1
|
Zhao Q, Han B, Wang L, Wu J, Wang S, Ren Z, Wang S, Yang H, Carbone M, Dong C, Melino G, Chen WL, Jia W. AKR1B1-dependent fructose metabolism enhances malignancy of cancer cells. Cell Death Differ 2024; 31:1611-1624. [PMID: 39406918 PMCID: PMC11618507 DOI: 10.1038/s41418-024-01393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Fructose metabolism has emerged as a significant contributor to cancer cell proliferation, yet the underlying mechanisms and sources of fructose for cancer cells remain incompletely understood. In this study, we demonstrate that cancer cells can convert glucose into fructose through a process called the AKR1B1-mediated polyol pathway. Inhibiting the endogenous production of fructose through AKR1B1 deletion dramatically suppressed glycolysis, resulting in reduced cancer cell migration, inhibited growth, and the induction of apoptosis and cell cycle arrest. Conversely, the acceleration of endogenous fructose through AKR1B1 overexpression has been shown to significantly enhance cancer cell proliferation and migration with increased S cell cycle progression. Our findings highlight the crucial role of endogenous fructose in cancer cell malignancy and support the need for further investigation into AKR1B1 as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Qing Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bing Han
- Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Lu Wang
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhenxing Ren
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haining Yang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Michele Carbone
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Wightman B. It's about time: the heterochronic background for the 2024 Nobel Prize in Physiology or Medicine. Dis Model Mech 2024; 17:dmm052187. [PMID: 39601149 PMCID: PMC11625885 DOI: 10.1242/dmm.052187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The 2024 Nobel Prize in Physiology or Medicine has been awarded to Victor Ambros and Gary Ruvkun "for the discovery of microRNA and its role in post-transcriptional gene regulation". The award celebrates the discovery of small regulatory miRNAs and their mRNA targets, published over three decades ago. The groundwork for this discovery was laid during the early 1980s, when Ambros began studying mutations that caused heterochronic defects in the nematode Caenorhabditis elegans - or shifts in the temporal identities of cells. A major impetus to study the heterochronic genes of C. elegans was to gain mechanistic understanding of how developmental stages are specified - a fascinating question in basic and evolutionary biology. Asking fundamental biological questions with no immediate application to human health ultimately led to the discovery of a new type of RNA, which had broad implications for understanding and treating human disease.
Collapse
Affiliation(s)
- Bruce Wightman
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| |
Collapse
|
3
|
Razavipour SF, Yoon H, Jang K, Kim M, Nawara HM, Bagheri A, Huang WC, Shin M, Zhao D, Zhou Z, Van Boven D, Briegel K, Morey L, Ince TA, Johnson M, Slingerland JM. C-terminally phosphorylated p27 activates self-renewal driver genes to program cancer stem cell expansion, mammary hyperplasia and cancer. Nat Commun 2024; 15:5152. [PMID: 38886396 PMCID: PMC11183067 DOI: 10.1038/s41467-024-48742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
In many cancers, a stem-like cell subpopulation mediates tumor initiation, dissemination and drug resistance. Here, we report that cancer stem cell (CSC) abundance is transcriptionally regulated by C-terminally phosphorylated p27 (p27pT157pT198). Mechanistically, this arises through p27 co-recruitment with STAT3/CBP to gene regulators of CSC self-renewal including MYC, the Notch ligand JAG1, and ANGPTL4. p27pTpT/STAT3 also recruits a SIN3A/HDAC1 complex to co-repress the Pyk2 inhibitor, PTPN12. Pyk2, in turn, activates STAT3, creating a feed-forward loop increasing stem-like properties in vitro and tumor-initiating stem cells in vivo. The p27-activated gene profile is over-represented in STAT3 activated human breast cancers. Furthermore, mammary transgenic expression of phosphomimetic, cyclin-CDK-binding defective p27 (p27CK-DD) increases mammary duct branching morphogenesis, yielding hyperplasia and microinvasive cancers that can metastasize to liver, further supporting a role for p27pTpT in CSC expansion. Thus, p27pTpT interacts with STAT3, driving transcriptional programs governing stem cell expansion or maintenance in normal and cancer tissues.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Razavipour
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Hyunho Yoon
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon-si, South Korea
| | - Kibeom Jang
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Minsoon Kim
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Hend M Nawara
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Amir Bagheri
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Wei-Chi Huang
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Miyoung Shin
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Dekuang Zhao
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Zhiqun Zhou
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Derek Van Boven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Karoline Briegel
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Fl, USA
| | - Lluis Morey
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Tan A Ince
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Johnson
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA
| | - Joyce M Slingerland
- Cancer Host Interactions Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, USA.
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Fl, USA.
| |
Collapse
|
4
|
Sun W, Jiang C, Liu Q, Wang N, Huang R, Jiang G, Yang Y. Exosomal noncoding RNAs: decoding their role in thyroid cancer progression. Front Endocrinol (Lausanne) 2024; 15:1337226. [PMID: 38933820 PMCID: PMC11199389 DOI: 10.3389/fendo.2024.1337226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Exosomes, as pivotal entities within the tumor microenvironment, orchestrate intercellular communication through the transfer of diverse molecules, among which non-coding RNAs (ncRNAs) such as miRNAs, lncRNAs, and circRNAs play a crucial role. These ncRNAs, endowed with regulatory functions, are selectively incorporated into exosomes. Emerging evidence underscores the significance of exosomal ncRNAs in modulating key oncogenic processes in thyroid cancer (TC), including proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunoediting. The unique composition of exosomes shields their cargo from enzymatic and chemical degradation, ensuring their integrity and facilitating their specific expression in plasma. This positions exosomal ncRNAs as promising candidates for novel diagnostic and prognostic biomarkers in TC. Moreover, the potential of exosomes in the therapeutic landscape of TC is increasingly recognized. This review aims to elucidate the intricate relationship between exosomal ncRNAs and TC, fostering a deeper comprehension of their mechanistic involvement. By doing so, it endeavors to propel forward the exploration of exosomal ncRNAs in TC, ultimately paving the way for innovative diagnostic and therapeutic strategies predicated on exosomes and their ncRNA content.
Collapse
Affiliation(s)
- Weiming Sun
- The First Hospital of Lanzhou University, Endocrinology Department, Lanzhou, China
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Gengchen Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Benke M, Zeöld A, Kittel Á, Khamari D, Hritz I, Horváth M, Keczer B, Borka K, Szücs Á, Wiener Z. MiR-200b categorizes patients into pancreas cystic lesion subgroups with different malignant potential. Sci Rep 2023; 13:19820. [PMID: 37963969 PMCID: PMC10646105 DOI: 10.1038/s41598-023-47129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Extracellular vesicles (EV) carry their cargo in a membrane protected form, however, their value in early diagnostics is not well known. Although pancreatic cysts are heterogeneous, they can be clustered into the larger groups of pseudocysts (PC), and serous and mucinous pancreatic cystic neoplasms (S-PCN and M-PCN, respectively). In contrast to PCs and S-PCNs, M-PCNs may progress to malignant pancreatic cancers. Since current diagnostic tools do not meet the criteria of high sensitivity and specificity, novel methods are urgently needed to differentiate M-PCNs from other cysts. We show that cyst fluid is a rich source of EVs that are positive and negative for the EV markers CD63 and CD81, respectively. Whereas we found no difference in the EV number when comparing M-PCN with other pancreatic cysts, our EV-based biomarker identification showed that EVs from M-PCNs had a higher level of miR-200b. We also prove that not only EV-derived, but also total cyst fluid miR-200b discriminates patients with M-PCN from other pancreatic cysts with a higher sensitivity and specificity compared to other diagnostic methods, providing the possibility for clinical applications. Our results show that measuring miR-200b in cyst fluid-derived EVs or from cyst fluid may be clinically important in categorizing patients.
Collapse
Affiliation(s)
- Márton Benke
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Anikó Zeöld
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell and Immunobiology, and HUN-REN-SU Translational Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
| | - István Hritz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Miklós Horváth
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Bánk Keczer
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Ákos Szücs
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary.
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Chauhan N, Manojkumar A, Jaggi M, Chauhan SC, Yallapu MM. microRNA-205 in prostate cancer: Overview to clinical translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188809. [PMID: 36191828 PMCID: PMC9996811 DOI: 10.1016/j.bbcan.2022.188809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Prostate cancer (PrCa) is the most common type of cancer among men in the United States. The metastatic and advanced PrCa develops drug resistance to current regimens which accounts for the poor management. microRNAs (miRNAs) have been well-documented for their diagnostic, prognostic, and therapeutic roles in various human cancers. Recent literature confirmed that microRNA-205 (miR-205) has been established as one of the tumor suppressors in PrCa. miR-205 regulates number of cellular functions, such as proliferation, invasion, migration/metastasis, and apoptosis. It is also evident that miR-205 can serve as a key biomarker in diagnostic, prognostic, and therapy of PrCa. Therefore, in this review, we will provide an overview of tumor suppressive role of miR-205 in PrCa. This work also outlines miR-205's specific role in targeted mechanisms for chemosensitization and radiosensitization in PrCa. A facile approach of delivery paths for successful clinical translation is documented. Together, all these studies provide a novel insight of miR-205 as an adjuvant agent for reducing the widening gaps in clinical outcome of PrCa patients.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anjali Manojkumar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
7
|
Dicer-mediated miR-200b expression contributes to cell migratory/invasive abilities and cancer stem cells properties of breast cancer cells. Aging (Albany NY) 2022; 14:6520-6536. [PMID: 35951366 PMCID: PMC9467414 DOI: 10.18632/aging.204205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Distant metastasis is the leading cause of death in patients with breast cancer. Despite considerable treatment advances, the clinical outcomes of patients with metastatic breast cancer remain poor. CSCs can self-renew, enhancing cancer progression and metastasis. Dicer, a microRNA (miRNA) processing–related enzyme, is required for miRNA maturation. Imbalanced Dicer expression may be pivotal in cancer progression. However, whether and how Dicer affects the stemness of metastatic breast cancer cells remains unclear. Here, we hypothesized that Dicer regulates the migration, invasion, and stemness of breast cancer cells. We established highly invasive cell lines (MCF-7/I-3 and MDA-MB-231/I-3) and observed that Dicer expression was conspicuously lower in the highly invasive cells than in the parental cells. The silencing of Dicer significantly enhanced the cell migratory/invasive abilities and CSCs properties of the breast cancer cells. Conversely, the overexpression of Dicer in the highly invasive cells reduced their migration, invasion, and CSCs properties. Our bioinformatics analyses demonstrated that low Dicer levels were correlated with increased breast cancer risk. Suppression of Dicer inhibited miR-200b expression, whereas miR-200b suppression recovered Dicer knockdown–induced migration, invasion, and cancer stem cells (CSCs) properties of the breast cancer cells. Thus, our findings reveal that Dicer is a crucial regulator of the migration, invasion, and CSCs properties of breast cancer cells and is significantly associated with poor survival in patients with breast cancer.
Collapse
|
8
|
Bashir KMI, Lee S, Jung DH, Basu SK, Cho MG, Wierschem A. Narrow-Gap Rheometry: A Novel Method for Measuring Cell Mechanics. Cells 2022; 11:2010. [PMID: 35805094 PMCID: PMC9265971 DOI: 10.3390/cells11132010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/18/2022] Open
Abstract
The viscoelastic properties of a cell cytoskeleton contain abundant information about the state of a cell. Cells show a response to a specific environment or an administered drug through changes in their viscoelastic properties. Studies of single cells have shown that chemical agents that interact with the cytoskeleton can alter mechanical cell properties and suppress mitosis. This envisions using rheological measurements as a non-specific tool for drug development, the pharmacological screening of new drug agents, and to optimize dosage. Although there exists a number of sophisticated methods for studying mechanical properties of single cells, studying concentration dependencies is difficult and cumbersome with these methods: large cell-to-cell variations demand high repetition rates to obtain statistically significant data. Furthermore, method-induced changes in the cell mechanics cannot be excluded when working in a nonlinear viscoelastic range. To address these issues, we not only compared narrow-gap rheometry with commonly used single cell techniques, such as atomic force microscopy and microfluidic-based approaches, but we also compared existing cell monolayer studies used to estimate cell mechanical properties. This review provides insight for whether and how narrow-gap rheometer could be used as an efficient drug screening tool, which could further improve our current understanding of the mechanical issues present in the treatment of human diseases.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
| | - Suhyang Lee
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| | - Dong Hee Jung
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Division of Energy and Bioengineering, Dongseo University, Busan 47011, Korea
| | - Santanu Kumar Basu
- Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| | - Man-Gi Cho
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Division of Energy and Bioengineering, Dongseo University, Busan 47011, Korea
| | - Andreas Wierschem
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| |
Collapse
|
9
|
Sundararajan V, Burk UC, Bajdak-Rusinek K. Revisiting the miR-200 Family: A Clan of Five Siblings with Essential Roles in Development and Disease. Biomolecules 2022; 12:biom12060781. [PMID: 35740906 PMCID: PMC9221129 DOI: 10.3390/biom12060781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Over two decades of studies on small noncoding RNA molecules illustrate the significance of microRNAs (miRNAs/miRs) in controlling multiple physiological and pathological functions through post-transcriptional and spatiotemporal gene expression. Among the plethora of miRs that are essential during animal embryonic development, in this review, we elaborate the indispensable role of the miR-200 family (comprising miR-200a, -200b, 200c, -141, and -429) in governing the cellular functions associated with epithelial homeostasis, such as epithelial differentiation and neurogenesis. Additionally, in pathological contexts, miR-200 family members are primarily involved in tumor-suppressive roles, including the reversal of the cancer-associated epithelial–mesenchymal transition dedifferentiation process, and are dysregulated during organ fibrosis. Moreover, recent eminent studies have elucidated the crucial roles of miR-200s in the pathophysiology of multiple neurodegenerative diseases and tissue fibrosis. Lastly, we summarize the key studies that have recognized the potential use of miR-200 members as biomarkers for the diagnosis and prognosis of cancers, elaborating the application of these small biomolecules in aiding early cancer detection and intervention.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Ulrike C. Burk
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
10
|
Pal AK, Sharma P, Zia A, Siwan D, Nandave D, Nandave M, Gautam RK. Metabolomics and EMT Markers of Breast Cancer: A Crosstalk and Future Perspective. PATHOPHYSIOLOGY 2022; 29:200-222. [PMID: 35736645 PMCID: PMC9230911 DOI: 10.3390/pathophysiology29020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer cells undergo transient EMT and MET phenomena or vice versa, along with the parallel interplay of various markers, often correlated as the determining factor in decoding metabolic profiling of breast cancers. Moreover, various cancer signaling pathways and metabolic changes occurring in breast cancer cells modulate the expression of such markers to varying extents. The existing research completed so far considers the expression of such markers as determinants regulating the invasiveness and survival of breast cancer cells. Therefore, this manuscript is crosstalk among the expression levels of such markers and their correlation in regulating the aggressiveness and invasiveness of breast cancer. We also attempted to cover the possible EMT-based metabolic targets to retard migration and invasion of breast cancer.
Collapse
Affiliation(s)
- Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Prateek Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Alishan Zia
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Dipali Nandave
- Department of Dravyaguna, Karmavir V. T. Randhir Ayurved College, Boradi 425428, India;
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
- Correspondence: (M.N.); (R.K.G.)
| | - Rupesh K. Gautam
- Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Ambala 134007, India
- Correspondence: (M.N.); (R.K.G.)
| |
Collapse
|
11
|
Micro-RNA-215 and -375 regulate thymidylate synthase protein expression in pleural mesothelioma and mediate epithelial to mesenchymal transition. Virchows Arch 2022; 481:233-244. [PMID: 35461395 PMCID: PMC9343276 DOI: 10.1007/s00428-022-03321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/15/2022]
Abstract
The standard front-line treatment for pleural mesothelioma (PM) is pemetrexed-based chemotherapy, whose major target is thymidylate synthase (TS). In several cancer models, miR-215 and miR-375 have been shown to target TS, while information on these miRNAs in PM are still limited although suggest their role in epithelial to mesenchymal transition. Seventy-one consecutive PM tissues (4 biphasic, 7 sarcomatoid, and 60 epithelioid types) and 16 commercial and patient-derived PM cell lines were screened for TS, miR-215, and miR-375 expression. REN and 570B cells were selected for miR-215 and miR-375 transient transfections to test TS modulation. ZEB1 protein expression in tumor samples was also tested. Moreover, genetic profile was investigated by means of BAP1 and p53 immunohistochemistry. Expression of both miR-215 and miR-375 was significantly higher in epithelioid histotype. Furthermore, inverse correlation between TS protein and both miR-215 and miR-375 expression was found. Efficiently transfected REN and 570B cell lines overexpressing miR-215 and miR-375 showed decreased TS protein levels. Epithelioid PM with a mesenchymal component highlighted by reticulin stain showed significantly higher TS and ZEB1 protein and lower miRNA expression. A better survival was recorded for BAP1 lost/TS low cases. Our data indicate that miR-215 and miR-375 are involved in TS regulation as well as in epithelial-to-mesenchymal transition in PM.
Collapse
|
12
|
Citron F, Segatto I, Musco L, Pellarin I, Rampioni Vinciguerra GL, Franchin G, Fanetti G, Miccichè F, Giacomarra V, Lupato V, Favero A, Concina I, Srinivasan S, Avanzo M, Castiglioni I, Barzan L, Sulfaro S, Petrone G, Viale A, Draetta GF, Vecchione A, Belletti B, Baldassarre G. miR-9 modulates and predicts the response to radiotherapy and EGFR inhibition in HNSCC. EMBO Mol Med 2021; 13:e12872. [PMID: 34062049 PMCID: PMC8261495 DOI: 10.15252/emmm.202012872] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) plus the anti-EGFR monoclonal antibody Cetuximab (CTX) is an effective combination therapy for a subset of head and neck squamous cell carcinoma (HNSCC) patients. However, predictive markers of efficacy are missing, resulting in many patients treated with disappointing results and unnecessary toxicities. Here, we report that activation of EGFR upregulates miR-9 expression, which sustains the aggressiveness of HNSCC cells and protects from RT-induced cell death. Mechanistically, by targeting KLF5, miR-9 regulates the expression of the transcription factor Sp1 that, in turn, stimulates tumor growth and confers resistance to RT+CTX in vitro and in vivo. Intriguingly, high miR-9 levels have no effect on the sensitivity of HNSCC cells to cisplatin. In primary HNSCC, miR-9 expression correlated with Sp1 mRNA levels and high miR-9 expression predicted poor prognosis in patients treated with RT+CTX. Overall, we have discovered a new signaling axis linking EGFR activation to Sp1 expression that dictates the response to combination treatments in HNSCC. We propose that miR-9 may represent a valuable biomarker to select which HNSCC patients might benefit from RT+CTX therapy.
Collapse
Affiliation(s)
- Francesca Citron
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ilenia Segatto
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Lorena Musco
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Ilenia Pellarin
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Gian Luca Rampioni Vinciguerra
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
- Faculty of Medicine and PsychologyDepartment of Clinical and Molecular MedicineUniversity of Rome “Sapienza”Santo Andrea HospitalRomeItaly
| | - Giovanni Franchin
- Oncologic Radiotherapy UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Giuseppe Fanetti
- Oncologic Radiotherapy UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Francesco Miccichè
- Università Cattolica del Sacro CuoreFondazione Policlinico Universitario Agostino GemelliPolo Scienze Oncologiche ed EmatologicheRomeItaly
| | - Vittorio Giacomarra
- Division of OtorhinolaryngologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Valentina Lupato
- Division of OtorhinolaryngologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Andrea Favero
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Isabella Concina
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Sanjana Srinivasan
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Michele Avanzo
- Medical Physics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and PhysiologyNational Research Council (IBFM‐CNR)MilanItaly
- Department of PhysicsUniversità degli Studi di Milano‐BicoccaMilanItaly
| | - Luigi Barzan
- Division of OtorhinolaryngologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Sandro Sulfaro
- Division of PathologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Gianluigi Petrone
- Università Cattolica del Sacro CuoreFondazione Policlinico Universitario Agostino GemelliPolo Scienze Oncologiche ed EmatologicheRomeItaly
- Present address:
Centro Diagnostica MINERVARomeItaly
| | - Andrea Viale
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Giulio F Draetta
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Andrea Vecchione
- Faculty of Medicine and PsychologyDepartment of Clinical and Molecular MedicineUniversity of Rome “Sapienza”Santo Andrea HospitalRomeItaly
| | - Barbara Belletti
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Gustavo Baldassarre
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| |
Collapse
|
13
|
Govindaraj V, Kar S. Role of microRNAs in oncogenesis: Insights from computational and systems‐level modeling approaches. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Sandip Kar
- Department of Chemistry IIT Bombay Mumbai India
| |
Collapse
|
14
|
Fitriana M, Hwang WL, Chan PY, Hsueh TY, Liao TT. Roles of microRNAs in Regulating Cancer Stemness in Head and Neck Cancers. Cancers (Basel) 2021; 13:cancers13071742. [PMID: 33917482 PMCID: PMC8038798 DOI: 10.3390/cancers13071742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are epithelial malignancies with 5-year overall survival rates of approximately 40-50%. Emerging evidence indicates that a small population of cells in HNSCC patients, named cancer stem cells (CSCs), play vital roles in the processes of tumor initiation, progression, metastasis, immune evasion, chemo-/radioresistance, and recurrence. The acquisition of stem-like properties of cancer cells further provides cellular plasticity for stress adaptation and contributes to therapeutic resistance, resulting in a worse clinical outcome. Thus, targeting cancer stemness is fundamental for cancer treatment. MicroRNAs (miRNAs) are known to regulate stem cell features in the development and tissue regeneration through a miRNA-target interactive network. In HNSCCs, miRNAs act as tumor suppressors and/or oncogenes to modulate cancer stemness and therapeutic efficacy by regulating the CSC-specific tumor microenvironment (TME) and signaling pathways, such as epithelial-to-mesenchymal transition (EMT), Wnt/β-catenin signaling, and epidermal growth factor receptor (EGFR) or insulin-like growth factor 1 receptor (IGF1R) signaling pathways. Owing to a deeper understanding of disease-relevant miRNAs and advances in in vivo delivery systems, the administration of miRNA-based therapeutics is feasible and safe in humans, with encouraging efficacy results in early-phase clinical trials. In this review, we summarize the present findings to better understand the mechanical actions of miRNAs in maintaining CSCs and acquiring the stem-like features of cancer cells during HNSCC pathogenesis.
Collapse
Affiliation(s)
- Melysa Fitriana
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Otorhinolaryngology Head and Neck Surgery Department, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Center of Excellence, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Pak-Yue Chan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.C.); (T.-Y.H.)
| | - Tai-Yuan Hsueh
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.C.); (T.-Y.H.)
| | - Tsai-Tsen Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: ; Tel.: +886-2736-1661 (ext. 3435)
| |
Collapse
|
15
|
Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers (Basel) 2021; 13:cancers13071674. [PMID: 33918136 PMCID: PMC8037840 DOI: 10.3390/cancers13071674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review provides a critical overview of the state of the art of the characterization of the immunological profile of a rare component of the tumors, denominated cancer stem cells (CSCs) or cancer initiating cells (CICs). These cells are endowed with the ability to form and propagate tumors and resistance to therapies, including the most innovative approaches. These investigations contribute to understanding the mechanisms regulating the interaction of CSCs/CICs with the immune system and identifying novel therapeutic approaches to render these cells visible and susceptible to immune responses. Abstract Cancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity. CSCs/CICs, as observed in multiple studies, display either the aberrant expression of immunomodulatory molecules or suboptimal levels of molecules involved in antigen processing and presentation, leading to immune evasion. MicroRNAs (miRNAs) that can regulate either stemness properties or their immunological profile, with in some cases dual functions, can provide insights into these mechanisms and possible interventions to develop novel therapeutic strategies targeting CSCs/CICs and reverting their immunogenicity. In this review, we provide an overview of the immunoregulatory features of CSCs/CICs including miRNA profiles involved in the regulation of the interplay between stemness and immunological properties.
Collapse
|
16
|
Gollavilli PN, Parma B, Siddiqui A, Yang H, Ramesh V, Napoli F, Schwab A, Natesan R, Mielenz D, Asangani IA, Brabletz T, Pilarsky C, Ceppi P. The role of miR-200b/c in balancing EMT and proliferation revealed by an activity reporter. Oncogene 2021; 40:2309-2322. [PMID: 33654197 PMCID: PMC7994202 DOI: 10.1038/s41388-021-01708-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Since their discovery, microRNAs (miRNAs) have been widely studied in almost every aspect of biology and medicine, leading to the identification of important gene regulation circuits and cellular mechanisms. However, investigations are generally focused on the analysis of their downstream targets and biological functions in overexpression and knockdown approaches, while miRNAs endogenous levels and activity remain poorly understood. Here, we used the cellular plasticity-regulating process of epithelial-to-mesenchymal transition (EMT) as a model to show the efficacy of a fluorescent sensor to separate cells with distinct EMT signatures, based on miR-200b/c activity. The system was further combined with a CRISPR-Cas9 screening platform to unbiasedly identify miR-200b/c upstream regulating genes. The sensor allows to infer miRNAs fundamental biological properties, as profiling of sorted cells indicated miR-200b/c as a molecular switch between EMT differentiation and proliferation, and suggested a role for metabolic enzymes in miR-200/EMT regulation. Analysis of miRNAs endogenous levels and activity for in vitro and in vivo applications could lead to a better understanding of their biological role in physiology and disease.
Collapse
Affiliation(s)
- Paradesi Naidu Gollavilli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Aarif Siddiqui
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hai Yang
- Department of Surgery, Friedrich-Alexander University of Erlangen- Nuremberg (FAU) and University Hospital of Erlangen, Erlangen, Germany
| | - Vignesh Ramesh
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Francesca Napoli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.,Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Annemarie Schwab
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Dirk Mielenz
- Department of Molecular Immunology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Irfan Ahmed Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Thomas Brabletz
- Department of Experimental Medicine-I, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen- Nuremberg (FAU) and University Hospital of Erlangen, Erlangen, Germany
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany. .,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
17
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
18
|
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13:136. [PMID: 33059744 PMCID: PMC7559894 DOI: 10.1186/s13045-020-00966-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these factors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metastasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of more precise and personalized antitumor therapies is discussed.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Health Sciences, University of Jaén, 23071, Jaén, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
19
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
20
|
Ramesh V, Brabletz T, Ceppi P. Targeting EMT in Cancer with Repurposed Metabolic Inhibitors. Trends Cancer 2020; 6:942-950. [PMID: 32680650 DOI: 10.1016/j.trecan.2020.06.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) determines the most lethal features of cancer, metastasis formation and chemoresistance, and therefore represents an attractive target in oncology. However, direct targeting of EMT effector molecules is, in most cases, pharmacologically challenging. Since emerging research has highlighted the distinct metabolic circuits involved in EMT, we propose the use of metabolism-specific inhibitors, FDA approved or under clinical trials, as a drug repurposing approach to target EMT in cancer. Metabolism-inhibiting drugs could be coupled with standard chemo- or immunotherapy to combat EMT-driven resistant and aggressive cancers.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Interdisciplinary Centre for Clinical Research, University Hospital Erlangen, FAU-Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine-I and Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paolo Ceppi
- Interdisciplinary Centre for Clinical Research, University Hospital Erlangen, FAU-Erlangen-Nuremberg, Erlangen, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
21
|
Wu KJ. The role of miRNA biogenesis and DDX17 in tumorigenesis and cancer stemness. Biomed J 2020; 43:107-114. [PMID: 32513392 PMCID: PMC7283569 DOI: 10.1016/j.bj.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer stemness represents one of the major mechanisms that predispose patients to tumor aggressiveness, metastasis, and treatment resistance. MicroRNA biogenesis is an important process controlling miRNA processing and maturation. Deregulation of miRNA biogenesis can lead to tumorigenesis and cancer stemness. DDX17 is a co-factor of the miRNA microprocessor. Misregulation of DDX17 can be associated with cancer stemness. K63-linked polyubiquitination of DDX17 presents a concerted mechanism of decreased synthesis of stemness-inhibiting miRNAs and increased transcriptional activation of stemness-related gene expression. K63-linked polyubiquitination of HAUSP serves as a scaffold to anchor HIF-1α, CBP, the mediator complex, and the super-elongation complex to enhance HIF-1α-induced gene transcription. Recent progress in RNA modifications shows that RNA N6-methyladenosine (m6A) modification is a crucial mechanism to regulate RNA levels. M6A modification of miRNAs can also be linked to tumorigenesis and cancer stemness. Overall, miRNA biogenesis and K63-linked polyubiquitination of DDX17 play an important role in the induction of cancer stemness. Delineation of the mechanisms and identification of suitable targets may provide new therapeutic options for treatment-resistant cancers.
Collapse
Affiliation(s)
- Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Zhang M, Du H, Wang L, Yue Y, Zhang P, Huang Z, Lv W, Ma J, Shao Q, Ma M, Liang X, Yang T, Wang W, Zeng J, Chen G, Wang X, Fan J. Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chem Biol Interact 2020; 320:109022. [DOI: 10.1016/j.cbi.2020.109022] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
|
23
|
A non-proliferative role of pyrimidine metabolism in cancer. Mol Metab 2020; 35:100962. [PMID: 32244187 PMCID: PMC7096759 DOI: 10.1016/j.molmet.2020.02.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background Nucleotide metabolism is a critical pathway that generates purine and pyrimidine molecules for DNA replication, RNA synthesis, and cellular bioenergetics. Increased nucleotide metabolism supports uncontrolled growth of tumors and is a hallmark of cancer. Agents inhibiting synthesis and incorporation of nucleotides in DNA are widely used as chemotherapeutics to reduce tumor growth, cause DNA damage, and induce cell death. Thus, the research on nucleotide metabolism in cancer is primarily focused on its role in cell proliferation. However, in addition to proliferation, the role of purine molecules is established as ligands for purinergic signals. However, so far, the role of the pyrimidines has not been discussed beyond cell growth. Scope of the review In this review we present the key evidence from recent pivotal studies supporting the notion of a non-proliferative role for pyrimidine metabolism (PyM) in cancer, with a special focus on its effect on differentiation in cancers from different origins. Major conclusion In leukemic cells, the pyrimidine catabolism induces terminal differentiation toward monocytic lineage to check the aberrant cell proliferation, whereas in some solid tumors (e.g., triple negative breast cancer and hepatocellular carcinoma), catalytic degradation of pyrimidines maintains the mesenchymal-like state driven by epithelial-to-mesenchymal transition (EMT). This review further broadens this concept to understand the effect of PyM on metastasis and, ultimately, delivers a rationale to investigate the involvement of the pyrimidine molecules as oncometabolites. Overall, understanding the non-proliferative role of PyM in cancer will lead to improvement of the existing antimetabolites and to development of new therapeutic options.
Collapse
|
24
|
Shan J, Al-Muftah MA, Al-Kowari MK, Abuaqel SWJ, Al-Rumaihi K, Al-Bozom I, Li P, Chouchane L. Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer. Cell Death Discov 2019; 5:139. [PMID: 31583122 PMCID: PMC6768854 DOI: 10.1038/s41420-019-0218-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PC) castration resistance has been linked to the differentiation of PC luminal cells into hormone-refractory neuroendocrine (NE) cells. However, the molecular mechanisms controlling the emergence of lethal NE prostate cancer (NEPC) remain unclear. The present study aimed to investigate the mechanisms underlying the transition from prostate adenocarcinoma to NEPC. The microRNA miR-708 was involved in NE differentiation and was downregulated in NEPC cells and tumor specimens. miR-708 targeted Sestrin-3 to inhibit Forkhead Box O1 (FOXO1) phosphorylation, resulting in apoptosis of prostate adenocarcinoma cells and AKT-inactivated NEPC cells, the latter of which was consistent with the progression of tumor xenografts in mice under miR-708 treatment. In silico analysis of PC and NEPC tumor specimens suggested that the polycomb repressive complex subunit Enhancer of zeste homolog 2 (EZH2) was particularly overexpressed in NEPC. Notably, EZH2 bound to the miR-708 promoter and induced its silencing in NEPC. Inhibition of EZH2 prevented NE differentiation of PC cells. EZH2 expression was regulated by both Cyclin Dependent Kinase 1 (CDK1) and Wnt signaling. Silencing transcription factor 4 (TCF4), as a key protein in Wnt signaling, prevented NEPC formation. These results provide a molecular basis for the roles of miR-708 and EZH2 in NE differentiation in PC and highlight a new paradigm in NEPC formation and survival.
Collapse
Affiliation(s)
- Jingxuan Shan
- 1Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10065 USA.,2Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065 USA.,Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Mariam A Al-Muftah
- 4Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Moza K Al-Kowari
- 4Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sirin W J Abuaqel
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Issam Al-Bozom
- 6Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Pu Li
- 7Department of Pediatrics, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Lotfi Chouchane
- 1Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10065 USA.,2Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065 USA.,Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
25
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
26
|
Ma X, Liu J, Li J, Li Y, Le VM, Li S, Liang X, Liu L, Liu J. miR-139-5p reverses stemness maintenance and metastasis of colon cancer stem-like cells by targeting E2-2. J Cell Physiol 2019; 234:22703-22718. [PMID: 31120140 DOI: 10.1002/jcp.28836] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022]
Abstract
Colon cancer stem cells (CCSCs) stand for a critical subpopulation of colon cancer cells that possess self-renewal and multilineage differentiation potentials and drive tumorigenicity. Due to their impact on treatment tolerance, CCSCs have been a hot research topic in the past few years. We have previously reported that miR-139-5p is a vital tumor repressive noncoding RNA whose level decreases in the clinical colon cancer samples with the increase of tumor malignancy. This research discovered that miR-139-5p targets the Wnt/β-catenin/TCF7L2 downstream effector E2-2 in CCSCs. E2-2 is a pivot molecule in the negative feedback loop of miR-139-5p/Wnt/β-catenin/TCF7L2. Its small interfering RNA reverses the stemness maintenance and epithelial-mesenchymal transition of colon cancer CSCs. This study provides a theoretical foundation for the clinical diagnosis and medical treatment of recurrent or metastatic colon cancer with miR-139-5p and its target E2-2.
Collapse
Affiliation(s)
- Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yueqi Li
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Van Minh Le
- Research Center of Ginseng and Medicinal Materials, National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Shaoyu Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lingshuang Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Liu S, Qiu J, Tang X, Cui H, Zhang Q, Yang Q. LncRNA-H19 regulates cell proliferation and invasion of ectopic endometrium by targeting ITGB3 via modulating miR-124-3p. Exp Cell Res 2019; 381:215-222. [PMID: 31085188 DOI: 10.1016/j.yexcr.2019.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
Abstract
Endometriosis, a common gynecological disease, is associated with pelvic pain and infertility. Endometriosis affects approximately 10% of women, but that number increases to 30-50% in symptomatic premenopausal women. Despite the prevalence of endometriosis, the cause has yet to be fully elucidated. Recent study of the molecular pathways of endometrial cancer has brought the long non-coding RNA (lncRNA) H19 to our attention. In this paper, we explored the role of lncRNA-H19 in endometrial tissue proliferation. We found that ectopic endometrial cells taken from women with endometriosis showed elevated levels of lncRNA-H19, with expression levels correlating to disease progression. Knockdown of H19 in ectopic endometrial cells inhibited cell proliferation and invasion. Coinciding with this change was an increase in microRNA-124-3p (miR-124-3p) and a decrease in integrin beta-3 (ITGB3) levels. The addition of a miR-124-3p inhibitor mitigated this decrease in ITGB3. Up-regulation of miR-124-3p markedly suppressed ITGB3 expression by binding to the 3' untranslated region (3' UTR), while inhibition of miR-124-3p had the opposite effect. ITGB3 overexpression potently counteracted the effects of miR-124-3p mimics on ectopic endometrial cells. From these results, we can infer that in endometriosis both miR-124-3p and ITGB3 operate as downstream effector proteins in the H19-signaling pathway. Down-regulation of lncRNA-H19 could inhibit ectopic endometrial cell proliferation and invasion by modulating miR-124-3p and ITGB3, offering a novel target for treatment.
Collapse
Affiliation(s)
- Songping Liu
- Department of Obstetrics and Gynecology, Zhenjiang Maternal and Child Hospital, Zhenjiang, Jiangsu, 212001, China; Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China.
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Hongyan Cui
- Department of Obstetrics and Gynecology, Zhenjiang Maternal and Child Hospital, Zhenjiang, Jiangsu, 212001, China
| | - Qiong Zhang
- Department of Obstetrics and Gynecology, Zhenjiang Maternal and Child Hospital, Zhenjiang, Jiangsu, 212001, China
| | - Quanliang Yang
- Department of Oncology, Changzhou Oncology Hospital, Changzhou, Jiangsu, 213000, China.
| |
Collapse
|
28
|
Kao SH, Cheng WC, Wang YT, Wu HT, Yeh HY, Chen YJ, Tsai MH, Wu KJ. Regulation of miRNA Biogenesis and Histone Modification by K63-Polyubiquitinated DDX17 Controls Cancer Stem-like Features. Cancer Res 2019; 79:2549-2563. [PMID: 30877109 DOI: 10.1158/0008-5472.can-18-2376] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/17/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
Markers of cancer stemness predispose patients to tumor aggressiveness, drug and immunotherapy resistance, relapse, and metastasis. DDX17 is a cofactor of the Drosha-DGCR8 complex in miRNA biogenesis and transcriptional coactivator and has been associated with cancer stem-like properties. However, the precise mechanism by which DDX17 controls cancer stem-like features remains elusive. Here, we show that the E3 ligase HectH9 mediated K63-polyubiquitination of DDX17 under hypoxia to control stem-like properties and tumor-initiating capabilities. Polyubiquitinated DDX17 disassociated from the Drosha-DGCR8 complex, leading to decreased biogenesis of anti-stemness miRNAs. Increased association of polyubiquitinated DDX17 with p300-YAP resulted in histone 3 lysine 56 (H3K56) acetylation proximal to stemness-related genes and their subsequent transcriptional activation. High expression of HectH9 and six stemness-related genes (BMI1, SOX2, OCT4, NANOG, NOTCH1, and NOTCH2) predicted poor survival in patients with head and neck squamous cell carcinoma and lung adenocarcinoma. Our findings demonstrate that concerted regulation of miRNA biogenesis and histone modifications through posttranslational modification of DDX17 underlies many cancer stem-like features. Inhibition of DDX17 ubiquitination may serve as a new therapeutic venue for cancer treatment. SIGNIFICANCE: Hypoxia-induced polyubiquitination of DDX17 controls its dissociation from the pri-miRNA-Drosha-DCGR8 complex to reduce anti-stemness miRNA biogenesis and association with YAP and p300 to enhance transcription of stemness-related genes.
Collapse
Affiliation(s)
- Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua City, Taiwan
| | - Han-Yu Yeh
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan. .,Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
29
|
Yuan Y, Weidhaas JB. Functional microRNA binding site variants. Mol Oncol 2019; 13:4-8. [PMID: 30536617 PMCID: PMC6322190 DOI: 10.1002/1878-0261.12421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Germline single nucleotide polymorphisms are one of the most common genetic variations. Polymorphisms that cause nonsynonymous mutations in gene coding regions are known to cause serious deleterious downstream effects. However, even polymorphisms in noncoding regions can have profound functional consequences by disrupting essential regulatory sites. Specifically, polymorphisms that alter microRNA binding sites can disrupt the regulation of hallmark biological pathways implicated in tumorigenesis and tumor progression. Many of these microRNA-associated polymorphisms (miR-SNPs) have recently been shown to be important biomarkers of cancer risk, prognosis, and treatment outcomes. This review will summarize the functional impact of key miR-SNPs and define a subset of miR-SNPs that may be clinically useful prognostic or predictive biomarkers.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Radiation OncologyUCLALos AngelesCAUSA
| | | |
Collapse
|
30
|
Zhao L, Wang W, Xu L, Yi T, Zhao X, Wei Y, Vermeulen L, Goel A, Zhou S, Wang X. Integrative network biology analysis identifies miR-508-3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer. Oncogene 2018; 38:2305-2319. [PMID: 30478449 PMCID: PMC6755993 DOI: 10.1038/s41388-018-0577-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a heterogeneous malignancy that poses tremendous clinical challenge. Based on unsupervised classification of whole-genome gene expression profiles, four molecular subtypes of ovarian cancer were recently identified. However, single-driver molecular events specific to these subtypes have not been clearly elucidated. We aim to characterize the regulatory mechanisms underlying the poor prognosis mesenchymal subtype of ovarian cancer using a systems biology approach, involving a variety of molecular modalities including gene and microRNA expression profiles. miR-508-3p emerged as the most powerful determinant that regulates a cascade of dysregulated genes in the mesenchymal subtype, including core genes involved in epithelial–mesenchymal transition (EMT) program. Moreover, miR-508-3p down-regulation, due to promoter hypermethylation, was directly correlated with metastatic behaviors in vitro and in vivo. Taken together, our multidimensional network analysis identified miR-508-3p as a master regulator that defines the mesenchymal subtype and provides a novel prognostic biomarker to improve management of this disease.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Wei Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Lian Xu
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong. .,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
31
|
Jin Q, He W, Chen L, Yang Y, Shi K, You Z. MicroRNA-101-3p inhibits proliferation in retinoblastoma cells by targeting EZH2 and HDAC9. Exp Ther Med 2018; 16:1663-1670. [PMID: 30186385 PMCID: PMC6122260 DOI: 10.3892/etm.2018.6405] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Retinoblastoma is the most frequent intraocular malignant tumor type to occur in childhood. MicroRNA (miR)-101-3p has been reported to function as a tumor suppressor in various types of cancer. However, the biological function and underlying mechanisms of miR-101-3p in retinoblastoma are largely unknown. In the present study, it was identified that miR-101-3p was downregulated in retinoblastoma. MTT and flow cytometry assays demonstrated that ectopic overexpression of miR-101-3p significantly inhibited cell viability and cell cycle progression in WERI-Rb-1 and Y79 cells. In vivo mouse experiments further confirmed the anti-proliferative role of miR-101-3p in retinoblastoma. Additionally, predictions with TargetScan software indicated that the 3′-untranslated regions of enhancer of zeste homolog 2 (EZH2) and histone deacetylase (HDAC9) mRNAs are targeted by miR-101-3p. Accordingly, a dual luciferase reporter gene assay demonstrated that miR-101-3p directly targeted EZH2 and HDAC9 to suppress the proliferation of retinoblastoma cells. Meanwhile, the restoration of EZH2 or HDAC9 expression countered the anti-proliferative effect of miR-101-3p on WERI-Rb-1 and Y79 cells. Collectively, these data highlight the role of miR-101-3p in the tumorigenesis of retinoblastoma, and indicate its suitability as a novel therapeutic target.
Collapse
Affiliation(s)
- Qifang Jin
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leifeng Chen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Yang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ke Shi
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhipeng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
32
|
Maroni P, Bendinelli P, Matteucci E, Desiderio MA. The therapeutic effect of miR-125b is enhanced by the prostaglandin endoperoxide synthase 2/cyclooxygenase 2 blockade and hampers ETS1 in the context of the microenvironment of bone metastasis. Cell Death Dis 2018; 9:472. [PMID: 29700305 PMCID: PMC5920088 DOI: 10.1038/s41419-018-0499-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Bone is the most common site for breast cancer spread. In the pro-metastatic cell line 1833, derived from MDA-MB-231 breast adenocarcinoma cells, both hypoxia and hepatocyte growth factor (HGF) influence the effect of miR-125b on ETS proto-oncogene 1 transcription factor (ETS1). The effect of hypoxia inducible factor 1 alpha subunit (HIF1A), known to promote metastatic spread by upregulating prostaglandin endoperoxide synthase 2 (PTGS2), may be dampened by miR-125b targeting PTGS2. Here, we investigated whether miR-125b plays a role in breast cancer metastasis by measuring its activity in response to the chemotherapeutic agent NS-398 in a xenograft model. NS-398 is typically used in the clinic to target PTGS2. We also aimed to describe the molecular mechanisms in vitro, since the enhancement of epithelial properties may favor the efficacy of therapies. We report that in the xenograft model, miR-125b reduced metastasis to the bone. We also report suppression of PTGS2 enhanced survival by decreasing HIF1A in cells within the bone marrow. In 1833 cells transfected with a miR-125b mimic we observed several phenotypic changes including enhancement of the epithelial marker E-cadherin, a reduction of mesenchymal-associated genes and a reduction of WNT-associated stem cell signaling. Our findings suggest that in vivo, key players of the bone microenvironment promoting breast cancer spread are regulated by miR-125b. In future, biological molecules imitating miR-125b may enhance the sensitivity of chemotherapeutic agents used to counteract bone metastases.
Collapse
Affiliation(s)
- Paola Maroni
- Istituto Ortopedico Galeazzi IRCCS, Via R. Galeazzi 4, 20161, Milano, Italy
| | - Paola Bendinelli
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Via L. Mangiagalli 31, 20133, Milano, Italy
| | - Emanuela Matteucci
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Via L. Mangiagalli 31, 20133, Milano, Italy
| | - Maria Alfonsina Desiderio
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Via L. Mangiagalli 31, 20133, Milano, Italy.
| |
Collapse
|
33
|
Dietrich P, Kuphal S, Spruss T, Hellerbrand C, Bosserhoff AK. MicroRNA-622 is a novel mediator of tumorigenicity in melanoma by targeting Kirsten rat sarcoma. Pigment Cell Melanoma Res 2018; 31:614-629. [PMID: 29495114 DOI: 10.1111/pcmr.12698] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022]
Abstract
The network of molecular players is similar when comparing neural crest-derived, actively migrating melanoblasts to melanoma cells. However, melanoblasts are sensitive to differentiation-initiating signals at their target site (epidermis), while melanoma cells maintain migratory and undifferentiated features. We aimed at identifying downregulated genes in melanoma that are particularly upregulated in melanoblasts. Loss of such genes could contribute to stabilization of a dedifferentiated, malignant phenotype in melanoma. We determined that microRNA-622 (miR-622) expression was strongly downregulated in melanoma cells and tissues compared to melanocytes and melanoblast-related cells. miR-622 expression correlated with survival of patients with melanoma. miR-622 re-expression inhibited clonogenicity, proliferation, and migration in melanoma. Inhibition of miR-622 in melanocytes induced enhanced migration. Kirsten rat sarcoma (KRAS) was identified as a major functional target of miR-622 in melanoma. We conclude that miR-622 is a novel tumor suppressor in melanoma and identify the miR-622-KRAS axis as potential therapeutic target.
Collapse
Affiliation(s)
- Peter Dietrich
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thilo Spruss
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
34
|
MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget 2018; 7:66051-66060. [PMID: 27602769 PMCID: PMC5323213 DOI: 10.18632/oncotarget.11800] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 01/23/2023] Open
Abstract
Oncogenic mutations in PIK3CA, the gene encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), occur with high frequency in hepatocellular carcinoma (HCC). The protein kinase Akt is considered to be the primary effector of PI3K, but there is evidence to suggest that serum and glucocorticoid kinase 3 (SGK3) acts in an Akt-independent manner downstream of PI3K. In this report, we found that SGK3 promotes epithelial-mesenchymal transition (EMT) and reduces phosphorylation-dependent degradation of β-catenin in HCC cells. We determined that miR-155, previously shown to promote EMT, stimulates the expression of SGK3 by targeting and repressing P85α, thereby removing its inhibitory effect on PI3K-AKT signaling. These findings suggest that miR-155 promotes EMT and metastatic properties in HCC cells through activation of PI3K/SGK3/β-catenin signaling pathways.
Collapse
|
35
|
Yang PY, Hsieh PL, Wang TH, Yu CC, Lu MY, Liao YW, Lee TH, Peng CY. Andrographolide impedes cancer stemness and enhances radio-sensitivity in oral carcinomas via miR-218 activation. Oncotarget 2018; 8:4196-4207. [PMID: 27926533 PMCID: PMC5354823 DOI: 10.18632/oncotarget.13755] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Current evidence suggests that oral cancer stem cells (OCSCs) possess high tumorigenic and metastatic properties as well as chemo- and radioresistance. In this study, we demonstrated that andrographolide, the main bioactive component in the medicinal plant Andrographis, significantly reduced oncogenicity and restored radio-sensitivity of ALDH1+CD44+ OCSCs. Mechanistic studies showed that andrographolide treatment increased the expression of microRNA-218 (miR-218), leading to the downregulation of Bmi1. We showed that knockdown of miR-218 in ALDH1−CD44− non-OCSCs enhanced cancer stemness, while silencing of Bmi1 significantly counteracted it. Furthermore, we found tumor growth was reduced in mice bearing xenograft tumors after andrographolide treatment via activation of miR-218/Bmi1 axis. Together, these data demonstrated that the inhibition of tumor aggressiveness in OCSCs by andrographolide was mediated through the upregulation of miR-218, thereby reducing Bmi1 expression. These findings suggest that andrographolide may be a valuable natural compound for anti-CSCs treatment of OSCC.
Collapse
Affiliation(s)
- Po-Yu Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Oral Medicine Center, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Tong Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.,Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Oral Medicine Center, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Oral Medicine Center, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Hsin Lee
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Oral Medicine Center, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
36
|
Wang TY, Peng CY, Lee SS, Chou MY, Yu CC, Chang YC. Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline. Oncotarget 2018; 7:84072-84081. [PMID: 27557511 PMCID: PMC5356645 DOI: 10.18632/oncotarget.11432] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/13/2016] [Indexed: 12/20/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), one of the most deadliest malignancies in the world, is caused primarily by areca nut chewing in Southeast Asia. The mechanisms by which areca nut participates in OSCC tumorigenesis are not well understood. In this study, we investigated the effects of low dose long-term arecoline (10 μg/mL, 90-days), a major areca nut alkaloid, on enhancement cancer stemness of human oral epithelial (OE) cells. OE cells with chronic arecoline exposure resulted in increased ALDH1 population, CD44 positivity, stemness-related transcription factors (Oct4, Nanog, and Sox2), epithelial-mesenchymal transdifferentiation (EMT) traits, chemoresistance, migration/invasiveness/anchorage independent growth and in vivo tumor growth as compared to their untreated controls. Mechanistically, ectopic miR-145 over-expression in chronic arecoline-exposed OE (AOE) cells inhibited the cancer stemness and xenografic. In AOE cells, luciferase reporter assays further revealed that miR-145 directly targets the 3′ UTR regions of Oct4 and Sox2 and overexpression of Sox2/Oct4 effectively reversed miR-145-regulated cancer stemness-associated phenomenas. Additionally, clinical results further revealed that Sox2 and Oct4 expression was inversely correlated with miR-145 in the tissues of areca quid chewing-associated OSCC patients. This study hence attempts to provide novel insight into areca nut-induced oral carcinogenesis and new intervention for the treatment of OSCC patients, especially in areca nut users.
Collapse
Affiliation(s)
- Tung Yuan Wang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
37
|
Schwab A, Siddiqui A, Vazakidou ME, Napoli F, Böttcher M, Menchicchi B, Raza U, Saatci Ö, Krebs AM, Ferrazzi F, Rapa I, Dettmer-Wilde K, Waldner MJ, Ekici AB, Rasheed SAK, Mougiakakos D, Oefner PJ, Sahin O, Volante M, Greten FR, Brabletz T, Ceppi P. Polyol Pathway Links Glucose Metabolism to the Aggressiveness of Cancer Cells. Cancer Res 2018; 78:1604-1618. [PMID: 29343522 DOI: 10.1158/0008-5472.can-17-2834] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/28/2017] [Accepted: 01/12/2018] [Indexed: 11/16/2022]
Abstract
Cancer cells alter their metabolism to support their malignant properties. In this study, we report that the glucose-transforming polyol pathway (PP) gene aldo-keto-reductase-1-member-B1 (AKR1B1) strongly correlates with epithelial-to-mesenchymal transition (EMT). This association was confirmed in samples from lung cancer patients and from an EMT-driven colon cancer mouse model with p53 deletion. In vitro, mesenchymal-like cancer cells showed increased AKR1B1 levels, and AKR1B1 knockdown was sufficient to revert EMT. An equivalent level of EMT suppression was measured by targeting the downstream enzyme sorbitol-dehydrogenase (SORD), further pointing at the involvement of the PP. Comparative RNA sequencing confirmed a profound alteration of EMT in PP-deficient cells, revealing a strong repression of TGFβ signature genes. Excess glucose was found to promote EMT through autocrine TGFβ stimulation, while PP-deficient cells were refractory to glucose-induced EMT. These data show that PP represents a molecular link between glucose metabolism, cancer differentiation, and aggressiveness, and may serve as a novel therapeutic target.Significance: A glucose-transforming pathway in TGFβ-driven epithelial-to-mesenchymal transition provides novel mechanistic insights into the metabolic control of cancer differentiation. Cancer Res; 78(7); 1604-18. ©2018 AACR.
Collapse
Affiliation(s)
- Annemarie Schwab
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aarif Siddiqui
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maria Eleni Vazakidou
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Francesca Napoli
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Bianca Menchicchi
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Umar Raza
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Özge Saatci
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Angela M Krebs
- Experimental Medicine I, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ida Rapa
- Pathology Unit, San Luigi Hospital, University of Turin, Turin, Italy
| | - Katja Dettmer-Wilde
- Institute of Functional Genomics University of Regensburg, Regensburg, Germany
| | | | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Peter J Oefner
- Institute of Functional Genomics University of Regensburg, Regensburg, Germany
| | - Ozgur Sahin
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Marco Volante
- Pathology Unit, San Luigi Hospital, University of Turin, Turin, Italy
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Thomas Brabletz
- Experimental Medicine I, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Paolo Ceppi
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
38
|
Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating secreted components of tumor microenvironment: A masterstroke in tumor therapeutics. Cancer Biol Ther 2018; 19:3-12. [PMID: 29219656 PMCID: PMC5790373 DOI: 10.1080/15384047.2017.1394538] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/07/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022] Open
Abstract
The microenvironment in which cancer resides plays an important role in regulating cancer survival, progression, malignancy and drug resistance. Tumor microenvironment (TME) consists of heterogeneous number and types of cellular and non-cellular components that vary in relation to tumor phenotype and genotype. In recent, non-cellular secreted components of microenvironmental heterogeneity have been suggested to contain various growth factors, cytokines, RNA, DNA, metabolites, structural matrix and matricellular proteins. These non-cellular components have been indicated to orchestrate numerous ways to support cancer survival and progression by providing metabolites, energy, growth signals, evading immune surveillance, drug resistance environment, metastatic and angiogenesis cues. Thus, switching action from pro-cancer to anti-cancer activities of these secreted components of TME has been considered as a new avenue in cancer therapeutics and drug resistance. In this report, we summarize the recent pre-clinical and clinical evidences to emphasize the importance of non-cellular components of TME in achieving precision therapeutics and biomarker study.
Collapse
Affiliation(s)
- Himadri Patel
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Jayanta K. Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
39
|
Epithelial-to-mesenchymal transition in gallbladder cancer: from clinical evidence to cellular regulatory networks. Cell Death Discov 2017; 3:17069. [PMID: 29188076 PMCID: PMC5702855 DOI: 10.1038/cddiscovery.2017.69] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC), with late diagnosis, rapid disease progression and early metastasis, is a highly aggressive malignant tumor found worldwide. Patients with GBC have poor survival, low curative resection rates and early recurrence. For such a lethal tumor, uncovering the mechanisms and exploring new strategies to prevent tumor progression and metastasis are critically important. Epithelial-to-mesenchymal transition (EMT) has a prominent role in the early steps of tumor progression and metastasis by initiating polarized epithelial cell transition into motile mesenchymal cells. Accumulating evidence suggests that EMT can be modulated by the cooperation of multiple mechanisms affecting common targets. Signaling pathways, transcriptional and post-transcriptional regulation and epigenetic alterations are involved in the stepwise EMT regulatory network in GBC. Loss of epithelial markers, acquisition of mesenchymal markers and dysregulation of EMT-inducing transcription factors (EMT-TFs) have been observed and are associated with the clinicopathology and prognosis of GBC patients. Therefore, EMT may be a detectable and predictable event for predicting GBC progression and metastasis in the clinic. In this review, we will provide an overview of EMT from the clinical evidence to cellular regulatory networks that have been studied thus far in clinical and basic GBC studies.
Collapse
|
40
|
Siddiqui A, Vazakidou ME, Schwab A, Napoli F, Fernandez-Molina C, Rapa I, Stemmler MP, Volante M, Brabletz T, Ceppi P. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol 2017; 242:221-233. [PMID: 28337746 DOI: 10.1002/path.4897] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 01/26/2023]
Abstract
Thymidylate synthase (TS) is a fundamental enzyme of nucleotide metabolism and one of the oldest anti-cancer targets. Beginning from the analysis of gene array data from the NCI-60 panel of cancer cell lines, we identified a significant correlation at both gene and protein level between TS and the markers of epithelial-to-mesenchymal transition (EMT), a developmental process that allows cancer cells to acquire features of aggressiveness, like motility and chemoresistance. TS levels were found to be significantly augmented in mesenchymal-like compared to epithelial-like cancer cells, to be regulated by EMT induction, and to negatively correlate with micro-RNAs (miRNAs) usually expressed in epithelial-like cells and known to actively suppress EMT. Transfection of EMT-suppressing miRNAs reduced TS levels, and a specific role for miR-375 in targeting the TS 3'-untranslated region was identified. A particularly relevant association was found between TS and the powerful EMT driver ZEB1, the shRNA-mediated knockdown of which up-regulated miR-375 and reduced TS cellular levels. The TS-ZEB1 association was confirmed in clinical specimens from lung tumours and in a genetic mouse model of pancreatic cancer with ZEB1 deletion. Interestingly, TS itself appeared to have a regulatory role in EMT in cancer cells, as TS knockdown could directly reduce the EMT phenotype, the migratory ability of cells, the expression of stem-like markers, and chemoresistance. Taken together, these data indicate that the TS enzyme is functionally linked with EMT and cancer differentiation, with several potential translational implications. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aarif Siddiqui
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maria Eleni Vazakidou
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annemarie Schwab
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Francesca Napoli
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cristina Fernandez-Molina
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ida Rapa
- Pathology Unit, San Luigi Hospital, University of Turin, Turin, Italy
| | - Marc P Stemmler
- Experimental Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marco Volante
- Pathology Unit, San Luigi Hospital, University of Turin, Turin, Italy
| | - Thomas Brabletz
- Experimental Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paolo Ceppi
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
41
|
Feng Y, Duan F, Liu W, Fu X, Cui S, Yang Z. Prognostic value of the microRNA-214 in multiple human cancers: a meta-analysis of observational studies. Oncotarget 2017; 8:75350-75360. [PMID: 29088870 PMCID: PMC5650425 DOI: 10.18632/oncotarget.17642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/07/2017] [Indexed: 01/19/2023] Open
Abstract
Previous studies showed that microRNA-214 (miR-214) may act as a prognostic biomarker of cancer. However, the available evidence is controversial. This study summarizes evidence and evaluates the prognostic role of miR-214 in various cancers. We carried out a systematic literature review and assessed the quality of included studies based on Oxford Centre for Evidence-based Medicine Criteria and Newcastle-Ottawa Scale (NOS). Pooled hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) for overall survival (OS) and disease free survival/progressive free survival/recurrence free survival (DFS/PFS/RFS) were calculated to measure the effective value of miR-214 expression on prognosis. Thirteen studies were included in pooled analysis. We found that miR-214 was significantly correlated with OS (HR=2.21, 95%CI: 1.33-3.68, P=0.00), no significant difference was found with DFS/PFS/RFS (HR=1.73, 95%CI: 0.78-3.83, P=0.18) in various carcinomas. In subgroup analysis, higher expression of miR-214 was significantly associated with poor OS in Asians (HR=2.27, 95%CI: 1.09-4.73, P=0.00) and Caucasians (HR=2.04, 95%CI: 1.47-3.30, P=0.00). On the contrary, high miR-214 expression significantly predicted favorable DFS/PFS/RFS (HR=0.50, 95%CI: 0.31-0.82, P=0.00) in hepatocellular carcinoma (HCC) group. Our data indicates that high miR-214 could be a promising biomarker for prognosis prediction of cancer. However, further clinical studies are needed for the current insufficient relevant data.
Collapse
Affiliation(s)
- Yajing Feng
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fujiao Duan
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, China
| | - Weigang Liu
- Medical Record Statistics Office, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuli Cui
- College of Professional Study, Northeastern University, Boston, Massachusetts, USA
| | - Zhenxing Yang
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
42
|
He X, Yang A, McDonald DG, Riemer EC, Vanek KN, Schulte BA, Wang GY. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells. Oncotarget 2017; 8:69797-69807. [PMID: 29050242 PMCID: PMC5642517 DOI: 10.18632/oncotarget.19267] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are a new class of gene expression regulators that have been implicated in tumorigenesis and modulation of the responses to cancer treatment including that of human non-small cell lung cancer (NSCLC). However, the role of miR-34a in ionizing radiation (IR)-induced senescence in NSCLC cells remains poorly understood. Here we report that IR-induced premature senescence correlates with upregulation of miR-34a expression in NSCLC cells. Ectopic overexpression of miR-34a by transfection with synthetic miR-34a mimics markedly enhances IR-induced senescence, whereas inhibition of miR-34a by transfection with a synthetic miR-34a inhibitor attenuates IR-induced senescence. Clonogenic assays reveal that treatment with miR-34a mimics augments IR-induced cell killing in human NSCLC cells. Mechanistically, we found that the senescence-promoting effect of miR-34a is associated with a dramatic down-regulation of c-Myc (Myc) expression, suggesting that miR-34a may promote IR-induced senescence via targeting Myc. In agreement with this suggestion, knockdown of Myc expression by RNAi recapitulates the senescence-promoting effect of miR-34a and enhances IR-induced cell killing in NSCLC cells. Collectively, these results demonstrate a previously unrecognized role for miR-34a in modulating IR-induced senescence in human NSCLC cells and suggest that pharmacological intervention of miR-34a expression may represent a new therapeutic strategy for improving the efficacy of lung cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaoyuan He
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Aimin Yang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ellen C Riemer
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kenneth N Vanek
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Cancer Genes and Molecular Regulation Program of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
43
|
Citron F, Armenia J, Franchin G, Polesel J, Talamini R, D'Andrea S, Sulfaro S, Croce CM, Klement W, Otasek D, Pastrello C, Tokar T, Jurisica I, French D, Bomben R, Vaccher E, Serraino D, Belletti B, Vecchione A, Barzan L, Baldassarre G. An Integrated Approach Identifies Mediators of Local Recurrence in Head and Neck Squamous Carcinoma. Clin Cancer Res 2017; 23:3769-3780. [PMID: 28174235 PMCID: PMC7309652 DOI: 10.1158/1078-0432.ccr-16-2814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 01/06/2023]
Abstract
Purpose: Head and neck squamous cell carcinomas (HNSCCs) cause more than 300,000 deaths worldwide each year. Locoregional and distant recurrences represent worse prognostic events and accepted surrogate markers of patients' overall survival. No valid biomarker and salvage therapy exist to identify and treat patients at high-risk of recurrence. We aimed to verify if selected miRNAs could be used as biomarkers of recurrence in HNSCC.Experimental Design: A NanoString array was used to identify miRNAs associated with locoregional recurrence in 44 patients with HNSCC. Bioinformatic approaches validated the signature and identified potential miRNA targets. Validation experiments were performed using an independent cohort of primary HNSCC samples and a panel of HNSCC cell lines. In vivo experiments validated the in vitro results.Results: Our data identified a four-miRNA signature that classified HNSCC patients at high- or low-risk of recurrence. These miRNAs collectively impinge on the epithelial-mesenchymal transition process. In silico and wet lab approaches showed that miR-9, expressed at high levels in recurrent HNSCC, targets SASH1 and KRT13, whereas miR-1, miR-133, and miR-150, expressed at low levels in recurrent HNSCC, collectively target SP1 and TGFβ pathways. A six-gene signature comprising these targets identified patients at high risk of recurrences, as well. Combined pharmacological inhibition of SP1 and TGFβ pathways induced HNSCC cell death and, when timely administered, prevented recurrence formation in a preclinical model of HNSCC recurrence.Conclusions: By integrating different experimental approaches and competences, we identified critical mediators of recurrence formation in HNSCC that may merit to be considered for future clinical development. Clin Cancer Res; 23(14); 3769-80. ©2017 AACR.
Collapse
Affiliation(s)
- Francesca Citron
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Joshua Armenia
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Giovanni Franchin
- Oncologic Radiotherapy, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Jerry Polesel
- Cancer Epidemiology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Renato Talamini
- Cancer Epidemiology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Sara D'Andrea
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Sandro Sulfaro
- Division of Pathology, Azienda Ospedaliera Santa Maria degli Angeli, Pordenone, Italy
| | - Carlo M Croce
- Department of Cancer Biology and Genetics/CCC, The Ohio State University, Columbus, Ohio
| | - William Klement
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Otasek
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tomas Tokar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Deborah French
- Faculty of Medicine and Psicology, Department of Clinical and molecular Medicine, University of Rome "La Sapienza," Santo Andrea Hospital, Rome, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Emanuela Vaccher
- Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Diego Serraino
- Cancer Epidemiology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Cancer Biology and Genetics/CCC, The Ohio State University, Columbus, Ohio.
- Faculty of Medicine and Psicology, Department of Clinical and molecular Medicine, University of Rome "La Sapienza," Santo Andrea Hospital, Rome, Italy
| | - Luigi Barzan
- Department of Surgery, CRO Aviano, National Cancer Institute, Aviano, Italy.
| | - Gustavo Baldassarre
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
44
|
Li B, Xu WW, Han L, Chan KT, Tsao SW, Lee NPY, Law S, Xu LY, Li EM, Chan KW, Qin YR, Guan XY, He QY, Cheung ALM. MicroRNA-377 suppresses initiation and progression of esophageal cancer by inhibiting CD133 and VEGF. Oncogene 2017; 36:3986-4000. [PMID: 28288140 PMCID: PMC5511242 DOI: 10.1038/onc.2017.29] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/29/2016] [Accepted: 01/11/2017] [Indexed: 02/05/2023]
Abstract
Esophageal cancer is one of the most lethal cancers worldwide with poor survival and limited therapeutic options. The discovery of microRNAs created a new milestone in cancer research. miR-377 is located in chromosome region 14q32, which is frequently deleted in esophageal squamous cell carcinoma (ESCC), but the biological functions, clinical significance and therapeutic implication of miR-377 in ESCC are largely unknown. In this study, we found that miR-377 expression was significantly downregulated in tumor tissue and serum of patients with ESCC. Both tumor tissue and serum miR-377 expression levels were positively correlated with patient survival. Higher serum miR-377 expression was inversely associated with pathologic tumor stage, distant metastasis, residual tumor status and chemoradiotherapy resistance. The roles of miR-377 in suppressing tumor initiation and progression, and the underlying molecular mechanisms were investigated. Results of in vitro and in vivo experiments showed that miR-377 overexpression inhibited the initiation, growth and angiogenesis of ESCC tumors as well as metastatic colonization of ESCC cells, whereas silencing of miR-377 had opposite effects. Mechanistically, miR-377 regulated CD133 and VEGF by directly binding to their 3' untranslated region. Moreover, systemic delivery of formulated miR-377 mimic not only suppressed tumor growth in nude mice but also blocked tumor angiogenesis and metastasis of ESCC cells to the lungs without overt toxicity to mice. Collectively, our study established that miR-377 plays a functional and significant role in suppressing tumor initiation and progression, and may represent a promising non-invasive diagnostic and prognostic biomarker and therapeutic strategy for patients with ESCC.
Collapse
MESH Headings
- AC133 Antigen/genetics
- Adult
- Aged
- Aged, 80 and over
- Animals
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Disease Progression
- Down-Regulation/genetics
- Esophageal Neoplasms/diagnosis
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/mortality
- Esophageal Neoplasms/pathology
- Esophageal Squamous Cell Carcinoma
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- MicroRNAs/physiology
- Middle Aged
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- B Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
| | - W W Xu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - L Han
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - K T Chan
- Department of Surgery, The University of Hong Kong, Pokfulam, China
| | - S W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
| | - N P Y Lee
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- Department of Surgery, The University of Hong Kong, Pokfulam, China
| | - S Law
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- Department of Surgery, The University of Hong Kong, Pokfulam, China
| | - L Y Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - E M Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - K W Chan
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- Department of Pathology, The University of Hong Kong, Pokfulam, China
| | - Y R Qin
- Department of Clinical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - X Y Guan
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- Department of Clinical oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Q Y He
- College of Life Science and Technology, Jinan University, 601 West Huangpu Blvd., Guangzhou, China
| | - A L M Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China. E-mail:
| |
Collapse
|
45
|
Zhang K, Luo Z, Zhang Y, Song X, Zhang L, Wu L, Liu J. Long non-coding RNAs as novel biomarkers for breast cancer invasion and metastasis. Oncol Lett 2017; 14:1895-1904. [PMID: 28789424 DOI: 10.3892/ol.2017.6462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is now the most common malignancy worldwide, with high prevalence and lethality among women. Invasion and metastasis are the major reasons for breast cancer-associated mortality. However, the underlying mechanism of invasion and metastasis has not been entirely elucidated. Long non-coding RNAs (lncRNAs) are a large class of non-coding transcripts that are >200 bases in length and cannot encode proteins. Evidence has indicated that lncRNAs regulate gene expression at the levels of epigenetic modification, transcription and post-transcription. In addition, they are involved in diverse tumor biological processes, including cell proliferation, apoptosis, invasion, metastasis and angiogenesis. The present review focuses on the recent progress of lncRNAs in breast cancer invasion and metastasis, aiming to provide novel strategies for the clinical prevention, diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Kaijiong Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhenglian Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoyu Song
- Department of Laboratory Medicine, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Li Zhang
- Department of Laboratory Medicine, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Lichun Wu
- Department of Laboratory Medicine, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
46
|
VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene 2017; 36:5199-5211. [PMID: 28504716 PMCID: PMC5596211 DOI: 10.1038/onc.2017.4] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSC) appear to have increased metastatic potential, but mechanisms underlying this are poorly defined. Here we show that VEGFA induction of Sox2 promotes EMT and tumor metastasis. In breast lines and primary cancer culture, VEGFA rapidly upregulates SOX2 expression, leading to SNAI2 induction, EMT, increased invasion and metastasis. We show Sox2 downregulates miR-452, which acts as a novel metastasis suppressor to directly target the SNAI2 3′-untranslated region (3′-UTR). VEGFA stimulates Sox2- and Slug-dependent cell invasion. VEGFA increases lung metastasis in vivo, and this is abrogated by miR-452 overexpression. Furthermore, SNAI2 transduction rescues metastasis suppression by miR-452. Thus, in addition to its angiogenic action, VEGFA upregulates Sox2 to drive stem cell expansion, together with miR-452 loss and Slug upregulation, providing a novel mechanism whereby cancer stem cells acquire metastatic potential. Prior work showed EMT transcription factor overexpression upregulates CSC. Present work indicates that stemness and metastasis are a two-way street: Sox2, a major mediator of CSC self-renewal, also governs the metastatic process.
Collapse
|
47
|
Torres S, Garcia-Palmero I, Bartolomé RA, Fernandez-Aceñero MJ, Molina E, Calviño E, Segura MF, Casal JI. Combined miRNA profiling and proteomics demonstrates that different miRNAs target a common set of proteins to promote colorectal cancer metastasis. J Pathol 2017; 242:39-51. [PMID: 28054337 DOI: 10.1002/path.4874] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
The process of liver colonization in colorectal cancer remains poorly characterized. Here, we addressed the role of microRNA (miRNA) dysregulation in metastasis. We first compared miRNA expression profiles between colorectal cancer cell lines with different metastatic properties and then identified target proteins of the dysregulated miRNAs to establish their functions and prognostic value. We found that 38 miRNAs were differentially expressed between highly metastatic (KM12SM/SW620) and poorly metastatic (KM12C/SW480) cancer cell lines. After initial validation, we determined that three miRNAs (miR-424-3p, -503, and -1292) were overexpressed in metastatic colorectal cancer cell lines and human samples. Stable transduction of non-metastatic cells with each of the three miRNAs promoted metastatic properties in culture and increased liver colonization in vivo. Moreover, miR-424-3p and miR-1292 were associated with poor prognosis in human patients. A quantitative proteomic analysis of colorectal cancer cells transfected with miR-424-3p, miR-503, or miR-1292 identified alterations in 149, 129, or 121 proteins, respectively, with an extensive overlap of the target proteins of the three miRNAs. Importantly, down-regulation of two of these shared target proteins, CKB and UBA2, increased cell adhesion and proliferation in colorectal cancer cells. The capacity of distinct miRNAs to regulate the same mRNAs boosts the capacity of miRNAs to regulate cancer metastasis and underscores the necessity of targeting multiple miRNAs for effective cancer therapy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sofía Torres
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Irene Garcia-Palmero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Rubén A Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Elena Molina
- Surgical Pathology Department, Hospital Clínico, Madrid, Spain
| | - Eva Calviño
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - J Ignacio Casal
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
48
|
Ortiz-Quintero B. Cell-free microRNAs in blood and other body fluids, as cancer biomarkers. Cell Prolif 2017; 49:281-303. [PMID: 27218664 DOI: 10.1111/cpr.12262] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022] Open
Abstract
The discovery of cell-free microRNAs (miRNAs) in serum, plasma and other body fluids has yielded an invaluable potential source of non-invasive biomarkers for cancer and other non-malignant diseases. miRNAs in the blood and other body fluids are highly stable in biological samples and are resistant to environmental conditions, such as freezing, thawing or enzymatic degradation, which makes them convenient as potential biomarkers. In addition, they are more easily sampled than tissue miRNAs. Altered levels of cell-free miRNAs have been found in every type of cancer analysed, and increasing evidence indicates that they may participate in carcinogenesis by acting as cell-to-cell signalling molecules. This review summarizes the biological characteristics and mechanisms of release of cell-free miRNAs that make them promising candidates as non-invasive biomarkers of cancer.
Collapse
Affiliation(s)
- Blanca Ortiz-Quintero
- Research Unit, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas, 14080, Mexico City, Mexico
| |
Collapse
|
49
|
Integrated genomic and molecular characterization of cervical cancer. Nature 2017; 543:378-384. [PMID: 28112728 PMCID: PMC5354998 DOI: 10.1038/nature21386] [Citation(s) in RCA: 1070] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/14/2017] [Indexed: 02/06/2023]
Abstract
Cervical cancer remains one of the leading causes of cancer-related deaths worldwide. Reported here is an extensive molecular characterization of 228 primary cervical cancers, the largest comprehensive genomic study of cervical cancer to date. We observed striking APOBEC mutagenesis patterns and identified SHKBP1, ERBB3, CASP8, HLA-A, and TGFBR2 as novel significantly mutated genes in cervical cancer. We also discovered novel amplifications in immune targets CD274/PD-L1 and PDCD1LG2/PD-L2, and the BCAR4 lncRNA that has been associated with response to lapatinib. HPV integration was observed in all HPV18-related cases and 76% of HPV16-related cases, and was associated with structural aberrations and increased target gene expression. We identified a unique set of endometrial-like cervical cancers, comprised predominantly of HPV-negative tumors with high frequencies of KRAS, ARID1A, and PTEN mutations. Integrative clustering of 178 samples identified Keratin-low Squamous, Keratin-high Squamous, and Adenocarcinoma-rich subgroups. These molecular analyses reveal new potential therapeutic targets for cervical cancers.
Collapse
|
50
|
miR-589-5p inhibits MAP3K8 and suppresses CD90 + cancer stem cells in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:176. [PMID: 27835990 PMCID: PMC5106831 DOI: 10.1186/s13046-016-0452-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cancer stem cells (CSCs) are important in the tumorigenesis and progression of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) play crucial roles regulating CD133+ and EpCAM+ CSCs in HCC, although it is unclear whether miRNAs regulate CD90+ CSCs in HCC. METHODS The miRNA profiles of CD90+ and CD90- HCC cells were analyzed using a miRNA microarray and quantitative real-time PCR (qRT-PCR). CSC characteristics were examined by qRT-PCR and Western blot of pluripotency-associated genes, clone and sphere formation assay, transwell migration assay, and nude mice tumorigenicity assay. miR-589-5p mimic transfection was used to overexpress miR-589-5p in vitro. The CD90 and miR-589-5p expressions of HCC samples were detected by immunohistochemistry and qRT-PCR, respectively. RESULTS miR-589-5p and miR-33b-5p were down-regulated in CD90+ cells. Overexpression of miR-589-5p suppressed CD90+ CSC characteristics such as Oct4, Sox2 and Nanog expression, a high likelihood of forming cell spheres, high invasiveness and high tumorigenicity. Luciferase reporter assays demonstrated that miR-589-5p directly binds to the 3'-untranslated region of mitogen-activated protein kinase kinase kinase 8 (MAP3K8) mRNA, and exogenous miR-589-5p down-regulated MAP3K8 expression. In addition, siRNA inhibition of MAP3K8 also suppressed CD90+ CSC characteristics, even in the absence of miR-589-5p overexpression. In HCC tissues, miR-589-5p expression was inversely correlated with CD90 expression, and high CD90 expression and low miR-589-5p expression were positively correlated with vascular invasion and recurrence and significantly decreased disease-free and overall survival by clinical analysis. CONCLUSION In HCC, miR-589-5p down-regulates the stemness characteristics of CD90+ CSCs in part by silencing MAP3K8. CD90 and miR-589-5p expression predict HCC outcomes and might be novel molecular targets for HCC treatment.
Collapse
|