higher in medium during passaging. Addition of ATP to culture medium prolonged dynamic blebbing and inhibited attachment. Inhibition of P2X7 by specific drugs or by siRNA significantly reduced dynamic blebbing and improved cell attachment. When cells were incubated in calcium chelators (EGTA or BAPTA), blebbing decreased and attachment improved. Calcium influx was observed using Fura-4 when ATP was added to culture medium and inhibited in the presence of the P2X7 inhibitor. Over-expressing activated Rac in hESC reduced blebbing and promoted cell attachment, while a Rac inhibitor prolonged blebbing and reduced attachment. These data identify a pathway involving P2X7 that initiates and prolongs dynamic blebbing during hESC passaging. This pathway provides new insight into factors that increase dynamic blebbing and identifies new targets, such as P2X7, that can be used to improve the culture of cells with therapeutic potential.
Collapse
Affiliation(s)
- Nikki Jo-Hao Weng
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA; Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Prue Talbot
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA; Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
21
|
Simiczyjew A, Mazur AJ, Dratkiewicz E, Nowak D. Involvement of β- and γ-actin isoforms in actin cytoskeleton organization and migration abilities of bleb-forming human colon cancer cells. PLoS One 2017; 12:e0173709. [PMID: 28333953 PMCID: PMC5363831 DOI: 10.1371/journal.pone.0173709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
Amoeboid movement is characteristic for rounded cells, which do not form strong adhesion contacts with the ECM and use blebs as migratory protrusions. It is well known that actin is the main component of mature forms of these structures, but the exact role fulfilled by non-muscle actin isoforms β- and γ- in bleb formation and migration of these cells is still not fully understood. The aim of this study was to establish the role of β- and γ-actin in migration of bleb-forming cancer cells using isoform-specific antibodies and expression of fluorescently tagged actin isoforms. We observed, after staining with monoclonal antibodies, that both actins are present in these cells in the form of a cortical ring as well as in the area of blebs. Additionally, using simultaneous expression of differentially tagged β- and γ-actin in cells, we observed that the actin isoforms are present together in a single bleb. They were involved during bleb expansion as well as retraction. Also present in the area of these protrusions formed by both isoforms were the bleb markers–ezrin and myosin II. The overexpression of β- or γ-actin led to actin cytoskeletal rearrangement followed by the growth of migration and invasion abilities of examined human colon cancer cells, LS174T line. In summary these data prove that both actin isoforms have an impact on motility of bleb-forming cancer cells. Moreover, we conclude that monoclonal antibodies directed against actin isoforms in combination with the tagged actins are good tools to study their role in important biological processes.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
- * E-mail:
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| |
Collapse
|
22
|
Gao Y, Wang Z, Hao Q, Li W, Xu Y, Zhang J, Zhang W, Wang S, Liu S, Li M, Xue X, Zhang W, Zhang C, Zhang Y. Loss of ERα induces amoeboid-like migration of breast cancer cells by downregulating vinculin. Nat Commun 2017; 8:14483. [PMID: 28266545 PMCID: PMC5344302 DOI: 10.1038/ncomms14483] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
Oestrogen receptor alpha (ERα) is a well-known target of endocrine therapy for ERα-positive breast cancer. ERα-negative cells, which are enriched during endocrine therapy, are associated with metastatic relapse. Here we determine that loss of ERα in the invasive front and in lymph node metastasis in human breast cancer is significantly correlated with lymphatic metastasis. Using in vivo and in vitro experiments, we demonstrate that ERα inhibits breast cancer metastasis. Furthermore, we find that ERα is a novel regulator of vinculin expression in breast cancer. Notably, ERα suppresses the amoeboid-like movement of breast cancer cells by upregulating vinculin in 3D matrix, which in turn promotes cell–cell and cell–matrix adhesion and inhibits the formation of amoeboid-like protrusions. A positive association between ERα and vinculin expression is found in human breast cancer tissues. The results show that ERα inhibits breast cancer metastasis and suggest that ERα suppresses cell amoeboid-like movement by upregulating vinculin. Estrogen receptor alpha (ERα)-negative cells, which are enriched during endocrine therapy, are associated with metastatic relapse of breast cancer. Here the authors show that ERα inhibits breast cancer metastasis and suggest that ERα suppresses the amoeboid-like migration of breast cancer cells by upregulating vinculin.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhaowei Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yujin Xu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Juliang Zhang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuo Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| |
Collapse
|
23
|
Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2016; 11:5-27. [PMID: 28085224 PMCID: PMC5423224 DOI: 10.1002/1878-0261.12019] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion underlie metastatic dissemination, one of the major problems in cancer. Tumour cells exhibit a striking variety of invasion strategies. Importantly, cancer cells can switch between invasion modes in order to cope with challenging environments. This ability to switch migratory modes or plasticity highlights the challenges behind antimetastasis therapy design. In this Review, we present current knowledge on different tumour invasion strategies, the determinants controlling plasticity and arising therapeutic opportunities. We propose that targeting master regulators controlling plasticity is needed to hinder tumour dissemination and metastasis.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| |
Collapse
|
24
|
Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med 2016; 22:1314-1320. [PMID: 27748748 DOI: 10.1038/nm.4204] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
Pediatric glioblastoma is one of the most common and most deadly brain tumors in childhood. Using an integrative genetic analysis of 53 pediatric glioblastomas and five in vitro model systems, we identified previously unidentified gene fusions involving the MET oncogene in ∼10% of cases. These MET fusions activated mitogen-activated protein kinase (MAPK) signaling and, in cooperation with lesions compromising cell cycle regulation, induced aggressive glial tumors in vivo. MET inhibitors suppressed MET tumor growth in xenograft models. Finally, we treated a pediatric patient bearing a MET-fusion-expressing glioblastoma with the targeted inhibitor crizotinib. This therapy led to substantial tumor shrinkage and associated relief of symptoms, but new treatment-resistant lesions appeared, indicating that combination therapies are likely necessary to achieve a durable clinical response.
Collapse
|
25
|
Odenthal J, Takes R, Friedl P. Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis 2016; 37:1117-1128. [PMID: 27664164 DOI: 10.1093/carcin/bgw098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis.
Collapse
Affiliation(s)
- Julia Odenthal
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Robert Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands, .,Department of Genitourinary Medical Oncology - Research, Houston, TX 77030, USA and.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
26
|
Bazarsad S, Zhang X, Kim KY, Illeperuma R, Jayasinghe RD, Tilakaratne WM, Kim J. Identification of a combined biomarker for malignant transformation in oral submucous fibrosis. J Oral Pathol Med 2016; 46:431-438. [PMID: 27497264 PMCID: PMC5516200 DOI: 10.1111/jop.12483] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 01/18/2023]
Abstract
Background Oral submucous fibrosis (OSF) is a chronic progressive disease of the oral cavity that is considered a common potentially malignant disorder in South Asia. Areca nut chewing is the main etiological factor, but its carcinogenic mechanism has yet to be proven. The purpose of this study was to identify the useful biomarkers in predicting high‐risk patients with OSF. Methods Thirty‐six cases of OSF and six cases of normal oral mucosa (NOM) were used for this study. Immunohistochemical staining was performed for Ki67, cyclin D1, p16, p53, β‐catenin, c‐Jun, c‐Met, and insulin‐like growth factor II mRNA‐binding protein 3 (IMP3). The expression patterns of NOM served as guidelines for the scoring system. Results The expression of Ki67, cyclin D1, c‐Met, IMP3, and β‐catenin showed a significant difference between OSF and NOM samples. The combined biomarkers of Ki67 and p16 showed significantly different expression between the transformation and non‐transformation groups. With discriminant analysis, we proposed a noble formula and cutoff value for predicting high‐risk patients with OSF. Conclusion The notable biomarkers in our present study were Ki67 and p16 showing significantly different expression levels between the transformation and non‐transformation groups. With the identification of high‐risk patients with OSF, we can expect to develop more intensive treatment modalities, leading to the reduction in cancer transformation rate from OSF.
Collapse
Affiliation(s)
- Shadavlonjid Bazarsad
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea.,Dental School, Mongolian National University of Medical Science, Ulaanbaatar, Mongolia
| | - Xianglan Zhang
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Pathology, Yanbian University Hospital, Yanji, China
| | - Ki-Yeol Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea.,Brain Korea 21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Rasika Illeperuma
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Ruwan D Jayasinghe
- Department of Oral Medicine & Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Wanninayake M Tilakaratne
- Department of Oral Pathology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Jin Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
27
|
Welf ES, Driscoll MK, Dean KM, Schäfer C, Chu J, Davidson MW, Lin MZ, Danuser G, Fiolka R. Quantitative Multiscale Cell Imaging in Controlled 3D Microenvironments. Dev Cell 2016; 36:462-75. [PMID: 26906741 DOI: 10.1016/j.devcel.2016.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/11/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
Abstract
The microenvironment determines cell behavior, but the underlying molecular mechanisms are poorly understood because quantitative studies of cell signaling and behavior have been challenging due to insufficient spatial and/or temporal resolution and limitations on microenvironmental control. Here we introduce microenvironmental selective plane illumination microscopy (meSPIM) for imaging and quantification of intracellular signaling and submicrometer cellular structures as well as large-scale cell morphological and environmental features. We demonstrate the utility of this approach by showing that the mechanical properties of the microenvironment regulate the transition of melanoma cells from actin-driven protrusion to blebbing, and we present tools to quantify how cells manipulate individual collagen fibers. We leverage the nearly isotropic resolution of meSPIM to quantify the local concentration of actin and phosphatidylinositol 3-kinase signaling on the surfaces of cells deep within 3D collagen matrices and track the many small membrane protrusions that appear in these more physiologically relevant environments.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meghan K Driscoll
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claudia Schäfer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Chu
- Departments of Bioengineering and Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Michael W Davidson
- National High Magnetic Field Laboratory, Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | - Michael Z Lin
- Departments of Bioengineering and Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Reto Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Lee WH, Choong LY, Mon NN, Lu S, Lin Q, Pang B, Yan B, Krishna VSR, Singh H, Tan TZ, Thiery JP, Lim CT, Tan PBO, Johansson M, Harteneck C, Lim YP. TRPV4 Regulates Breast Cancer Cell Extravasation, Stiffness and Actin Cortex. Sci Rep 2016; 6:27903. [PMID: 27291497 PMCID: PMC4904279 DOI: 10.1038/srep27903] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
Metastasis is a significant health issue. The standard mode of care is combination of chemotherapy and targeted therapeutics but the 5-year survival rate remains low. New/better drug targets that can improve outcomes of patients with metastatic disease are needed. Metastasis is a complex process, with each step conferred by a set of genetic aberrations. Mapping the molecular changes associated with metastasis improves our understanding of the etiology of this disease and contributes to the pipeline of targeted therapeutics. Here, phosphoproteomics of a xenograft-derived in vitro model comprising 4 isogenic cell lines with increasing metastatic potential implicated Transient Receptor Potential Vanilloid subtype 4 in breast cancer metastasis. TRPV4 mRNA levels in breast, gastric and ovarian cancers correlated with poor clinical outcomes, suggesting a wide role of TRPV4 in human epithelial cancers. TRPV4 was shown to be required for breast cancer cell invasion and transendothelial migration but not growth/proliferation. Knockdown of Trpv4 significantly reduced the number of metastatic nodules in mouse xenografts leaving the size unaffected. Overexpression of TRPV4 promoted breast cancer cell softness, blebbing, and actin reorganization. The findings provide new insights into the role of TRPV4 in cancer extravasation putatively by reducing cell rigidity through controlling the cytoskeleton at the cell cortex.
Collapse
Affiliation(s)
- Wen Hsin Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lee Yee Choong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naing Naing Mon
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - SsuYi Lu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Brendan Pang
- Cancer Science Institute of Singapore, Singapore
| | - Benedict Yan
- National University Hospital, Department of Laboratory Medicine, Singapore
| | | | - Himanshu Singh
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore
| | - Jean Paul Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | | | - Christian Harteneck
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Yoon Pin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| |
Collapse
|
29
|
Khajah MA, Luqmani YA. Involvement of Membrane Blebbing in Immunological Disorders and Cancer. Med Princ Pract 2016; 25 Suppl 2:18-27. [PMID: 26488882 PMCID: PMC5588526 DOI: 10.1159/000441848] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022] Open
Abstract
Cellular blebbing is a unique form of dynamic protrusion emanating from the plasma membrane which can be either apoptotic or nonapoptotic in nature. Blebs have been observed in a wide variety of cell types and in response to multiple mechanical and chemical stimuli. They have been linked to various physiological and pathological processes including tumor motility and invasion, as well as to various immunological disorders. They can form and retract extremely rapidly in seconds or minutes, or slowly over hours or days. This review focuses on recent evidence regarding the role of blebbing in cell locomotion with particular emphasis on its role in tumor metastasis, indicating the role of specific causative molecules. The phenomenon of blebbing has been observed in endocrine-resistant breast cancer cells in response to brief exposure to extracellular alkaline pH, which leads to enhanced invasive capacity. Genetic or pharmacological targeting of cellular blebs could serve as a potential therapeutic option to control tumor metastasis.
Collapse
Affiliation(s)
| | - Yunus A. Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
- *Yunus A. Luqmani, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
30
|
Annexin A2 binds to endosomes and negatively regulates TLR4-triggered inflammatory responses via the TRAM-TRIF pathway. Sci Rep 2015; 5:15859. [PMID: 26527544 PMCID: PMC4630631 DOI: 10.1038/srep15859] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 02/05/2023] Open
Abstract
Lipopolysaccharide (LPS) derived from Gram-negative bacteria activates plasma membrane signaling via Toll-like receptor 4 (TLR4) on host cells and triggers innate inflammatory responses, but the underlying mechanisms remain to be fully elucidated. Here we reveal a role for annexin A2 (AnxA2) in host defense against infection as anxa2−/− mice were highly susceptible to Gram-negative bacteria-induced sepsis with enhanced inflammatory responses. Computing analysis and biochemical experiments identified that constitutive AnxA2 expression facilitated TLR4 internalization and its subsequent translocation into early endosomal membranes. It activated the TRAM-dependent endosomal signaling, leading to the release of anti-inflammatory cytokines. Importantly, AnxA2 deficiency prolonged TLR4-mediated signaling from the plasma membrane, which was attributable to pro-inflammatory cytokine production (IL-6, TNFα and IL-1β). Thus, AnxA2 directly exerted negative regulation of inflammatory responses through TLR4-initiated TRAM-TRIF pathway occurring on endosomes. This study reveals AnxA2 as a critical regulator in infection-initiated inflammation, which protects the host from excessive inflammatory damage.
Collapse
|
31
|
Morley S, Hager MH, Pollan SG, Knudsen B, Di Vizio D, Freeman MR. Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer. Asian J Androl 2015; 16:530-5. [PMID: 24589458 PMCID: PMC4104075 DOI: 10.4103/1008-682x.122877] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | | | | | | | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital; Department of Surgery, Harvard Medical School, Boston, MA and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Nakahara S, Tsutsumi K, Zuinen T, Ohta Y. FilGAP, a Rho–ROCK-regulated GAP for Rac, controls adherens junctions in MDCK cells. J Cell Sci 2015; 128:2047-56. [DOI: 10.1242/jcs.160192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 04/14/2015] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
Rho family small GTPases are essential for the formation of adherens junctions in epithelial cells. Here, we found that FilGAP (also known as ARHGAP24), a Rac-specific Rho GTPase-activating protein, promoted the formation of adherens junctions in Madin–Darby canine kidney (MDCK) cells. Knockdown of FilGAP by siRNA stimulated the disassembly and migration of MDCK cells induced by hepatocyte growth factor (HGF). By contrast, forced expression of FilGAP induced accumulation of E-cadherin at adherens junctions. Endogenous FilGAP colocalized with E-cadherin at adherens junctions, and depletion of FilGAP reduced the amount of E-cadherin expressed at the surface. The Rac GAP domain of FilGAP was necessary for the suppression of cell scattering induced by HGF. In agreement with this, siRNA-mediated knockdown of both Rac1 and FilGAP suppressed cell scattering induced by HGF. Forced expression of Rho kinase (ROCK, of which there are two isoforms ROCK1 and ROCK2) induced the accumulation of E-cadherin at the adherens junction, and depletion of FilGAP prevented the accumulation of E-cadherin. Moreover, wild-type FilGAP but not a non-phosphorylatable FilGAP mutant rescued the accumulation of E-cadherin at adherens junctions. These results suggest that FilGAP might regulate cell–cell adhesion through inactivation of Rac downstream of Rho–ROCK-signaling in MDCK cells.
Collapse
Affiliation(s)
- Shinichiro Nakahara
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Takuya Zuinen
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| |
Collapse
|
33
|
Huang B, Lu M, Jolly MK, Tsarfaty I, Onuchic J, Ben-Jacob E. The three-way switch operation of Rac1/RhoA GTPase-based circuit controlling amoeboid-hybrid-mesenchymal transition. Sci Rep 2014; 4:6449. [PMID: 25245029 PMCID: PMC4171704 DOI: 10.1038/srep06449] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/01/2014] [Indexed: 10/25/2022] Open
Abstract
Metastatic carcinoma cells exhibit at least two different phenotypes of motility and invasion - amoeboid and mesenchymal. This plasticity poses a major clinical challenge for treating metastasis, while its underlying mechanisms remain enigmatic. Transitions between these phenotypes are mediated by the Rac1/RhoA circuit that responds to external signals such as HGF/SF via c-MET pathway. Using detailed modeling of GTPase-based regulation to study the Rac1/RhoA circuit's dynamics, we found that it can operate as a three-way switch. We propose to associate the circuit's three possible states to the amoeboid, mesenchymal and amoeboid/mesenchymal hybrid phenotype. In particular, we investigated the range of existence of, and the transition between, the three states (phenotypes) in response to Grb2 and Gab1 - two downstream adaptors of c-MET. The results help to explain the regulation of metastatic cells by c-MET pathway and hence can contribute to the assessment of possible clinical interventions.
Collapse
Affiliation(s)
- Bin Huang
- 1] Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA [2] Department of Chemistry, Rice University, Houston, TX 77005-1827, USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA
| | - Mohit Kumar Jolly
- 1] Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA [2] Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine
| | - José Onuchic
- 1] Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA [2] Department of Chemistry, Rice University, Houston, TX 77005-1827, USA [3] Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA [4] Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| | - Eshel Ben-Jacob
- 1] Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA [2] Department of Biosciences, Rice University, Houston, TX 77005-1827, USA [3] School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
34
|
Abstract
The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands
| | - Peter Friedl
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers; Department of Genitourinary Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Cancer Genomics Centre Netherlands; Utrecht, the Netherlands
| |
Collapse
|
35
|
Mai A, Muharram G, Barrow-McGee R, Baghirov H, Rantala J, Kermorgant S, Ivaska J. Distinct c-Met activation mechanisms induce cell rounding or invasion through pathways involving integrins, RhoA and HIP1. J Cell Sci 2014; 127:1938-52. [DOI: 10.1242/jcs.140657] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Many carcinomas have acquired oncogenic mechanisms for activating c-Met, including c-Met overexpression and excessive autocrine or paracrine stimulation with hepatocyte growth factor (HGF). However, the biological outcome of c-Met activation through these distinct modes remains ambiguous. Here, we report that HGF-mediated c-Met stimulation triggers a mesenchymal-type collective cell invasion. By contrast, the overexpression of c-Met promotes cell rounding. Moreover, in a high-throughput siRNA screen that was performed using a library of siRNAs against putative regulators of integrin activity, we identified RhoA and the clathrin-adapter protein HIP1 as crucial c-Met effectors in these morphological changes. Transient RhoA activation was necessary for the HGF-induced invasion, whereas sustained RhoA activity regulated c-Met-induced cell rounding. In addition, c-Met-induced cell rounding correlated with the phosphorylation of filamin A and the downregulation of active cell-surface integrins. By contrast, a HIP1-mediated increase in β1-integrin turnover was required for the invasion triggered by HGF. Taken together, our results indicate that c-Met induces distinct cell morphology alterations depending on the stimulus that activates c-Met.
Collapse
Affiliation(s)
- Anja Mai
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku 20520, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, Turku 20521, Finland
| | - Ghaffar Muharram
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku 20520, Finland
| | - Rachel Barrow-McGee
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Habib Baghirov
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku 20520, Finland
| | - Juha Rantala
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku 20520, Finland
| | - Stéphanie Kermorgant
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku 20520, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, Turku 20521, Finland
| |
Collapse
|
36
|
Ninio-Many L, Grossman H, Levi M, Zilber S, Tsarfaty I, Shomron N, Tuvar A, Chuderland D, Stemmer SM, Ben-Aharon I, Shalgi R. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience 2014; 1:250-261. [PMID: 25594017 PMCID: PMC4278297 DOI: 10.18632/oncoscience.30] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/28/2014] [Indexed: 12/21/2022] Open
Abstract
Fyn kinase is implicated in prostate cancer. We illustrate the role of miR-125a-3p in cellular pathways accounted for motility and migration of prostate cancer cells, probably through its regulation on Fyn expression and Fyn-downstream proteins. Prostate cancer PC3 cells were transiently transfected with empty miR-Vec (control) or with miR-125a-3p. Overexpression of miR-125a-3p reduced migration of PC3 cells and increased apoptosis. Live cell confocal imaging indicated that overexpression of miR-125a-3p reduced the cells' track speed and length and impaired phenotype. Fyn, FAK and paxillin, displayed reduced activity following miR-125a-3p overexpression. Accordingly, actin rearrangement and cells' protrusion formation were impaired. An inverse correlation between miR-125a-3p and Gleason score was observed in human prostate cancer tissues. Our study demonstrated that miR-125a-3p may regulate migration of prostate cancer cells.
Collapse
Affiliation(s)
- Lihi Ninio-Many
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel.,This work was performed in partial fulfillment of the requirements for a Ph.D. degree of Lihi Ninio-Many, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Hadas Grossman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Mattan Levi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Sofia Zilber
- Department of Pathology, Rabin Medical Center, Beilinson Campus, Petah-Tiqva, Israel
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Anna Tuvar
- Department of Pathology, Rabin Medical Center, Beilinson Campus, Petah-Tiqva, Israel
| | - Dana Chuderland
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Salomon M Stemmer
- Institute of Oncology, Davidoff Center, Rabin Medical Center, Beilinson Campus, Petah-Tiqva, and Sackler School of Medicine, Tel Aviv University, Israel
| | - Irit Ben-Aharon
- Institute of Oncology, Davidoff Center, Rabin Medical Center, Beilinson Campus, Petah-Tiqva, and Sackler School of Medicine, Tel Aviv University, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
37
|
Takahara Y, Maeda M, Hasegawa H, Ito S, Hyodo T, Asano E, Takahashi M, Hamaguchi M, Senga T. Silencing of TBC1D15 promotes RhoA activation and membrane blebbing. Mol Cell Biochem 2013; 389:9-16. [PMID: 24337944 DOI: 10.1007/s11010-013-1921-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
Membrane blebs are round-shaped dynamic membrane protrusions that occur under many physiological conditions. Membrane bleb production is primarily controlled by actin cytoskeletal rearrangements mediated by RhoA. Tre2-Bub2-Cdc16 (TBC) domain-containing proteins are negative regulators of the Rab family of small GTPases and contain a highly conserved TBC domain. In this report, we show that the expression of TBC1D15 is associated with the activity of RhoA and the production of membrane blebs. Depletion of TBC1D15 induced activation of RhoA and membrane blebbing, which was abolished by the addition of an inhibitor for RhoA signaling. In addition, we show that TBC1D15 is required for the accumulation of RhoA at the equatorial cortex for the ingression of the cytokinetic furrow during cytokinesis. Our results demonstrate a novel role for TBC1D15 in the regulation of RhoA during membrane blebbing and cytokinesis.
Collapse
Affiliation(s)
- Yuko Takahara
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|