1
|
Koyuncu I, Temiz E, Güler EM, Durgun M, Yuksekdag O, Giovannuzzi S, Supuran CT. Effective Anticancer Potential of a New Sulfonamide as a Carbonic Anhydrase IX Inhibitor Against Aggressive Tumors. ChemMedChem 2024; 19:e202300680. [PMID: 38323458 DOI: 10.1002/cmdc.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
This study examines efficiency of a newly synthesized sulfonamide derivative 2-bromo-N-(4-sulfamoylphenyl)propanamide (MMH-1) on the inhibition of Carbonic Anhydrase IX (CA IX), which is overexpressed in many solid tumors including breast cancer. The inhibitory potential of MMH-1 compound against its four major isoforms, including cytosolic isoforms hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX and XII, was evaluated. To this context, the cytotoxic effect of MMH-1 on cancer and normal cells was tested and found to selectively affect MDA-MB-231 cells. MMH-1 reduced cell proliferation by holding cells in the G0/G1 phase (72 %) and slowed the cells' wound healing capacity. MMH-1 inhibited CA IX under both hypoxic and normoxic conditions and altered the morphology of triple negative breast cancer cells. In MDA-MB-231 cells, inhibition of CA IX was accompanied by a decrease in extracellular pH acidity (7.2), disruption of mitochondrial membrane integrity (80 %), an increase in reactive oxygen levels (25 %), and the triggering of apoptosis (40 %). In addition, the caspase cascade (CASP-3, -8, -9) was activated in MDA-MB-231 cells, triggering both the extrinsic and intrinsic apoptotic pathways. The expression of pro-apoptotic regulatory proteins (Bad, Bax, Bid, Bim, Cyt-c, Fas, FasL, TNF-a, TNF-R1, HTRA, SMAC, Casp-3, -8, P21, P27, and P53) was increased, while the expression of anti-apoptotic proteins, apoptosis inhibitor proteins (IAPs), and heat shock proteins (HSPs) (Bcl-2, Bcl-w, cIAP-2, HSP27, HSP60, HSP70, Survivin, Livin, and XIAP) was decreased. These results propose that the MMH-1 compound could triggers apoptosis in MDA-MB-231 cells via the pH/MMP/ROS pathway through the inhibition of CA IX. This compound is thought to have high potential and promising anticancer properties in the treatment of aggressive tumors.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa, Turkey Tel
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Simone Giovannuzzi
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| |
Collapse
|
2
|
Abrehdari-Tafreshi Z, Arefian E, Rakhshani N, Najafi SMA. The Role of miR-29a and miR-143 on the Anti-apoptotic MCL-1/cIAP-2 Genes Expression in EGFR Mutated Non-small Cell Lung Carcinoma Patients. Biochem Genet 2024:10.1007/s10528-024-10740-6. [PMID: 38379036 DOI: 10.1007/s10528-024-10740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
The survival rate of lung cancer is low due to the high frequency of drug resistance in patients with mutations in the driver genes. Overexpression of anti-apoptotic genes is one of the most prominent features of tumor drug resistance. EGFR signaling induces the expression of anti-apoptotic genes. Also, microRNAs (miRNAs) have a critical role in regulating biological functions such as apoptosis; a process mostly eluded in cancer progression. The mutation screening was performed on one thousand non-small cell lung carcinoma patients to enroll clinical samples in this study. Bioinformatics analysis predicted that miRNAs (miR-29a, miR-143) might regulate MCL-1 and cIAP-2 expression. We investigated the expression of MCL-1, cIAP-2, miR-29a, and miR-143 encoding genes in adenocarcinoma patients with or without EGFR mutations before treatment. The potential role of miR-29a and miR-143 on gene expression was evaluated by overexpression and luciferase assays in HEK-293T cells. EGFR mutations were found in 262 patients (26.2%) with a greater incidence in females (36.23% vs. 20.37%, P = 0.001). The expression levels of MCL-1 and cIAP-2 genes in patients with mutated EGFR were higher than those of wild-type EGFR. In contrast, compared to those of patients with wild-type EGFR, the expression levels of miR-29a and miR-143 were lower in the patients carrying EGFR mutations. In cell culture, overexpression of miR-29a and miR-143 significantly downregulated the expression of MCL-1 and cIAP-2. Dual-luciferase reporter experiments confirmed that miR-29a and miR-143 target MCL-1 and cIAP-2 mRNAs, respectively. Our results suggest that upregulation of EGFR signaling in lung cancer cells may increase anti-apoptotic MCL-1 and cIAP-2 gene expression, possibly through downregulation of miR-29a-3p and miR-143-3p.
Collapse
Affiliation(s)
- Zahra Abrehdari-Tafreshi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Sciences, University of Tehran, P.O. Box 1417614481, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Gene, Tehran, Iran
| | - Nasser Rakhshani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Firoozgar Hospital, Tehran, Iran
| | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| |
Collapse
|
3
|
Ma J, Fang X, Chen M, Wang Y, Zhang L. Hyaluronan-CD44 Interaction Regulates Mouse Retinal Progenitor Cells Migration, Proliferation and Neuronal Differentiation. Stem Cell Rev Rep 2023; 19:2929-2942. [PMID: 37707669 PMCID: PMC10661819 DOI: 10.1007/s12015-023-10622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Cell-based therapies have shown great potential because of their abilities to replace dying retinal neuron cells and preserve vision. The migration, proliferation and differentiation of retinal progenitor cells(RPCs) plays a vital role in the integration of the RPCs into the retina when transplanted into the host. Our study aimed to explore the effects of Hyaluronan(HA)-CD44 interactions on the regulation of RPCs migration, proliferation and differentiation, and investigate the underlying regulatory mechanisms. We found that CD44 was expressed in RPCs, and the HA-CD44 interaction markedly improved RPCs adhesion and migration. The stimulation of microRNA-21(miR-21) expression by the HA-CD44 interaction was protein kinase C (PKC)/Nanog-dependent in RPCs. Treatment of RPCs with PKC- or Nanog-specific ASODN or miR-21 antagomir effectively blocked HA-mediated RPCs adhesion and migration. Moreover, Rho-Kinase(ROK)/ Grb2-associated binders(Gab-1) associated phosphatidylinositol 3-kinase(PI3K)/AKT signalling activation was required for HA-CD44 interaction mediated RPCs proliferation and neuronal differentiation. Our findings demonstrated new roles for the HA-CD44 interaction in regulating the migration, proliferation and neuronal differentiation of RPCs. HA-CD44 signalling could represent a novel approach to controlling RPC fates, and the findings may be instructive for the application of RPCs for future therapeutic applications.
Collapse
Affiliation(s)
- Jian Ma
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Xiaoyun Fang
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Min Chen
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Wang
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Li Zhang
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
4
|
Noguchi T, Sekiguchi Y, Shimada T, Suzuki W, Yokosawa T, Itoh T, Yamada M, Suzuki M, Kurokawa R, Hirata Y, Matsuzawa A. LLPS of SQSTM1/p62 and NBR1 as outcomes of lysosomal stress response limits cancer cell metastasis. Proc Natl Acad Sci U S A 2023; 120:e2311282120. [PMID: 37847732 PMCID: PMC10614216 DOI: 10.1073/pnas.2311282120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Liquid droplet has emerged as a flexible intracellular compartment that modulates various cellular processes. Here, we uncover an antimetastatic mechanism governed by the liquid droplets formed through liquid-liquid phase separation (LLPS) of SQSTM1/p62 and neighbor of BRCA1 gene 1 (NBR1). Some of the tyrosine kinase inhibitors (TKIs) initiated lysosomal stress response that promotes the LLPS of p62 and NBR1, resulting in the spreading of p62/NBR1 liquid droplets. Interestingly, in the p62/NBR1 liquid droplet, degradation of RAS-related C3 botulinum toxin substrate 1 was accelerated by cellular inhibitor of apoptosis protein 1, which limits cancer cell motility. Moreover, the antimetastatic activity of the TKIs was completely overridden in p62/NBR1 double knockout cells both in vitro and in vivo. Thus, our results demonstrate a function of the p62/NBR1 liquid droplet as a critical determinant of cancer cell behavior, which may provide insight into both the clinical and biological significance of LLPS.
Collapse
Affiliation(s)
- Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tamaki Itoh
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Midori Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Reon Kurokawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| |
Collapse
|
5
|
Geng C, Wang Q, Xing PF, Wang M, Tong SD, Zhou JY. Effects and mechanisms of GSG2 in esophageal cancer progression. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04260-2. [PMID: 35939116 DOI: 10.1007/s00432-022-04260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Esophageal cancer was recognized as one of the malignant tumors with poor prognosis. Germ cell associated 2 (GSG2) has been reported to be of great significance in cell growth and tumor formation. This study aimed to investigate the biological function and molecular mechanism of GSG2 in esophageal cancer. METHODS First, relationship between GSG2 expression and tumor characteristics in esophageal cancer patients was analyzed through immunohistochemical (IHC) staining. MTT assay, flow cytometry, cloning formation assay, wound-healing assay and Transwell assay were used to determine proliferation, apoptosis and migration of esophageal cancer cell with GSG2 knockdown in vitro. Expression of apoptosis related proteins and downstream pathway proteins after GSG2 knockdown were detected through Human Apoptosis Antibody Array and western blot analysis. The GSG2 knockdown function in vivo was explored through a xenograft tumor model. RESULTS GSG2 was highly expressed in tumor tissues, which has clinical significance in predicting the malignant degree of patients with esophageal cancer. In addition, GSG2 knockdown significantly inhibited a variety of malignant biological behaviors of esophageal cancer cells, such as inhibiting proliferation, reducing colony formation, promoting apoptosis, hindering migration. The decrease of GSG2 expression in esophageal cancer cells can inhibit the xenograft tumor growth. CONCLUSIONS In conclusion, GSG2 was involved in esophageal cancer progression and development, which may provide an effective molecular target for the treatment of esophageal cancer in the future.
Collapse
Affiliation(s)
- Chong Geng
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Province, No.188 Shizi street, Suzhou, 215006, China
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Qiang Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Peng-Fei Xing
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Min Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Shao-Dong Tong
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Ju-Ying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Province, No.188 Shizi street, Suzhou, 215006, China.
| |
Collapse
|
6
|
Bergmann C, Hallenberger L, Chenguiti Fakhouri S, Merlevede B, Brandt A, Dees C, Zhu H, Zehender A, Zhou X, Schwab A, Chen CW, Györfi AH, Matei AE, Chakraborty D, Trinh-Minh T, Rauber S, Coras R, Bozec A, Kreuter A, Ziemer M, Schett G, Distler JHW. X-linked inhibitor of apoptosis protein (XIAP) inhibition in systemic sclerosis (SSc). Ann Rheum Dis 2021; 80:1048-1056. [PMID: 33903093 DOI: 10.1136/annrheumdis-2020-219822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE X-linked inhibitor of apoptosis protein (XIAP) is a multifunctional protein with important functions in apoptosis, cellular differentiation and cytoskeletal organisation and is emerging as potential target for the treatment of various cancers. The aim of the current study was to investigate the role of XIAP in the pathogenesis of systemic sclerosis (SSc). METHODS The expression of XIAP in human skin samples of patients with SSc and chronic graft versus host disease (cGvHD) and healthy individuals was analysed by quantitative PCR, immunofluorescence (IF) and western blot. XIAP was inactivated by siRNA-mediated knockdown and pharmacological inhibition. The effects of XIAP inactivation were analysed in cultured fibroblasts and in the fibrosis models bleomycin-induced and topoisomerase-I-(topoI)-induced fibrosis and in Wnt10b-transgenic mice. RESULTS The expression of XIAP, but not of other inhibitor of apoptosis protein family members, was increased in fibroblasts in SSc and sclerodermatous cGvHD. Transforming growth factor beta (TGF-β) induced the expression of XIAP in a SMAD3-dependent manner. Inactivation of XIAP reduced WNT-induced fibroblast activation and collagen release. Inhibition of XIAP also ameliorated fibrosis induced by bleomycin, topoI and overexpression of Wnt10b in well-tolerated doses. The profibrotic effects of XIAP were mediated via WNT/β-catenin signalling. Inactivation of XIAP reduces binding of β-catenin to TCF to in a TLE-dependent manner to block WNT/β-catenin-dependent transcription. CONCLUSIONS Our data characterise XIAP as a novel link between two core pathways of fibrosis. XIAP is overexpressed in SSc and cGvHD in a TGF-β/SMAD3-dependent manner and in turn amplifies the profibrotic effects of WNT/β-catenin signalling on fibroblasts via transducin-like enhancer of split 3. Targeted inactivation of XIAP inhibits the aberrant activation of fibroblasts in murine models of SSc.
Collapse
Affiliation(s)
- Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Ludwig Hallenberger
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Sara Chenguiti Fakhouri
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Benita Merlevede
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Amelie Brandt
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Clara Dees
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany.,Department of Rheumatology and Immunology, Xiangya Hospital Central South University, Changsha, China
| | - Ariella Zehender
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Xiang Zhou
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Annemarie Schwab
- Interdisciplinary Centre for Clinical Research, University Hospital Erlangen, FAU-Erlangen-Nuremberg, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Andrea Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Alexandru Emil Matei
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Debomita Chakraborty
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Simon Rauber
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Aline Bozec
- Institute for Clinical Immunology University of Erlangen-Nuremberg, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Alexander Kreuter
- Department of Dermatology and Allergology, HELIOS Sankt Elisabeth Klinik Oberhausen, Oberhausen, Nordrhein-Westfalen, Germany
| | - Mirjana Ziemer
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Leipzig, Leipzig, Sachsen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| |
Collapse
|
7
|
Song H, Guo X, Sun L, Wang Q, Han F, Wang H, Wray GA, Davidson P, Wang Q, Hu Z, Zhou C, Yu Z, Yang M, Feng J, Shi P, Zhou Y, Zhang L, Zhang T. The hard clam genome reveals massive expansion and diversification of inhibitors of apoptosis in Bivalvia. BMC Biol 2021; 19:15. [PMID: 33487168 PMCID: PMC7831173 DOI: 10.1186/s12915-020-00943-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inhibitors of apoptosis (IAPs) are critical regulators of programmed cell death that are essential for development, oncogenesis, and immune and stress responses. However, available knowledge regarding IAP is largely biased toward humans and model species, while the distribution, function, and evolutionary novelties of this gene family remain poorly understood in many taxa, including Mollusca, the second most speciose phylum of Metazoa. RESULTS Here, we present a chromosome-level genome assembly of an economically significant bivalve, the hard clam Mercenaria mercenaria, which reveals an unexpected and dramatic expansion of the IAP gene family to 159 members, the largest IAP gene repertoire observed in any metazoan. Comparative genome analysis reveals that this massive expansion is characteristic of bivalves more generally. Reconstruction of the evolutionary history of molluscan IAP genes indicates that most originated in early metazoans and greatly expanded in Bivalvia through both lineage-specific tandem duplication and retroposition, with 37.1% of hard clam IAPs located on a single chromosome. The expanded IAPs have been subjected to frequent domain shuffling, which has in turn shaped their architectural diversity. Further, we observed that extant IAPs exhibit dynamic and orchestrated expression patterns among tissues and in response to different environmental stressors. CONCLUSIONS Our results suggest that sophisticated regulation of apoptosis enabled by the massive expansion and diversification of IAPs has been crucial for the evolutionary success of hard clam and other molluscan lineages, allowing them to cope with local environmental stresses. This study broadens our understanding of IAP proteins and expression diversity and provides novel resources for studying molluscan biology and IAP function and evolution.
Collapse
Affiliation(s)
- Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, USA
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianghui Wang
- Novogene Bioinformatics Institute, Beijing, 100029, China
| | - Fengming Han
- Novogene Bioinformatics Institute, Beijing, 100029, China
| | - Haiyan Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | - Qing Wang
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenglin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Meijie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:244. [PMID: 33198776 PMCID: PMC7667862 DOI: 10.1186/s13046-020-01751-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Background Smac mimetics are a type of drug that can induce apoptosis by antagonizing IAP family members in cancer treatment. However, a recent study showed that Smac mimetics can trigger cell invasion and migration in cancer cells by activating the NF-κB pathway. Methods We assessed lung cancer cell elongation, invasion and migration under treatment with the Smac mimetic LCL161. Functional analyses (in vitro and in vivo) were performed to detect the contribution of NIK and OTUD7B to LCL161-induced cell invasion and migration. The role of OTUD7B in regulation of the TRAF3/NIK/NF-κB pathway under LCL161 treatment was analysed by immunoblotting, immunoprecipitation, luciferase and ubiquitin assays, shRNA silencing and plasmid overexpression. Expression levels of OTUD7B, NIK and TRAF3 in tissue samples from lung cancer patients were examined by immunohistochemistry. Results We found that LCL161 stimulates lung cancer cell elongation, invasion and migration at non-toxic concentrations. Mechanistically, LCL161 results in NIK accumulation and activates the non-canonical rather than the canonical NF-κB pathway to enhance the transcription of target genes, such as IL-2 and MMP-9. Importantly, knockdown of NIK dramatically suppresses LCL161-induced cell invasion and migration by reducing the proteolytic processing of p100 to p52 and target gene transcription. Interestingly, we discovered that OTUD7B increases TRAF3 and decreases NIK to inhibit the non-canonical NF-κB pathway and that overexpression of OTUD7B suppresses LCL161-induced cell invasion and migration. Notably, OTUD7B directly binds to TRAF3 rather than to NIK and deubiquitinates TRAF3, thereby inhibiting TRAF3 proteolysis and preventing NIK accumulation and NF-κB pathway activation. Furthermore, the OTU domain of OTUD7B is required for the inhibition of LCL161-induced cell invasion and migration, as demonstrated by transfection of the C194S/H358R(CH) mutant OTUD7B. Finally, we investigated whether OTUD7B inhibits LCL161-induced lung cancer cell intrapulmonary metastasis in vivo, and our analysis of clinical samples was consistent with the above findings. Conclusions Our study highlights the importance of OTUD7B in the suppression of LCL161-induced lung cancer cell invasion and migration, and the results are meaningful for selecting lung cancer patients suitable for LCL161 treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01751-3.
Collapse
|
9
|
Dubois F, Keller M, Hoflack J, Maille E, Antoine M, Westeel V, Bergot E, Quoix E, Lavolé A, Bigay-Game L, Pujol JL, Langlais A, Morin F, Zalcman G, Levallet G. Role of the YAP-1 Transcriptional Target cIAP2 in the Differential Susceptibility to Chemotherapy of Non-Small-Cell Lung Cancer (NSCLC) Patients with Tumor RASSF1A Gene Methylation from the Phase 3 IFCT-0002 Trial. Cancers (Basel) 2019; 11:cancers11121835. [PMID: 31766357 PMCID: PMC6966477 DOI: 10.3390/cancers11121835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
RASSF1 gene methylation predicts longer disease-free survival (DFS) and overall survival (OS) in patients with early-stage non-small-cell lung cancer treated using paclitaxel-based neo-adjuvant chemotherapy compared to patients receiving a gemcitabine-based regimen, according to the randomized Phase 3 IFCT (Intergroupe Francophone de Cancérologie Thoracique)-0002 trial. To better understand these results, this study used four human bronchial epithelial cell (HBEC) models (HBEC-3, HBEC-3-RasV12, A549, and H1299) and modulated the expression of RASSF1A or YAP-1. Wound-healing, invasion, proliferation and apoptosis assays were then carried out and the expression of YAP-1 transcriptional targets was quantified using a quantitative polymerase chain reaction. This study reports herein that gemcitabine synergizes with RASSF1A, silencing to increase the IAP-2 expression, which in turn not only interferes with cell proliferation but also promotes cell migration. This contributes to the aggressive behavior of RASSF1A-depleted cells, as confirmed by a combined knockdown of IAP-2 and RASSF1A. Conversely, paclitaxel does not increase the IAP-2 expression but limits the invasiveness of RASSF1A-depleted cells, presumably by rescuing microtubule stabilization. Overall, these data provide a functional insight that supports the prognostic value of RASSF1 gene methylation on survival of early-stage lung cancer patients receiving perioperative paclitaxel-based treatment compared to gemcitabine-based treatment, identifying IAP-2 as a novel biomarker indicative of YAP-1-mediated modulation of chemo-sensitivity in lung cancer.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pathology, CHU de Caen, 14033 Caen, France
| | - Maureen Keller
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Normandie Université, UNICAEN, UPRES-EA2608, 14032 Caen, France
| | - Julien Hoflack
- Normandie Université, UNICAEN, UPRES-EA2608, 14032 Caen, France
| | - Elodie Maille
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Normandie Université, UNICAEN, INSERM UMR 1086 ANTICIPE, 14032 Caen, France
| | - Martine Antoine
- Department of Pathology, Hôpital Tenon, AP-HP, 75020 Paris, France;
| | - Virginie Westeel
- Department of Pneumology, University Hospital of Besançon, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Emmanuel Bergot
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, 14033 Caen, France
| | - Elisabeth Quoix
- Department of Pneumology, University Hospital, 67000 Strasbourg, France;
| | - Armelle Lavolé
- Sorbonne Université, GRC n 04, Theranoscan, AP-HP, Service de Pneumologie, Hôpital Tenon, 75020 Paris, France;
| | - Laurence Bigay-Game
- Pneumology Department, Toulouse-Purpan, University Hospital Toulouse, 31300 Toulouse, France;
| | - Jean-Louis Pujol
- Département d’Oncologie Thoracique, CHU Montpellier, Univ. Montpellier, 34595 Montpellier, France;
| | - Alexandra Langlais
- Intergroupe Francophone de Cancérologie Thoracique (IFCT), 75009 Paris, France; (A.L.); (F.M.)
| | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique (IFCT), 75009 Paris, France; (A.L.); (F.M.)
| | - Gérard Zalcman
- U830 INSERM “Genetics and Biology of Cancers, A.R.T Group”, Curie Institute, 75005 Paris, France
- Department of Thoracic Oncology & CIC1425, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, 75018 Paris, France
- Correspondence: (G.Z.); (G.L.); Tel.: +33-(0)140-257-502 (G.Z.); +33-(0)231-063-134 (G.L.)
| | - Guénaëlle Levallet
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pathology, CHU de Caen, 14033 Caen, France
- Correspondence: (G.Z.); (G.L.); Tel.: +33-(0)140-257-502 (G.Z.); +33-(0)231-063-134 (G.L.)
| |
Collapse
|
10
|
Lemos LGT, Longo GMDC, Mendonça BDS, Robaina MC, Brum MCM, Cirilo CDA, Gimba ERP, Costa PRR, Buarque CD, Nestal de Moraes G, Maia RC. The LQB-223 Compound Modulates Antiapoptotic Proteins and Impairs Breast Cancer Cell Growth and Migration. Int J Mol Sci 2019; 20:ijms20205063. [PMID: 31614718 PMCID: PMC6834317 DOI: 10.3390/ijms20205063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Drug resistance represents a major issue in treating breast cancer, despite the identification of novel therapeutic strategies, biomarkers, and subgroups. We have previously identified the LQB-223, 11a-N-Tosyl-5-deoxi-pterocarpan, as a promising compound in sensitizing doxorubicin-resistant breast cancer cells, with little toxicity to non-neoplastic cells. Here, we investigated the mechanisms underlying LQB-223 antitumor effects in 2D and 3D models of breast cancer. MCF-7 and MDA-MB-231 cells had migration and motility profile assessed by wound-healing and phagokinetic track motility assays, respectively. Cytotoxicity in 3D conformation was evaluated by measuring spheroid size and performing acid phosphatase and gelatin migration assays. Protein expression was analyzed by immunoblotting. Our results show that LQB-223, but not doxorubicin treatment, suppressed the migratory and motility capacity of breast cancer cells. In 3D conformation, LQB-223 remarkably decreased cell viability, as well as reduced 3D culture size and migration. Mechanistically, LQB-223-mediated anticancer effects involved decreased proteins levels of XIAP, c-IAP1, and Mcl-1 chemoresistance-related proteins, but not survivin. Survivin knockdown partially potentiated LQB-223-induced cytotoxicity. Additionally, cell treatment with LQB-223 resulted in changes in the mRNA levels of epithelial-mesenchymal transition markers, suggesting that it might modulate cell plasticity. Our data demonstrate that LQB-223 impairs 3D culture growth and migration in 2D and 3D models of breast cancer exhibiting different phenotypes.
Collapse
Affiliation(s)
- Lauana Greicy Tonon Lemos
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Gabriel Mello da Cunha Longo
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Bruna Dos Santos Mendonça
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA. Rua André Cavalcanti, 37, 2° andar, Centro, RJ 20 231-050, Brazil.
| | - Marcela Cristina Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Mariana Concentino Menezes Brum
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA. Rua André Cavalcanti, 37, 2° andar, Centro, RJ 20 231-050, Brazil.
- Programa de Oncobiologia Celular e Molecular, INCA. Praça da Cruz Vermelha, 23, 6 andar, Centro, RJ 20 231-050, Brazil.
| | - Caíque de Assis Cirilo
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Etel Rodrigues Pereira Gimba
- Programa de Oncobiologia Celular e Molecular, INCA. Praça da Cruz Vermelha, 23, 6 andar, Centro, RJ 20 231-050, Brazil.
- Departamento de Ciências da Natureza, Instituto de Humanidades e Saúde, Universidade Federal Fluminense (UFF), Rua Recife 1-7, Bela Vista, Rio das Ostras, RJ 28880-000, Brazil.
| | - Paulo Roberto Ribeiro Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro, CCS, Bloco H - Ilha do Fundão, RJ 21941-902, Brazil.
| | - Camilla Djenne Buarque
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, RJ 22435-900, Brazil.
| | - Gabriela Nestal de Moraes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| |
Collapse
|
11
|
Tomicic MT, Steigerwald C, Rasenberger B, Brozovic A, Christmann M. Functional mismatch repair and inactive p53 drive sensitization of colorectal cancer cells to irinotecan via the IAP antagonist BV6. Arch Toxicol 2019; 93:2265-2277. [PMID: 31289894 DOI: 10.1007/s00204-019-02513-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/04/2019] [Indexed: 11/26/2022]
Abstract
A common strategy to overcome acquired chemotherapy resistance is the combination of a specific anticancer drug (e.g., topoisomerase I inhibitor irinotecan) together with a putative sensitizer. The purpose of this study was to analyze the cytostatic/cytotoxic response of colorectal carcinoma (CRC) cells to irinotecan, depending on the mismatch repair (MMR) and p53 status and to examine the impact of BV6, a bivalent antagonist of inhibitors of apoptosis c-IAP1/c-IAP2, alone or combined with irinotecan. Therefore, several MSH2- or MSH6-deficient cell lines were complemented for MMR deficiency, or MSH6 was knocked out/down in MMR-proficient cells. Upon irinotecan, MMR-deficient/p53-mutated lines repaired DNA double-strand breaks by homologous recombination less efficiently than MMR-proficient/p53-mutated lines and underwent elevated caspase-9-dependent apoptosis. Opposite, BV6-mediated sensitization was achieved only in MMR-proficient/p53-mutated cells. In those cells, c-IAP1 and c-IAP2 were effectively degraded by BV6, caspase-8 was fully activated, and both canonical and non-canonical NF-κB signaling were triggered. The results were confirmed ex vivo in tumor organoids from CRC patients. Therefore, the particular MMR+/p53mt signature, often found in non-metastasizing (stage II) CRC might be used as a prognostic factor for an adjuvant therapy using low-dose irinotecan combined with a bivalent IAP antagonist.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany.
| | - Christian Steigerwald
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Birgit Rasenberger
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Anamaria Brozovic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| |
Collapse
|
12
|
Gu Y, Wang R, Han Y, Zhou W, Zhao Z, Chen T, Zhang Y, Peng F, Liang H, Qi L, Zhao W, Yang D, Guo Z. A landscape of synthetic viable interactions in cancer. Brief Bioinform 2019; 19:644-655. [PMID: 28096076 DOI: 10.1093/bib/bbw142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 01/25/2023] Open
Abstract
Synthetic viability, which is defined as the combination of gene alterations that can rescue the lethal effects of a single gene alteration, may represent a mechanism by which cancer cells resist targeted drugs. Approaches to detect synthetic viable (SV) interactions in cancer genome to investigate drug resistance are still scarce. Here, we present a computational method to detect synthetic viability-induced drug resistance (SVDR) by integrating the multidimensional data sets, including copy number alteration, whole-exome mutation, expression profile and clinical data. SVDR comprehensively characterized the landscape of SV interactions across 8580 tumors in 32 cancer types by integrating The Cancer Genome Atlas data, small hairpin RNA-based functional experimental data and yeast genetic interaction data. We revealed that the SV interactions are favorable to cells and can predict clinical prognosis for cancer patients, which were robustly observed in an independent data set. By integrating the cancer pharmacogenomics data sets from Cancer Cell Line Encyclopedia (CCLE) and Broad Cancer Therapeutics Response Portal, we have demonstrated that SVDR enables drug resistance prediction and exhibits high reliability between two databases. To our knowledge, SVDR is the first genome-scale data-driven approach for the identification of SV interactions related to drug resistance in cancer cells. This data-driven approach lays the foundation for identifying the genomic markers to predict drug resistance and successfully infers the potential drug combination for anti-cancer therapy.
Collapse
Affiliation(s)
- Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruiping Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yue Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenbin Zhou
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhangxiang Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Fuduan Peng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haihai Liang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Da Yang
- Department of Pharmaceutical Sciences and Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zheng Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Ayachi O, Barlin M, Broxtermann PN, Kashkar H, Mauch C, Zigrino P. The X-linked inhibitor of apoptosis protein (XIAP) is involved in melanoma invasion by regulating cell migration and survival. Cell Oncol (Dordr) 2019; 42:319-329. [PMID: 30778852 DOI: 10.1007/s13402-019-00427-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The X-linked inhibitor of apoptosis (XIAP) is a potent cellular inhibitor of apoptosis, based on its unique capability to bind and to inhibit caspases. However, XIAP is also involved in a number of additional cellular activities independent of its caspase inhibitory function. The aim of this study was to investigate whether modulation of XIAP expression affects apoptosis-independent functions of XIAP in melanoma cells, restores their sensitivity to apoptosis and/or affects their invasive and metastatic capacities. METHODS XIAP protein levels were analyzed by immunohistochemical staining of human tissues and by Western blotting of melanoma cell lysates. The effects of pharmacological inhibition or of XIAP down-regulation were investigated using ex-vivo and transwell invasion assays. The biological effects of XIAP down-regulation on melanoma cells were analyzed in vitro using BrdU/PI, nucleosome quantification, adhesion and migration assays. In addition, new XIAP binding partners were identified by co-immunoprecipitation followed by mass spectrometry. RESULTS Here we found that the expression of XIAP is increased in metastatic melanomas and in invasive melanoma-derived cell lines. We also found that the bivalent IAP antagonist birinapant significantly reduced the invasive capability of melanoma cells. This reduction could be reproduced by downregulating XIAP in melanoma cells. Furthermore, we found that the migration of melanoma cells and the formation of focal adhesions at cellular borders on fibronectin-coated surfaces were significantly reduced upon XIAP knockdown. This reduction may depend on an altered vimentin-XIAP association, since we identified vimentin as a new binding partner of XIAP. As a corollary of these molecular alterations, we found that XIAP down-regulation in melanoma cells led to a significant decrease in invasion of dermal skin equivalents. CONCLUSION From our data we conclude that XIAP acts as a multifunctional pro-metastatic protein in skin melanomas and, as a consequence, that XIAP may serve as a therapeutic target for these melanomas.
Collapse
Affiliation(s)
- Ouissam Ayachi
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Meltem Barlin
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Pia Nora Broxtermann
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), Center for Molecular Medicine Cologne (CMMC), CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), Center for Molecular Medicine Cologne (CMMC), CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| |
Collapse
|
14
|
[Anti-viral responses in insect cells]. Uirusu 2019; 69:47-60. [PMID: 32938894 DOI: 10.2222/jsv.69.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Rosner A, Kravchenko O, Rinkevich B. IAP genes partake weighty roles in the astogeny and whole body regeneration in the colonial urochordate Botryllus schlosseri. Dev Biol 2018; 448:320-341. [PMID: 30385275 DOI: 10.1016/j.ydbio.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Inhibitors of Apoptosis Protein (IAP) genes participate in processes like apoptosis, proliferation, innate immunity, inflammation, cell motility, differentiation and in malignancies. Here we reveal 25 IAP genes in the tunicate Botryllus schlosseri's genome and their functions in two developmental biology phenomena, a new mode of whole body regeneration (WBR) induced by budectomy, and blastogenesis, the four-staged cycles of botryllid ascidian astogeny. IAP genes that were specifically upregulated during these developmental phenomena were identified, and protein expression patterns of one of these genes, IAP28, were followed. Most of the IAP genes upregulation recorded at blastogenetic stages C/D was in concert with the upregulation at 100 μM H2O2 apoptotic-induced treatment and in parallel to expressions of AIF1, Bax, Mcl1, caspase 2 and two orthologues of caspase 7. Wnt agonist altered the takeover duration along with reduced IAP expressions, and displacement of IAP28+ phagocytes. WBR was initiated solely at blastogenetic stage D, where zooidal absorption was attenuated and regeneration centers were formed either from remains of partially absorbed zooids or from deformed ampullae. Subsequently, bud-bearing zooids developed, in concert with a massive IAP28-dependent phagocytic wave that eliminated the old zooids, then proceeded with the establishment of morphologically normal-looking colonies. IAP4, IAP14 and IAP28 were also involved in WBR, in conjunction with the expression of the pro-survival PI3K-Akt pathway. IAPs function deregulation by Smac mimetics resulted in severe morphological damages, attenuation in bud growth and differentiation, and in destabilization of colonial coordination. Longtime knockdown of IAP functions prior to the budectomy, resulted in colonial death.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel.
| | - Olha Kravchenko
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel; National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony, Str 17, building 2, of 45, Kyiv 03041, Ukraine
| | - Baruch Rinkevich
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel
| |
Collapse
|
16
|
Dizdar L, Jünemann LM, Werner TA, Verde PE, Baldus SE, Stoecklein NH, Knoefel WT, Krieg A. Clinicopathological and functional implications of the inhibitor of apoptosis proteins survivin and XIAP in esophageal cancer. Oncol Lett 2018; 15:3779-3789. [PMID: 29467895 DOI: 10.3892/ol.2018.7755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Based on their overexpression and important roles in progression and therapy-resistance in malignant diseases, the inhibitor of apoptosis protein family (IAP) members, survivin and X-linked inhibitor of apoptosis protein (XIAP), represent attractive candidates for targeted therapy. The present study investigated the prognostic and biological relevance of survivin and XIAP in esophageal squamous-cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). Survivin and XIAP expression was analyzed by immunohistochemistry using tissue microarrays containing 120 ESCC and 90 EAC samples as well as the corresponding non-neoplastic esophageal mucosa samples. IAP expression levels were then correlated to clinicopathological parameters and overall survival to identify any associations. In addition, esophageal cancer cell lines were treated with the survivin inhibitor YM155, and the XIAP inhibitors Birinapant and GDC-0152 in vitro. Survivin and XIAP expression were significantly increased in EAC and ESCC when compared with tumor-adjacent mucosa. In patients with ESCC XIAP expression was associated with female gender and advanced tumor stages, and nuclear survivin expression was associated with poor grading. High XIAP expression was identified as an independent negative prognostic marker in ESCC. By contrast, XIAP inhibitors did not affect cancer cell viability in vitro, and the small molecule survivin inhibitor YM155 significantly reduced cell viability and proliferation in esophageal cancer cell lines. Western blot analysis revealed a dose dependent decrease of survivin accompanied by an increased poly (adenosine diphosphate-ribose) polymerase cleavage following YM155 treatment. These findings underline the potential role of survivin and XIAP in the oncogenesis of esophageal cancer and provide a rationale for future clinical studies investigating the therapeutic efficacy of IAP directed therapies in patients with esophageal cancer.
Collapse
Affiliation(s)
- Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa M Jünemann
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Thomas A Werner
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Pablo E Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan E Baldus
- Institute of Pathology, Cytology and Molecular Pathology, D-51465 Bergisch Gladbach, Germany
| | - Nikolas H Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Chen C, Wu J, Zhu P, Xu C, Yao L. Investigating isoquinoline derivatives for inhibition of inhibitor of apoptosis proteins for ovarian cancer treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2697-2707. [PMID: 28979099 PMCID: PMC5602439 DOI: 10.2147/dddt.s137608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective To discover novel isoquinoline derivatives for inhibition of inhibitor of apoptosis proteins (IAP) for the treatment of ovarian cancer. Methods We first synthesized 533 isoquinoline derivatives, and screened them using CCK-8 to measure their antiproliferative activity. These compounds were further tested by Hoechst staining and flow cytometric analysis to assess proapoptotic activity. The in vivo antitumor efficacy and safety of the screened compounds were evaluated on the xenograft mouse model. Ki-67 staining and TUNEL assay were used to evaluate proliferation and apoptosis in the resected tumors, respectively. Western blot and polymerase chain reaction (PCR) were conducted to evaluate the levels of proliferating cell nuclear antigen (PCNA), caspase-3, PARP, and IAP in resected tumors. Results Compound B01002 and C26001 displayed antiproliferative and proapoptotic activity on SKOV3 ovarian cancer with an IC50 of 7.65 and 11.68 µg/mL, respectively. Both compounds inhibited tumor growth in a xenografted mouse model with good safety profiles, and tumor growth inhibition (TGI) of B01002 and C26001 was 99.53% and 84.23%, respectively. Resected tumors showed that both compounds inhibited tumor cell proliferation and induced apoptosis in vivo. Caspase-3 and PARP were activated, whereas IAP proteins were downregulated at the protein level. Conclusion Compound B01002 and C26001 could inhibit ovarian tumor growth and promote tumor apoptosis, partly by downregulating the IAPs, and, thus, might be promising candidates for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chen Chen
- Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Jie Wu
- Department of Chemistry, Fudan University, Shanghai
| | - Pengfei Zhu
- Department of Obstetrics and Gynecology, Shangyu City Hospital, Shangyu, Zhejiang Province, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Liangqing Yao
- Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
18
|
Caspase-dependent non-apoptotic processes in development. Cell Death Differ 2017; 24:1422-1430. [PMID: 28524858 PMCID: PMC5520453 DOI: 10.1038/cdd.2017.36] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
Caspases are at the core of executing apoptosis by orchestrating cellular destruction with proteolytic cascades. Caspase-mediated proteolysis also controls diverse nonlethal cellular activities such as proliferation, differentiation, cell fate decision, and cytoskeletal reorganization. During the last decade or so, genetic studies of Drosophila have contributed to our understanding of the in vivo mechanism of the non-apoptotic cellular responses in developmental contexts. Furthermore, recent studies using C. elegans suggest that apoptotic signaling may play unexpected roles, which influence ageing and normal development at the organism level. In this review, we describe how the caspase activity is elaborately controlled during vital cellular processes at the level of subcellular localization, the duration and timing to avoid full apoptotic consequences, and also discuss the novel roles of non-apoptotic caspase signaling in adult homeostasis and physiology.
Collapse
|
19
|
Wang JQ, Kou JF, Zhao ZZ, Qiu KQ, Chao H. Anthraquinone-bridged diruthenium(ii) complexes inhibit migration and invasion of human hepatocarcinoma MHCC97-H cells. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00149e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Four diruthenium(ii) complexes exhibited anti-metastatic properties on MHCC97-H cells, which involved in the inhibition of migration and invasion, negative remodulation of the cytoskeleton, blocking cell cycles and regulation of relative signal pathways.
Collapse
Affiliation(s)
- Jin-Quan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research
- Guangdong Pharmaceutical University
- Guangzhou 510275
- China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
| | - Jun-Feng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Zi-Zhuo Zhao
- Sun Yat-sen Memorial Hospital
- Sun Yat-Sen University
- Guangzhou
- China
| | - Kang-Qiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
20
|
Wang S, Xu Y, Chan HF, Kim HW, Wang Y, Leong KW, Chen M. Nanoparticle-mediated inhibition of survivin to overcome drug resistance in cancer therapy. J Control Release 2016; 240:454-464. [DOI: 10.1016/j.jconrel.2016.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 02/08/2023]
|
21
|
Lindemann C, Marschall V, Weigert A, Klingebiel T, Fulda S. Smac Mimetic-Induced Upregulation of CCL2/MCP-1 Triggers Migration and Invasion of Glioblastoma Cells and Influences the Tumor Microenvironment in a Paracrine Manner. Neoplasia 2016; 17:481-9. [PMID: 26152356 PMCID: PMC4719005 DOI: 10.1016/j.neo.2015.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/10/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Second mitochondria-derived activator of caspase (Smac) mimetics are considered as promising anticancer therapeutics that are currently under investigation in early clinical trials. They induce apoptosis by antagonizing inhibitor of apoptosis proteins, which are frequently overexpressed in cancer. We previously reported that Smac mimetics, such as BV6, additionally exert non-apoptotic functions in glioblastoma (GBM) cells by stimulating migration and invasion in a nuclear factor kappa B (NF-κB)-dependent manner. Because NF-κB target genes mediating these effects are largely unknown, we performed whole-genome expression analyses. Here, we identify chemokine (C-C motif) ligand 2 (CCL2) as the top-listed NF-κB-regulated gene being upregulated upon BV6 treatment in GBM cells. BV6-induced upregulation and secretion of CCL2 are required for migration and invasion of GBM cells because knockdown of CCL2 in GBM cells abolishes these effects. Co-culture experiments of GBM cells with non-malignant astroglial cells reveal that BV6-stimulated secretion of CCL2 by GBM cells into the supernatant triggers migration of astroglial cells toward GBM cells because CCL2 knockdown in BV6-treated GBM cells impedes BV6-stimulated migration of astroglial cells. In conclusion, we identify CCL2 as a BV6-induced NF-κB target gene that triggers migration and invasion of GBM cells and exerts paracrine effects on the GBM's microenvironment by stimulating migration of astroglial cells. These findings provide novel insights into the biological functions of Smac mimetics with important implications for the development of Smac mimetics as cancer therapeutics.
Collapse
Affiliation(s)
- Carina Lindemann
- Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Viola Marschall
- Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University, Frankfurt, Germany
| | - Thomas Klingebiel
- Pediatric Hematology and Oncology, University Children's Hospital, Goethe-University, Frankfurt, Germany
| | - Simone Fulda
- Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany; German Cancer Consortium (DKTK) Heidelberg, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
22
|
Chang YF, Hsu YF, Chiu PT, Huang WJ, Huang SW, Ou G, Sheu JR, Hsu MJ. WMJ-S-001, a novel aliphatic hydroxamate derivative, exhibits anti-angiogenic activities via Src-homology-2-domain-containing protein tyrosine phosphatase 1. Oncotarget 2015; 6:85-100. [PMID: 25415226 PMCID: PMC4381580 DOI: 10.18632/oncotarget.2765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/15/2014] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis, one of the major routes for tumor invasion and metastasis represents a rational target for therapeutic intervention. Recent development in drug discovery has highlighted the diverse biological and pharmacological properties of hydroxamate derivatives. In this study, we characterized the anti-angiogenic activities of a novel aliphatic hydroxamate, WMJ-S-001, in an effort to develop novel angiogenesis inhibitors. WMJ-S-001 inhibited vascular endothelial growth factor (VEGF)-A-induced proliferation, invasion and endothelial tube formation of human umbilical endothelial cells (HUVECs). WMJ-S-001 suppressed VEGF-A-induced microvessel sprouting from aortic rings, and attenuated angiogenesis in in vivo mouse xenograft models. In addition, WMJ-S-001 inhibited the phosphorylations of VEGFR2, Src, FAK, Akt and ERK in VEGF-A-stimulated HUVECs. WMJ-S-001 caused an increase in SHP-1 phosphatase activity, whereas NSC-87877, a SHP-1 inhibitor, restored WMJ-S-001 suppression of VEGFR2 phosphorylation and cell proliferation. Furthermore, WMJ-S-001 inhibited cell cycle progression and induced cell apoptosis in HUVECs. These results are associated with p53 phosphorylation and acetylation and the modulation of p21 and survivin. Taken together, WMJ-S-001 was shown to modulate vascular endothelial cell remodeling through inhibiting VEGFR2 signaling and induction of apoptosis. These results also support the role of WMJ-S-001 as a potential drug candidate and warrant the clinical development in the treatment of cancer.
Collapse
Affiliation(s)
- Yi-Fang Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan
| | - Pei-Ting Chiu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Wen Huang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - George Ou
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joen-Rong Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Rivadeneira DB, Caino MC, Seo JH, Angelin A, Wallace DC, Languino LR, Altieri DC. Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci Signal 2015; 8:ra80. [PMID: 26268608 DOI: 10.1126/scisignal.aab1624] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Survivin promotes cell division and suppresses apoptosis in many human cancers, and increased abundance correlates with metastasis and poor prognosis. We showed that a pool of survivin that localized to the mitochondria of certain tumor cell lines enhanced the stability of oxidative phosphorylation complex II, which promoted cellular respiration. Survivin also supported the subcellular trafficking of mitochondria to the cortical cytoskeleton of tumor cells, which was associated with increased membrane ruffling, increased focal adhesion complex turnover, and increased tumor cell migration and invasion in cultured cells, and enhanced metastatic dissemination in vivo. Therefore, we found that mitochondrial respiration enhanced by survivin contributes to cancer metabolism, and relocalized mitochondria may provide a "regional" energy source to fuel tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Dayana B Rivadeneira
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA. Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - M Cecilia Caino
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA. Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jae Ho Seo
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA. Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucia R Languino
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA. Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Abstract
Although technically a member of the Inhibitor of Apoptosis (IAP) gene family, survivin has consistently defied assumptions, refuted predictions and challenged paradigms. Despite its more than 5500 citations currently in Medline, the biology of survivin has remained fascinatingly complex, its exploitation in human disease, most notably cancer, tantalizing, and its regulation of cellular homeostasis unexpectedly far-reaching. An inconvenient outsider that resists schemes and dogmas, survivin continues to hold great promise to unlock fundamental circuitries of cellular functions in health and disease.
Collapse
Affiliation(s)
- Dario C Altieri
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
PARRA EDUARDO, GUTIÉRREZ LUIS, FERREIRA JORGE. Inhibition of basal JNK activity by small interfering RNAs enhances cisplatin sensitivity and decreases DNA repair in T98G glioblastoma cells. Oncol Rep 2014; 33:413-8. [DOI: 10.3892/or.2014.3570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/22/2014] [Indexed: 11/05/2022] Open
|
26
|
Lee SH, Lee JY, Jung CL, Bae IH, Suh KH, Ahn YG, Jin DH, Kim TW, Suh YA, Jang SJ. A novel antagonist to the inhibitors of apoptosis (IAPs) potentiates cell death in EGFR-overexpressing non-small-cell lung cancer cells. Cell Death Dis 2014; 5:e1477. [PMID: 25321484 PMCID: PMC4649530 DOI: 10.1038/cddis.2014.447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/25/2022]
Abstract
In the effort to develop an efficient chemotherapy drug for the treatment of non-small-cell lung cancer (NSCLC), we analyzed the anti-tumorigenic effects of a novel small molecule targeting the inhibitor of apoptosis (IAPs), HM90822B, on NSCLC cells. HM90822B efficiently decreased IAP expression, especially that of XIAP and survivin, in several NSCLC cells. Interestingly, cells overexpressing epidermal growth factor receptor (EGFR) due to the mutations were more sensitive to HM90822B, undergoing cell cycle arrest and apoptosis when treated. In xenograft experiments, inoculated EGFR-overexpressing NSCLC cells showed tumor regression when treated with the inhibitor, demonstrating the chemotherapeutic potential of this agent. Mechanistically, decreased levels of EGFR, Akt and phospho-MAPKs were observed in inhibitor-treated PC-9 cells on phosphorylation array and western blotting analysis, indicating that the reagent inhibited cell growth by preventing critical cell survival signaling pathways. In addition, gene-specific knockdown studies against XIAP and/or EGFR further uncovered the involvement of Akt and MAPK pathways in HM90822B-mediated downregulation of NSCLC cell growth. Together, these results support that HM90822B is a promising candidate to be developed as lung tumor chemotherapeutics by targeting oncogenic activities of IAP together with inhibiting cell survival signaling pathways.
Collapse
Affiliation(s)
- S-H Lee
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J-Y Lee
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - C L Jung
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - I H Bae
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong, Gyeonggi-do, Republic of Korea
| | - K H Suh
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong, Gyeonggi-do, Republic of Korea
| | - Y G Ahn
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong, Gyeonggi-do, Republic of Korea
| | - D-H Jin
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - T W Kim
- 1] Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea [2] Department of Medicinal Oncology, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Y-A Suh
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - S J Jang
- 1] Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea [2] Department of Pathology, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Seo TW, Lee JS, Yoo SJ. Cellular inhibitor of apoptosis protein 1 ubiquitinates endonuclease G but does not affect endonuclease G-mediated cell death. Biochem Biophys Res Commun 2014; 451:644-9. [PMID: 25139236 DOI: 10.1016/j.bbrc.2014.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/09/2014] [Indexed: 11/30/2022]
Abstract
Inhibitors of Apoptosis Proteins (IAPs) are evolutionarily well conserved and have been recognized as the key negative regulators of apoptosis. Recently, the role of IAPs as E3 ligases through the Ring domain was revealed. Using proteomic analysis to explore potential target proteins of DIAP1, we identified Drosophila Endonuclease G (dEndoG), which is known as an effector of caspase-independent cell death. In this study, we demonstrate that human EndoG interacts with IAPs, including human cellular Inhibitor of Apoptosis Protein 1 (cIAP1). EndoG was ubiquitinated by IAPs in vitro and in human cell lines. Interestingly, cIAP1 was capable of ubiquitinating EndoG in the presence of wild-type and mutant Ubiquitin, in which all lysines except K63 were mutated to arginine. cIAP1 expression did not change the half-life of EndoG and cIAP1 depletion did not alter its levels. Expression of dEndoG 54310, in which the mitochondrial localization sequence was deleted, led to cell death that could not be suppressed by DIAP1 in S2 cells. Moreover, EndoG-mediated cell death induced by oxidative stress in HeLa cells was not affected by cIAP1. Therefore, these results indicate that IAPs interact and ubiquitinate EndoG via K63-mediated isopeptide linkages without affecting EndoG levels and EndoG-mediated cell death, suggesting that EndoG ubiquitination by IAPs may serve as a regulatory signal independent of proteasomal degradation.
Collapse
Affiliation(s)
- Tae Woong Seo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji Sun Lee
- Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Soon Ji Yoo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
28
|
Abstract
Inhibitor of apoptosis (IAP) proteins are overexpressed in multiple human malignancies, an event that is associated with poor prognosis and treatment resistance. Therefore, IAP proteins represent relevant targets for therapeutic intervention. Second mitochondrial activator of caspases (Smac) is a mitochondrial protein that is released into the cytosol upon the induction of programmed cell death and promotes apoptosis by neutralizing IAP proteins. On the basis of this property, a variety of small-molecule inhibitors have been developed that mimic the binding domain of the native Smac protein to IAP proteins. Evaluation of these Smac mimetics in preclinical studies revealed that they particularly synergize together with agents that trigger the death receptor pathway of apoptosis. Such combinations might therefore be of special interest for being included in the ongoing evaluation of Smac mimetics in early clinical trials.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| |
Collapse
|
29
|
Fulda S. Regulation of cancer stem-like cell differentiation by Smac mimetics. Mol Cell Oncol 2014; 1:e960769. [PMID: 27308334 PMCID: PMC4905178 DOI: 10.4161/23723548.2014.960769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 12/04/2022]
Abstract
Small-molecule antagonists of inhibitor of apoptosis (IAP) proteins such as Smac mimetics are considered promising cancer therapeutics through the engagement of cell death pathways. Recent evidence suggests that Smac mimetics perform additional nonapoptotic functions by initiating differentiation in cancer stem-like cells, opening new perspectives for their future clinical application.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics; Goethe-University ; Frankfurt, Germany
| |
Collapse
|
30
|
Dubrez L, Berthelet J, Glorian V. IAP proteins as targets for drug development in oncology. Onco Targets Ther 2013; 9:1285-304. [PMID: 24092992 PMCID: PMC3787928 DOI: 10.2147/ott.s33375] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inhibitors of apoptosis (IAPs) constitute a family of proteins involved in the regulation of
various cellular processes, including cell death, immune and inflammatory responses, cell
proliferation, cell differentiation, and cell motility. There is accumulating evidence supporting
IAP-targeting in tumors: IAPs regulate various cellular processes that contribute to tumor
development, such as cell death, cell proliferation, and cell migration; their expression is
increased in a number of human tumor samples, and IAP overexpression has been correlated with tumor
growth, and poor prognosis or low response to treatment; and IAP expression can be rapidly induced
in response to chemotherapy or radiotherapy because of the presence of an internal ribosome entry
site (IRES)-dependent mechanism of translation initiation, which could contribute to resistance to
antitumor therapy. The development of IAP antagonists is an important challenge and was subject to
intense research over the past decade. Six molecules are currently in clinical trials. This review
focuses on the role of IAPs in tumors and the development of IAP-targeting molecules for anticancer
therapy.
Collapse
Affiliation(s)
- Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), Dijon, France ; Université de Bourgogne, Dijon, France
| | | | | |
Collapse
|