1
|
Xu H, Chen F, Liu Z, Gao R, He J, Li F, Li N, Mu X, Liu T, Wang Y, Chen X. B(a)P induces ovarian granulosa cell apoptosis via TRAF2-NFκB-Caspase1 axis during early pregnancy. ENVIRONMENTAL RESEARCH 2024; 252:118865. [PMID: 38583661 DOI: 10.1016/j.envres.2024.118865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.
Collapse
Affiliation(s)
- Hanting Xu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangyuan Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhihao Liu
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Nanyan Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400039, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
2
|
Xu H, Gan C, Xiang Z, Xiang T, Li J, Huang X, Qin X, Liu T, Sheng J, Wang X. Targeting the TNF-α-TNFR interaction with EGCG to block NF-κB signaling in human synovial fibroblasts. Biomed Pharmacother 2023; 161:114575. [PMID: 36963358 DOI: 10.1016/j.biopha.2023.114575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
The tumor necrosis factor alpha (TNF-α)-TNF-α receptor (TNFR) interaction plays a central role in the pathogenesis of various autoimmune diseases, particularly rheumatoid arthritis, and is therefore considered a key target for drug discovery. However, natural compounds that can specifically block the TNF-α-TNFR interaction are rarely reported. (-)-Epigallocatechin-3-gallate (EGCG) is the most active, abundant, and thoroughly investigated polyphenolic compound in green tea. However, the molecular mechanism by which EGCG ameliorates autoimmune arthritis remains to be elucidated. In the present study, we found that EGCG can directly bind to TNF-α, TNFR1, and TNFR2 with similar μM affinity and disrupt the interactions between TNF-α and TNFR1 and TNFR2, which inhibits TNF-α-induced L929 cell death, blocks TNF-α-induced NF-κB activation in 293-TNF-α response cell line, and eventually leads to inhibition of TNF-α-induced NF-κB signaling pathway in HFLS and MH7A cells. Thus, regular consumption of EGCG in green tea may represent a potential therapeutic agent for the treatment of TNF-α-associated diseases.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ting Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xueqin Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiangdong Qin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
3
|
Zhang YY, Peng J, Luo XJ. Post-translational modification of MALT1 and its role in B cell- and T cell-related diseases. Biochem Pharmacol 2022; 198:114977. [PMID: 35218741 DOI: 10.1016/j.bcp.2022.114977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a multifunctional protein. MALT1 functions as an adaptor protein to assemble and recruit proteins such as B-cell lymphoma 10 (BCL10) and caspase-recruitment domain (CARD)-containing coiled-coil protein 11 (CARD11). Conversely it also acts as a paracaspase to cleave specified substrates. Because of its involvement in immunity, inflammation and cancer through its dual functions of scaffolding and catalytic activity, MALT1 is becoming a promising therapeutic target in B cell- and T cell-related diseases. There is growing evidence that the function of MALT1 is subtly modulated via post-translational modifications. This review summarized recent progress in relevant studies regarding the physiological and pathophysiological functions of MALT1, post-translational modifications of MALT1 and its role in B cell- and T cell- related diseases. In addition, the current available MALT1 inhibitors were also discussed.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Andrographolide attenuates synovial inflammation of osteoarthritis by interacting with tumor necrosis factor receptor 2 trafficking in a rat model. J Orthop Translat 2021; 29:89-99. [PMID: 34094861 PMCID: PMC8144533 DOI: 10.1016/j.jot.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023] Open
Abstract
Background Synovial inflammation plays a major role in the pathogenesis of osteoarthritis (OA). This study investigated the effect of andrographolide (Andro) on synovial inflammation mediated by tumor necrosis factor-alpha receptor 2 (TNFR2) trafficking and its utility in attenuating OA progression. Methods Knee joints were harvested from rats subjected to radial transection of the medial collateral ligament (MCLT) and medial meniscus (MMT) to examine the effect of Andro on synovial inflammation and OA progression. Quantitative real-time polymerase chain reaction was used to evaluate the expression of inflammatory factors in primary fibroblast-like synoviocytes (FLSs) after Andro treatment in vitro. The mechanism underlying Andro-mediated regulation of TNFR2 distribution and nuclear factor-κB (NF-κB) expression was verified using endosome maturation inhibitor hydroxychloroquine (HCQ) through flow cytometry, immunofluorescence, and western blot analysis. Results Andro treatment was found to reduce synovial inflammation and OA progression in vivo. Furthermore, a decrease in pain hypersensitivity and dorsal horn neuron activation was observed after treatment. Andro also downregulated the expression of inflammatory mediators and TNFR2 in FLSs. TNFR2 is crucial for the activation of the NF-κB signaling pathway, and Andro-induced degradation of TNFR2 was associated with lysosomal function, which in turn, reduced the downstream phosphorylation of p65 in the NF-κB signaling pathway. Conclusions Andro could suppress synovial inflammation via regulation of TNFR2 trafficking and degradation. This also suggests it could be a potential treatment for the prevention of synovial inflammation and OA progression. The translational potential of this article This study provides strong evidence that Andro reduces NF-κB activation and inflammatory responses in OA FLSs via regulation of TNFR2 trafficking. The inhibition of TNFR2 and Andro could be a novel therapeutic approach for OA and pain management.
Collapse
|
5
|
Liang X, Cao Y, Li C, Yu H, Yang C, Liu H. MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Med Res Rev 2021; 41:2388-2422. [PMID: 33763890 DOI: 10.1002/med.21799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a key adaptor protein that regulates the NF-κB pathway, in which MALT1 functions as a scaffold protein and protease to trigger downstream signals. The abnormal expression of MALT1 is closely associated with lymphomagenesis and other diseases, including solid tumors and autoimmune diseases. MALT1 is the only protease in the underlying pathogenesis of these diseases, and its proteolytic activity can be pharmacologically regulated. Therefore, MALT1 is a potential and promising target for anti-lymphoma and other MALT1-related disease treatments. Currently, the development of MALT1 inhibitors is still in its early stages. This review presents an overview of MALT1, particularly its X-ray structures and biological functions, and elaborates on the pathogenesis of diseases associated with its dysregulation. We then summarize previously reported MALT1 inhibitors, focusing on their molecular structure, biological activity, structure-activity relationship, and limitations. Finally, we propose future research directions to accelerate the discovery of novel MALT1 inhibitors with clinical applications. Overall, this review provides a comprehensive and systematic overview of MALT1-related research advances and serves as a theoretical basis for drug discovery and research.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - YiChun Cao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Cheng J, Klei LR, Hubel NE, Zhang M, Schairer R, Maurer LM, Klei HB, Kang H, Concel VJ, Delekta PC, Dang EV, Mintz MA, Baens M, Cyster JG, Parameswaran N, Thome M, Lucas PC, McAllister-Lucas LM. GRK2 suppresses lymphomagenesis by inhibiting the MALT1 proto-oncoprotein. J Clin Invest 2020; 130:1036-1051. [PMID: 31961340 DOI: 10.1172/jci97040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Antigen receptor-dependent (AgR-dependent) stimulation of the NF-κB transcription factor in lymphocytes is a required event during adaptive immune response, but dysregulated activation of this signaling pathway can lead to lymphoma. AgR stimulation promotes assembly of the CARMA1-BCL10-MALT1 complex, wherein MALT1 acts as (a) a scaffold to recruit components of the canonical NF-κB machinery and (b) a protease to cleave and inactivate specific substrates, including negative regulators of NF-κB. In multiple lymphoma subtypes, malignant B cells hijack AgR signaling pathways to promote their own growth and survival, and inhibiting MALT1 reduces the viability and growth of these tumors. As such, MALT1 has emerged as a potential pharmaceutical target. Here, we identified G protein-coupled receptor kinase 2 (GRK2) as a new MALT1-interacting protein. We demonstrated that GRK2 binds the death domain of MALT1 and inhibits MALT1 scaffolding and proteolytic activities. We found that lower GRK2 levels in activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) are associated with reduced survival, and that GRK2 knockdown enhances ABC-DLBCL tumor growth in vitro and in vivo. Together, our findings suggest that GRK2 can function as a tumor suppressor by inhibiting MALT1 and provide a roadmap for developing new strategies to inhibit MALT1-dependent lymphomagenesis.
Collapse
Affiliation(s)
| | | | - Nathaniel E Hubel
- Department of Pediatrics and.,Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Ming Zhang
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Rebekka Schairer
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | | | | | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Phillip C Delekta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Eric V Dang
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Michelle A Mintz
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Mathijs Baens
- Human Genome Laboratory, VIB Center for the Biology of Disease, and.,Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jason G Cyster
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA.,Howard Hughes Medical Institute and.,Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | | | - Margot Thome
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
7
|
He Y, Khan S, Huo Z, Lv D, Zhang X, Liu X, Yuan Y, Hromas R, Xu M, Zheng G, Zhou D. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. J Hematol Oncol 2020; 13:103. [PMID: 32718354 PMCID: PMC7384229 DOI: 10.1186/s13045-020-00924-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that utilize the ubiquitin proteasome system (UPS) to degrade proteins of interest (POI). PROTACs are potentially superior to conventional small molecule inhibitors (SMIs) because of their unique mechanism of action (MOA, i.e., degrading POI in a sub-stoichiometric manner), ability to target "undruggable" and mutant proteins, and improved target selectivity. Therefore, PROTACs have become an emerging technology for the development of novel targeted anticancer therapeutics. In fact, some of these reported PROTACs exhibit unprecedented efficacy and specificity in degrading various oncogenic proteins and have advanced to various stages of preclinical and clinical development for the treatment of cancer and hematologic malignancy. In this review, we systematically summarize the known PROTACs that have the potential to be used to treat various hematologic malignancies and discuss strategies to improve the safety of PROTACs for clinical application. Particularly, we propose to use the latest human pan-tissue single-cell RNA sequencing data to identify hematopoietic cell type-specific/selective E3 ligases to generate tumor-specific/selective PROTACs. These PROTACs have the potential to become safer therapeutics for hematologic malignancies because they can overcome some of the on-target toxicities of SMIs and PROTACs.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Sajid Khan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xingui Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Robert Hromas
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, College of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
The Andes Orthohantavirus NSs Protein Antagonizes the Type I Interferon Response by Inhibiting MAVS Signaling. J Virol 2020; 94:JVI.00454-20. [PMID: 32321811 DOI: 10.1128/jvi.00454-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
The small messenger RNA (SmRNA) of the Andes orthohantavirus (ANDV), a rodent-borne member of the Hantaviridae family of viruses of the Bunyavirales order, encodes a multifunctional nucleocapsid (N) protein and for a nonstructural (NSs) protein of unknown function. We have previously shown the expression of the ANDV-NSs, but only in infected cell cultures. In this study, we extend our early findings by confirming the expression of the ANDV-NSs protein in the lungs of experimentally infected golden Syrian hamsters. Next, we show, using a virus-free system, that the ANDV-NSs protein antagonizes the type I interferon (IFN) induction pathway by suppressing signals downstream of the melanoma differentiation-associated protein 5 (MDA5) and the retinoic acid-inducible gene 1 (RIG-I) and upstream of TBK1. Consistent with this observation, the ANDV-NSs protein antagonized mitochondrial antiviral-signaling protein (MAVS)-induced IFN-β, NF-κB, IFN-regulatory factor 3 (IRF3), and IFN-sensitive response element (ISRE) promoter activity. Results demonstrate that ANDV-NSs binds to MAVS in cells without disrupting the MAVS-TBK-1 interaction. However, in the presence of the ANDV-NSs ubiquitination of MAVS is reduced. In summary, this study provides evidence showing that the ANDV-NSs protein acts as an antagonist of the cellular innate immune system by suppressing MAVS downstream signaling by a yet not fully understand mechanism. Our findings reveal new insights into the molecular regulation of the hosts' innate immune response by the Andes orthohantavirus.IMPORTANCE Andes orthohantavirus (ANDV) is endemic in Argentina and Chile and is the primary etiological agent of hantavirus cardiopulmonary syndrome (HCPS) in South America. ANDV is distinguished from other hantaviruses by its unique ability to spread from person to person. In a previous report, we identified a novel ANDV protein, ANDV-NSs. Until now, ANDV-NSs had no known function. In this new study, we established that ANDV-NSs acts as an antagonist of cellular innate immunity, the first line of defense against invading pathogens, hindering the cellular antiviral response during infection. This study provides novel insights into the mechanisms used by ANDV to establish its infection.
Collapse
|
9
|
IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling. Cells 2020; 9:cells9051118. [PMID: 32365919 PMCID: PMC7290580 DOI: 10.3390/cells9051118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination substrates involved in non-immune signaling pathways. This review aimed to present IAP ubiquitination substrates and the role of IAP-mediated ubiquitination in regulating signaling pathways.
Collapse
|
10
|
Tumor Necrosis Factor (TNF) Receptor Expression Determines Keratinocyte Fate upon Stimulation with TNF-Like Weak Inducer of Apoptosis. Mediators Inflamm 2019; 2019:2945083. [PMID: 31885495 PMCID: PMC6915140 DOI: 10.1155/2019/2945083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/23/2023] Open
Abstract
The interaction between tumor necrosis factor- (TNF-) like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible 14 (Fn14) regulates the fate of keratinocytes, depending on the relative expression of TNF receptor (TNFR) 1 or TNFR2. However, the precise mechanism underlying this TWEAK-mediated regulation remains unclear. The aim of this study was to provide comprehensive insight into the roles of Fn14, TNFR1/2, and other relevant molecules in the fate of keratinocytes. Further, we sought to elucidate the structural basis for the interaction of TWEAK and Fn14 in regulating cellular outcomes. Normal keratinocytes (mainly expressing TNFR1) and TNFR2-overexpressing keratinocytes were stimulated with TWEAK. Through immunoprecipitation and Western blotting of keratinocyte lysates, we elucidated the associations between Fn14, TNFR-associated factor 2 (TRAF2), cellular inhibitor of apoptosis protein 1 (cIAP1), and TNFR1/2 molecules. Additionally, we found that TRAF2 exhibited binding to Fn14, cIAP1, and TNFR1/2. Our data suggest that TWEAK induces apoptosis in normal keratinocytes and proliferation in TNFR2-overexpressing keratinocytes in a TNF-α-independent manner; however, inhibition of TRAF2 appears to reverse this effect. Interestingly, the interaction between TWEAK and Fn14 increased TNFR1-associated death domain protein and caspase-8 expression in normal keratinocytes and promoted cytoplasmic import of cIAP1 in TNFR2-overexpressing keratinocytes. In conclusion, we found that the Fn14-TRAF2-TNFR signaling axis mediates TWEAK's regulation of the fate of keratinocytes, possibly in a manner involving the TNF-α-independent TNFR signal transduction.
Collapse
|
11
|
Mucosa-associated lymphoid tissue lymphoma with t(11;18)(q21;q21) translocation: long-term follow-up results. Ann Hematol 2019; 98:1675-1687. [DOI: 10.1007/s00277-019-03671-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/17/2019] [Indexed: 12/16/2022]
|
12
|
Zhao Y, Li Y, Qu R, Chen X, Wang W, Qiu C, Liu B, Pan X, Liu L, Vasilev K, Hayball J, Dong S, Li W. Cortistatin binds to TNF-α receptors and protects against osteoarthritis. EBioMedicine 2019; 41:556-570. [PMID: 30826358 PMCID: PMC6443028 DOI: 10.1016/j.ebiom.2019.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Osteoarthritis (OA) is a common degenerative disease, and tumor necrosis factor (TNF-α) is known to play a critical role in OA. Cortistatin (CST) is a neuropeptide discovered over 20 years ago, which plays a vital role in inflammatory reactions. However, it is unknown whether CST is involved in cartilage degeneration and OA development. Methods The interaction between CST and TNF-α receptors was investigated through Coimmunoprecipitation and Biotin-based solid-phase binding assay. Western blot, Real-time PCR, ELISA, immunofluorescence staining, nitrite production assay and DMMB assay of GAG were performed for the primary chondrocyte experiments. Surgically induced and spontaneous OA models were established and western blot, flow cytometry, Real-time PCR, ELISA, immunohistochemistry and fluorescence in vivo imaging were performed for in vivo experiments. Findings CST competitively bound to TNFR1 as well as TNFR2. CST suppressed proinflammatory function of TNF-α. Both spontaneous and surgically induced OA models indicated that deficiency of CST led to an accelerated OA-like phenotype, while exogenous CST attenuated OA development in vivo. Additionally, TNFR1- and TNFR2-knockout mice were used for analysis and indicated that TNFRs might be involved in the protective role of CST in OA. CST inhibited activation of the NF-κB signaling pathway in OA. Interpretation This study provides new insight into the pathogenesis and therapeutic strategy of cartilage degenerative diseases, including OA. Fund The National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province, Key Research and Development Projects of Shandong Province and the Cross-disciplinary Fund of Shandong University.
Collapse
Affiliation(s)
- Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuhua Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Ruize Qu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Xiaomin Chen
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Wenhan Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Cheng Qiu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Ben Liu
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xin Pan
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - John Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Shuli Dong
- College of Chemistry, Shandong University, Jinan, Shandong 250101, PR China
| | - Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
13
|
Quarni W, Lungchukiet P, Tse A, Wang P, Sun Y, Kasiappan R, Wu JY, Zhang X, Bai W. RIPK1 binds to vitamin D receptor and decreases vitamin D-induced growth suppression. J Steroid Biochem Mol Biol 2017; 173:157-167. [PMID: 28159673 PMCID: PMC5538941 DOI: 10.1016/j.jsbmb.2017.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/07/2017] [Accepted: 01/30/2017] [Indexed: 01/26/2023]
Abstract
Receptor interacting protein kinase 1 (RIPK1) is an enzyme acting downstream of tumor necrosis factor alpha to control cell survival and death. RIPK1 expression has been reported to cause drug resistance in cancer cells, but so far, no published studies have investigated the role of RIPK1 in vitamin D signaling. In the present study, we investigated whether RIPK1 plays any roles in 1,25-dihydroxyvitamin D3 (1,25D3)-induced growth suppression. In our studies, RIPK1 decreased the transcriptional activity of vitamin D receptor (VDR) in luciferase reporter assays independent of its kinase activity, suggesting a negative role of RIPK1 in 1,25D3 action. RIPK1 also formed a complex with VDR, and deletion analyses mapped the RIPK1 binding region to the C-terminal ligand-binding domain of the VDR. Subcellular fractionation analyses indicated that RIPK1 increased VDR retention in the cytoplasm, which may account for its inhibition of VDR transcriptional activity. Consistent with the reporter analyses, 1,25D3-induced growth suppression was more pronounced in RIPK1-null MEFs and RIPK1-knockdown ovarian cancer cells than in control cells. Our studies have defined RIPK1 as a VDR repressor, projecting RIPK1 depletion as a potential strategy to increase the potency of 1,25D3 and its analogs for cancer intervention.
Collapse
Affiliation(s)
- Waise Quarni
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Panida Lungchukiet
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Anfernee Tse
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Pei Wang
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Yuefeng Sun
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Ravi Kasiappan
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Jheng-Yu Wu
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Xiaohong Zhang
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Wenlong Bai
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States; Oncological Sciences, University of South Florida College of Medicine, Tampa, FL 33612, United States; Programs of Cancer Biology & Evolution, H. Lee Moffitt Cancer Center, Tampa, FL 33612, United States.
| |
Collapse
|
14
|
Yan XY, Zhang Y, Zhang JJ, Zhang LC, Liu YN, Wu Y, Xue YN, Lu SY, Su J, Sun LK. p62/SQSTM1 as an oncotarget mediates cisplatin resistance through activating RIP1-NF-κB pathway in human ovarian cancer cells. Cancer Sci 2017; 108:1405-1413. [PMID: 28498503 PMCID: PMC5497928 DOI: 10.1111/cas.13276] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022] Open
Abstract
Platinum‐based therapeutic strategies have been widely used in ovarian cancer treatment. However, drug resistance has greatly limited therapeutic efficacy. Recently, tolerance to cisplatin has been attributed to other factors unrelated to DNA. p62 (also known as SQSTM1) functions as a multifunctional hub participating in tumorigenesis and may be a therapeutic target. Our previous study showed that p62 was overexpressed in drug‐resistant ovarian epithelial carcinoma and its inhibition increased the sensitivity to cisplatin. In this study, we demonstrate that the activity of the NF‐κB signaling pathway and K63‐linked ubiquitination of RIP1 was higher in cisplatin‐resistant ovarian (SKOV3/DDP) cells compared with parental cells. In addition, cisplatin resistance could be reversed by inhibiting the expression of p62 using siRNA. Furthermore, deletion of the ZZ domain of p62 that interacts with RIP1 in SKOV3 cells markedly decreased K63‐linked ubiquitination of RIP1 and inhibited the activation of the NF‐κB signaling pathway. Moreover, loss of the ZZ domain from p62 led to poor proliferative capacity and high levels of apoptosis in SKOV3 cells and made them more sensitive to cisplatin treatment. Collectively, we provide evidence that p62 is implicated in the activation of NF‐κB signaling that is partly dependent on RIP1. p62 promotes cell proliferation and inhibits apoptosis thus mediating drug resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Xiao-Yu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yu Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Juan-Juan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Li-Chao Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Ya-Nan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yao Wu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Ya-Nan Xue
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Sheng-Yao Lu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lian-Kun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev 2016; 31:77-92. [PMID: 27773462 DOI: 10.1016/j.blre.2016.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023]
Abstract
The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells.
Collapse
|
16
|
Krappmann D, Vincendeau M. Mechanisms of NF-κB deregulation in lymphoid malignancies. Semin Cancer Biol 2016; 39:3-14. [DOI: 10.1016/j.semcancer.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
|
17
|
Rosebeck S, Lim MS, Elenitoba-Johnson KSJ, McAllister-Lucas LM, Lucas PC. API2-MALT1 oncoprotein promotes lymphomagenesis via unique program of substrate ubiquitination and proteolysis. World J Biol Chem 2016; 7:128-137. [PMID: 26981201 PMCID: PMC4768116 DOI: 10.4331/wjbc.v7.i1.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/16/2015] [Accepted: 12/08/2015] [Indexed: 02/05/2023] Open
Abstract
Lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) is the most common extranodal B cell tumor and accounts for 8% of non-Hodgkin’s lymphomas. Gastric MALT lymphoma is the best-studied example and is a prototypical neoplasm that occurs in the setting of chronic inflammation brought on by persistent infection or autoimmune disease. Cytogenetic abnormalities are commonly acquired during the course of disease and the most common is chromosomal translocation t(11;18)(q21;q21), which creates the API2-MALT1 fusion oncoprotein. t(11;18)-positive lymphomas can be clinically aggressive and have a higher rate of dissemination than t(11;18)-negative tumors. Many cancers, including MALT lymphomas, characteristically exhibit deregulated over-activation of cellular survival pathways, such as the nuclear factor-κB (NF-κB) pathway. Molecular characterization of API2-MALT1 has revealed it to be a potent activator of NF-κB, which is required for API2-MALT1-induced cellular transformation, however the mechanisms by which API2-MALT1 exerts these effects are only recently becoming apparent. The API2 moiety of the fusion binds tumor necrosis factor (TNF) receptor associated factor (TRAF) 2 and receptor interacting protein 1 (RIP1), two proteins essential for TNF receptor-induced NF-κB activation. By effectively mimicking ligand-bound TNF receptor, API2-MALT1 promotes TRAF2-dependent ubiquitination of RIP1, which then acts as a scaffold for nucleating and activating the canonical NF-κB machinery. Activation occurs, in part, through MALT1 moiety-dependent recruitment of TRAF6, which can directly modify NF-κB essential modulator, the principal downstream regulator of NF-κB. While the intrinsic MALT1 protease catalytic activity is dispensable for this canonical NF-κB signaling, it is critical for non-canonical NF-κB activation. In this regard, API2-MALT1 recognizes NF-κB inducing kinase (NIK), the essential upstream regulator of non-canonical NF-κB, and cleaves it to generate a stable, constitutively active fragment. Thus, API2-MALT1 harnesses multiple unique pathways to achieve deregulated NF-κB activation. Emerging data from our group and others have also detailed additional gain-of-function activities of API2-MALT1 that extend beyond NF-κB activation. Specifically, API2-MALT1 recruits and subverts multiple other signaling factors, including LIM domain and actin-binding protein 1 (LIMA1) and Smac/DIABLO. Like NIK, LIMA1 represents a unique substrate for API2-MALT1 protease activity, but unlike NIK, its cleavage sets in motion a major NF-κB-independent pathway for promoting oncogenesis. In this review, we highlight the most recent results characterizing these unique and diverse gain-of-function activities of API2-MALT1 and how they contribute to lymphomagenesis.
Collapse
|
18
|
Unexpected functions of nuclear factor-κB during germinal center B-cell development: implications for lymphomagenesis. Curr Opin Hematol 2016; 22:379-87. [PMID: 26049760 DOI: 10.1097/moh.0000000000000160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW B-cell tumors originating from the transformation of germinal center B cells frequently harbor genetic mutations, leading to constitutive activation of the nuclear factor-κB (NF-κB) signaling pathway. The present review highlights recent insights into the roles of separate NF-κB transcription factors in germinal center B-cell development and discusses implications of the results for germinal center lymphomagenesis. RECENT FINDINGS Understanding how aberrant NF-κB activation promotes tumorigenesis requires the understanding of the role of NF-κB in the tumor-precursor cells. Despite extensive knowledge on NF-κB biology, the function of this complex signaling pathway in the differentiation of germinal center B cells is largely unknown. The present review will discuss recent findings that revealed distinct roles of separate NF-κB transcription factors during the germinal center reaction in the context of germinal center lymphomagenesis. Most notably, a single NF-κB subunit, c-REL, was found to be required for the maintenance of the germinal center reaction and was associated with the activation of a metabolic program that promotes cell growth. SUMMARY Identifying the biological roles of the separate NF-κB transcription factor subunits in germinal center biology will help to better understand the pathogenic consequences of their constitutive activation in B-cell tumors. This knowledge may be exploited for the development of targeted antitumor therapies aimed at inhibiting selectively those components of aberrant NF-κB activity which contribute to pathogenesis.
Collapse
|
19
|
Zhang Y, Wei Z, Li J, Liu P. Molecular pathogenesis of lymphomas of mucosa-associated lymphoid tissue--from (auto)antigen driven selection to the activation of NF-κB signaling. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1246-55. [PMID: 26612043 DOI: 10.1007/s11427-015-4977-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
Lymphomas of mucosa-associated lymphoid tissue (MALT) are typically present at sites such as the stomach, lung or urinary tract, where lymphoid tissues scatter in mucosa lamina propria, intra- or sub-epithelial cells. The infection of certain pathogens, such as Helicobacter pylori, Chlamydophila psittaci, Borrelia burgdorferi, hepatitis C virus, or certain autoantigens cause these sites to generate a germinal center called the "acquired lymphoid tissue". The molecular pathogenesis of MALT lymphoma is a multi-step process. Receptor signaling, such as the contact stimulation of B cell receptors and CD4 positive T cells mediated by CD40/CD40-ligand and T helper cell type 2 cytokines like interleukin-4, contributes to tumor cell proliferation. A number of genetic alterations have been identified in MALT lymphoma, and among them are important translocations, such as t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21) and t(3;14)(p13;q32). Fusion proteins generated by these translocations share the same NF-κB signaling pathway, which is activated by the caspase activation and recruitment domain containing molecules of the membrane associated guanylate kinase family, B cell lymphoma-10 and MALT1 (CBM) protein complex. They act downstream of cell surface receptors, such as B cell receptors, T cell receptors, B cell activating factors and Toll-like receptors, and participate in the biological process of MALT lymphoma. The discovery of therapeutic drugs that exclusively inhibit the antigen receptor signaling pathway will be beneficial for the treatment of B cell lymphomas in the future.
Collapse
Affiliation(s)
- YiAn Zhang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng Wei
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Asano N, Iijima K, Koike T, Imatani A, Shimosegawa T. Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphomas: A review. World J Gastroenterol 2015; 21:8014-8020. [PMID: 26185372 PMCID: PMC4499343 DOI: 10.3748/wjg.v21.i26.8014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/30/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
Since Isaacson and Wright first reported on the extra-nodal marginal zone B-cell lymphoma of the stomach in 1983, following studies have clarified many aspects of this disease. We now know that the stomach is the most affected organ by this disease, and approximately 90% of gastric mucosa-associated lymphoid tissue (MALT) lymphomas are related to Helicobacter pylori (H. pylori) infection. This implies that approximately 10% of gastric MALT lymphomas occur independent of H. pylori infection. The pathogenesis of these H. pylori-negative gastric MALT lymphomas remains unclear. To date, there have been several speculations. One possibility is that genetic alterations result in nuclear factor-kappa B (NF-κB) activation. Among these alterations, t(11;18)(q21;q21) is more frequently observed in H. pylori-negative gastric MALT lymphomas, and such translocation results in the synthesis of fusion protein API2-MALT1, which causes canonical and noncanonical NF-κB activation. Another possibility is infection with bacteria other than H. pylori. This could explain why H. pylori eradication therapy can cure some proportions of H. pylori-negative gastric MALT lymphoma patients, although the bacteria responsible for MALT lymphomagenesis are yet to be defined. Recent advances in endoscopy suggest magnifying endoscopy with narrow band imaging as a useful tool for both detecting gastric MALT lymphoma lesions and judging the response to treatment. A certain proportion of H. pylori-negative gastric MALT lymphoma patients respond to eradication therapy; hence, H. pylori eradication therapy could be considered as a first-line treatment for gastric MALT lymphomas regardless of their H. pylori infection status.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gastroscopy
- Genetic Predisposition to Disease
- Helicobacter Infections/complications
- Helicobacter Infections/diagnosis
- Helicobacter Infections/drug therapy
- Helicobacter Infections/microbiology
- Helicobacter pylori/drug effects
- Helicobacter pylori/isolation & purification
- Humans
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/etiology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, B-Cell, Marginal Zone/microbiology
- Lymphoma, B-Cell, Marginal Zone/therapy
- Phenotype
- Predictive Value of Tests
- Proton Pump Inhibitors/therapeutic use
- Risk Factors
- Signal Transduction
- Stomach Neoplasms/diagnosis
- Stomach Neoplasms/etiology
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/microbiology
- Stomach Neoplasms/therapy
- Treatment Outcome
Collapse
|
21
|
Radical surgery may be not an optimal treatment approach for pulmonary MALT lymphoma. Tumour Biol 2015; 36:6409-16. [PMID: 25801243 DOI: 10.1007/s13277-015-3329-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Primary pulmonary MALT lymphoma is a rare disease, and no standard treatments have been defined yet. In this study, 38 consecutive patients from single center were reviewed. Among 25 patients with localized disease, radical surgery were performed in 12 patients, and the other 13 patients had chemotherapy combined with (7 patients) or without (6 patients) radiotherapy. No significant difference in overall survival (OS) was found between patients who received surgery or not; however, patients treated with chemotherapy had superior progression-free survival (PFS) than those treated with upfront surgery (P = 0.032). Among the 12 patients who received radical surgery, 7 were given adjuvant chemotherapy and 1 patient had consolidation radiotherapy. No significant differences in PFS and OS exist between those who received adjuvant treatment or not (P > 0.05). For patients who received chemotherapy, PFS and OS were significantly better for those treated with cyclophosphamide-based therapy than fludarabine-based therapy. At a median follow-up time of 61.1 months, 5- and 10-year PFS rate was 70.0 and 43.0 %, respectively, and 5- and 10-year OS rate was both 81.0 %. In conclusion, we confirmed the indolent behavior and favorable outcome of this disease. In order to preserve lung function and reduce the risks associated with surgery, radiotherapy or rituximab in combination with alkylating drug-based chemotherapy should be considered as first-line option for pulmonary MALT lymphoma.
Collapse
|
22
|
Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene 2014; 33:5655-65. [DOI: 10.1038/onc.2013.565] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
|