1
|
Liu Y, Liang L, Li J, Pang T, Zhang SH, Xia ZY. Aberrant expression of LGALS3BP drives an unfavorable prognosis and more aggressive in HCC via regulating PI3K/AKT signaling. Tissue Cell 2024; 89:102471. [PMID: 39029315 DOI: 10.1016/j.tice.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Lectin galactoside-binding soluble 3-binding protein (LGALS3BP) is associated with cancer metastasis and is a promising prognostic marker in neoplasms. In hepatocellular carcinoma (HCC), the prognostic impact and pro-metastatic function of LGALS3BP remain unclear. This study evaluated the endogenous LGALS3BP expression in HCC tissue and its association with prognosis. LGALS3BP protein levels were significantly elevated in clinical HCC tissues and cell lines. Increased LGALS3BP expression was closely associated with disease progression in HCC patients, and they also exhibited an unfavorable prognosis. Furthermore, the knockdown of LGALS3BP inhibited the growth, migration, and invasion of HCC cells in vitro. In mice xenografts, silencing LGALS3BP significantly inhibited tumor cell growth in vivo. Mechanically, upon LGALS3BP depletion, the tumor-suppressive function was dependent on inactivating Phosphatidylinositol 3-kinase (PI3K)/V-akt murine thymoma viral oncogene homolog (AKT) signaling pathway. Collectively, these findings suggest that LGALS3BP employs a pro-tumorigenic function in HCC and may be a promising HCC prognostic marker.
Collapse
Affiliation(s)
- Yang Liu
- Department of Postdoctoral Workstation, Liaocheng People's Hospital, Liaocheng, Shandong, China; Department of Mobile Post-Doctoral Stations, Shandong University, Jinan, Shandong, China; Department of Hepatobiliary Surgery, the Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Lei Liang
- Department of Obstetrics and Gynecology, the Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Jian Li
- Department of Breast Surgery, the Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Tao Pang
- Department of Orthopaedics, the First People's Hospital of Taian City, Taian, Shandong, China
| | - Shu Hong Zhang
- Department of Obstetrics and Gynecology, the Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Zhang Yong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong, China.
| |
Collapse
|
2
|
He X, Wang B, Deng W, Cao J, Tan Z, Li X, Guan F. Impaired bisecting GlcNAc reprogrammed M1 polarization of macrophage. Cell Commun Signal 2024; 22:73. [PMID: 38279161 PMCID: PMC10811823 DOI: 10.1186/s12964-023-01432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/09/2023] [Indexed: 01/28/2024] Open
Abstract
The functions of macrophages are governed by distinct polarization phenotypes, which can be categorized as either anti-tumor/M1 type or pro-tumor/M2 type. Glycosylation is known to play a crucial role in various cellular processes, but its influence on macrophage polarization is not well-studied. In this study, we observed a significant decrease in bisecting GlcNAc during M0-M1 polarization, and impaired bisecting GlcNAc was found to drive M0-M1 polarization. Using a glycoproteomics strategy, we identified Lgals3bp as a specific glycoprotein carrying bisecting GlcNAc. A high level of bisecting GlcNAc modification facilitated the degradation of Lgals3bp, while a low level of bisecting GlcNAc stabilized Lgals3bp. Elevated levels of Lgals3bp promoted M1 polarization through the activation of the NF-кB pathway. Conversely, the activated NF-кB pathway significantly repressed the transcription of MGAT3, leading to reduced levels of bisecting GlcNAc modification on Lgals3bp. Overall, our study highlights the impact of glycosylation on macrophage polarization and suggests the potential of engineered macrophages via glycosylated modification. Video Abstract.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Bowen Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Wenli Deng
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jinhua Cao
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Zengqi Tan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, 710069, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
3
|
Sirko S, Schichor C, Della Vecchia P, Metzger F, Sonsalla G, Simon T, Bürkle M, Kalpazidou S, Ninkovic J, Masserdotti G, Sauniere JF, Iacobelli V, Iacobelli S, Delbridge C, Hauck SM, Tonn JC, Götz M. Injury-specific factors in the cerebrospinal fluid regulate astrocyte plasticity in the human brain. Nat Med 2023; 29:3149-3161. [PMID: 38066208 PMCID: PMC10719094 DOI: 10.1038/s41591-023-02644-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/13/2023] [Indexed: 12/17/2023]
Abstract
The glial environment influences neurological disease progression, yet much of our knowledge still relies on preclinical animal studies, especially regarding astrocyte heterogeneity. In murine models of traumatic brain injury, beneficial functions of proliferating reactive astrocytes on disease outcome have been unraveled, but little is known regarding if and when they are present in human brain pathology. Here we examined a broad spectrum of pathologies with and without intracerebral hemorrhage and found a striking correlation between lesions involving blood-brain barrier rupture and astrocyte proliferation that was further corroborated in an assay probing for neural stem cell potential. Most importantly, proteomic analysis unraveled a crucial signaling pathway regulating this astrocyte plasticity with GALECTIN3 as a novel marker for proliferating astrocytes and the GALECTIN3-binding protein LGALS3BP as a functional hub mediating astrocyte proliferation and neurosphere formation. Taken together, this work identifies a therapeutically relevant astrocyte response and their molecular regulators in different pathologies affecting the human cerebral cortex.
Collapse
Affiliation(s)
- Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
| | - Christian Schichor
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Patrizia Della Vecchia
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | | | - Giovanna Sonsalla
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Tatiana Simon
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Martina Bürkle
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Sofia Kalpazidou
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany
| | - Giacomo Masserdotti
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | | | | | | | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, TUM School of Medicine, TU Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany.
| |
Collapse
|
4
|
Cazzola A, Calzón Lozano D, Menne DH, Dávila Pedrera R, Liu J, Peña-Jiménez D, Fontenete S, Halin C, Perez-Moreno M. Lymph Vessels Associate with Cancer Stem Cells from Initiation to Malignant Stages of Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:13615. [PMID: 37686421 PMCID: PMC10488284 DOI: 10.3390/ijms241713615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor-associated lymph vessels and lymph node involvement are critical staging criteria in several cancers. In skin squamous cell carcinoma, lymph vessels play a role in cancer development and metastatic spread. However, their relationship with the cancer stem cell niche at early tumor stages remains unclear. To address this gap, we studied the lymph vessel localization at the cancer stem cell niche and observed an association from benign skin lesions to malignant stages of skin squamous cell carcinoma. By co-culturing lymphatic endothelial cells with cancer cell lines representing the initiation and promotion stages, and conducting RNA profiling, we observed a reciprocal induction of cell adhesion, immunity regulation, and vessel remodeling genes, suggesting dynamic interactions between lymphatic and cancer cells. Additionally, imaging analyses of the cultured cells revealed the establishment of heterotypic contacts between cancer cells and lymph endothelial cells, potentially contributing to the observed distribution and maintenance at the cancer stem cell niche, inducing downstream cellular responses. Our data provide evidence for an association of lymph vessels from the early stages of skin squamous cell carcinoma development, opening new avenues for better comprehending their involvement in cancer progression.
Collapse
Affiliation(s)
- Anna Cazzola
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David Calzón Lozano
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dennis Hirsch Menne
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Raquel Dávila Pedrera
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jingcheng Liu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Daniel Peña-Jiménez
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Silvia Fontenete
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland;
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
6
|
Keinänen O, Sarrett SM, Delaney S, Rodriguez C, Dayts EJ, Capone E, Sauniere F, Ippoliti R, Sala G, Iacobelli S, Zeglis BM. Visualizing Galectin-3 Binding Protein Expression with ImmunoPET. Mol Pharm 2023; 20:3241-3248. [PMID: 37191353 PMCID: PMC10245371 DOI: 10.1021/acs.molpharmaceut.3c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Galectin-3 binding protein (Gal-3BP) is a glycoprotein that is overexpressed and secreted by several cancers and has been implicated as a marker of both tumor progression and poor prognosis in melanoma, non-small cell lung cancer, head and neck squamous cell carcinoma, and breast cancer. The expression of Gal-3BP by a variety of neoplasms makes it an enticing target for both diagnostics and therapeutics, including immuno-positron emission tomography (immunoPET) probes and antibody-drug conjugates (ADCs). Herein, we report the development, in vitro characterization, and in vivo evaluation of a pair of Gal-3BP-targeting radioimmunoconjugates for 89Zr-immunoPET. A humanized anti-Gal-3BP antibody, 1959, and its corresponding ADC, 1959-sss/DM4 (DM4 = ravtansine), were modified with desferrioxamine (DFO) to yield DFO-1959 and DFO-1959-sss/DM4 immunoconjugates bearing 1-2 DFO/monoclonal antibody. Both DFO-modified immunoconjugates retained their affinity for Gal-3BP in enzyme-linked immunosorbent assay experiments. The chelator-bearing antibodies were radiolabeled with zirconium-89 (t1/2 ≈ 3.3 d) to produce radioimmunoconjugates ─ [89Zr]Zr-DFO-1959 and [89Zr]Zr-DFO-1959-sss/DM4 ─ with high specific activity (>444 MBq/mg, >12 mCi/mg) and stability (>80% intact after 168 h in human serum at 37 °C). In mice bearing subcutaneous Gal-3BP-secreting A375-MA1 xenografts, [89Zr]Zr-DFO-1959 clearly delineated tumor tissue, reaching a maximum tumoral activity concentration (54.8 ± 15.8%ID/g) and tumor-to-background contrast (tumor-to-blood = 8.0 ± 4.6) at 120 h post-injection. The administration of [89Zr]Zr-DFO-1959 to mice bearing subcutaneous Gal-3BP-expressing melanoma patient-derived xenografts produced similarly promising results. [89Zr]Zr-DFO-1959 and [89Zr]Zr-DFO-1959-sss/DM4 exhibited nearly identical pharmacokinetic profiles in the mice bearing A375-MA1 tumors, though the latter produced higher uptake in the spleen and kidneys. Both [89Zr]Zr-DFO-1959 and [89Zr]Zr-DFO-1959-sss/DM4 effectively visualized Gal-3BP-secreting tumors in murine models of melanoma. These results suggest that both probes could play a role in the clinical imaging of Gal-3BP-expressing malignancies, particularly as companion theranostics for the identification of patients likely to respond to Gal-3BP-targeted therapeutics such as 1959-sss/DM4.
Collapse
Affiliation(s)
- Outi Keinänen
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Chemistry, University of Helsinki, Helsinki 00014, Finland
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
| | - Samantha M. Sarrett
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
- Ph.D.
Program in Biochemistry, Graduate Center
of the City University of New York, New York 10016, New
York, United States
| | - Samantha Delaney
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
- Ph.D.
Program in Biochemistry, Graduate Center
of the City University of New York, New York 10016, New
York, United States
| | - Cindy Rodriguez
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York 10016, New
York, United States
| | - Eric J. Dayts
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
| | - Emily Capone
- Department
of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti 66100, Italy
- Mediapharma
srl, Chieti 66013, Italy
- Center
for Advanced Studies and Technology, Chieti 66100, Italy
| | | | - Rodolfo Ippoliti
- Department
of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila 67100, Italy
| | - Gianluca Sala
- Department
of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti 66100, Italy
- Mediapharma
srl, Chieti 66013, Italy
- Center
for Advanced Studies and Technology, Chieti 66100, Italy
| | | | - Brian M. Zeglis
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
- Ph.D.
Program in Biochemistry, Graduate Center
of the City University of New York, New York 10016, New
York, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York 10016, New
York, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York, United States
| |
Collapse
|
7
|
Pipicelli F, Baumann N, Di Giaimo R, Forero-Echeverry A, Kyrousi C, Bonrath R, Maccarrone G, Jabaudon D, Cappello S. Non-cell-autonomous regulation of interneuron specification mediated by extracellular vesicles. SCIENCE ADVANCES 2023; 9:eadd8164. [PMID: 37205765 DOI: 10.1126/sciadv.add8164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Disruption in neurogenesis and neuronal migration can influence the assembly of cortical circuits, affecting the excitatory-inhibitory balance and resulting in neurodevelopmental and neuropsychiatric disorders. Using ventral cerebral organoids and dorsoventral cerebral assembloids with mutations in the extracellular matrix gene LGALS3BP, we show that extracellular vesicles released into the extracellular environment regulate the molecular differentiation of neurons, resulting in alterations in migratory dynamics. To investigate how extracellular vesicles affect neuronal specification and migration dynamics, we collected extracellular vesicles from ventral cerebral organoids carrying a mutation in LGALS3BP, previously identified in individuals with cortical malformations and neuropsychiatric disorders. These results revealed differences in protein composition and changes in dorsoventral patterning. Proteins associated with cell fate decision, neuronal migration, and extracellular matrix composition were altered in mutant extracellular vesicles. Moreover, we show that treatment with extracellular vesicles changes the transcriptomic profile in neural progenitor cells. Our results indicate that neuronal molecular differentiation can be influenced by extracellular vesicles.
Collapse
Affiliation(s)
- Fabrizia Pipicelli
- Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Naples Federico II, Naples, Italy
- Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Andrea Forero-Echeverry
- Max Planck Institute of Psychiatry, Munich, Germany
- Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | | | | | | | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Silvia Cappello
- Max Planck Institute of Psychiatry, Munich, Germany
- Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Transfer of Galectin-3-Binding Protein via Epididymal Extracellular Vesicles Promotes Sperm Fertilizing Ability and Developmental Potential in the Domestic Cat Model. Int J Mol Sci 2023; 24:ijms24043077. [PMID: 36834494 PMCID: PMC9966717 DOI: 10.3390/ijms24043077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Key proteins transferred by epididymal extracellular vesicles (EVs) to the transiting sperm cells contribute to their centrosomal maturation and developmental potential. Although not reported in sperm cells yet, galectin-3-binding protein (LGALS3BP) is known to regulate centrosomal functions in somatic cells. Using the domestic cat model, the objectives of this study were to (1) detect the presence and characterize the transfer of LGALS3BP via EVs between the epididymis and the maturing sperm cells and (2) demonstrate the impact of LGALS3BP transfer on sperm fertilizing ability and developmental potential. Testicular tissues, epididymides, EVs, and spermatozoa were isolated from adult individuals. For the first time, this protein was detected in EVs secreted by the epididymal epithelium. The percentage of spermatozoa with LGALS3BP in the centrosome region increased as cells progressively incorporated EVs during the epididymal transit. When LGALS3BP was inhibited during in vitro fertilization with mature sperm cells, less fertilized oocytes and slower first cell cycles were observed. When the protein was inhibited in epididymal EVs prior to incubation with sperm cells, poor fertilization success further demonstrated the role of EVs in the transfer of LGALS3BP to the spermatozoa. The key roles of this protein could lead to new approaches to enhance or control fertility in clinical settings.
Collapse
|
9
|
Sachdeva R, Kumar N, Brache V, Friedland BA, Plagianos M, Zhang S, Kizima L, Cochon L, Tabar AST, Blanc A, Merkatz RB. New approaches for developing biomarkers of hormonal contraceptive use. Sci Rep 2023; 13:245. [PMID: 36604469 PMCID: PMC9816169 DOI: 10.1038/s41598-022-24215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/11/2022] [Indexed: 01/07/2023] Open
Abstract
To identify biomarkers of hormonal contraceptive (HC) use in urine and saliva, we conducted a pilot study with 30 women initiating levonorgestrel (LNG) containing combined oral contraceptives (COCs) or depot medroxyprogesterone acetate (DMPA) (15/group). Based on established COC pharmacokinetics, we collected serum and urine samples before COC ingestion and during Days one and three of use, or before DMPA injection and on Days 21 and 60 post-injection. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure serum/urine LNG and MPA. LNG was undetectable at baseline (specificity 100%); post ingestion, most urine samples had detectable LNG levels (sensitivity: 80% 6 h post Dose one, 93% 6 h post Dose three). We used a DetectX LNG immunoassay kit and showed 100% sensitivity measuring urine LNG. Urine MPA levels were undetectable in 14/15 women at baseline (specificity 91%); post-injection all urine samples had detectable MPA levels (sensitivity: 100% days 21 and 60). Results suggest urine sampling can be used to identify a biomarker of LNG and MPA use. Based on evidence from other steroidal hormonal studies showing changes affecting the transcriptome profile of saliva at 24 h, we used the same (COC, DMPA) timepoints to collect saliva. We performed transcriptome analysis and detected several differentially expressed genes in DMPA users' saliva on Days 21 and 60 compared to baseline; none among COC users. We plan further research of differential gene expression in saliva as a HC biomarker of DMPA use, and will explore longer periods of COC use and saliva collection times, and application of microRNA sequencing to support using saliva as a COC biomarker.
Collapse
Affiliation(s)
- Rakhee Sachdeva
- grid.250540.60000 0004 0441 8543Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| | - Narender Kumar
- grid.250540.60000 0004 0441 8543Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| | - Vivian Brache
- grid.420363.00000 0001 0707 9020Clinica de Profamilia, Nicolas de Ovando Esq. Calle 16, Ens. Luperon, Santo Domingo, Dominican Republic
| | - Barbara A. Friedland
- grid.250540.60000 0004 0441 8543Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| | - Marlena Plagianos
- grid.250540.60000 0004 0441 8543Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| | - Shimin Zhang
- grid.250540.60000 0004 0441 8543Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| | - Larisa Kizima
- grid.250540.60000 0004 0441 8543Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| | - Leila Cochon
- grid.420363.00000 0001 0707 9020Clinica de Profamilia, Nicolas de Ovando Esq. Calle 16, Ens. Luperon, Santo Domingo, Dominican Republic
| | - Ana Sofía Tejada Tabar
- grid.420363.00000 0001 0707 9020Clinica de Profamilia, Nicolas de Ovando Esq. Calle 16, Ens. Luperon, Santo Domingo, Dominican Republic
| | | | - Ruth B. Merkatz
- grid.250540.60000 0004 0441 8543Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
10
|
Zhu G, Yang F, Wei H, Meng W, Gan J, Wang L, He C, Lu S, Cao B, Luo H, Han B, Li L. 90 K increased delivery efficiency of extracellular vesicles through mediating internalization. J Control Release 2023; 353:930-942. [PMID: 36529385 DOI: 10.1016/j.jconrel.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Using mass spectrometry-based high-throughput proteomics, we identified a membrane protein on extracellular vesicles (EVs), 90 K, which predicts poor overall survival of patients with head and neck cancer. 90 K levels in serum EVs could serve as an independent factor for poor prognosis of patients with head and neck cancer. Pre-treatment of immune competent mice with tumor-derived EVs (TDEs) elicited an immune-suppressive microenvironment for tumor cells, which was regulated by 90 K. The immunosuppressive function of TDE-90 K depends on the presence of myeloid derived suppressor cells (MDSCs) rather than regulatory T cells. The immune regulatory role of TDEs on MDSCs depends on miR-21 which is encapsulated in TDEs. Moreover, 90 K is required for the internalization of TDE cargo though interacting with integrin-β1 and anti-siglec-9 rather than directly affecting the immune function of MDSCs. 90 K modification of γδT cell-derived EVs (γδTEVs) could increase the delivery efficiency and therapeutic effect of PD-L1 siRNA by γδTEVs. We concluded that as a secreted protein modulating cell-cell and cell-matrix interactions, 90 K can be carried by TDEs to mediate the internalization and delivery of TDEs cargo by recipient cells. This function of 90 K could be utilized to improve the efficiency of EV-based drug delivery.
Collapse
Affiliation(s)
- Guiquan Zhu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Fan Yang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Hongxuan Wei
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Wanrong Meng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Jianguo Gan
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Linlin Wang
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Chuanshi He
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Shun Lu
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Bangrong Cao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Huaichao Luo
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Bo Han
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Ling Li
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China.
| |
Collapse
|
11
|
Shi C, Ren S, Zhao X, Li Q. lncRNA MALAT1 regulates the resistance of breast cancer cells to paclitaxel via the miR-497-5p/ SHOC2 axis. Pharmacogenomics 2022; 23:973-985. [PMID: 36420706 DOI: 10.2217/pgs-2022-0077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim: To explore the roles of lncRNA MALAT1 and SHOC2 in breast cancer, and the potential connections to chemotherapy resistance in breast cancer. Materials & methods: Paclitaxel-resistant breast cancer cells were induced by gradually increasing intermittent doses. Bioinformatic analyses were performed to predict the regulated miRNAs of MALAT1. Results: High expressions of MALAT1 and SHOC2 contribute to paclitaxel resistance in breast cancer cells. MALAT1 sponges miR-497-5p enhance SHOC2 expression in paclitaxel-resistant breast cancer cells and contribute to paclitaxel resistance in breast cancer cells. Conclusion: Patients with high expression of MALAT1 and SHOC2 have a poorer response to paclitaxel. Upregulation of miR-497-5p could improve the treatment response to paclitaxel in patients with breast cancer by inhibiting MALAT1 and SHOC2.
Collapse
Affiliation(s)
- Chang Shi
- The Fourth Department of General Surgery, the Second Hospital of Hebei Medical University
| | - Shuangjie Ren
- Department of Traditional Chinese Medicine Surgery, the Second Hospital of Hebei Medical University
| | - Xiaodong Zhao
- The Fourth Department of General Surgery, the Second Hospital of Hebei Medical University
| | - Qinghuai Li
- The Sixth Department of General Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| |
Collapse
|
12
|
Mohammed NBB, Antonopoulos A, Dell A, Haslam SM, Dimitroff CJ. The pleiotropic role of galectin-3 in melanoma progression: Unraveling the enigma. Adv Cancer Res 2022; 157:157-193. [PMID: 36725108 PMCID: PMC9895887 DOI: 10.1016/bs.acr.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is a highly aggressive skin cancer with poor outcomes associated with distant metastasis. Intrinsic properties of melanoma cells alongside the crosstalk between melanoma cells and surrounding microenvironment determine the tumor behavior. Galectin-3 (Gal-3), a ß-galactoside-binding lectin, has emerged as a major effector in cancer progression, including melanoma behavior. Data from melanoma models and patient studies reveal that Gal-3 expression is dysregulated, both intracellularly and extracellularly, throughout the stages of melanoma progression. This review summarizes the most recent data and hypotheses on Gal-3 and its tumor-modulating functions, highlighting its role in driving melanoma growth, invasion, and metastatic colonization. It also provides insight into potential Gal-3-targeted strategies for melanoma diagnosis and treatment.
Collapse
Affiliation(s)
- Norhan B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
| |
Collapse
|
13
|
Zhang DX, Dang XTT, Vu LT, Lim CMH, Yeo EYM, Lam BWS, Leong SM, Omar N, Putti TC, Yeh YC, Ma V, Luo JY, Cho WC, Chen G, Lee VKM, Grimson A, Le MTN. αvβ1 integrin is enriched in extracellular vesicles of metastatic breast cancer cells: A mechanism mediated by galectin-3. J Extracell Vesicles 2022; 11:e12234. [PMID: 35923105 PMCID: PMC9451529 DOI: 10.1002/jev2.12234] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer cells release a large quantity of biocargo-bearing extracellular vesicles (EVs), which mediate intercellular communication within the tumour microenvironment and promote metastasis. To identify EV-bound proteins related to metastasis, we used mass spectrometry to profile EVs from highly and poorly metastatic breast cancer lines of human and mouse origins. Comparative mass spectrometry indicated that integrins, including αv and β1 subunits, are preferentially enriched in EVs of highly metastatic origin over those of poorly metastatic origin. These results are consistent with our histopathological findings, which show that integrin αv is associated with disease progression in breast cancer patients. Integrin αv colocalizes with the multivesicular-body marker CD63 at a higher frequency in the tumour and is enriched in circulating EVs of breast cancer patients at late stages when compared with circulating EVs from early-stage patients. With a magnetic bead-based flow cytometry assay, we confirmed that integrins αv and β1 are enriched in the CD63+ subsets of EVs from both human and mouse highly metastatic cells. By analysing the level of integrin αv on circulating EVs, this assay could predict the metastatic potential of a xenografted mouse model. To explore the export mechanism of integrins into EVs, we performed immunoprecipitation mass spectrometry and identified members of the galectin family as potential shuttlers of integrin αvβ1 into EVs. In particular, knockdown of galectin-3, but not galectin-1, causes a reduction in the levels of cell surface integrins β1 and αv, and decreases the colocalization of these integrins with CD63. Importantly, knockdown of galectin-3 leads to a decrease of integrin αvβ1 export into the EVs concomitant with a decrease in the metastatic potential of breast cancer cells. Moreover, inhibition of the integrin αvβ1 complex leads to a reduction in the binding of EVs to fibronectin, suggesting that integrin αvβ1 is important for EV retention in the extracellular matrix. EVs retained in the extracellular matrix are taken up by fibroblasts, which differentiate into cancer associated fibroblasts. In summary, our data indicate an important link between EV-bound integrin αvβ1 with breast cancer metastasis and provide additional insights into the export of integrin αvβ1 into EVs in the context of metastasis.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Surgery, Cancer Program, Immunology Program, and Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Biomedical Sciences, Jocky Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Xuan T T Dang
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Surgery, Cancer Program, Immunology Program, and Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| | - Luyen Tien Vu
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Surgery, Cancer Program, Immunology Program, and Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Claudine Ming Hui Lim
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Surgery, Cancer Program, Immunology Program, and Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| | - Eric Yew Meng Yeo
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Surgery, Cancer Program, Immunology Program, and Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| | - Brenda Wan Shing Lam
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Surgery, Cancer Program, Immunology Program, and Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| | - Sai Mun Leong
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| | - Noorjehan Omar
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| | - Yu Chen Yeh
- Department of Biomedical Sciences, Jocky Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Victor Kwan Min Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.,Department of Surgery, Cancer Program, Immunology Program, and Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| |
Collapse
|
14
|
Choi YS, Kim MJ, Choi EA, Kim S, Lee EJ, Park MJ, Kim MJ, Kim YW, Ahn HS, Jung JY, Jang G, Kim Y, Kim H, Kim K, Kim JY, Hong SM, Kim SC, Chang S. Antibody-mediated blockade for galectin-3 binding protein in tumor secretome abrogates PDAC metastasis. Proc Natl Acad Sci U S A 2022; 119:e2119048119. [PMID: 35858411 PMCID: PMC9335190 DOI: 10.1073/pnas.2119048119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 01/21/2023] Open
Abstract
The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromatography, Liquid
- Epithelial-Mesenchymal Transition
- Gene Knockdown Techniques
- Humans
- Mice
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Proteomics
- Secretome
- Tandem Mass Spectrometry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeon-Sook Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun A. Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Min Ji Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeon Wook Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Sung Ahn
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Hyori Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, South Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
15
|
Kong Y, Xue Z, Wang H, Cui G, Chen A, Liu J, Wang J, Li X, Huang B. Identification of BST2 Contributing to the Development of Glioblastoma Based on Bioinformatics Analysis. Front Genet 2022; 13:890174. [PMID: 35865015 PMCID: PMC9294273 DOI: 10.3389/fgene.2022.890174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
Rigorous molecular analysis of the immune cell environment and immune response of human tumors has led to immune checkpoint inhibitors as one of the most promising strategies for the treatment of human cancer. However, in human glioblastoma multiforme (GBM) which develops in part by attracting immune cell types intrinsic to the human brain (microglia), standard immunotherapy has yielded inconsistent results in experimental models and patients. Here, we analyzed publicly available expression datasets to identify molecules possibly associated with immune response originating from or influencing the tumor microenvironment in primary tumor samples. Using three glioma datasets (GSE16011, Rembrandt-glioma and TCGA-glioma), we first analyzed the data to distinguish between GBMs of high and low tumor cell purity, a reflection of the cellular composition of the tumor microenvironment, and second, to identify differentially expressed genes (DEGs) between these two groups using GSEA and other analyses. Tumor purity was negatively correlated with patient prognosis. The interferon gamma-related gene BST2 emerged as a DEG that was highly expressed in GBM and negatively correlated with tumor purity. BST2high tumors also tended to harbor PTEN mutations (31 vs. 9%, BST2high versus BST2low) while BST2low tumors more often had sustained TP53 mutations (8 versus 36%, BST2high versus BST2low). Prognosis of patients with BST2high tumors was also poor relative to patients with BST2low tumors. Further molecular in silico analysis demonstrated that high expression of BST2 was negatively correlated with CD8+ T cells but positively correlated with macrophages with an M2 phenotype. Further functional analysis demonstrated that BST2 was associated with multiple immune checkpoints and cytokines, and may promote tumorigenesis and progression through interferon gamma, IL6/JAK/STAT3 signaling, IL2/STAT5 signaling and the TNF-α signaling via NF-kB pathway. Finally, a series of experiments confirmed that the expression of BST2 can be significantly increased by IFN induction, and knockdown of BST2 can significantly inhibit the growth and invasion of GBM cells, and may affect the phenotype of tumor-associated macrophages. In conclusion, BST2 may promote the progression of GBM and may be a target for treatment.
Collapse
Affiliation(s)
- Yang Kong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Neurological Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Haiying Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guangqiang Cui
- Neurological Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jie Liu
- Neurological Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Bin Huang,
| |
Collapse
|
16
|
Proteomic and Biochemical Analysis of Extracellular Vesicles Isolated from Blood Serum of Patients with Melanoma. SEPARATIONS 2022. [DOI: 10.3390/separations9040086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Malignant melanoma is the most serious type of skin cancer with the highest mortality rate. Extracellular vesicles (EVs) have potential as new tumor markers that could be used as diagnostic and prognostic markers for early detection of melanoma. Methods: EVs were purified from the blood serum of melanoma patients using two methods—ultracentrifugation and PEG precipitation—and analyzed by mass spectrometry and immunoblot. Results: We identified a total of 585 unique proteins; 334 proteins were detected in PEG-precipitated samples and 515 in UC-purified EVs. EVs purified from patients varied in their size and concentration in different individuals. EVs obtained from stage II and III patients were, on average, smaller and more abundant than others. Detailed analysis of three potential biomarkers—SERPINA3, LGALS3BP, and gelsolin—revealed that the expression of SERPINA3 and LGALS3BP was higher in melanoma patients than healthy controls, while gelsolin exhibited higher expression in healthy controls. Conclusion: We suggest that all three proteins might have potential to be used as biomarkers, but a number of issues, such as purification of EVs, standardization, and validation of methods suitable for everyday clinical settings, still need to be addressed.
Collapse
|
17
|
Chen X, Xue Y, Wang L, Weng Y, Li S, Lü W, Xie X, Cheng X. Lectin galactoside-binding soluble 3 binding protein mediates methotrexate resistance in choriocarcinoma cell lines. Bioengineered 2022; 13:2076-2086. [PMID: 35038949 PMCID: PMC8973873 DOI: 10.1080/21655979.2021.2022844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Choriocarcinoma is one of the most aggressive gestational trophoblastic neoplasias (GTN). Methotrexate (MTX) resistance is the main cause of treatment failure in choriocarcinoma. However, the mechanism of MTX resistance in choriocarcinoma is poorly known. This study aims to explore the function of Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) in MTX-resistance in choriocarcinoma cells. Gradual dose escalation of MTX was used to establish MTX-resistant choriocarcinoma cells (JAR-MTX and JEG3-MTX cell lines). RNA-sequencing was used to explore the differentially expressed genes. Plasmids or SiRNA transfection was used to regulate the expression of LGALS3BP. ELISA was used to detect the concentrations of LGALS3BP in the serum of MTX-sensitive and MTX-resistant patients. qRT-PCR, Western blot, and CCK-8 assay were used to determine the effects of LGALS3BP on MTX-resistance in JAR and JEG3 cells. The results showed the relative resistance index (RI) of MTX is 791.50 and 1040.04 in JAR-MTX and JEG3-MTX, respectively. LGALS3BP was up-regulated in MTX-resistant cells compared to original cells in both RNA and protein level. The concentrations of LGALS3BP were higher in the sera of MTX-resistant patients than in MTX-sensitive patients. Knocking down LGALS3BP can reverse the MTX-resistance in JAR-MTX and JEG3-MTX cells. In summary, we preliminarily established two MTX-resistant cells, and performed RNA-sequencing, and found LGALS3BP may play important role in MTX-resistance. Our work not only provides a research tool (MTX-resistant cells) for other researchers, but gives some hint on how MTX resistance is regulated.
Collapse
Affiliation(s)
- XiaoJing Chen
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yite Xue
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingfang Wang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Weng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sen Li
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiguo Lü
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Xie
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodong Cheng
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Chaney HL, Grose LF, LaBarbara JM, Sirk AW, Blancke AM, Sánchez JM, Passaro C, Lonergan P, Mathew DJ. Galectin-1 Confers Endometrial Gene Expression and Protein Related to Maternal-Conceptus Immune Tolerance in Cattle. Biol Reprod 2021; 106:487-502. [PMID: 34792096 DOI: 10.1093/biolre/ioab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Conceptus secretory factors include galectins, a family of carbohydrate binding proteins that elicit cell adhesion and immune suppression by interacting with intracellular and extracellular glycans. In rodents, galectin-1 (LGALS1) promotes maternal-fetal immune tolerance in the decidua through expansion of tolerogenic CD11c+ dendritic cells, increased anti-inflammatory IL-10, and activation of FOXP3+ regulatory T cells (Treg). This study characterized galectin expression in early ruminant conceptuses and endometrium. We also tested the effect of recombinant bovine LGALS1 (rbLGALS1) and progesterone (P4) on endometrial expression of genes and protein related to maternal-fetal immune tolerance in cattle. Elongating bovine and ovine conceptuses expressed several galectins, particularly, LGALS1, LGALS3 and LGALS8. Within bovine endometrium, expression of LGALS3, LGALS7 and LGALS9 was greater on Day 16 of pregnancy compared to the estrous cycle. Within ovine endometrium, LGALS7 was greater during pregnancy compared to the estrous cycle and endometrium of pregnant sheep tended to have greater LGALS9 and LGALS15. Expression of endometrial LGALS4 was less during pregnancy in sheep. Treating bovine endometrium with rbLGALS1 increased endometrial expression of CD11c, IL-10 and FOXP3, within 24 h. Specifically, within caruncular endometrium, both rbLGALS1 and P4 increased FOXP3, suggesting that both ligands may promote Treg expansion. Using IHC, FOXP3+ cells with a leukocyte phenotype were localized to the bovine uterine stratum compactum near the uterine surface and increased in response to rbLGALS1. We hypothesize that galectins have important functions during establishment of pregnancy in ruminants and bovine conceptus LGALS1 and luteal P4 confer mechanisms of maternal-conceptus immune tolerance in cattle.
Collapse
Affiliation(s)
- Heather L Chaney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Lindsay F Grose
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jeanna M LaBarbara
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Adam W Sirk
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Alyssa M Blancke
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jose M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Daniel J Mathew
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
19
|
Kyrousi C, O’Neill AC, Brazovskaja A, He Z, Kielkowski P, Coquand L, Di Giaimo R, D’ Andrea P, Belka A, Forero Echeverry A, Mei D, Lenge M, Cruceanu C, Buchsbaum IY, Khattak S, Fabien G, Binder E, Elmslie F, Guerrini R, Baffet AD, Sieber SA, Treutlein B, Robertson SP, Cappello S. Extracellular LGALS3BP regulates neural progenitor position and relates to human cortical complexity. Nat Commun 2021; 12:6298. [PMID: 34728600 PMCID: PMC8564519 DOI: 10.1038/s41467-021-26447-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Basal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood. Here, we study the role of LGALS3BP, so far known as a cancer biomarker, which is a secreted protein enriched in human neural progenitors (NPCs). We show that individuals with LGALS3BP de novo variants exhibit altered local gyrification, sulcal depth, surface area and thickness in their cortex. Additionally, using cerebral organoids, human fetal tissues and mice, we show that LGALS3BP regulates the position of NPCs. Single-cell RNA-sequencing and proteomics reveal that LGALS3BP-mediated mechanisms involve the extracellular matrix in NPCs' anchoring and migration within the human brain. We propose that its temporal expression influences NPCs' delamination, corticogenesis and gyrification extrinsically.
Collapse
Affiliation(s)
- Christina Kyrousi
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, 80804 Munich, Germany ,grid.5216.00000 0001 2155 0800Present Address: First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Greece and University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Adam C. O’Neill
- grid.29980.3a0000 0004 1936 7830Department of Women’s and Children’s Health, University of Otago, 9054 Dunedin, New Zealand
| | - Agnieska Brazovskaja
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Zhisong He
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany ,grid.5801.c0000 0001 2156 2780ETH Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Pavel Kielkowski
- grid.6936.a0000000123222966Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany ,grid.5252.00000 0004 1936 973XPresent Address: Department Chemie Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377 München, Germany
| | - Laure Coquand
- grid.4444.00000 0001 2112 9282Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d’Ulm, F-75005 Paris, France
| | - Rossella Di Giaimo
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, 80804 Munich, Germany ,grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Pierpaolo D’ Andrea
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alexander Belka
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | - Davide Mei
- grid.413181.e0000 0004 1757 8562Neuroscience Department, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy
| | - Matteo Lenge
- grid.413181.e0000 0004 1757 8562Neuroscience Department, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy
| | - Cristiana Cruceanu
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Isabel Y. Buchsbaum
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, 80804 Munich, Germany ,grid.5252.00000 0004 1936 973XGraduate School of Systemic Neurosciences, Ludwig-Maximilians-University, 82152 Munich Planegg, Germany
| | - Shahryar Khattak
- grid.4488.00000 0001 2111 7257DFG-Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), School of Medicine, Technical University Dresden, 01307 Dresden, Germany ,grid.4912.e0000 0004 0488 7120Present Address: Royal College of Surgeons Ireland (RCSI) in Bahrain, Adliya, Kingdom of Bahrain
| | - Guimiot Fabien
- grid.50550.350000 0001 2175 4109Unité de Foetopathologie, Assistance Publique-Hôpitaux de Paris, CHU Robert Debré, F-75019 Paris, France
| | - Elisabeth Binder
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Frances Elmslie
- grid.4464.20000 0001 2161 2573South West Thames Regional Genetics Service, St George’s, University of London, London, SW17 0RE UK
| | - Renzo Guerrini
- grid.413181.e0000 0004 1757 8562Neuroscience Department, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy
| | - Alexandre D. Baffet
- grid.4444.00000 0001 2112 9282Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d’Ulm, F-75005 Paris, France
| | - Stephan A. Sieber
- grid.6936.a0000000123222966Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany
| | - Barbara Treutlein
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany ,grid.5801.c0000 0001 2156 2780ETH Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Stephen P. Robertson
- grid.29980.3a0000 0004 1936 7830Department of Women’s and Children’s Health, University of Otago, 9054 Dunedin, New Zealand
| | - Silvia Cappello
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
20
|
Capone E, Iacobelli S, Sala G. Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J Transl Med 2021; 19:405. [PMID: 34565385 PMCID: PMC8474792 DOI: 10.1186/s12967-021-03085-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
The lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a secreted, hyperglycosylated protein expressed by the majority of human cells. It was first identified as cancer and metastasis associated protein, while its role in innate immune response upon viral infection remains still to be clarified. Since its discovery dated in early 90 s, a large body of literature has been accumulating highlighting both a prognostic and functional role for LGALS3BP in cancer. Moreover, data from our group and other have strongly suggested that this protein is enriched in cancer-associated extracellular vesicles and may be considered a promising candidate for a targeted therapy in LGALS3BP positive cancers. Here, we extensively reviewed the literature relative to LGALS3BP role in cancer and its potential value as a therapeutic target.
Collapse
Affiliation(s)
- Emily Capone
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100, Chieti, Italy
| | | | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100, Chieti, Italy. .,Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
21
|
Wang H, Jiang X, Cheng Y, Ren H, Hu Y, Zhang Y, Su H, Zou Z, Wang Q, Liu Z, Zhang J, Qiu X. MZT2A promotes NSCLC viability and invasion by increasing Akt phosphorylation via the MOZART2 domain. Cancer Sci 2021; 112:2210-2222. [PMID: 33754417 PMCID: PMC8177791 DOI: 10.1111/cas.14900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitotic spindle organizing protein 2A (MZT2A) is localized at the centrosome and regulates microtubule nucleation activity in cells. This study assessed the role of MZT2A in non-small-cell lung cancer (NSCLC). Differential MZT2A expression was bioinformatically assessed using TCGA database, the GEPIA database, and Kaplan-Meier survival data to determine the association between MZT2A expression and NSCLC prognosis. Furthermore, NSCLC tissue specimens were evaluated by immunohistochemistry. MZT2A was overexpressed or knocked down in NSCLC cells using cDNA and siRNA, respectively. The cells were subjected to various assays and treated with the selective Akt inhibitor LY294002 or co-transfected with galectin-3-binding protein (LGALS3BP) siRNA. MZT2A mRNA and protein levels were upregulated in NSCLC lesions and MTZ2A expression was associated with poor NSCLC prognosis. MZT2A protein was also highly expressed in NSCLC cells compared with the expression in normal bronchial cells. MZT2A expression promoted NSCLC cell viability and invasion, whereas MTZ2A siRNA had the opposite effect on NSCLC cells in vitro. At the protein level, MZT2A induced Akt phosphorylation, promoting NSCLC proliferation and invasion (but the selective Akt inhibitor blocked these effects) through upregulation of LGALS3BP via the MTZ2A MOZART2 domain, whereas LGALS3BP siRNA suppressed MTZ2A activity in NSCLC cells. The limited in vivo experiments confirmed the in vitro data. In conclusion, MZT2A exhibits oncogenic activity by activating LGALS3BP and Akt in NSCLC. Future studies will assess MTZ2A as a biomarker to predict NSCLC prognosis or as a target in the control of NSCLC progression.
Collapse
Affiliation(s)
- Huanxi Wang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Xizi Jiang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Yu Cheng
- Department of PathologyChina Medical UniversityShenyangChina
- Departemt of PathologyCancer Research LaboratoryChengde Medical CollegeChengdeChina
| | - Hongjiu Ren
- Department of PathologyChina Medical UniversityShenyangChina
| | - Yujiao Hu
- Department of PathologyChina Medical UniversityShenyangChina
| | - Yao Zhang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Hongbo Su
- Department of PathologyChina Medical UniversityShenyangChina
| | - Zifang Zou
- Department of Thoracic SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Qiongzi Wang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Zongang Liu
- Department of Thoracic SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Jiameng Zhang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Xueshan Qiu
- Department of PathologyChina Medical UniversityShenyangChina
- Department of PathologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
22
|
Zhang L, Huang Y, Lou H, Gong X, Ouyang Q, Yu H. LGALS3BP/Gal-3 promotes osteogenic differentiation of human periodontal ligament stem cells. Arch Oral Biol 2021; 128:105149. [PMID: 34052527 DOI: 10.1016/j.archoralbio.2021.105149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To identify the role of LGALS3BP/Gal-3 in the process of human periodontal ligament stem cells (hPDLSCs) differentiating into osteoblasts. METHODS IP-WB experiments were carried out to examine the binding of LGALS3BP and Gal-3. Western blot was performed to detect the expressions of LGALS3BP and Gal-3 in hPDLSCs with or without osteogenic differentiation inducement. The expressions of differentiation-related Oct4, Sox2 and Runx2 were also detected by western blot. Alkaline Phosphatase (ALP) Assay Kit was used to measure ALP activity in hPDLSCs. The mineralization ability of hPDLSCs was observed by staining with Alizarin Red S solution. RESULTS LGALS3BP bound with Gal-3 in hPDLSCs, and the expression of LGALS3BP and Gal-3 was improved after osteogenic differentiation of hPDLSCs. Recombinant GAL-3 promoted the expression of differentiation-related proteins Oct4 and Sox2 and Runx2 in osteogenic differentiation-induced hPDLSCs. Recombinant GAL-3 also promoted the differentiation of osteogenesis-induced hPDLSCs. Furthermore, LGALS3BP had a facilitating effect on differentiation-related protein expression, while it could be reversed by shGal-3. LGALS3BP also promoted osteogenic capacity of hPDLSCs, and shGal-3 could reverse this effect. CONCLUSION LGALS3BP binds to Gal-3, producing a promoting effect on the osteogenic differentiation of human periodontal ligament stem cells.
Collapse
Affiliation(s)
- Lingpeng Zhang
- Department of Stomatology, Yan'an Hospital of Kunming City, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Yanfei Huang
- Department of Stomatology, Yan'an Hospital of Kunming City, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Huiquan Lou
- Department of Oral and Maxillofacial Surgery, First People's Hospital, the Affiliated Kunhua Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Xuetao Gong
- Department of Stomatology, First People's Hospital, the Affiliated Zhaotong Hospital of Kunming Medical University, Zhaotong 657000, Yunnan Province, China
| | - Qian Ouyang
- Department of Stomatology, Yan'an Hospital of Kunming City, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China.
| | - Hongbin Yu
- Department of Stomatology, Yan'an Hospital of Kunming City, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China.
| |
Collapse
|
23
|
Martínez-Greene JA, Hernández-Ortega K, Quiroz-Baez R, Resendis-Antonio O, Pichardo-Casas I, Sinclair DA, Budnik B, Hidalgo-Miranda A, Uribe-Querol E, Ramos-Godínez MDP, Martínez-Martínez E. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. J Extracell Vesicles 2021; 10:e12087. [PMID: 33936570 PMCID: PMC8077108 DOI: 10.1002/jev2.12087] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer‐based precipitation and size exclusion chromatography (Pre‐SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early‐ and late‐eluting EV fractions, we performed a quantitative proteomic analysis of MDA‐MB‐468‐derived EVs. We identified 286 exclusive proteins in early‐eluting fractions and 148 proteins with a differential concentration between early‐ and late‐eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies.
Collapse
Affiliation(s)
- Juan A Martínez-Greene
- Laboratory of Cell Communication & Extracellular Vesicles Instituto Nacional de Medicina Genómica Mexico City Mexico
| | - Karina Hernández-Ortega
- Departamento de Biología Facultad de Química Universidad Nacional Autónoma de México Ciudad de México México
| | - Ricardo Quiroz-Baez
- Departamento de Investigación Básica Instituto Nacional de Geriatría Mexico City Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory Instituto Nacional de Medicina Genómica Mexico City Mexico.,Coordinación de la Investigación Científica-Red de Apoyo a la Investigación Universidad Nacional Autónoma de México Mexico City Mexico
| | - Israel Pichardo-Casas
- Department of Genetics Paul F. Glenn Labs for the Biology of Aging Harvard Medical School Boston Massachusetts USA
| | - David A Sinclair
- Department of Genetics Paul F. Glenn Labs for the Biology of Aging Harvard Medical School Boston Massachusetts USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory Division of Science Harvard University Cambridge Massachusetts USA
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer Instituto Nacional de Medicina Genómica Mexico City Mexico
| | - Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo División de Estudios de Posgrado e Investigación Facultad de Odontología Universidad Nacional Autónoma de México Mexico City Mexico
| | | | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles Instituto Nacional de Medicina Genómica Mexico City Mexico
| |
Collapse
|
24
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
25
|
Solís-Fernández G, Montero-Calle A, Alonso-Navarro M, Fernandez-Torres MÁ, Lledó VE, Garranzo-Asensio M, Barderas R, Guzman-Aranguez A. Protein Microarrays for Ocular Diseases. Methods Mol Biol 2021; 2344:239-265. [PMID: 34115364 DOI: 10.1007/978-1-0716-1562-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The eye is a multifaceted organ organized in several compartments with particular properties that reflect their diverse functions. The prevalence of ocular diseases is increasing, mainly because of its relationship with aging and of generalized lifestyle changes. However, the pathogenic molecular mechanisms of many common eye pathologies remain poorly understood. Considering the unquestionable importance of proteins in cellular processes and disease progression, proteomic techniques, such as protein microarrays, represent a valuable approach to analyze pathophysiological protein changes in the ocular environment. This technology enables to perform multiplex high-throughput protein expression profiling with minimal sample volume requirements broadening our knowledge of ocular proteome network in eye diseases.In this review, we present a brief summary of the main types of protein microarrays (antibody microarrays, reverse-phase protein microarrays, and protein microarrays) and their application for protein change detection in chronic ocular diseases such as dry eye, age-related macular degeneration, diabetic retinopathy, and glaucoma. The validation of these specific protein changes in eye pathologies may lead to the identification of new biomarkers, depiction of ocular disease pathways, and assistance in the diagnosis, prognosis, and development of new therapeutic options for eye pathologies.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Leuven, Belgium
| | - Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miren Alonso-Navarro
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ángel Fernandez-Torres
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria Eugenia Lledó
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - María Garranzo-Asensio
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
26
|
Zhen S, Cai R, Yang X, Ma Y, Wen D. Association of Serum Galectin-3-Binding Protein and Metabolic Syndrome in a Chinese Adult Population. Front Endocrinol (Lausanne) 2021; 12:726154. [PMID: 34858323 PMCID: PMC8631730 DOI: 10.3389/fendo.2021.726154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Galectin-3-binding protein (GAL-3BP) is a ubiquitous and multifunctional secreted glycoprotein, which functions in innate immunity and has been highlighted as a potential mediator of adipose inflammation in obesity. In this study, we aimed to identify whether GAL-3BP is a novel biological marker for metabolic syndrome (MetS). METHODS The biochemical and anthropometric variables of the 570 participants in this study were evaluated using standard procedures. Their serum GAL-3BP levels were measured using enzyme-linked immunosorbent assay (ELISA), while the association between the glycoprotein and MetS was analyzed using multiple logistic regression analyses. Moreover, an experimental MetS model was established. The expression of GAL-3BP in serum and adipose tissue was measured using ELISA and western blotting. Lipid accumulation was determined with the use of immunohistochemistry and immunofluorescent staining. RESULTS The serum GAL-3BP level was found to be positively associated with MetS. The logistic regression analyses demonstrated that participants expressing the upper levels of GAL-3BP were more likely to develop MetS than those expressing less of the glycoprotein (OR = 2.39, 95%CI: 1.49, 3.83). The association between the serum GAL-3BP level and MetS was found preferentially in postmenopausal women (OR = 2.30, 95%CI: 1.31, 4.05). In addition, GAL-3BP was increased in the serum and visceral adipose tissue (VAT) of high fat diet (HFD) mice. Moreover, GAL-3BP was highly expressed in VAT macrophages. CONCLUSIONS This study confirmed serum GAL-3BP to be positively associated with MetS, highlighting it as a useful biological marker of MetS in Chinese participants.
Collapse
Affiliation(s)
- Shihan Zhen
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Ruoxin Cai
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Xuelian Yang
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, China
- *Correspondence: Deliang Wen,
| |
Collapse
|
27
|
Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. Oncogene 2020; 40:633-646. [PMID: 33208911 DOI: 10.1038/s41388-020-01555-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
Endometrial cancer (EC) is a common gynaecological cancer worldwide. Exosomes, secreted by living cells and detected in various body fluids, can exchange information between organs and compartments to affect cellular functions, such as proliferation, apoptosis, migration and angiogenesis. We hypothesise that plasma exosomal contents are altered during cancer progression and promote cancer growth and angiogenesis by delivering biomolecules to cancer and vascular endothelial cells. In this study, circulating exosomes derived from EC patients and age-matched healthy people were acquired by commercial kits. Cell counting kit-8, Transwell and Matrigel tube formation assays showed that circulating exosomes from EC patients promote EC cell growth and human umbilical vein endothelial cell (HUVEC) angiogenesis. Next, proteomic analysis and ELISA revealed that plasma exosomal lectin galactoside-binding soluble 3 binding protein (LGALS3BP) increased during EC progression. Moreover, to explore the function of exosomal LGALS3BP, we acquired exosomes containing high levels of LGALS3BP by overexpressing LGALS3BP in human embryonic kidney 293 cells, and we demonstrated that highly contained exosomal LGALS3BP contributed to EC cell proliferation and migration and HUVEC functions via the activation of the PI3K/AKT/VEGFA signalling pathway both in vitro and in vivo. Finally, high LGALS3BP expression was observed in human EC tissue, which indicated a poor prognosis. In addition, immunohistochemical analysis of human EC tissues revealed that LGALS3BP expression was correlated with VEGFA expression and blood vessel density. Hence, we proposed that plasma exosomes containing LGALS3BP contributed to EC growth and angiogenesis during EC progression, which also provided a novel perspective on EC diagnosis and prognosis.
Collapse
|
28
|
Investigating LGALS3BP/90 K glycoprotein in the cerebrospinal fluid of patients with neurological diseases. Sci Rep 2020; 10:5649. [PMID: 32221402 PMCID: PMC7101329 DOI: 10.1038/s41598-020-62592-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Galectin-3 binding protein (LGALS3BP or 90 K) is a secreted glycoprotein found in human body fluids. Deregulated levels were observed in cancer and infection and its study in neurological diseases is more recent. Here, we have investigated 90 K from human cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS, n = 35) and other neurological diseases (n = 23). CSF was fractionated by ultrafiltration/size-exclusion chromatography (SEC) and eluted fractions were analysed by complementary techniques including immunoblotting, electron microscopy and nano-liquid chromatography-tandem mass spectrometry. A fraction of 90 K appeared as nanoparticles of irregular shape with heterogeneous dimensions of 15–60 nm that co-eluted with extracellular vesicles in SEC. Median levels of 90 K quantified by ELISA were not different between ALS patients (215.8 ng/ml) and controls (213.3 ng/ml) in contrast with the benchmark biomarker for ALS phosphoneurofilament heavy chain (1750 and 345 pg/ml, respectively). A multiregression model supported age is the only independent predictor of 90 K level in both groups (p < 0.05). Significant correlation was found between 90 K levels and age for the ALS group (r = 0.366, p = 0.031) and for all subjects (r = 0.392, p = 0.003). In conclusion, this study unveils the presence of 90 K-containing nanoparticles in human CSF and opens novel perspectives to further investigate 90 K as potential aging marker.
Collapse
|
29
|
Kimura R, Yoshimaru T, Matsushita Y, Matsuo T, Ono M, Park JH, Sasa M, Miyoshi Y, Nakamura Y, Katagiri T. The GALNT6‑LGALS3BP axis promotes breast cancer cell growth. Int J Oncol 2020; 56:581-595. [PMID: 31894262 DOI: 10.3892/ijo.2019.4941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/24/2019] [Indexed: 11/05/2022] Open
Abstract
Polypeptide N‑acetylgalactosaminyltransferase 6 (GALNT6), which is involved in the initiation of O‑glycosylation, has been reported to play crucial roles in mammary carcinogenesis through binding to several substrates; however, its biological roles in mediating growth‑promoting effects remain unknown. The present study demonstrated a crucial pathophysiological role of GALNT6 through its O‑glycosylation of lectin galactoside‑binding soluble 3 binding protein (LGALS3BP), a secreted growth‑promoting glycoprotein, in breast cancer growth. The Cancer Genome Atlas data analysis revealed that high expression levels of GALNT6 were significantly associated with poor prognosis of breast cancer. GALNT6 O‑glycosylated LGALS3BP in breast cancer cells, whereas knockdown of GALNT6 by siRNA led to the inhibition of both the O‑glycosylation and secretion of LGALS3BP, resulting in the suppression of breast cancer cell growth. Notably, LGALS3BP is potentially O‑glycosylated at three sites (T556, T571 and S582) by GALNT6, thereby promoting autocrine cell growth, whereas the expression of LGALS3BP with three Ala substitutions (T556A, T571A and S582A) in cells drastically reduced GALNT6‑dependent LGALS3BP O‑glycosylation and secretion, resulting in suppression of autocrine growth‑promoting effect. The findings of the present study suggest that the GALNT6‑LGALS3BP axis is crucial for breast cancer cell proliferation and may be a therapeutic target and biomarker for mammary tumors.
Collapse
Affiliation(s)
- Ryuichiro Kimura
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Taisuke Matsuo
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Jae-Hyun Park
- Cancer Precision Medicine, Inc., Kawasaki, Kanagawa 210‑0821, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Tokushima 770‑0052, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135‑8550, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| |
Collapse
|
30
|
Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells. Sci Rep 2019; 9:15329. [PMID: 31653931 PMCID: PMC6814750 DOI: 10.1038/s41598-019-51778-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small extracellular vesicles (sEVs), playing a crucial role in the intercellular communication in physiological as well as pathological processes. Here, we aimed to study whether the melanoma-derived sEV-mediated communication could adapt to microenvironmental stresses. We compared B16F1 cell-derived sEVs released under normal and stress conditions, including cytostatic, heat and oxidative stress. The miRNome and proteome showed substantial differences across the sEV groups and bioinformatics analysis of the obtained data by the Ingenuity Pathway Analysis also revealed significant functional differences. The in silico predicted functional alterations of sEVs were validated by in vitro assays. For instance, melanoma-derived sEVs elicited by oxidative stress increased Ki-67 expression of mesenchymal stem cells (MSCs); cytostatic stress-resulted sEVs facilitated melanoma cell migration; all sEV groups supported microtissue generation of MSC-B16F1 co-cultures in a 3D tumour matrix model. Based on this study, we concluded that (i) molecular patterns of tumour-derived sEVs, dictated by the microenvironmental conditions, resulted in specific response patterns in the recipient cells; (ii) in silico analyses could be useful tools to predict different stress responses; (iii) alteration of the sEV-mediated communication of tumour cells might be a therapy-induced host response, with a potential influence on treatment efficacy.
Collapse
|
31
|
Xu G, Xia Z, Deng F, Liu L, Wang Q, Yu Y, Wang F, Zhu C, Liu W, Cheng Z, Zhu Y, Zhou L, Zhang Y, Lu M, Liu S. Inducible LGALS3BP/90K activates antiviral innate immune responses by targeting TRAF6 and TRAF3 complex. PLoS Pathog 2019; 15:e1008002. [PMID: 31404116 PMCID: PMC6705879 DOI: 10.1371/journal.ppat.1008002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/22/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
The galectin 3 binding protein (LGALS3BP, also known as 90K) is a ubiquitous multifunctional secreted glycoprotein originally identified in cancer progression. It remains unclear how 90K functions in innate immunity during viral infections. In this study, we found that viral infections resulted in elevated levels of 90K. Further studies demonstrated that 90K expression suppressed virus replication by inducing IFN and pro-inflammatory cytokine production. Upon investigating the mechanisms behind this event, we found that 90K functions as a scaffold/adaptor protein to interact with TRAF6, TRAF3, TAK1 and TBK1. Furthermore, 90K enhanced TRAF6 and TRAF3 ubiquitination and served as a specific ubiquitination substrate of TRAF6, leading to transcription factor NF-κB, IRF3 and IRF7 translocation from the cytoplasm to the nucleus. Conclusions: 90K is a virus-induced protein capable of binding with the TRAF6 and TRAF3 complex, leading to IFN and pro-inflammatory production. The innate immune system detects the presence of viruses through germline-encoded pattern-recognition receptors (PRRs) and leads to the production of proinflammatory cytokines and interferons (IFNs) as the first line of defense against viral infections. Here, we identified a host protein, LGALS3BP, as a positive regulator of PRR-mediated signal transduction pathways by interacting with TRAF6-TAK1 and TRAF3-TBK1 axes, enhancing their recruitment and promoting the ubiquitination of TRAF6 and TRAF3. LGALS3BP exhibited antiviral activity toward a broad range of viral infections. LGALS3BP-/- mice are highly susceptible to lethal influenza A virus infection with increasing pulmonary viral load, morbidity and mortality. Thus, our study highlight the importance of LGALS3BP in host antiviral innate immune responses.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhangchuan Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Yi Yu
- The Key Laboratory of Biosystems Homeostasis and Protection of the Ministry of Education and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiyong Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, School of Medicine, Wuhan University, Wuhan, China
| | - Yi Zhang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering, Hubei University of Technology, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
32
|
Zhang X, Ding H, Lu Z, Ding L, Song Y, Jing Y, Hu Q, Dong Y, Ni Y. Increased LGALS3BP promotes proliferation and migration of oral squamous cell carcinoma via PI3K/AKT pathway. Cell Signal 2019; 63:109359. [PMID: 31302247 DOI: 10.1016/j.cellsig.2019.109359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
Abstract
Previous studies showed that lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is an important participant in tumor progression. However, its prognostic value and functional mechanism in oral squamous cell carcinoma (OSCC) are still unclear. In this study, we analyzed LGALS3BP expression in OSCC tissues via Oncomine databases and immunohistochemical staining. LGALS3BP was significantly up-regulated in OSCC tumor tissues. IHC analysis showed that LGALS3BP was predominantly expressed in tumor cells and correlated with poor clinical characteristics. In addition, high LGALS3BP expression predicted poor clinical outcomes and multivariate analysis revealed that LGALS3BP expression was as an independent prognostic factor for OS, DFS and RFS (p < .0001, p = .002, p = .002). Mechanically, LGALS3BP regulated OSCC proliferation and migration via PI3K/AKT pathways, which was abrogated by PI3K inhibitor LY294002 in a dose-dependent manner. Our results suggested that LGALS3BP could be served as a novel independent prognostic factor as well as a potential therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haoyue Ding
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhanyi Lu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yingchun Dong
- Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
33
|
Garranzo-Asensio M, Montero-Calle A, Solís-Fernández G, Barderas R, Guzman-Aranguez A. Protein Microarrays: Valuable Tools for Ocular Diseases Research. Curr Med Chem 2019; 27:4549-4566. [PMID: 31244416 DOI: 10.2174/0929867326666190627131300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
The eye is a complex organ comprised of several compartments with exclusive and specialized properties that reflect their diverse functions. Although the prevalence of eye pathologies is increasing, mainly because of its correlation with aging and of generalized lifestyle changes, the pathogenic molecular mechanisms of many common ocular diseases remain poorly understood. Therefore, there is an unmet need to delve into the pathogenesis, diagnosis, and treatment of eye diseases to preserve ocular health and reduce the incidence of visual impairment or blindness. Proteomics analysis stands as a valuable tool for deciphering protein profiles related to specific ocular conditions. In turn, such profiles can lead to real breakthroughs in the fields of ocular science and ophthalmology. Among proteomics techniques, protein microarray technology stands out by providing expanded information using very small volumes of samples. In this review, we present a brief summary of the main types of protein microarrays and their application for the identification of protein changes in chronic ocular diseases such as dry eye, glaucoma, age-related macular degeneration, or diabetic retinopathy. The validation of these specific protein alterations could provide new biomarkers, disclose eye diseases pathways, and help in the diagnosis and development of novel therapies for eye pathologies.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain
| | - Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain
| |
Collapse
|
34
|
Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish. Sci Rep 2019; 9:1509. [PMID: 30728369 PMCID: PMC6365535 DOI: 10.1038/s41598-018-36605-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated the pro-tumoral role of neutrophils using a kras-induced zebrafish hepatocarcinogenesis model. To further illustrate the molecular basis of the pro-tumoral role, Tumor-associated neutrophils (TANs) were isolated by fluorescence-activated cell sorting (FACS) and transcriptomic analyses were carried out by RNA-Seq. Differentially expressed gene profiles of TANs from larvae, male and female livers indicate great variations during liver tumorigenesis, but the common responsive canonical pathways included an immune pathway (Acute Phase Response Signaling), a liver metabolism-related pathway (LXR/RXR Activation) and Thrombin Signaling. Consistent with the pro-tumoral role of TANs, gene module analysis identified a consistent down-regulation of Cytotoxicity module, which may allow continued proliferation of malignant cells. Gene Set Enrichment Analysis indicated up-regulation of several genes promoting angiogenesis. Consistent with this, we found decreased density of blood vessels accompanied with decreased oncogenic liver sizes in neutrophil-depleted larvae. Collectively, our study has indicated some molecular mechanisms of the pro-tumoral roles of TANs in hepatocarcinogenesis, including weakened immune clearance against tumor cells and enhanced function in angiogenesis.
Collapse
|
35
|
A Druggable Genome Screen Identifies Modifiers of α-Synuclein Levels via a Tiered Cross-Species Validation Approach. J Neurosci 2018; 38:9286-9301. [PMID: 30249792 DOI: 10.1523/jneurosci.0254-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023] Open
Abstract
Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.
Collapse
|
36
|
Loimaranta V, Hepojoki J, Laaksoaho O, Pulliainen AT. Galectin-3-binding protein: A multitask glycoprotein with innate immunity functions in viral and bacterial infections. J Leukoc Biol 2018; 104:777-786. [PMID: 29882603 DOI: 10.1002/jlb.3vmr0118-036r] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3-binding protein (Gal-3BP) is a ubiquitous and multifunctional secreted glycoprotein originally identified and mainly studied in the context of neoplastic transformation and cancer progression. However, Gal-3BP expression is induced in viral infection and by a multitude of molecules that either mimic or are characteristic for an ongoing inflammation and microbial infection, such as IFN-α, IFN-β, IFN-γ, TNF-α, poly(I:C), dsRNA, and dsDNA. Furthermore, Gal-3BP belongs to the scavenger receptor cysteine-rich (SRCR) domain-containing protein family, by virtue of its N-terminal SRCR domain. The SRCR domain is found in soluble or membrane-associated innate immunity-related proteins and is implicated in self-nonself discrimination. This review summarizes the current knowledge of structural features of Gal-3BP and its proposed intracellular and extracellular innate immunity functions with special emphasis on viral and bacterial infections.
Collapse
Affiliation(s)
- Vuokko Loimaranta
- Institute of Dentistry, University of Turku, Turku, Finland.,Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland.,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Olli Laaksoaho
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Arto T Pulliainen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| |
Collapse
|
37
|
Qu H, Chen Y, Cao G, Liu C, Xu J, Deng H, Zhang Z. Identification and validation of differentially expressed proteins in epithelial ovarian cancers using quantitative proteomics. Oncotarget 2018; 7:83187-83199. [PMID: 27825122 PMCID: PMC5347761 DOI: 10.18632/oncotarget.13077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/19/2016] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignant tumor because of its high recurrence rate. In the present work, in order to find new therapeutic targets, we identified 8480 proteins in thirteen pairs of ovarian cancer tissues and normal ovary tissues through quantitative proteomics. 498 proteins were found to be differentially expressed in ovarian cancer, which involved in various cellular processes, including metabolism, response to stimulus and biosynthetic process. The expression levels of chloride intracellular channel protein 1 (CLIC1) and lectin galactoside-binding soluble 3 binding protein (LGALS3BP) in epithelial ovarian cancer tissues were significantly higher than those in normal ovary tissues as confirmed by western blotting and immunohistochemistry. The knockdown of CLIC1 in A2780 cell line downregulated expression of CTPS1, leading to the decrease of CTP and an arrest of cell cycle G1 phase, which results into a slower proliferation. CLIC1-knockdown can also slow down the tumor growth in vivo. Besides, CLIC1-knockdown cells showed an increased sensitivity to hydrogen peroxide and cisplatin, suggesting that CLIC1 was involved in regulation of redox and drug resistance in ovarian cancer cells. These results indicate CLIC1 promotes tumorgenesis, and is a potential therapeutic target in epithelial ovarian cancer treatment.
Collapse
Affiliation(s)
- Hong Qu
- Department of Obstetrics & Gynecology, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yuling Chen
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.,MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guangming Cao
- Department of Obstetrics & Gynecology, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chongdong Liu
- Department of Obstetrics & Gynecology, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jiatong Xu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics & Gynecology, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Garranzo-Asensio M, San Segundo-Acosta P, Martínez-Useros J, Montero-Calle A, Fernández-Aceñero MJ, Häggmark-Månberg A, Pelaez-Garcia A, Villalba M, Rabano A, Nilsson P, Barderas R. Identification of prefrontal cortex protein alterations in Alzheimer's disease. Oncotarget 2018. [PMID: 29541381 PMCID: PMC5834268 DOI: 10.18632/oncotarget.24303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in developed countries. A better understanding of the events taking place at the molecular level would help to identify novel protein alterations, which might be used in diagnosis or for treatment development. In this study, we have performed the high-throughput analysis of 706 molecules mostly implicated in cell-cell communication and cell signaling processes by using two antibody microarray platforms. We screened three AD pathological groups -each one containing four pooled samples- from Braak stages IV, V and VI, and three control groups from two healthy subjects, five frontotemporal and two vascular dementia patients onto Panorama and L-Series antibody microarrays to identify AD-specific alterations not common to other dementias. Forty altered proteins between control and AD groups were detected, and validated by i) meta-analysis of mRNA alterations, ii) WB, and iii) FISH and IHC using an AD-specific tissue microarray containing 44 samples from AD patients at different Braak stages, and frontotemporal and vascular dementia patients and healthy individuals as controls. We identified altered proteins in AD not common to other dementias like the E3 ubiquitin-protein ligase TOPORS, Layilin and MICB, and validated the association to AD of the previously controverted proteins DDIT3 and the E3 ubiquitin-protein ligase XIAP. These altered proteins constitute interesting targets for further immunological analyses using sera, plasma and CSF to identify AD blood- or cerebrospinal fluid-biomarkers and to perform functional analysis to determine their specific role in AD, and their usefulness as potential therapeutic targets of intervention.
Collapse
Affiliation(s)
- Maria Garranzo-Asensio
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain
| | - Pablo San Segundo-Acosta
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Ana Montero-Calle
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain
| | - María Jesús Fernández-Aceñero
- Servicio de Anatomía Patológica Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Departamento de Anatomía Patològica, Facultad de Medicina, Complutense University of Madrid, Madrid, Spain
| | - Anna Häggmark-Månberg
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | | | - Mayte Villalba
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain
| | - Alberto Rabano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Rodrigo Barderas
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain.,UFIEC, National Institute of Health Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
39
|
Wu X, Meng Y, Wang C, Yue Y, Dong C, Xiong S. Semaphorin7A aggravates coxsackievirusB3-induced viral myocarditis by increasing α1β1-integrin macrophages and subsequent enhanced inflammatory response. J Mol Cell Cardiol 2018; 114:48-57. [DOI: 10.1016/j.yjmcc.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022]
|
40
|
Park SY, Yoon S, Sun EG, Zhou R, Bae JA, Seo YW, Chae JI, Paik MJ, Ha HH, Kim H, Kim KK. Glycoprotein 90K Promotes E-Cadherin Degradation in a Cell Density-Dependent Manner via Dissociation of E-Cadherin-p120-Catenin Complex. Int J Mol Sci 2017; 18:ijms18122601. [PMID: 29207493 PMCID: PMC5751204 DOI: 10.3390/ijms18122601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Glycoprotein 90K (also known as LGALS3BP or Mac-2BP) is a tumor-associated protein, and high 90K levels are associated with poor prognosis in some cancers. To clarify the role of 90K as an indicator for poor prognosis and metastasis in epithelial cancers, the present study investigated the effect of 90K on an adherens junctional protein, E-cadherin, which is frequently absent or downregulated in human epithelial cancers. Treatment of certain cancer cells with 90K significantly reduced E-cadherin levels in a cell-population-dependent manner, and these cells showed decreases in cell adhesion and increases in invasive cell motility. Mechanistically, 90K-induced E-cadherin downregulation occurred via ubiquitination-mediated proteasomal degradation. 90K interacted with the E-cadherin–p120-catenin complex and induced its dissociation, altering the phosphorylation status of p120-catenin, whereas it did not associate with β-catenin. In subconfluent cells, 90K decreased membrane-localized p120-catenin and the membrane fraction of the p120-catenin. Particularly, 90K-induced E-cadherin downregulation was diminished in p120-catenin knocked-down cells. Taken together, 90K upregulation promotes the dissociation of the E-cadherin–p120-catenin complex, leading to E-cadherin proteasomal degradation, and thereby destabilizing adherens junctions in less confluent tumor cells. Our results provide a potential mechanism to explain the poor prognosis of cancer patients with high serum 90K levels.
Collapse
Affiliation(s)
- So-Yeon Park
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Somy Yoon
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Eun Gene Sun
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Jeong A Bae
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896, Korea.
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Kyung Keun Kim
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| |
Collapse
|
41
|
Bekki Y, Yoshizumi T, Shimoda S, Itoh S, Harimoto N, Ikegami T, Kuno A, Narimatsu H, Shirabe K, Maehara Y. Hepatic stellate cells secreting WFA + -M2BP: Its role in biological interactions with Kupffer cells. J Gastroenterol Hepatol 2017; 32:1387-1393. [PMID: 28008658 DOI: 10.1111/jgh.13708] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 12/11/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Hepatic stellate cells (HSCs) play a central role in hepatic fibrosis and are regulated by Kupffer cells (KCs). Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA+ -M2BP) was recently identified as a serum marker for hepatic fibrosis. Although WFA+ -M2BP was identified as a ligand of Mac-2, the function of WFA+ -M2BP in hepatic fibrosis remains unclear. METHODS Liver specimens were obtained from five patients with cirrhosis, five with chronic hepatitis, and five without hepatic fibrosis. WFA+ -M2BP kinetics were evaluated histologically and in subpopulations of liver cells such as HSCs, KCs, endothelial cells, biliary epithelial cells, and hepatocytes in in vitro culture. The function of WFA+ -M2BP in activated HSCs was evaluated using immunoblot analysis. RESULTS Numbers of WFA+ -M2BP-positive cells in liver tissues increased with fibrosis stage. There were significant differences in WFA+ -M2BP levels between fibrosis stages F0 and F1-2 (P = 0.012) and between fibrosis stages F1-2 and F3-4 (P < 0.001). HSCs were the source of WFA+ -M2BP secretion in in vitro cultures of liver cells, as determined by sandwich immunoassay. Cells of the human HSC line LX-2 also secreted WFA+ -M2BP. Histologically, tissue sections showed that WFA+ -M2BP was located in Mac-2-expressing KCs. In vitro assays showed that exogenous WFA+ -M2BP stimulation enhanced Mac-2 expression in KCs and that HSCs co-cultured with KCs increased α-smooth muscle actin expression. Finally, Mac-2-depleted KCs with short interfering RNA had reduced α-smooth muscle actin expression following co-culturing with HSCs. CONCLUSIONS WFA+ -M2BP from HSCs induces Mac-2 expression in KCs, which in turn activates HSCs to be fibrogenic.
Collapse
Affiliation(s)
- Yuki Bekki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Norifumi Harimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Maebashi, Gunma, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
42
|
Galectin-3 binding protein, coronary artery disease and cardiovascular mortality: Insights from the LURIC study. Atherosclerosis 2017; 260:121-129. [PMID: 28390290 DOI: 10.1016/j.atherosclerosis.2017.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Galectin-3 binding protein (Gal-3BP) has been associated with inflammation and cancer, however, its role in coronary artery disease (CAD) and cardiovascular outcome remains unclear. METHODS Gal-3BP plasma levels were measured by ELISA in 2922 individuals from the LURIC study (62.7 ± 10.6 years, 62.7% male). All-cause and cardiovascular mortality was assessed by Kaplan-Meier analysis and Cox proportional hazards regression. Causal involvement of Gal-3BP was tested for by Mendelian randomization. Gal-3BP effects on human monocyte-derived macrophages were assessed in vitro. RESULTS During 8.8 ± 3.0 years, 866 individuals died, 654 of cardiovascular causes. There was a significant increase in all-cause and cardiovascular mortality with increasing Gal-3BP quintiles. After thorough adjustment, all-cause mortality remained significantly increased in the fifth Gal-3BP quintile (HRQ5 1.292 (1.030-1.620), p = 0.027); cardiovascular mortality remained increased in Gal-3BP quintiles two to five (HRQ51.433 (1.061-1.935, p = 0.019). Gal-3BP levels were not associated with diagnosis and extent of coronary artery disease. In addition, Mendelian randomization did not show a direct causal relationship between Gal-3BP levels and mortality. Gal-3BP levels were, however, independently associated with markers of metabolic and inflammatory distress. In vitro, Gal-3BP induced a pro-inflammatory response in human monocyte-derived macrophages. Adding Gal-3BP levels to the ESC score improved risk assessment in patients with ESC SCORE-based risk >5% (p = 0.010). CONCLUSIONS In a large clinical cohort of CAD patients, Gal-3BP levels are independently associated with all-cause and cardiovascular mortality. The underlying mechanisms may likely involve metabolic and inflammatory distress. To further evaluate the potential clinical value of Gal-3BP, prospective studies are needed.
Collapse
|
43
|
Woo JK, Jang JE, Kang JH, Seong JK, Yoon YS, Kim HC, Lee SJ, Oh SH. Lectin, Galactoside-Binding Soluble 3 Binding Protein Promotes 17-N-Allylamino-17-demethoxygeldanamycin Resistance through PI3K/Akt Pathway in Lung Cancer Cell Line. Mol Cancer Ther 2017; 16:1355-1365. [PMID: 28336809 DOI: 10.1158/1535-7163.mct-16-0574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022]
Abstract
Heat shock protein 90 (HSP90) stabilizing oncoproteins has been an attractive target in cancer therapy. 17-N-Allylamino-17-demethoxygeldanamycin (17-AAG), an HSP90 inhibitor, was tested in phase II/III clinical trials, but due to lack of efficacy, clinical evaluation of 17-AAG has achieved limited success, which led to resistance to 17-AAG. However, the mechanism of 17-AAG resistance has not clearly been identified. Here, we identified LGALS3BP (Lectin, galactoside-binding soluble 3 binding protein), a secretory glycoprotein, as a 17-AAG resistance factor. In the clinical reports, it was suggested that LGALS3BP was associated with low survival rate, development of cancer progression, and enhancement of metastasis in human cancers. As we confirmed that the LGALS3BP level was increased in 17-AAG-resistant cells (H1299_17R) compared with that of the parental cell line (H1299_17P), knockdown of LGALS3BP expression increased sensitivity to 17-AAG in H1299_17R cells. Overexpression of LGALS3BP also augmented PI3K/Akt and ERK signaling pathways. Furthermore, we determined that the PI3K/Akt signaling pathway was involved in LGALS3BP-mediated 17-AAG resistance in vitro and in vivo, demonstrating that LGALS3BP mediates the resistance against 17-AAG through PI3K/Akt activation rather than ERK activation. These findings suggest that LGALS3BP would be a target to overcome resistance to 17-AAG in lung cancer. For example, the combination of 17-AAG and PI3K/Akt inhibitor would effectively suppress acquired resistance to 17-AAG. In conclusion, targeting of LGALS3BP-mediated-specific survival signaling pathway in resistant cells may provide a novel therapeutic model for the cancer therapy. Mol Cancer Ther; 16(7); 1355-65. ©2017 AACR.
Collapse
Affiliation(s)
- Jong Kyu Woo
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jeong-Eun Jang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Research Institute National Cancer Center, Goyang-si, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yeo Sung Yoon
- Laboratory of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyoung-Chin Kim
- Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Republic of Korea
| | - Sang-Jin Lee
- Research Institute National Cancer Center, Goyang-si, Republic of Korea.
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
44
|
Lau CPY, Kwok JSL, Tsui JCC, Huang L, Yang KY, Tsui SKW, Kumta SM. Genome-Wide Transcriptome Profiling of the Neoplastic Giant Cell Tumor of Bone Stromal Cells by RNA Sequencing. J Cell Biochem 2017; 118:1349-1360. [PMID: 27862217 DOI: 10.1002/jcb.25792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
Abstract
Giant cell tumor of bone (GCTB) is the most common non-malignant primary bone tumor reported in Hong Kong. Failure of treatment in advanced GCTB with aggressive local recurrence remains a clinical challenge. In order to reveal the molecular mechanism underlying the pathogenesis of this tumor, we aimed to examine the transcriptome profiling of the neoplastic stromal cells of GCTB in this study. RNA-sequencing was performed on three GCTB stromal cell samples and one bone marrow-derived MSC sample and 174 differentially expressed genes (DEGs) were identified between these two cell types. The top five up-regulated genes are SPP1, F3, TSPAN12, MMP13, and LGALS3BP and further validated by qPCR and Western Blotting. Knockdown of SPP1 was found to induce RUNX2 and OPG expression in GCTB stromal cells but not the MSCs. Ingenuity pathway analysis (IPA) of the 174 DEGs revealed significant alternations in 23 pathways; variant calling analysis revealed 1915 somatic variants of 384 genes with high or moderate impacts. Interestingly, four canonical pathways were found overlapping in both analyses; from which VEGFA, CSF1, PLAUR, and F3 genes with somatic mutation were found up-regulated in GCTB stromal cells. The STRING diagram showed two main clusters of the DEGs; one cluster of histone genes that are down-regulated in GCTB samples and another related to osteoblast differentiation, angiogenesis, cell cycle progression, and tumor growth. The DEGs and somatic mutations found in our study warrant further investigation and validation, nevertheless, our study add new insights in the search for new therapeutic targets in treating GCTB. J. Cell. Biochem. 118: 1349-1360, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carol P Y Lau
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jamie S L Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph C C Tsui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Huang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shekhar Madhukar Kumta
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Jeoung M, Jang ER, Liu J, Wang C, Rouchka EC, Li X, Galperin E. Shoc2-tranduced ERK1/2 motility signals--Novel insights from functional genomics. Cell Signal 2016; 28:448-459. [PMID: 26876614 DOI: 10.1016/j.cellsig.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
Abstract
The extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway plays a central role in defining various cellular fates. Scaffold proteins modulating ERK1/2 activity control growth factor signals transduced by the pathway. Here, we analyzed signals transduced by Shoc2, a critical positive modulator of ERK1/2 activity. We found that loss of Shoc2 results in impaired cell motility and delays cell attachment. As ERKs control cellular fates by stimulating transcriptional response, we hypothesized that the mechanisms underlying changes in cell adhesion could be revealed by assessing the changes in transcription of Shoc2-depleted cells. Using quantitative RNA-seq analysis, we identified 853 differentially expressed transcripts. Characterization of the differentially expressed genes showed that Shoc2 regulates the pathway at several levels, including expression of genes controlling cell motility, adhesion, crosstalk with the transforming growth factor beta (TGFβ) pathway, and expression of transcription factors. To understand the mechanisms underlying delayed attachment of cells depleted of Shoc2, changes in expression of the protein of extracellular matrix (lectin galactoside-binding soluble 3-binding protein; LGALS3BP) were functionally analyzed. We demonstrated that delayed adhesion of the Shoc2-depleted cells is a result of attenuated expression and secretion of LGALS3BP. Together our results suggest that Shoc2 regulates cell motility by modulating ERK1/2 signals to cell adhesion.
Collapse
Affiliation(s)
- Myoungkun Jeoung
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, United States
| | - Eun Ryoung Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, United States
| | - Jinpeng Liu
- Markey Cancer Center and Department of Biostatistics, University of Kentucky, Lexington, KY 40536, United States
| | - Chi Wang
- Markey Cancer Center and Department of Biostatistics, University of Kentucky, Lexington, KY 40536, United States
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, United States
| | - Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, United States; Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40292, United States
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
46
|
Comparative proteome analysis across non-small cell lung cancer cell lines. J Proteomics 2015; 130:1-10. [PMID: 26361996 DOI: 10.1016/j.jprot.2015.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) cell lines are widely used model systems to study molecular aspects of lung cancer. Comparative and in-depth proteome expression data across many NSCLC cell lines has not been generated yet, but would be of utility for the investigation of candidate targets and markers in oncogenesis. We employed a SILAC reference approach to perform replicate proteome quantifications across 23 distinct NSCLC cell lines. On average, close to 4000 distinct proteins were identified and quantified per cell line. These included many known targets and diagnostic markers, indicating that our proteome expression data represents a useful resource for NSCLC pre-clinical research. To assess proteome diversity within the NSCLC cell line panel, we performed hierarchical clustering and principal component analysis of proteome expression data. Our results indicate that general proteome diversity among NSCLC cell lines supersedes potential effects common to K-Ras or epidermal growth factor receptor (EGFR) oncoprotein expression. However, we observed partial segregation of EGFR or KRAS mutant cell lines for certain principal components, which reflected biological differences according to gene ontology enrichment analyses. Moreover, statistical analysis revealed several proteins that were significantly overexpressed in KRAS or EGFR mutant cell lines.
Collapse
|
47
|
Lawrenson K, Mhawech-Fauceglia P, Worthington J, Spindler TJ, O'Brien D, Lee JM, Spain G, Sharifian M, Wang G, Darcy KM, Pejovic T, Sowter H, Timms JF, Gayther SA. Identification of novel candidate biomarkers of epithelial ovarian cancer by profiling the secretomes of three-dimensional genetic models of ovarian carcinogenesis. Int J Cancer 2015; 137:1806-17. [PMID: 25204737 DOI: 10.1002/ijc.29197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 12/27/2022]
Abstract
Epithelial ovarian cancer (EOC) is still considered the most lethal gynecological malignancy and improved early detection of ovarian cancer is crucial to improving patient prognoses. To address this need, we tested whether candidate EOC biomarkers can be identified using three-dimensional (3D) in vitro models. We quantified changes in the abundance of secreted proteins in a 3D genetic model of early-stage EOC, generated by expressing CMYC and KRAS(G) (12) (V) in TERT-immortalized normal ovarian epithelial cells. Cellular proteins were labeled in live cells using stable isotopic amino acid analogues, and secreted proteins identified and quantified using liquid chromatography-tandem mass spectrometry. Thirty-seven and 55 proteins were differentially expressed by CMYC and CMYC+KRAS(G) (12) (V) expressing cells respectively (p < 0.05; >2-fold). We evaluated expression of the top candidate biomarkers in ∼210 primary EOCs: CHI3L1 and FKBP4 are both expressed by >96% of primary EOCs, and FASN and API5 are expressed by 86 and 75% of cases. High expression of CHI3L1 and FKBP4 was associated with worse patient survival (p = 0.042 and p = 0.002, respectively). Expression of LGALS3BP was positively associated with recurrence (p = 0.0001) and suboptimal debulking (p = 0.018) suggesting that these proteins may be novel prognostic biomarkers. Furthermore, within early stage tumours (I/II), high expression of API5, CHI3L1 and FASN was associated with high tumour grade (p = 3 × 10(-4) , p = 0.016, p = 0.010, respectively). We show in vitro cell biology models of early-stage cancer development can be used to identify novel candidate biomarkers for disease, and report the identification of proteins that represent novel potential candidate diagnostic and prognostic biomarkers for this highly lethal disease.
Collapse
Affiliation(s)
- Kate Lawrenson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Paulette Mhawech-Fauceglia
- Departments of Medicine and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jenny Worthington
- Cancer Proteomics Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Tassja J Spindler
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Darragh O'Brien
- Cancer Proteomics Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Janet M Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Georgia Spain
- Cancer Proteomics Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Maryam Sharifian
- Departments of Medicine and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Guisong Wang
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale, VA
| | - Kathleen M Darcy
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale, VA
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR
| | - Heidi Sowter
- Biological and Forensic Science Department, University of Derby, Derby, United Kingdom
| | - John F Timms
- Cancer Proteomics Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
48
|
Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Int J Mol Sci 2014; 15:23705-24. [PMID: 25530619 PMCID: PMC4284788 DOI: 10.3390/ijms151223705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
Lunasin is a plant derived bioactive peptide with both cancer chemopreventive and therapeutic activity. We recently showed lunasin inhibits non-small cell lung cancer (NSCLC) cell proliferation in a cell-line-specific manner. We now compared the effects of lunasin treatment of lunasin-sensitive (H661) and lunasin-insensitive (H1299) NSCLC cells with respect to lunasin uptake, histone acetylation and integrin signaling. Both cell lines exhibited changes in histone acetylation, with H661 cells showing a unique increase in H4K16 acetylation. Proximity ligation assays demonstrated lunasin interacted with integrins containing αv, α5, β1 and β3 subunits to a larger extent in the H661 compared to H1299 cells. Moreover, lunasin specifically disrupted the interaction of β1 and β3 subunits with the downstream signaling components phosphorylated Focal Adhesion Kinase (pFAK), Kindlin and Intergrin Linked Kinase in H661 cells. Immunoblot analyses demonstrated lunasin treatment of H661 resulted in reduced levels of pFAK, phosphorylated Akt and phosphorylated ERK1/2 whereas no changes were observed in H1299 cells. Silencing of αv expression in H661 cells confirmed signaling through integrins containing αv is essential for proliferation. Moreover, lunasin was unable to further inhibit proliferation in αv-silenced H661 cells. This indicates antagonism of integrin signaling via αv-containing integrins is an important component of lunasin’s mechanism of action.
Collapse
|
49
|
Läubli H, Alisson-Silva F, Stanczak MA, Siddiqui SS, Deng L, Verhagen A, Varki N, Varki A. Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a tumor-associated immunomodulatory ligand for CD33-related Siglecs. J Biol Chem 2014; 289:33481-91. [PMID: 25320078 DOI: 10.1074/jbc.m114.593129] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lectin galactoside-binding soluble 3 binding protein (LGALS3BP, also called Mac-2 binding protein) is a heavily glycosylated secreted molecule that has been shown previously to be up-regulated in many cancers and has been implicated in tumor metastatic processes, as well as in other cell adhesion and immune functions. The CD33-related subset of sialic acid-binding immunoglobulin-like lectins (Siglecs) consists of immunomodulatory molecules that have recently been associated with the modulation of immune responses to cancer. Because up-regulation of Siglec ligands in cancer tissue has been observed, the characterization of these cancer-associated ligands that bind to inhibitory CD33-related Siglecs could provide novel targets for cancer immunomodulatory therapy. Here we used affinity chromatography of tumor cell extracts to identify LGALS3BP as a novel sialic acid-dependent ligand for human Siglec-9 and for other immunomodulatory Siglecs, such as Siglec-5 and Siglec-10. In contrast, the mouse homolog Siglec-E binds to murine LGALS3BP with lower affinity. LGALS3BP has been observed to be up-regulated in human colorectal and prostate cancer specimens, particularly in the extracellular matrix. Finally, LGALS3BP was able to inhibit neutrophil activation in a sialic acid- and Siglec-dependent manner. These findings suggest a novel immunoinhibitory function for LGALS3BP that might be important for immune evasion of tumor cells during cancer progression.
Collapse
Affiliation(s)
- Heinz Läubli
- From the Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Frederico Alisson-Silva
- From the Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Michal A Stanczak
- From the Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Shoib S Siddiqui
- From the Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Liwen Deng
- From the Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Andrea Verhagen
- From the Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Nissi Varki
- From the Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Ajit Varki
- From the Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|