1
|
Zhou Z, Lin Z, Wang M, Wang L, Ji Y, Yang J, Yang Y, Zhu G, Liu T. Identification and verification of PTPN3 as a novel biomarker in predicting cancer prognosis, immunity, and immunotherapeutic efficacy. Eur J Med Res 2024; 29:12. [PMID: 38173048 PMCID: PMC10762909 DOI: 10.1186/s40001-023-01587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The importance of protein tyrosine phosphatase non-receptor type 3 (PTPN3) in controlling multifaceted tumor cell behaviors throughout cancer development has received widespread attention. Nevertheless, little is known about the biological roles of PTPN3 in drug sensitivity, immunotherapeutic effectiveness, tumor immune microenvironment, and cancer prognosis. METHODS The Cancer Genome Atlas (TCGA) database's RNAseq data were used to examine the expression of PTPN3 in 33 different cancer types. In addition, immunohistochemistry (IHC) was performed to validate the expression of PTPN3 across various cancer types within our clinical cohorts. The features of PTPN3 alterations were demonstrated throughout the cBioPortal database. This study focused on examining the prognostic and clinicopathological importance of PTPN3 through the acquisition of clinical data from the TCGA database. The investigation of PTPN3's probable role in the tumor immune microenvironment was demonstrated by the application of CIBERSORT, ESTIMATE algorithms, and the TISIDB database. Using Spearman's rank correlation coefficient, the relationships between PTPN3 expression and tumor mutation burden (TMB) and microsatellite instability (MSI) were evaluated. To further investigate the putative biological activities and downstream pathways of PTPN3 in various cancers in humans, Gene Set Enrichment Analysis (GSEA) was carried out. In addition, an examination was conducted to explore the associations between PTPN3 and the effectiveness of PD-1/PD-L1 inhibitors, utilizing data extracted from the GEO database. RESULTS PTPN3 was abnormally expressed in multiple cancer types and was also strictly associated with the prognosis of cancer patients. IHC was used to investigate and confirm the various expression levels of PTPN3 in various malignancies, including breast cancer, lung cancer, sarcoma, and kidney renal clear cell carcinoma in our clinical cohorts. There is a high correlation between the levels of PTPN3 expression in different cancers and infiltrating immune cells, including mast cells, B cells, regulatory T cells, CD8 + T cells, macrophages, and dendritic cells. Infiltrating immune cells, such as regulatory T cells, CD8 + T cells, macrophages, B cells, dendritic cells, and mast cells, are strongly correlated with PTPN3 expression levels in various tumors. The expression of PTPN3 exhibited a substantial correlation with many immune-related biomolecules and the expression of TMB and MSI in multiple types of cancer. In addition, PTPN3 has demonstrated promise in predicting the therapeutic benefits of PD-1/PD-L1 inhibitors and the susceptibility to anti-cancer medications in the treatment of clinical cancer. CONCLUSIONS Our findings highlight the importance of PTPN3 as a prognostic biomarker and predictor of immunotherapy success in various forms of cancer. Furthermore, PTPN3 appears to have an important role in modifying the tumor immune microenvironment, highlighting its potential as a promising biomarker for prognosis prediction, immunotherapeutic efficacy evaluation, and identification of immune-related characteristics in diverse cancer types.
Collapse
Affiliation(s)
- Ziting Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Mingrui Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Lifan Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuqiao Ji
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yaocheng Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Guanghui Zhu
- Department of Pediatric Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Changsha, 410007, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, 421001, Hunan, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Skelin J, Luk HY, Butorac D, Boon SS, Tomaić V. The effects of HPV oncoproteins on host communication networks: Therapeutic connotations. J Med Virol 2023; 95:e29315. [PMID: 38115222 DOI: 10.1002/jmv.29315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Human papillomavirus (HPV) infections are a leading cause of viral-induced malignancies worldwide, with a prominent association with cervical and head and neck cancers. The pivotal role of HPV oncoproteins, E5, E6, and E7, in manipulating cellular events, which contribute to viral pathogenesis in various ways, has been extensively documented. This article reviews the influence of HPV oncoproteins on cellular signaling pathways within the host cell, shedding light on the underlying molecular mechanisms. A comprehensive understanding of these molecular alterations is essential for the development of targeted therapies and strategies to combat HPV-induced premalignancies and prevent their progress to cancer. Furthermore, this review underscores the intricate interplay between HPV oncoproteins and some of the most important cellular signaling pathways: Notch, Wnt/β-catenin, MAPK, JAK/STAT, and PI3K AKT/mTOR. The treatment efficacies of the currently available inhibitors on these pathways in an HPV-positive context are also discussed. This review also highlights the importance of continued research to advance our knowledge and enhance therapeutic interventions for HPV-associated diseases.
Collapse
Affiliation(s)
- Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ho Yin Luk
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Dražan Butorac
- Department of Gynecology and Obstetrics, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Siaw Shi Boon
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
3
|
Zhang X, Hou Y, Huang Y, Chen W, Zhang H. Interplay between zinc and cell proliferation and implications for the growth of livestock. J Anim Physiol Anim Nutr (Berl) 2023; 107:1402-1418. [PMID: 37391879 DOI: 10.1111/jpn.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Huynh K, Smith BR, Macdonald SJ, Long AD. Genetic variation in chromatin state across multiple tissues in Drosophila melanogaster. PLoS Genet 2023; 19:e1010439. [PMID: 37146087 PMCID: PMC10191298 DOI: 10.1371/journal.pgen.1010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/17/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
We use ATAC-seq to examine chromatin accessibility for four different tissues in Drosophila melanogaster: adult female brain, ovaries, and both wing and eye-antennal imaginal discs from males. Each tissue is assayed in eight different inbred strain genetic backgrounds, seven associated with a reference quality genome assembly. We develop a method for the quantile normalization of ATAC-seq fragments and test for differences in coverage among genotypes, tissues, and their interaction at 44099 peaks throughout the euchromatic genome. For the strains with reference quality genome assemblies, we correct ATAC-seq profiles for read mis-mapping due to nearby polymorphic structural variants (SVs). Comparing coverage among genotypes without accounting for SVs results in a highly elevated rate (55%) of identifying false positive differences in chromatin state between genotypes. After SV correction, we identify 1050, 30383, and 4508 regions whose peak heights are polymorphic among genotypes, among tissues, or exhibit genotype-by-tissue interactions, respectively. Finally, we identify 3988 candidate causative variants that explain at least 80% of the variance in chromatin state at nearby ATAC-seq peaks.
Collapse
Affiliation(s)
- Khoi Huynh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| | - Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Stuart J. Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Anthony D. Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
5
|
Nanayakkara M, Bellomo C, Furone F, Maglio M, Marano A, Lania G, Porpora M, Nicoletti M, Auricchio S, Barone MV. PTPRK, an EGFR Phosphatase, Is Decreased in CeD Biopsies and Intestinal Organoids. Cells 2022; 12:cells12010115. [PMID: 36611909 PMCID: PMC9818839 DOI: 10.3390/cells12010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND & AIMS Celiac disease (CeD) is an immune-mediated enteropathy triggered in genetically susceptible (HLA-DQ2/8) individuals by a group of wheat proteins and related prolamins from cereals. The celiac intestine is characterized by an inversion of the differentiation/proliferation program of the enterocytes, with an increase in the proliferative compartment and crypt hyperplasia, which are the mechanisms that regulate the increased proliferation in CeD that arenot completely understood.The aim of this study is to understand the role of Protein Tyrosine Phosphatase Receptor Type K (PTPRK), a nodal phosphatase that regulates EGFR activation in the proliferation of the enterocytes from CeD biopsies and organoids. METHODS The levels of PTPRK were evaluated by RT PCR, western blot (WB) and immunofluorescence techniques in intestinal biopsies and organoids from CeD patients and controls. Additionally, pEGFR and pERK were evaluated by WB and proliferation by BrdU incorporation. PTPRK si-RNA was silenced in CTR organoids and was overexpressed in CeD organoids. RESULTS PTPRK was reduced in Gluten Containing Diet-Celiac Disease (GCD-CeD) and Potential-Celiac Disease(Pot-CeD) biopsies (p < 0.01-p < 0.05) whereas pEGFR (p < 0.01 p < 0.01), pERK (p < 0.01 p < 0.01) and proliferation were increased. (p < 0.05 p < 0.05) respect to the controls.The CeD organoids reproduced these same alterations. Silencing of PTPRK in CTR organoids increased pEGFR, pERK and proliferation. The overexpression of PTPRK in CeD organoids reduced pEGFR, pERK and proliferation. CONCLUSIONS modulation of PTPRK levels can reduce or increase pEGFR, pERK and proliferation in CeD or CTR organoids, respectively. The CeD organoids can be a good model to study the mechanisms of the disease.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Claudia Bellomo
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Francesca Furone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonella Marano
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuliana Lania
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Nicoletti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Salvatore Auricchio
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0817464568; Fax: +39-0817463116
| |
Collapse
|
6
|
Gul H, Habib G, Khan IM, Rahman SU, Khan NM, Wang H, Khan NU, Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Front Vet Sci 2022; 9:1032983. [PMID: 36439341 PMCID: PMC9691405 DOI: 10.3389/fvets.2022.1032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The genome contributes to the uniqueness of an individual breed, and enables distinctive characteristics to be passed from one generation to the next. The allelic heterogeneity of a certain breed results in a different response to a pathogen with different genomic expression. Disease resistance in chicken is a polygenic trait that involves different genes that confer resistance against pathogens. Such resistance also involves major histocompatibility (MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells, and CD4+ and CD8+ T lymphocytes, which are involved in host protection. The MHC is associated with antigen presentation, antibody production, and cytokine stimulation, which highlight its role in disease resistance. The natural resistance-associated macrophage protein 1 (Nramp-1), interferon (IFN), myxovirus-resistance gene, myeloid differentiation primary response 88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and heterophile cells are involved in disease resistance and susceptibility of chicken. Studies related to disease resistance genetics, epigenetics, and quantitative trait loci would enable the identification of resistance markers and the development of disease resistance breeds. Microbial infections are responsible for significant outbreaks and have blighted the poultry industry. Breeding disease-resistant chicken strains may be helpful in tackling pathogens and increasing the current understanding on host genetics in the fight against communicable diseases. Advanced technologies, such as the CRISPR/Cas9 system, whole genome sequencing, RNA sequencing, and high-density single nucleotide polymorphism (SNP) genotyping, aid the development of resistant breeds, which would significantly decrease the use of antibiotics and vaccination in poultry. In this review, we aimed to reveal the recent genetic basis of infection and genomic modification that increase resistance against different pathogens in chickens.
Collapse
Affiliation(s)
- Haji Gul
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
7
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
8
|
Vasina M, Velecký J, Planas-Iglesias J, Marques SM, Skarupova J, Damborsky J, Bednar D, Mazurenko S, Prokop Z. Tools for computational design and high-throughput screening of therapeutic enzymes. Adv Drug Deliv Rev 2022; 183:114143. [PMID: 35167900 DOI: 10.1016/j.addr.2022.114143] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
Therapeutic enzymes are valuable biopharmaceuticals in various biomedical applications. They have been successfully applied for fibrinolysis, cancer treatment, enzyme replacement therapies, and the treatment of rare diseases. Still, there is a permanent demand to find new or better therapeutic enzymes, which would be sufficiently soluble, stable, and active to meet specific medical needs. Here, we highlight the benefits of coupling computational approaches with high-throughput experimental technologies, which significantly accelerate the identification and engineering of catalytic therapeutic agents. New enzymes can be identified in genomic and metagenomic databases, which grow thanks to next-generation sequencing technologies exponentially. Computational design and machine learning methods are being developed to improve catalytically potent enzymes and predict their properties to guide the selection of target enzymes. High-throughput experimental pipelines, increasingly relying on microfluidics, ensure functional screening and biochemical characterization of target enzymes to reach efficient therapeutic enzymes.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Jan Velecký
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Sergio M Marques
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Jana Skarupova
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic; Enantis, INBIT, Kamenice 34, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| |
Collapse
|
9
|
Wang C, Yuan Z, Hu R, Li F, Yue X. Association of SNPs within PTPN3 gene with wool production and growth traits in a dual-purpose sheep population. Anim Biotechnol 2022:1-7. [PMID: 35192431 DOI: 10.1080/10495398.2022.2029465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Protein tyrosine phosphatase non-receptor type 3 (PTPN3), a member of the membrane-associated non-receptor protein tyrosine phosphatase (PTP) family, plays significant roles in the cytoplasm and affects the development and growth of skin and hair. A recent study identified the PTPN3 as the potential gene related to sheep wool quality. To detect single-nucleotide polymorphisms (SNPs) of PTPN3 and elucidate its association with wool production and growth traits in fine wool sheep a total of 644 healthy SG (South African mutton merino♂ × Gansu alpine fine-wool sheep♀, SG) and SSG (South African mutton merino♂ × SG♀, SSG) hybrid sheep were selected. Pooled-DNA sequencing and SNPscan methods were used to scan and genotype SNPs within PTPN3. Association analyses between SNPs and wool production and growth traits were implemented. Consequently, the results revealed that PTPN3 has six SNPs (two missense mutations, one synonymous mutation, and three intron mutations), of which four loci (SNP2, SNP3, SNP4, and SNP5) were significantly positively correlated with growth and wool traits (p < 0.05). SNP4 was significantly (p < 0.05) linked with thigh wool length, and SNP6 was significantly (p < 0.05) associated with abdomen wool length. Moreover, one strongly linked SNP block was identified to be correlated with wool production and growth traits (body weight and body size). The significant SNPs founded by this study could serve as useful genetic markers for breeding fine-wool sheep.®.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ruixue Hu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Lee HS, Yun HY, Lee EW, Shin HC, Kim SJ, Ku B. Structural and biochemical analysis of the PTPN4 PDZ domain bound to the C-terminal tail of the human papillomavirus E6 oncoprotein. J Microbiol 2022; 60:395-401. [PMID: 35089587 DOI: 10.1007/s12275-022-1606-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
Abstract
High-risk genotypes of human papillomaviruses (HPVs) are directly implicated in various abnormalities associated with cellular hyperproliferation, including cervical cancer. E6 is one of two oncoproteins encoded in the HPV genome, which recruits diverse PSD-95/Dlg/ZO-1 (PDZ) domain-containing human proteins through its C-terminal PDZ-binding motif (PBM) to be degraded by means of the proteasome pathway. Among the three PDZ domain-containing protein tyrosine phosphatases, protein tyrosine phosphatase non-receptor type 3 (PTPN3) and PTPN13 were identified to be recognized by HPV E6 in a PBM-dependent manner. However, whether HPV E6 associates with PTPN4, which also has a PDZ domain and functions as an apoptosis regulator, remains undetermined. Herein, we present structural and biochemical evidence demonstrating the direct interaction between the PBM of HPV16 E6 and the PDZ domain of human PTPN4 for the first time. X-ray crystallographic structure determination and binding measurements using isothermal titration calorimetry demonstrated that hydrophobic interactions in which Leu158 of HPV16 E6 plays a key role and a network of intermolecular hydrogen bonds sustain the complex formation between PTPN4 PDZ and the PBM of HPV16 E6. In addition, it was verified that the corresponding motifs from several other high-risk HPV genotypes, including HPV18, HPV31, HPV33, and HPV45, bind to PTPN4 PDZ with comparable affinities, suggesting that PTPN4 is a common target of various pathogenic HPV genotypes.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Milton AV, Konrad DB. Epithelial-mesenchymal transition and H 2O 2 signaling - a driver of disease progression and a vulnerability in cancers. Biol Chem 2022; 403:377-390. [PMID: 35032422 DOI: 10.1515/hsz-2021-0341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/18/2021] [Indexed: 12/20/2022]
Abstract
Mutation-selective drugs constitute a great advancement in personalized anticancer treatment with increased quality of life and overall survival in cancers. However, the high adaptability and evasiveness of cancers can lead to disease progression and the development of drug resistance, which cause recurrence and metastasis. A common characteristic in advanced neoplastic cancers is the epithelial-mesenchymal transition (EMT) which is strongly interconnected with H2O2 signaling, increased motility and invasiveness. H2O2 relays its signal through the installation of oxidative posttranslational modifications on cysteines. The increased H2O2 levels that are associated with an EMT confer a heightened sensitivity towards the induction of ferroptosis as a recently discovered vulnerability.
Collapse
Affiliation(s)
- Anna V Milton
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstr. 5-13, Haus C, D-81377 Munich, Germany
| | - David B Konrad
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstr. 5-13, Haus C, D-81377 Munich, Germany
| |
Collapse
|
12
|
Koga S, Onishi H, Masuda S, Fujimura A, Ichimiya S, Nakayama K, Imaizumi A, Nishiyama K, Kojima M, Miyoshi K, Nakamura K, Umebayashi M, Morisaki T, Nakamura M. PTPN3 is a potential target for a new cancer immunotherapy that has a dual effect of T cell activation and direct cancer inhibition in lung neuroendocrine tumor. Transl Oncol 2021; 14:101152. [PMID: 34134073 PMCID: PMC8208899 DOI: 10.1016/j.tranon.2021.101152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 11/30/2022] Open
Abstract
PTPN3 suppression associates with lymphocyte activation and cancer suppression. PTPN3 is involved in the induction of malignant traits. PTPN3 is associated with cellular immunosuppression. Signals from PTPN3 go through MAPK and PI3K signaling. PTPN3-inhibited lung NET cells enhance PTPN3-suppressed activated lymphocytes.
In our previous study, we found that inhibition of protein tyrosine phosphatase non-receptor type 3 (PTPN3), which is expressed in lymphocytes, enhances lymphocyte activation, suggesting PTPN3 may act as an immune checkpoint molecule. However, PTPN3 is also expressed in various cancers, and the biological significance of PTPN3 in cancer cells is still not well understood, especially for lung neuroendocrine tumor (NET).Therefore, we analyzed the biological significance of PTPN3 in small cell lung cancer and examined the potential for PTPN3 inhibitory treatment as a cancer treatment approach in lung NET including small cell lung cancer (SCLC) and large cell neuroendocrine cancer (LCNEC). Experiments in a mouse xenograft model using allo lymphocytes showed that PTPN3 inhibition in SCLC cells enhanced the anti-tumor effect of PTPN3-suppressed activated lymphocytes. In addition, PTPN3 was associated with increased vascularization, decreased CD8/FOXP3 ratio and cellular immunosuppression in SCLC clinical specimens. Experiments in a mouse xenograft model using autocrine lymphocytes also showed that PTPN3 inhibition in LCNEC cells augmented the anti-tumor effect of PTPN3-suppressed activated lymphocytes. In vitro experiments showed that PTPN3 is involved in the induction of malignant traits such as proliferation, invasion and migration. Signaling from PTPN3 is mediated by MAPK and PI3K signals via tyrosine kinase phosphorylation through CACNA1G calcium channel. Our results show that PTPN3 suppression is associated with lymphocyte activation and cancer suppression in lung NET. These results suggest that PTPN3 suppression could be a new method of cancer treatment and a major step in the development of new cancer immunotherapies.
Collapse
Affiliation(s)
- Satoko Koga
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shogo Masuda
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiko Fujimura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shu Ichimiya
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Imaizumi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenichi Nishiyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Masayuki Kojima
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Kei Miyoshi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Nakamura
- Department of Respiratory Surgery, Japan Community Health Care Organization Kyushu Hospital, Kitakyushu, Japan
| | | | | | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Peleg Y, Vincentelli R, Collins BM, Chen KE, Livingstone EK, Weeratunga S, Leneva N, Guo Q, Remans K, Perez K, Bjerga GEK, Larsen Ø, Vaněk O, Skořepa O, Jacquemin S, Poterszman A, Kjær S, Christodoulou E, Albeck S, Dym O, Ainbinder E, Unger T, Schuetz A, Matthes S, Bader M, de Marco A, Storici P, Semrau MS, Stolt-Bergner P, Aigner C, Suppmann S, Goldenzweig A, Fleishman SJ. Community-Wide Experimental Evaluation of the PROSS Stability-Design Method. J Mol Biol 2021; 433:166964. [PMID: 33781758 DOI: 10.1016/j.jmb.2021.166964] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Recent years have seen a dramatic improvement in protein-design methodology. Nevertheless, most methods demand expert intervention, limiting their widespread adoption. By contrast, the PROSS algorithm for improving protein stability and heterologous expression levels has been successfully applied to a range of challenging enzymes and binding proteins. Here, we benchmark the application of PROSS as a stand-alone tool for protein scientists with no or limited experience in modeling. Twelve laboratories from the Protein Production and Purification Partnership in Europe (P4EU) challenged the PROSS algorithm with 14 unrelated protein targets without support from the PROSS developers. For each target, up to six designs were evaluated for expression levels and in some cases, for thermal stability and activity. In nine targets, designs exhibited increased heterologous expression levels either in prokaryotic and/or eukaryotic expression systems under experimental conditions that were tailored for each target protein. Furthermore, we observed increased thermal stability in nine of ten tested targets. In two prime examples, the human Stem Cell Factor (hSCF) and human Cadherin-Like Domain (CLD12) from the RET receptor, the wild type proteins were not expressible as soluble proteins in E. coli, yet the PROSS designs exhibited high expression levels in E. coli and HEK293 cells, respectively, and improved thermal stability. We conclude that PROSS may improve stability and expressibility in diverse cases, and that improvement typically requires target-specific expression conditions. This study demonstrates the strengths of community-wide efforts to probe the generality of new methods and recommends areas for future research to advance practically useful algorithms for protein science.
Collapse
Affiliation(s)
- Yoav Peleg
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Kai-En Chen
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Emma K Livingstone
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Saroja Weeratunga
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Qian Guo
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kathryn Perez
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gro E K Bjerga
- NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5038 Bergen, Norway
| | - Øivind Larsen
- NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5038 Bergen, Norway
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Sophie Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, France
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Shira Albeck
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anja Schuetz
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Susann Matthes
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Slovenia
| | - Paola Storici
- Elettra Sincrotrone Trieste - SS 14 - km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Marta S Semrau
- Elettra Sincrotrone Trieste - SS 14 - km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Peggy Stolt-Bergner
- Vienna Biocenter Core Facilities GmbH, Dr. Bohr-gasse 3, 1030 Vienna, Austria
| | - Christian Aigner
- Vienna Biocenter Core Facilities GmbH, Dr. Bohr-gasse 3, 1030 Vienna, Austria
| | - Sabine Suppmann
- Max-Planck Institute of Biochemistry, Biochemistry Core Facility, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Adi Goldenzweig
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Tian X, Qin Y, Tian Y, Ge X, Cui J, Han H, Liu L, Yu H. Identification of vascular dementia and Alzheimer's disease hub genes expressed in the frontal lobe and temporal cortex by weighted co-expression network analysis and construction of a protein-protein interaction. Int J Neurosci 2021; 132:1049-1060. [PMID: 33401985 DOI: 10.1080/00207454.2020.1860966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: It is difficult to distinguish cognitive decline due to AD from that sustained by cerebrovascular disease in view of the great overlap. It is uncertain in the molecular biological pathway behind AD and VaD.Objective: Our study aimed to explore the hub molecules and their associations with each other to identify potential biomarkers and therapeutic targets for the AD and VaD.Methods: We screened the differentially expressed genes of AD and VaD, used weighted gene co-expression network analysis and then constructed a VaD-AD-specific protein-protein interaction network with functional annotation to their related metabolic pathways. Finally, we performed a ROC curve analysis of hub proteins to get an idea about their diagnostic value.Results: In the frontal lobe and temporal cortex, hub genes were identified. With regard to VaD, there were only three hub genes which encoded the neuropeptides, SST, NMU and TAC1. The AUC of these genes were 0.804, 0.768 and 0.779, respectively. One signature was established for these three hub genes with AUC of 0.990. For the identification of AD and VaD, all hub genes were receptors. These genes included SH3GL2, PROK2, TAC3, HTR2A, MET, TF, PTH2R CNR1, CHRM4, PTPN3 and CRH. The AUC of these genes were 0.853, 0.859, 0.796, 0.775, 0.706, 0.677, 0.696, 0.668 and 0.652, respectively. The other signature was built for eleven hub genes with AUC of 0.990.Conclusion: In the frontal lobe and temporal cortex regions, hub genes are used as diagnostic markers, which may provide insight into personalized potential biomarkers and therapeutic targets for patients with VaD and AD.
Collapse
Affiliation(s)
- Xiaodou Tian
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Yao Qin
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Yuling Tian
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Xiaoyan Ge
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Jing Cui
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Hongjuan Han
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Shanxi Medical University, Taiyuan, P.R. China
| |
Collapse
|
15
|
Genera M, Quioc-Salomon B, Nourisson A, Colcombet-Cazenave B, Haouz A, Mechaly A, Matondo M, Duchateau M, König A, Windisch MP, Neuveut C, Wolff N, Caillet-Saguy C. Molecular basis of the interaction of the human tyrosine phosphatase PTPN3 with the hepatitis B virus core protein. Sci Rep 2021; 11:944. [PMID: 33441627 PMCID: PMC7806630 DOI: 10.1038/s41598-020-79580-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Interactions between the hepatitis B virus core protein (HBc) and host cell proteins are poorly understood, although they may be essential for the propagation of the virus and its pathogenicity. HBc has a C-terminal PDZ (PSD-95, Dlg1, ZO-1)-binding motif (PBM) that is responsible for interactions with host PDZ domain-containing proteins. In this work, we focused on the human protein tyrosine phosphatase non-receptor type 3 (PTPN3) and its interaction with HBc. We solved the crystal structure of the PDZ domain of PTPN3 in complex with the PBM of HBc, revealing a network of interactions specific to class I PDZ domains despite the presence of a C-terminal cysteine in this atypical PBM. We further showed that PTPN3 binds the HBc protein within capsids or as a homodimer. We demonstrate that overexpression of PTPN3 significantly affects HBV infection in HepG2 NTCP cells. Finally, we performed proteomics studies on both sides by pull-down assays and screening of a human PDZ domain library. We identified a pool of human PBM-containing proteins that might interact with PTPN3 in cells and that could be in competition with the HBc PBM during infection, and we also identified potential cellular partners of HBc through PDZ-PBM interactions. This study opens up many avenues of future investigations into the pathophysiology of HBV.
Collapse
Affiliation(s)
- Mariano Genera
- Channel-Receptors Unit, UMR 3571, CNRS, Institut Pasteur, 75015, Paris, France.,Complexité du Vivant, Sorbonne Université, 75005, Paris, France
| | - Barbara Quioc-Salomon
- UMR 3569, CNRS, 75015, Paris, France.,Department of Virology, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Antonin Nourisson
- Channel-Receptors Unit, UMR 3571, CNRS, Institut Pasteur, 75015, Paris, France
| | - Baptiste Colcombet-Cazenave
- Channel-Receptors Unit, UMR 3571, CNRS, Institut Pasteur, 75015, Paris, France.,Complexité du Vivant, Sorbonne Université, 75005, Paris, France
| | - Ahmed Haouz
- Crystallography Platform-C2RT, Department of Structural Biology and Chemistry, CNRS, UMR-3528, Institut Pasteur, 75015, Paris, France
| | - Ariel Mechaly
- Crystallography Platform-C2RT, Department of Structural Biology and Chemistry, CNRS, UMR-3528, Institut Pasteur, 75015, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Utechs (MSBio), USR 2000, CNRS, Institut Pasteur, 75724, Paris, France
| | - Magalie Duchateau
- Proteomics Platform, Mass Spectrometry for Biology Utechs (MSBio), USR 2000, CNRS, Institut Pasteur, 75724, Paris, France
| | - Alexander König
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Marc P Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Christine Neuveut
- UMR 3569, CNRS, 75015, Paris, France.,Department of Virology, Institut Pasteur, Paris, France.,Institute of Human Genetics, 141 rue de la Cardonille, 34090, Montpellier, France
| | - Nicolas Wolff
- Channel-Receptors Unit, UMR 3571, CNRS, Institut Pasteur, 75015, Paris, France
| | - Célia Caillet-Saguy
- Channel-Receptors Unit, UMR 3571, CNRS, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
16
|
Song W, Kim LC, Han W, Hou Y, Edwards DN, Wang S, Blackwell TS, Cheng F, Brantley-Sieders DM, Chen J. Phosphorylation of PLCγ1 by EphA2 Receptor Tyrosine Kinase Promotes Tumor Growth in Lung Cancer. Mol Cancer Res 2020; 18:1735-1743. [PMID: 32753469 PMCID: PMC7641970 DOI: 10.1158/1541-7786.mcr-20-0075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
EphA2 receptor tyrosine kinase (RTK) is often expressed at high levels in cancer and has been shown to regulate tumor growth and metastasis across multiple tumor types, including non-small cell lung cancer. A number of signaling pathways downstream of EphA2 RTK have been identified; however, mechanisms of EphA2 proximal downstream signals are less well characterized. In this study, we used a yeast-two-hybrid screen to identify phospholipase C gamma 1 (PLCγ1) as a novel EphA2 interactor. EphA2 interacts with PLCγ1 and the kinase activity of EphA2 was required for phosphorylation of PLCγ1. In human lung cancer cells, genetic or pharmacologic inhibition of EphA2 decreased phosphorylation of PLCγ1 and loss of PLCγ1 inhibited tumor cell growth in vitro. Knockout of PLCγ1 by CRISPR-mediated genome editing also impaired tumor growth in a KrasG12D-p53-Lkb1 murine lung tumor model. Collectively, these data show that the EphA2-PLCγ1 signaling axis promotes tumor growth of lung cancer and provides rationale for disruption of this signaling axis as a potential therapeutic option. IMPLICATIONS: The EphA2-PLCG1 signaling axis promotes tumor growth of non-small cell lung cancer and can potentially be targeted as a therapeutic option.
Collapse
Affiliation(s)
- Wenqiang Song
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Laura C Kim
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Wei Han
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shan Wang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy S Blackwell
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jin Chen
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
17
|
Identification of Potential Biomarkers Associated with Basal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2073690. [PMID: 32382535 PMCID: PMC7189327 DOI: 10.1155/2020/2073690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022]
Abstract
Purpose This work is aimed at identifying several molecular markers correlated with the diagnosis and development of basal cell carcinoma (BCC). Methods The available microarray datasets for BCC were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified between BCC and healthy controls. Afterward, the functional enrichment analysis and protein-protein interaction (PPI) network analysis of these screened DEGs were performed. An external validation for the DEG expression level was also carried out, and receiver operating characteristic curve analysis was used to evaluate the diagnostic values of DEGs. Result In total, five microarray datasets for BCC were downloaded and 804 DEGs (414 upregulated and 390 downregulated genes) were identified. Functional enrichment analysis showed that these genes including CYFIP2, HOXB5, EGFR, FOXN3, PTPN3, CDC20, MARCKSL1, FAS, and PTCH1 were closely correlated with the cell process and PTCH1 played central roles in the BCC signaling pathway. Moreover, EGFR was a hub gene in the PPI network. The expression changes of six genes (CYFIP2, HOXB5, FOXN3, PTPN3, MARCKSL1, and FAS) were validated by an external GSE74858 dataset analysis. Finally, ROC analysis revealed that CYFIP2, HOXB5, PTPN3, MARCKSL1, PTCH1, and CDC20 could distinguish BCC and healthy individuals. Conclusion Nine gene signatures (CYFIP2, HOXB5, EGFR, FOXN3, PTPN3, CDC20, MARCKSL1, FAS, and PTCH1) may serve as promising targets for BCC detection and development.
Collapse
|
18
|
Peng XS, Yang JP, Qiang YY, Sun R, Cao Y, Zheng LS, Peng LX, Lang YH, Mei Y, Li CZ, Meng DF, Liu ZJ, Wang MD, Zhou FJ, Huang BJ, Qian CN. PTPN3 Inhibits the Growth and Metastasis of Clear Cell Renal Cell Carcinoma via Inhibition of PI3K/AKT Signaling. Mol Cancer Res 2020; 18:903-912. [PMID: 32169891 DOI: 10.1158/1541-7786.mcr-19-1142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022]
Abstract
The underlying molecular mechanism driving clear cell renal cell carcinoma (ccRCC) progression is still to be explored. The significant downregulation of protein tyrosine phosphatase nonreceptor type 3 (PTPN3) expression in the tumor tissues suggested its protective role in ccRCC progression. IHC analysis of PTPN3 protein in 172 ccRCC tissue revealed that PTPN3 was an independently favorable prognostic factor for progression-free survival (P = 0.0166) and overall survival (P = 0.0343) of patients. The ccRCC cell lines SN12C, 1932, ACHN, and Caki-1 were used to evaluate, both in vitro and in vivo, the biological roles of PTPN3. We observed that overexpression of PTPN3 significantly inhibited the proliferation, migration, and invasion of ccRCC cells. In contrast, the knocking down of PTPN3 elicited opposite effects. Overexpressing PTPN3 inhibited xenograft tumor growth and lung metastasis displayed by the in vivo mice models. PTPN3 inhibited tumor cell motility by suppressing the phosphorylation of AKT, and subsequently inactivating the PI3K/AKT signaling pathway of renal cell carcinoma cells. Furthermore, the inhibition of phospho-AKTThr308 and phospho-AKTSer473 reversed PTPN3-induced silencing in tumor cell migration. Our work revealed that the overexpression of PTPN3 could suppress kidney cancer progression by negatively regulating the AKT signaling pathway, and served as a favorable prognostic factor in patients with ccRCC. Our findings provided insight that PTPN3 could be a potential target for therapy aiming to inhibit the malignant behaviors of ccRCC. IMPLICATIONS: PTPN3 is an independent favorable prognostic factor for patients with ccRCC and could be a potential target for therapy aiming to inhibit the malignant behaviors of ccRCC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/prevention & control
- Carcinoma, Renal Cell/secondary
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/prevention & control
- Male
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Phosphatidylinositol 3-Kinases/chemistry
- Phosphorylation
- Prognosis
- Protein Tyrosine Phosphatase, Non-Receptor Type 3/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 3/metabolism
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xing-Si Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Jun-Ping Yang
- Department of radiation oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yuan-Yuan Qiang
- Ningxia Key Laboratory for Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Rui Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yun Cao
- Department of Pathology, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yan-Hong Lang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yan Mei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Chang-Zhi Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Dong-Fang Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhi-Jie Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Ming-Dian Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Fang-Jian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
19
|
Zhang H, Jin Z, Cheng L, Zhang B. Integrative Analysis of Methylation and Gene Expression in Lung Adenocarcinoma and Squamous Cell Lung Carcinoma. Front Bioeng Biotechnol 2020; 8:3. [PMID: 32117905 PMCID: PMC7019569 DOI: 10.3389/fbioe.2020.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a highly prevalent type of cancer with a poor 5-year survival rate of about 4-17%. Eighty percent lung cancer belongs to non-small-cell lung cancer (NSCLC). For a long time, the treatment of NSCLC has been mostly guided by tumor stage, and there has been no significant difference between the therapy strategy of lung adenocarcinoma (LUAD) and squamous cell lung carcinoma (SCLC), the two major subtypes of NSCLC. In recent years, important molecular differences between LUAD and SCLC are increasingly identified, indicating that targeted therapy will be more and more histologically specific in the future. To investigate the LUAD and SCLC difference on multi-omics scale, we analyzed the methylation and gene expression data together. With the Boruta method to remove irrelevant features and the MCFS (Monte Carlo Feature Selection) method to identify the significantly important features, we identified 113 key methylation features and 23 key gene expression features. HNF1B and TP63 were found to be dysfunctional on both methylation and gene expression levels. The experimentally determined interaction network suggested that TP63 may play an important role in connecting methylation genes and expression genes. Many of the discovered signature genes have been supported by literature. Our results may provide directions of precision diagnosis and therapy of LUAD and SCLC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiration, Hospital of Traditional Chinese Medicine of Zhenhai, Ningbo, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Bin Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Sun R, Chen T, Li M, Liu Z, Qiu B, Li Z, Xu Y, Pan C, Zhang Z. PTPN3 suppresses the proliferation and correlates with favorable prognosis of perihilar cholangiocarcinoma by inhibiting AKT phosphorylation. Biomed Pharmacother 2020; 121:109583. [DOI: 10.1016/j.biopha.2019.109583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022] Open
|
21
|
Co-delivery of GOLPH3 siRNA and gefitinib by cationic lipid-PLGA nanoparticles improves EGFR-targeted therapy for glioma. J Mol Med (Berl) 2019; 97:1575-1588. [PMID: 31673738 DOI: 10.1007/s00109-019-01843-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/10/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Glioblastoma is one of the most aggressive types of brain tumor. Epidermal growth factor receptors (EGFRs) are overexpressed in glioma, and EGFR amplifications and mutations lead to rapid proliferation and invasion. EGFR-targeted therapy might be an effective treatment for glioma. Gefitinib (Ge) is an EGFR tyrosine kinase inhibitor (TKI), and Golgi phosphoprotein 3 (GOLPH3) expression is associated with worse glioma prognosis. Downregulation of GOLPH3 could promote EGFR degradation. Here, an angiopep-2 (A2)-modified cationic lipid-poly (lactic-co-glycolic acid) (PLGA) nanoparticle (A2-N) was developed that can release Ge and GOLPH3 siRNA (siGOLPH3) upon entering glioma cells and therefore acts as a combinatorial anti-tumor therapy. The in vitro and in vivo studies proved that A2-N/Ge/siGOLPH3 successfully crossed the blood-brain barrier (BBB) and targeted glioma. Released siGOLPH3 effectively silenced GOLPH3 mRNA expression and further promoted EGFR and p-EGFR degradation. Released Ge also markedly inhibited EGFR signaling. This combined EGFR-targeted action achieved remarkable anti-glioma effects and could be a safe and effective treatment for glioma. KEY MESSAGES: Angiopep-2-modified cationic lipid polymer can penetrate the BBB. Gefitinib can inhibit EGFR signaling and block the autophosphorylation of critical tyrosine residues on EGFR. GOLPH3 siRNA can be transfected into glioma and downregulate GLOPH3 expression. A2-N/Ge/siGOLPH3 can inhibit glioma growth.
Collapse
|
22
|
Chen L, Wang T, Ji X, Ding C, Liang T, Liu X, Lu J, Guo X, Kang Q, Ji Z. Cytoskeleton protein 4.1R suppresses murine keratinocyte cell hyperproliferation via activating the Akt/ERK pathway in an EGFR-dependent manner. Exp Cell Res 2019; 384:111648. [DOI: 10.1016/j.yexcr.2019.111648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/30/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023]
|
23
|
Fujimura A, Nakayama K, Imaizumi A, Kawamoto M, Oyama Y, Ichimiya S, Umebayashi M, Koya N, Morisaki T, Nakagawa T, Onishi H. PTPN3 expressed in activated T lymphocytes is a candidate for a non-antibody-type immune checkpoint inhibitor. Cancer Immunol Immunother 2019; 68:1649-1660. [DOI: 10.1007/s00262-019-02403-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/23/2019] [Indexed: 11/28/2022]
|
24
|
PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization. Oncogene 2019; 38:7002-7016. [DOI: 10.1038/s41388-019-0948-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
25
|
Yuan B, Liu J, Cao J, Yu Y, Zhang H, Wang F, Zhu Y, Xiao M, Liu S, Ye Y, Ma L, Xu D, Xu N, Li Y, Zhao B, Xu P, Jin J, Xu J, Chen X, Shen L, Lin X, Feng X. PTPN3 acts as a tumor suppressor and boosts TGF-β signaling independent of its phosphatase activity. EMBO J 2019; 38:e99945. [PMID: 31304624 PMCID: PMC6627230 DOI: 10.15252/embj.201899945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
TGF-β controls a variety of cellular functions during development. Abnormal TGF-β responses are commonly found in human diseases such as cancer, suggesting that TGF-β signaling must be tightly regulated. Here, we report that protein tyrosine phosphatase non-receptor 3 (PTPN3) profoundly potentiates TGF-β signaling independent of its phosphatase activity. PTPN3 stabilizes TGF-β type I receptor (TβRI) through attenuating the interaction between Smurf2 and TβRI. Consequently, PTPN3 facilitates TGF-β-induced R-Smad phosphorylation, transcriptional responses, and subsequent physiological responses. Importantly, the leucine-to-arginine substitution at amino acid residue 232 (L232R) of PTPN3, a frequent mutation found in intrahepatic cholangiocarcinoma (ICC), disables its role in enhancing TGF-β signaling and abolishes its tumor-suppressive function. Our findings have revealed a vital role of PTPN3 in regulating TGF-β signaling during normal physiology and pathogenesis.
Collapse
Affiliation(s)
- Bo Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jinquan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Hanchenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Fei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Mu Xiao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Sisi Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Youqiong Ye
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonTXUSA
| | - Le Ma
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Dewei Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Ningyi Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yi Li
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jianming Xu
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Xi Chen
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonTXUSA
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xia Lin
- Michael DeBakey Department of SurgeryBaylor College of MedicineHoustonTXUSA
| | - Xin‐Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Michael DeBakey Department of SurgeryBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
26
|
Genera M, Samson D, Raynal B, Haouz A, Baron B, Simenel C, Guerois R, Wolff N, Caillet-Saguy C. Structural and functional characterization of the PDZ domain of the human phosphatase PTPN3 and its interaction with the human papillomavirus E6 oncoprotein. Sci Rep 2019; 9:7438. [PMID: 31092861 PMCID: PMC6520365 DOI: 10.1038/s41598-019-43932-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a PDZ (PSD-95/Dlg/ZO-1) domain-containing phosphatase with a tumor-suppressive or a tumor-promoting role in many cancers. Interestingly, the high-risk genital human papillomavirus (HPV) types 16 and 18 target the PDZ domain of PTPN3. The presence of a PDZ binding motif (PBM) on E6 confers interaction with a number of different cellular PDZ domain-containing proteins and is a marker of high oncogenic potential. Here, we report the molecular basis of interaction between the PDZ domain of PTPN3 and the PBM of the HPV E6 protein. We combined biophysical, NMR and X-ray experiments to investigate the structural and functional properties of the PDZ domain of PTPN3. We showed that the C-terminal sequences from viral proteins encompassing a PBM interact with PTPN3-PDZ with similar affinities to the endogenous PTPN3 ligand MAP kinase p38γ. PBM binding stabilizes the PDZ domain of PTPN3. We solved the X-ray structure of the PDZ domain of PTPN3 in complex with the PBM of the HPV E6 protein. The crystal structure and the NMR chemical shift mapping of the PTPN3-PDZ/peptide complex allowed us to pinpoint the main structural determinants of recognition of the C-terminal sequence of the E6 protein and the long-range perturbations induced upon PBM binding.
Collapse
Affiliation(s)
- Mariano Genera
- Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, F-75724, Paris, France.,Sorbonne Université, Complexité du Vivant, F-75005, Paris, France
| | - Damien Samson
- RMN des biomolécules, Institut Pasteur, UMR 3528, CNRS, F-75724, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528, CNRS, F-75724, Paris, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie, Institut Pasteur UMR 3528, CNRS, F-75724, Paris, France
| | - Bruno Baron
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528, CNRS, F-75724, Paris, France
| | - Catherine Simenel
- RMN des biomolécules, Institut Pasteur, UMR 3528, CNRS, F-75724, Paris, France
| | - Raphael Guerois
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190, Gif-sur-Yvette, Cedex, France
| | - Nicolas Wolff
- Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, F-75724, Paris, France
| | - Célia Caillet-Saguy
- Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, F-75724, Paris, France.
| |
Collapse
|
27
|
The Protein Tyrosine Phosphatase H1 PTPH1 Supports Proliferation of Keratinocytes and is a Target of the Human Papillomavirus Type 8 E6 Oncogene. Cells 2019; 8:cells8030244. [PMID: 30875834 PMCID: PMC6468676 DOI: 10.3390/cells8030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) replicate their DNA in the suprabasal layer of the infected mucosa or skin. In order to create a suitable environment for vegetative viral DNA replication HPV delay differentiation and sustain keratinocyte proliferation that can lead to hyperplasia. The mechanism underlying cell growth stimulation is not well characterized. Here, we show that the E6 oncoprotein of the βHPV type 8 (HPV8), which infects the cutaneous skin and is associated with skin cancer in Epidermodysplasia verruciformis patients and immunosuppressed organ transplant recipients, binds to the protein tyrosine phosphatase H1 (PTPH1), which resulted in increased protein expression and phosphatase activity of PTPH1. Suppression of PTPH1 in immortalized keratinocytes reduced cell proliferation as well as the level of epidermal growth factor receptor (EGFR). Furthermore, we report that HPV8E6 expressing keratinocytes have increased level of active, GTP-bound Ras. This effect was independent of PTPH1. Therefore, HPV8E6-mediated targeting of PTPH1 might result in higher level of EGFR and enhanced keratinocyte proliferation. The HPV8E6-mediated stimulation of Ras may be an additional step to induce cell growth. Our results provide novel insights into the mechanism how βHPVE6 proteins support proliferation of infected keratinocytes, thus creating an environment with increased risk of development of skin cancer particularly upon UV-induced DNA mutations.
Collapse
|
28
|
Wang Y, Su Y, Ji Z, Lv Z. High Expression of PTPN3 Predicts Progression and Unfavorable Prognosis of Glioblastoma. Med Sci Monit 2018; 24:7556-7562. [PMID: 30348936 PMCID: PMC6354633 DOI: 10.12659/msm.911531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background PTPN3 was demonstrated to be involved in the progression of several types of cancers, such as gastric adenocarcinoma, lung cancer, and intrahepatic cholangiocarcinoma. However, its clinical significance in glioblastoma (GBM) has not been elucidated. Material/Methods We investigated the expression of PTPN3 in 95 cases of GBM with immunohistochemistry and in 8 pairs of fresh GBMs and their adjacent tissues with qualitative polymerase chain reaction. Moreover, the correlation between PTPN3 and clinicopathological factors was evaluated by chi-square test. The prognostic value of PTPN3 was investigated with univariate analysis and multivariate analysis. With MTT assay and Transwell assay, the oncogenic functions of PTPN3 in GBM proliferation and invasion were further investigated. Results Expression of PTPN3 in GBM tissues was significantly higher than in their corresponding adjacent tissues. High expression of PTPN3 was significantly associated with unfavorable prognosis of GBM. Moreover, in GBM cell lines, PTPN3 promoted cell proliferation and invasion, and the PTP common inhibitor pervanadate suppressed GBM proliferation and invasion. Conclusions Our experiments show that PTPN3 is an independent prognostic factor in GBM and indicated that postoperative detection of PTPN3 can be used to identify high-risk patients and guide individual treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Yidu Central Hospital of Qingzhou, Weifang, Shandong, China (mainland)
| | - Yan Su
- Department of Intensive Care, Yidu Central Hospital of Qingzhou, Weifang, Shandong, China (mainland)
| | - Zhiling Ji
- Department of Neurology, Yidu Central Hospital of Qingzhou, Weifang, Shandong, China (mainland)
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
29
|
Venkatesh T, Shetty A, Chakraborti S, Suresh PS. PTPH1 immunohistochemical expression and promoter methylation in breast cancer patients from India: A retrospective study. J Cell Physiol 2018; 234:1071-1079. [DOI: 10.1002/jcp.27211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology Central University of Kerala, Paddanakkad Campus Kasargod Kerala India
| | - Abhishek Shetty
- Department of Biosciences Mangalore University Mangalore Karnataka India
| | | | | |
Collapse
|
30
|
NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest. Oncogenesis 2018; 7:42. [PMID: 29795369 PMCID: PMC5968025 DOI: 10.1038/s41389-018-0051-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/06/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Notch dysregulation has been implicated in numerous tumors, including triple-negative breast cancer (TNBC), which is the breast cancer subtype with the worst clinical outcome. However, the importance of individual receptors in TNBC and their specific mechanism of action remain to be elucidated, even if recent findings suggested a specific role of activated-Notch3 in a subset of TNBCs. Epidermal growth factor receptor (EGFR) is overexpressed in TNBCs but the use of anti-EGFR agents (including tyrosine kinase inhibitors, TKIs) has not been approved for the treatment of these patients, as clinical trials have shown disappointing results. Resistance to EGFR blockers is commonly reported. Here we show that Notch3-specific inhibition increases TNBC sensitivity to the TKI-gefitinib in TNBC-resistant cells. Mechanistically, we demonstrate that Notch3 is able to regulate the activated EGFR membrane localization into lipid rafts microdomains, as Notch3 inhibition, such as rafts depletion, induces the EGFR internalization and its intracellular arrest, without involving receptor degradation. Interestingly, these events are associated with the EGFR tyrosine dephosphorylation at Y1173 residue (but not at Y1068) by the protein tyrosine phosphatase H1 (PTPH1), thus suggesting its possible involvement in the observed Notch3-dependent TNBC sensitivity response to gefitinib. Consistent with this notion, a nuclear localization defect of phospho-EGFR is observed after combined blockade of EGFR and Notch3, which results in a decreased TNBC cell survival. Notably, we observed a significant correlation between EGFR and NOTCH3 expression levels by in silico gene expression and immunohistochemical analysis of human TNBC primary samples. Our findings strongly suggest that combined therapies of TKI-gefitinib with Notch3-specific suppression may be exploited as a drug combination advantage in TNBC treatment.
Collapse
|
31
|
Webb Strickland S, Brimer N, Lyons C, Vande Pol SB. Human Papillomavirus E6 interaction with cellular PDZ domain proteins modulates YAP nuclear localization. Virology 2018; 516:127-138. [PMID: 29346075 DOI: 10.1016/j.virol.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023]
Abstract
HPV E6 oncoproteins associate with cellular PDZ proteins. In addition to previously identified cellular PDZ proteins, we found association of the HPV16 E6 PBM with the Dystrophin Glycoprotein Complex, LRCC1, and SLC9A3R2. HPV18 E6 had additional associations when lysates from adenomatous cell lines were used including LRPPRC, RLGAPB, EIF3A, SMC2 and 3, AMOT, AMOTL1, and ARHGEF1; some of these cellular PDZ proteins are implicated in the regulation of the YAP1 transcriptional co-activator. In keratinocytes, nuclear translocation of YAP1 was promoted by the complete HPV-16 genome, or by expression of the individual E6 or E7 oncoproteins; the activity of E6 required an intact PBM at the carboxy-terminus. This work demonstrates that E6 association with cellular PDZ proteins promotes the nuclear localization of YAP1. The ability of E6 to promote the nuclear transport of YAP1 thus identifies an E6 activity that could contribute to the transformation of cells by E6.
Collapse
Affiliation(s)
- Sydney Webb Strickland
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Charles Lyons
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States.
| |
Collapse
|
32
|
Clearance of a persistent picornavirus infection is associated with enhanced pro-apoptotic and cellular immune responses. Sci Rep 2017; 7:17800. [PMID: 29259271 PMCID: PMC5736604 DOI: 10.1038/s41598-017-18112-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Long-term persistent viral infections cause substantial morbidity and associated economic losses in human and veterinary contexts. Yet, the mechanisms associated with establishment of persistent infections are poorly elucidated. We investigated immunomodulatory mechanisms associated with clearance versus persistence of foot-and-mouth disease virus (FMDV) in micro-dissected compartments of the bovine nasopharynx by microarray. The use of laser-capture microdissection allowed elucidation of differential gene regulation within distinct anatomic compartments critical to FMDV infection. Analysis of samples from transitional and persistent phases of infection demonstrated significant differences in transcriptome profiles of animals that cleared infection versus those that became persistently infected carriers. Specifically, it was demonstrated that clearance of FMDV from the nasopharyngeal mucosa was associated with upregulation of targets associated with activation of T cell-mediated immunity. Contrastingly, gene regulation in FMDV carriers suggested inhibition of T cell activation and promotion of Th2 polarization. These findings were corroborated by immunofluorescence microscopy which demonstrated relative abundance of CD8+ T cells in the nasopharyngeal mucosa in association with clearance of FMDV. The findings presented herein emphasize that a critical balance between Th1 and Th2 -mediated immunity is essential for successful clearance of FMDV infection and should be considered for development of next-generation vaccines and antiviral products.
Collapse
|
33
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
34
|
Adelaiye-Ogala R, Budka J, Damayanti NP, Arrington J, Ferris M, Hsu CC, Chintala S, Orillion A, Miles KM, Shen L, Elbanna M, Ciamporcero E, Arisa S, Pettazzoni P, Draetta GF, Seshadri M, Hancock B, Radovich M, Kota J, Buck M, Keilhack H, McCarthy BP, Persohn SA, Territo PR, Zang Y, Irudayaraj J, Tao WA, Hollenhorst P, Pili R. EZH2 Modifies Sunitinib Resistance in Renal Cell Carcinoma by Kinome Reprogramming. Cancer Res 2017; 77:6651-6666. [PMID: 28978636 DOI: 10.1158/0008-5472.can-17-0899] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Acquired and intrinsic resistance to receptor tyrosine kinase inhibitors (RTKi) represents a major hurdle in improving the management of clear cell renal cell carcinoma (ccRCC). Recent reports suggest that drug resistance is driven by tumor adaptation via epigenetic mechanisms that activate alternative survival pathways. The histone methyl transferase EZH2 is frequently altered in many cancers, including ccRCC. To evaluate its role in ccRCC resistance to RTKi, we established and characterized a spontaneously metastatic, patient-derived xenograft model that is intrinsically resistant to the RTKi sunitinib, but not to the VEGF therapeutic antibody bevacizumab. Sunitinib maintained its antiangiogenic and antimetastatic activity but lost its direct antitumor effects due to kinome reprogramming, which resulted in suppression of proapoptotic and cell-cycle-regulatory target genes. Modulating EZH2 expression or activity suppressed phosphorylation of certain RTKs, restoring the antitumor effects of sunitinib in models of acquired or intrinsically resistant ccRCC. Overall, our results highlight EZH2 as a rational target for therapeutic intervention in sunitinib-resistant ccRCC as well as a predictive marker for RTKi response in this disease. Cancer Res; 77(23); 6651-66. ©2017 AACR.
Collapse
Affiliation(s)
- Remi Adelaiye-Ogala
- Department of Cancer Pathology and Prevention, University at Buffalo, Buffalo, New York
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
| | - Justin Budka
- Medical Sciences, Indiana University, Bloomington, Indiana
| | - Nur P Damayanti
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Justine Arrington
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Mary Ferris
- Medical Sciences, Indiana University, Bloomington, Indiana
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | | | - Ashley Orillion
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Department of Cellular and Molecular Biology, University at Buffalo, Buffalo, New York
| | - Kiersten Marie Miles
- Center for Personalized Medicine, Roswell Park Cancer Institute, New York, New York
| | - Li Shen
- Department of Medicine, Roswell Park Cancer Institute, New York, New York
| | - May Elbanna
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
| | - Eric Ciamporcero
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | - Sreevani Arisa
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Piergiorgio Pettazzoni
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giulio F Draetta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, New York, New York
| | - Bradley Hancock
- Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Milan Radovich
- Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Michael Buck
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York
| | | | - Brian P McCarthy
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Scott A Persohn
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Yong Zang
- Department of Biostatistics, Indiana University, Indianapolis, Indiana
| | | | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | | | - Roberto Pili
- Department of Cancer Pathology and Prevention, University at Buffalo, Buffalo, New York.
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Department of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
35
|
Karampitsakos T, Tzilas V, Tringidou R, Steiropoulos P, Aidinis V, Papiris SA, Bouros D, Tzouvelekis A. Lung cancer in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2017; 45:1-10. [PMID: 28377145 DOI: 10.1016/j.pupt.2017.03.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/28/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease of unknown etiology. With a gradually increasing worldwide prevalence and a mortality rate exceeding that of many cancers, IPF diagnosis and management are critically important and require a comprehensive multidisciplinary approach. This approach also involves assessment of comorbid conditions, such as lung cancer, that exerts a dramatic impact on disease survival. Emerging evidence suggests that progressive lung scarring in the context of IPF represents a risk factor for lung carcinogenesis. Both disease entities present with major similarities in terms of pathogenetic pathways, as well as potential causative factors, such as smoking and viral infections. Besides disease pathogenesis, anti-cancer agents, including nintedanib, have been successfully applied in the treatment of patients with IPF while an oncologic approach with a cocktail of several pleiotropic anti-fibrotic agents is currently in the therapeutic pipeline of IPF. Nevertheless, epidemiologic association between IPF and lung cancer does not prove causality. Currently there is significant lack of knowledge supporting a direct association between lung fibrosis and cancer reflecting to disappointing therapeutic algorithms. An optimal therapeutic strategy for patients with both IPF and lung cancer represents an amenable need. This review article synthesizes the current state of knowledge regarding pathogenetic commonalities between IPF and lung cancer and focuses on clinical and therapeutic data that involve both disease entities.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Tzilas
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rodoula Tringidou
- Pathology Department, Hospital for Diseases of the Chest,"Sotiria", Messogion Avenue 152, Athens 11527, Greece
| | | | - Vasilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Spyros A Papiris
- 2nd Pulmonary Medicine Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyris Tzouvelekis
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece.
| |
Collapse
|
36
|
Protein tyrosine phosphatase PTPN3 promotes drug resistance and stem cell-like characteristics in ovarian cancer. Sci Rep 2016; 6:36873. [PMID: 27833130 PMCID: PMC5105059 DOI: 10.1038/srep36873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
The current standard treatment for ovarian cancer is aggressive surgery followed by platinum-based combination chemotherapy. Recurrence and chemotherapeutic drug resistance are the two main factors that account for the high mortality of most ovarian cancers. Liposomal doxorubicin is primarily used for the treatment of ovarian cancer when the disease has progressed after platinum-based chemotherapy. However, relatively little is known about the genomic changes that contribute to both cisplatin and doxorubicin resistance in high-grade serous ovarian cancer (HGSC) under the selective pressure of chemotherapy. Here, we found that protein tyrosine phosphatase PTPN3 gene expression was substantially increased in both cisplatin and doxorubicin-resistant ovarian cancer cells. Silencing of PTPN3 restored sensitivity to cisplatin and doxorubicin in resistant ovarian cancer cells. Down-regulation of PTPN3 also inhibited cell cycle progression, migration, stemness in vitro and the tumorigenicity of resistant ovarian cancer cells in vivo. Meanwhile, the expression of PTPN3 was found to be regulated by miR-199 in resistant ovarian cancer cells. These findings suggest that PTPN3 promotes tumorigenicity, stemness and drug resistance in ovarian cancer, and thus is a potential therapeutic target for the treatment of ovarian cancer.
Collapse
|
37
|
Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I, Meyer-Schaller N, Huotari J, Yamauchi Y, Greber UF, Helenius A, Peter M. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. eLife 2016; 5:e13841. [PMID: 27008177 PMCID: PMC4846373 DOI: 10.7554/elife.13841] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets. DOI:http://dx.doi.org/10.7554/eLife.13841.001 Individual cells can move material, collectively referred to as cargo, from the outside environment into the cell interior via a process known as endocytosis. The cell then has different routes to transport the packages of cargo, called endocytic vesicles, to specific locations within the cell. Protein-based molecular machines move the cargo and control how it is selected and targeted to different destinations. For example, a molecular machine that contains a protein called CUL3 labels other components of the system with a chemical tag to regulate the route cargo takes in mammalian cells. However, it was not clear how CUL3 can selectively attach the chemical labels. Gschweitl, Ulbricht et al. have now found that another protein called SPOPL provides selectivity for the CUL3-based machine during endocytosis in human cells. The experiments show that SPOPL attaches to endocytic vesicles, and that CUL3 and SPOPL work together to label a specific component of these vesicles called EPS15. The label changes how EPS15 interacts with other proteins. When SPOPL is not present in a cell, EPS15 is unnaturally stable and occupies many of the routes used by endocytic cargos. The cargo directly interacting with EPS15 is then routed on the fast lane to its destination, while other cargo accumulate in a kind of molecular traffic jam. Other proteins like SPOPL are specific for the endocytic system. Exchange of SPOPL with these similar proteins in the CUL3 machine is likely to chemically label a different set of endocytic proteins. Gschweitl, Ulbricht et al.’s next challenge is to identify the selectivity, targeting and coordination of these exchangeable components in the endocytic system. DOI:http://dx.doi.org/10.7554/eLife.13841.002
Collapse
Affiliation(s)
- Michaela Gschweitl
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Anna Ulbricht
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Christopher A Barnes
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Radoslav I Enchev
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Ingrid Stoffel-Studer
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Nathalie Meyer-Schaller
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Jatta Huotari
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Yohei Yamauchi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ari Helenius
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| |
Collapse
|
38
|
BETTIO DANIELA, VENCI ANNA, ACHILLE VALENTINA, ALLOISIO MARCO, SANTORO ARMANDO. Lung cancer in which the hypothesis of multi-step progression is confirmed by array-CGH results: A case report. Exp Ther Med 2016; 11:98-100. [PMID: 26889224 PMCID: PMC4726878 DOI: 10.3892/etm.2015.2870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of lung cancer has not been fully elucidated and biological markers acting as predictors of tumor evolution and aggressiveness remain unidentified. The multi-step hypothesis, suggesting a progression from adenomatous hyperplasia (AAH) to adenocarcinoma (AC) through bronchioalveolar carcinoma (BAC), was highlighted in a previous cytogenetic study performed in a single case. The present study reports the results of an array-comparative genomic hybridization (a-CGH) analysis performed on the DNA obtained from the previously reported case that presented AAH, BAC and AC in one lung. The a-CGH results confirm and support the previous cytogenetic observations with new data, clearly supporting the hypothesis of a multi-step carcinogenic process in the lung.
Collapse
Affiliation(s)
- DANIELA BETTIO
- Cytogenetic and Medical Genetic Laboratory, Operative Unit of Clinical Investigations, Humanitas Clinical and Research Center, Milan I-20089, Italy
| | - ANNA VENCI
- Cytogenetic and Medical Genetic Laboratory, Operative Unit of Clinical Investigations, Humanitas Clinical and Research Center, Milan I-20089, Italy
| | - VALENTINA ACHILLE
- Cytogenetic and Medical Genetic Laboratory, Operative Unit of Clinical Investigations, Humanitas Clinical and Research Center, Milan I-20089, Italy
| | - MARCO ALLOISIO
- Department of Thoracic Surgery, Humanitas Clinical and Research Center, Milan I-20089, Italy
| | - ARMANDO SANTORO
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Milan I-20089, Italy
| |
Collapse
|
39
|
Maritzen T, Schachtner H, Legler DF. On the move: endocytic trafficking in cell migration. Cell Mol Life Sci 2015; 72:2119-34. [PMID: 25681867 PMCID: PMC11113590 DOI: 10.1007/s00018-015-1855-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/31/2022]
Abstract
Directed cell migration is a fundamental process underlying diverse physiological and pathophysiological phenomena ranging from wound healing and induction of immune responses to cancer metastasis. Recent advances reveal that endocytic trafficking contributes to cell migration in multiple ways. (1) At the level of chemokines and chemokine receptors: internalization of chemokines by scavenger receptors is essential for shaping chemotactic gradients in tissue, whereas endocytosis of chemokine receptors and their subsequent recycling is key for maintaining a high responsiveness of migrating cells. (2) At the level of integrin trafficking and focal adhesion dynamics: endosomal pathways do not only modulate adhesion by delivering integrins to their site of action, but also by supplying factors for focal adhesion disassembly. (3) At the level of extracellular matrix reorganization: endosomal transport contributes to tumor cell migration not only by targeting integrins to invadosomes but also by delivering membrane type 1 matrix metalloprotease to the leading edge facilitating proteolysis-dependent chemotaxis. Consequently, numerous endocytic and endosomal factors have been shown to modulate cell migration. In fact key modulators of endocytic trafficking turn out to be also key regulators of cell migration. This review will highlight the recent progress in unraveling the contribution of cellular trafficking pathways to cell migration.
Collapse
Affiliation(s)
- Tanja Maritzen
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Hannah Schachtner
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
| |
Collapse
|