1
|
Patel HV, Shah FD. Mapping the intricacies of GLI1 in hedgehog signaling: A combined bioinformatics and clinical analysis in Head & Neck cancer in Western India. Curr Probl Cancer 2024; 53:101146. [PMID: 39265246 DOI: 10.1016/j.currproblcancer.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Activation of various cancer stem cell pathways are thought to be responsible for treatment failure and loco-regional recurrence in Head and Neck cancer. Hedgehog signaling, a major cancer stem signaling pathway plays a major role in relapse of disease. GLI1, a transcription activator, plays an important role in canonical/non-canonical activation of Hedgehog signaling. METHODS Data for H&N cancer patients were collected from The Cancer Genome Atlas- H&N Cancer (TCGA-HNSC). GLI1 co-expressed genes in TCGA-HNSC were then identified using cBioPortal and subjected to KEGG pathway analysis by DAVID tool. Network Analyzer and GeneMania plugins from CytoScape were used to identify hub genes and predict a probable pathway from the identified hub genes respectively. To confirm the hypothesis, real-time gene expression was carried out in 75 patients of head and neck cancer. RESULTS Significantly higher GLI1 expression was observed in tumor tissues of H&N cancer and it also showed worst overall survival. Using cBioPortal tool, 2345 genes were identified that were significantly co-expressed with GLI1. From which, 15 hub genes were identified through the Network Analyzer plugin in CytoScape. A probable pathway prediction based on hub genes showed the interconnected molecular mechanism and its role in non-canonical activation of Hedgehog pathway by altering the GLI1 activity. The expressions of SHH, GLI1 and AKT1 were significant with each other and were found to be significantly associated with Age, Lymph-Node status and Keratin. CONCLUSION The study emphasizes the critical role of the Hh pathway's activation modes in H&N cancer, particularly highlighting the non-canonical activation through GLI1 and AKT1. The identification of SHH, GLI1 and AKT1 as potential diagnostic biomarkers and their association with clinic-pathological parameters underscores their relevance in prognostication and treatment planning. Hh pathway activation through GLI1 and its cross-talk with various pathways opens up the possibility of newer treatment strategies and developing a panel of therapeutic targets in H&N cancer patients.
Collapse
Affiliation(s)
- Hitarth V Patel
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
| |
Collapse
|
2
|
Abd El-Rahman YA, Chen PJ, ElHady AK, Chen SH, Lin HC, El-Gamil DS, Aboushady Y, Abadi AH, Engel M, Abdel-Halim M. Development of 5-hydroxybenzothiophene derivatives as multi-kinase inhibitors with potential anti-cancer activity. Future Med Chem 2024; 16:1239-1254. [PMID: 38989990 PMCID: PMC11249150 DOI: 10.1080/17568919.2024.2342708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/09/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Chemoresistance in cancer challenges the classical therapeutic strategy of 'one molecule-one target'. To combat this, multi-target therapies that inhibit various cancer-relevant targets simultaneously are proposed. Methods & results: We introduce 5-hydroxybenzothiophene derivatives as effective multi-target kinase inhibitors, showing notable growth inhibitory activity across different cancer cell lines. Specifically, compound 16b, featuring a 5-hydroxybenzothiophene hydrazide scaffold, emerged as a potent inhibitor, displaying low IC50 values against key kinases and demonstrating significant anti-cancer effects, particularly against U87MG glioblastoma cells. It induced G2/M cell cycle arrest, apoptosis and inhibited cell migration by modulating apoptotic markers. Conclusion: 16b represents a promising lead for developing new anti-cancer agents targeting multiple kinases with affinity to the hydroxybenzothiophene core.
Collapse
Affiliation(s)
- Yara A Abd El-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 824410, Taiwan
- Graduate Institute of Medicine, I-Shou University, Kaohsiung, 824410, Taiwan
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
- School of Life & Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung, 831301, Taiwan
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, 824410, Taiwan
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, 12451, Egypt
| | - Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical & Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| |
Collapse
|
3
|
Mandarano AH, Harris TL, Creasy BM, Wehenkel M, Duggar M, Wilander BA, Mishra A, Crawford JC, Mullen SA, Williams KM, Pillai M, High AA, McGargill MA. DRAK2 contributes to type 1 diabetes by negatively regulating IL-2 sensitivity to alter regulatory T cell development. Cell Rep 2023; 42:112106. [PMID: 36773294 PMCID: PMC10412737 DOI: 10.1016/j.celrep.2023.112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Drak2-deficient (Drak2-/-) mice are resistant to multiple models of autoimmunity yet effectively eliminate pathogens and tumors. Thus, DRAK2 represents a potential target to treat autoimmune diseases. However, the mechanisms by which DRAK2 contributes to autoimmunity, particularly type 1 diabetes (T1D), remain unresolved. Here, we demonstrate that resistance to T1D in non-obese diabetic (NOD) mice is due to the absence of Drak2 in T cells and requires the presence of regulatory T cells (Tregs). Contrary to previous hypotheses, we show that DRAK2 does not limit TCR signaling. Rather, DRAK2 regulates IL-2 signaling by inhibiting STAT5A phosphorylation. We further demonstrate that enhanced sensitivity to IL-2 in the absence of Drak2 augments thymic Treg development. Overall, our data indicate that DRAK2 contributes to autoimmunity in multiple ways by regulating thymic Treg development and by impacting the sensitivity of conventional T cells to Treg-mediated suppression.
Collapse
Affiliation(s)
- Alexandra H Mandarano
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tarsha L Harris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Blaine M Creasy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marygrace Duggar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| | - Benjamin A Wilander
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sarah A Mullen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Katherine M Williams
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meenu Pillai
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
4
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Yoon SB, Hong H, Lim HJ, Choi JH, Choi YP, Seo SW, Lee HW, Chae CH, Park WK, Kim HY, Jeong D, De TQ, Myung CS, Cho H. A novel IRAK4/PIM1 inhibitor ameliorates rheumatoid arthritis and lymphoid malignancy by blocking the TLR/MYD88-mediated NF-κB pathway. Acta Pharm Sin B 2022; 13:1093-1109. [PMID: 36970199 PMCID: PMC10031381 DOI: 10.1016/j.apsb.2022.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 12/10/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a pivotal enzyme in the Toll-like receptor (TLR)/MYD88 dependent signaling pathway, which is highly activated in rheumatoid arthritis tissues and activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL). Inflammatory responses followed by IRAK4 activation promote B-cell proliferation and aggressiveness of lymphoma. Moreover, proviral integration site for Moloney murine leukemia virus 1 (PIM1) functions as an anti-apoptotic kinase in propagation of ABC-DLBCL with ibrutinib resistance. We developed a dual IRAK4/PIM1 inhibitor KIC-0101 that potently suppresses the NF-κB pathway and proinflammatory cytokine induction in vitro and in vivo. In rheumatoid arthritis mouse models, treatment with KIC-0101 significantly ameliorated cartilage damage and inflammation. KIC-0101 inhibited the nuclear translocation of NF-κB and activation of JAK/STAT pathway in ABC-DLBCLs. In addition, KIC-0101 exhibited an anti-tumor effect on ibrutinib-resistant cells by synergistic dual suppression of TLR/MYD88-mediated NF-κB pathway and PIM1 kinase. Our results suggest that KIC-0101 is a promising drug candidate for autoimmune diseases and ibrutinib-resistant B-cell lymphomas.
Collapse
|
6
|
Zheng Y, Li X, Kuang L, Wang Y. New insights into the characteristics of DRAK2 and its role in apoptosis: From molecular mechanisms to clinically applied potential. Front Pharmacol 2022; 13:1014508. [PMID: 36386181 PMCID: PMC9649744 DOI: 10.3389/fphar.2022.1014508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
As a member of the death-associated protein kinase (DAPK) family, DAP kinase-associated apoptosis-inducing kinase 2 (DRAK2) performs apoptosis-related functions. Compelling evidence suggests that DRAK2 is involved in regulating the activation of T lymphocytes as well as pancreatic β-cell apoptosis in type I diabetes. In addition, DRAK2 has been shown to be involved in the development of related tumor and non-tumor diseases through a variety of mechanisms, including exacerbation of alcoholic fatty liver disease (NAFLD) through SRSF6-associated RNA selective splicing mechanism, regulation of chronic lymphocytic leukemia and acute myeloid leukemia, and progression of colorectal cancer. This review focuses on the structure, function, and upstream pathways of DRAK2 and discusses the potential and challenges associated with the clinical application of DRAK2-based small-molecule inhibitors, with the aim of advancing DRAK2 research.
Collapse
Affiliation(s)
| | | | | | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Kurz CG, Preuss F, Tjaden A, Cusack M, Amrhein JA, Chatterjee D, Mathea S, Berger LM, Berger BT, Krämer A, Weller M, Weiss T, Müller S, Knapp S, Hanke T. Illuminating the Dark: Highly Selective Inhibition of Serine/Threonine Kinase 17A with Pyrazolo[1,5- a]pyrimidine-Based Macrocycles. J Med Chem 2022; 65:7799-7817. [PMID: 35608370 DOI: 10.1021/acs.jmedchem.2c00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine/threonine kinase 17A (death-associated protein kinase-related apoptosis-inducing protein kinase 1─DRAK1) is a part of the death-associated protein kinase (DAPK) family and belongs to the so-called dark kinome. Thus, the current state of knowledge of the cellular function of DRAK1 and its involvement in pathophysiological processes is very limited. Recently, DRAK1 has been implicated in tumorigenesis of glioblastoma multiforme (GBM) and other cancers, but no selective inhibitors of DRAK1 are available yet. To this end, we optimized a pyrazolo[1,5-a]pyrimidine-based macrocyclic scaffold. Structure-guided optimization of this macrocyclic scaffold led to the development of CK156 (34), which displayed high in vitro potency (KD = 21 nM) and selectivity in kinomewide screens. Crystal structures demonstrated that CK156 (34) acts as a type I inhibitor. However, contrary to studies using genetic knockdown of DRAK1, we have seen the inhibition of cell growth of glioma cells in 2D and 3D culture only at low micromolar concentrations.
Collapse
Affiliation(s)
- Christian G Kurz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Franziska Preuss
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Martin Cusack
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany.,Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, Frankfurt 60596, Germany
| | - Michael Weller
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| |
Collapse
|
9
|
Degradation of DRAK1 by CUL3/SPOP E3 Ubiquitin ligase promotes tumor growth of paclitaxel-resistant cervical cancer cells. Cell Death Dis 2022; 13:169. [PMID: 35194034 PMCID: PMC8863983 DOI: 10.1038/s41419-022-04619-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Despite favorable responses to initial chemotherapy, drug resistance is a major cause limiting chemotherapeutic efficacy in many advanced cancers. However, mechanisms that drive drug-specific resistance in chemotherapy for patients with advanced cancers are still unclear. Here, we report a unique role of death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK1) associated with paclitaxel resistance in cervical cancer cells. Interestingly, DRAK1 protein level was markedly decreased in paclitaxel-resistant cervical cancer cells without affecting its mRNA expression, which resulted in an increase in tumor necrosis factor receptor-associated factor 6 (TRAF6) expression, as well as an activation of TRAF6-mediated nuclear factor-kappa B (NF-κB) signaling cascade, thereby promoting tumor progression. DRAK1 depletion markedly increased the chemotherapeutic IC50 values of paclitaxel in cervical cancer cells. Ectopic expression of DRAK1 inhibited growth of paclitaxel-resistant cervical cancer cells in vitro and in vivo. Furthermore, DRAK1 was markedly underexpressed in chemoresistant cervical cancer patient tissues compared with chemosensitive samples. We found that DRAK1 protein was destabilized through K48-linked polyubiquitination promoted by the Cullin scaffold protein 3 (CUL3) / speckle-type POZ (poxvirus and zinc finger protein) protein (SPOP) E3 ubiquitin ligase in paclitaxel-resistant cells. Collectively, these findings suggest that DRAK1 may serve as a potential predictive biomarker for overcoming paclitaxel resistance in cervical cancer.
Collapse
|
10
|
Ju H, Hu Z, Wei D, Huang J, Zhang X, Rui M, Li Z, Zhang X, Hu J, Guo W, Ren G. A novel intronic circular RNA, circGNG7, inhibits head and neck squamous cell carcinoma progression by blocking the phosphorylation of heat shock protein 27 at Ser78 and Ser82. Cancer Commun (Lond) 2021; 41:1152-1172. [PMID: 34498800 PMCID: PMC8626595 DOI: 10.1002/cac2.12213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
Background There is increasing evidence that circular RNAs (circRNAs) play a significant role in pathological processes including tumorigenesis. In contrast to exonic circRNAs, which are the most frequently reported circRNAs in cancer so far, the studies of intronic circRNAs have been greatly lagged behind. Here, we aimed to investigate the regulatory role of intronic circRNAs in head and neck squamous cell carcinoma (HNSCC). Methods We conducted whole‐transcriptome sequencing with four pairs of primary tumor tissues and adjacent normal tissues from HNSCC patients. Then, we characterized circGNG7 expression in HNSCC tissues and cell lines and explored its association with the prognosis of HNSCC patients. We also identified interactions between circGNG7 and functional proteins, which alter downstream signaling that regulate HNSCC progression. Results In this study, we identified a new intronic circRNA, circGNG7, and validated its functional roles in HNSCC progression. CircGNG7 was predominately localized to the cytoplasm, and its expression was downregulated in both HNSCC tissues andCAL27, CAL33, SCC4, SCC9, HN6, and HN30 cells. Low expression of circGNG7 was significantly correlated with poor prognosis in HNSCC patients. Consistent with this finding, overexpression of circGNG7 strongly inhibited tumor cell proliferation, colony formation, in vitro migration, and in vivo tumor growth. Mechanistically, the expression of circGNG7 in HNSCC cells was regulated by the transcription factor SMAD family member 4 (SMAD4). Importantly, we discovered that circGNG7 could bind to serine residues 78 and 82 of the functional heat shock protein 27 (HSP27), occupying its phosphorylation sites and hindering its phosphorylation, which reduced HSP27‐JNK/P38 mitogen‐activated protein kinase (MAPK) oncogenic signaling. Downregulation of circGNG7 expression in HNSCC increased HSP27‐JNK/P38 MAPK signaling and promoted tumor progression. Conclusions Our results revealed that a new intronic circRNA, circGNG7, functions as a strong tumor suppressor and that circGNG7/HSP27‐JNK/P38 MAPK signaling is a novel mechanism by which HNSCC progression can be controlled.
Collapse
Affiliation(s)
- Houyu Ju
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Zhenrong Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Dongliang Wei
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Jinyun Huang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xinyi Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Mengyu Rui
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Zhi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xiaomeng Zhang
- National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillo-facial Implantology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, P. R. China
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Wei Guo
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Guoxin Ren
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
11
|
Xu G, Yuan G, Lu X, An L, Sheng Y, Du P. Study on the effect of regulation of Cordyceps militaris polypeptide on the immune function of mice based on a transcription factor regulatory network. Food Funct 2021; 11:6066-6077. [PMID: 32558840 DOI: 10.1039/d0fo01043j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The pathogenesis of the abnormality of the immune system is still not clear at present. Chemosynthetic drugs, human or animal immune products and microbiological drugs are used as the main drugs in clinics currently, but these drugs have different side effects. So researchers turned to safer natural products in order to find immunomodulatory active substances from natural products and their extracts. METHODS Immunosuppressed mice were induced by cyclophosphamide and administered with Cordyceps militaris polypeptide (CMP) for the study on the effect of CMP on the immune function of mice and its mechanism. Based on the 1748 differential gene sets selected in our previous work, the transcription factors and their corresponding target genes were screened by integrating the TRED (Transcriptional Regulatory Element Database), a transcriptional factor-target gene regulatory network was constructed, then the role of transcription factors in the regulatory network was elucidated by statistically analyzing the key nodes, and finally, the correlation of network genes with diseases was analyzed by using the DAVID database. RESULTS The results of animal experiments showed that CMP could increase the immune organ indexes, the number of white blood cells, the degree of delayed allergy and the content of hemolysin in the serum of mice. CMP was found to be involved in the regulation of immune function in mice through genes Kdr, Spp1, Ptgs2, Rel, and Smad3, and transcription factors Ets1, E2f2 and E2f1. E2F2 and E2F1 are members of the E2F family, so we speculated that the E2F family might play an important role, and its main regulatory pathways were the PI3K-Akt signaling pathway and TNF signaling pathway. CONCLUSION CMP can improve the immunity of mice. CMP can regulate the immune function of mice through multiple genes and transcription factors, and may also play a role in immune-related diseases, such as cancer.
Collapse
Affiliation(s)
- Guangyu Xu
- College of Pharmacy, Beihua University, Jilin, 132013, China.
| | - Guangxin Yuan
- College of Pharmacy, Beihua University, Jilin, 132013, China.
| | - Xuechun Lu
- The General Hospital of the People's Liberation Army, Beijing, 100039, China
| | - Liping An
- College of Pharmacy, Beihua University, Jilin, 132013, China.
| | - Yu Sheng
- College of Pharmacy, Beihua University, Jilin, 132013, China.
| | - Peige Du
- College of Medicine, Beihua University, Jilin, 132013, China.
| |
Collapse
|
12
|
Wang Z, Wang C, Jiang BH, Shi L, Lin S, Wang L, Liu LZ, Qiu JG, Qin Y, Jia Y. Predictive significance of STK17A in patients with gastric cancer and association with gastric cancer cell proliferation and migration. Oncol Rep 2021; 45:119. [PMID: 33955523 PMCID: PMC8107654 DOI: 10.3892/or.2021.8070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed types of cancer worldwide, and exploring its potential therapeutic targets is particularly important for improving the prognosis of patients with GC. The aim of the present study was to investigate the association between serine/threonine kinase 17a (STK17A) expression and GC prognosis. STK17A expression was measured by quantitative real-time PCR, western blotting and immunohistochemical staining. Standard stable transfection technology was also used to construct overexpression and knockdown cell lines. Wound healing, Transwell, Cell Counting Kit-8 and colony formation assays, as well as other methods, were used to explore the function and underlying molecular mechanism of STK17A in GC. The results indicated that STK17A overexpression significantly promoted the proliferation and migration of GC cells. The clinical significance of STK17A in a cohort of 102 cases of GC was assessed by clinical correlation and Kaplan-Meier analyses. Overexpression of STK17A was demonstrated to be associated with tumor invasion depth (P<0.001), lymph node metastasis (P<0.001) and poor prognosis in terms of 5-year survival (P<0.001). In addition, Cox multivariate analysis revealed that STK17A expression was an independent risk factor for overall and progress-free survival (P<0.001). Therefore, STK17A may be a valuable biomarker for the prognosis of patients with GC.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenyi Wang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bing-Hua Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Litong Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shan Lin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling-Zhi Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jian-Ge Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yongxu Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Wang HC, Chiang CJ, Liu TC, Wu CC, Chen YT, Chang JG, Shieh GS. Immunohistochemical Expression of Five Protein Combinations Revealed as Prognostic Markers in Asian Oral Cancer. Front Genet 2021; 12:643461. [PMID: 33936170 PMCID: PMC8083901 DOI: 10.3389/fgene.2021.643461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has a high mortality rate (∼50%), and the 5-year overall survival rate is not optimal. Cyto- and histopathological examination of cancer tissues is the main strategy for diagnosis and treatment. In the present study, we aimed to uncover immunohistochemical (IHC) markers for prognosis in Asian OSCC. From the collected 742 synthetic lethal gene pairs (of various cancer types), we first filtered genes relevant to OSCC, performed 29 IHC stains at different cellular portions and combined these IHC stains into 398 distinct pairs. Next, we identified novel IHC prognostic markers in OSCC among Taiwanese population, from the single and paired IHC staining by univariate Cox regression analysis. Increased nuclear expression of RB1 [RB1(N)↑], CDH3(C)↑-STK17A(N)↑ and FLNA(C)↑-KRAS(C)↑were associated with survival, but not independent of tumor stage, where C and N denote cytoplasm and nucleus, respectively. Furthermore, multivariate Cox regression analyses revealed that CSNK1E(C)↓-SHC1(N)↓ (P = 5.9 × 10–5; recommended for clinical use), BRCA1(N)↓-SHC1(N)↓ (P = 0.030), CSNK1E(C)↓-RB1(N)↑ (P = 0.045), [CSNK1E(C)-SHC1(N), FLNA(C)-KRAS(C)] (P = 0.000, rounded to three decimal places) and [BRCA1(N)-SHC1(N), FLNA(C)-KRAS(C)] (P = 0.020) were significant factors of poor prognosis, independent of lymph node metastasis, stage and alcohol consumption. An external dataset from The Cancer Genome Atlas HNSCC cohort confirmed that CDH3↑-STK17A↑ was a significant predictor of poor survival. Our approach identified prognostic markers with components involved in different pathways and revealed IHC marker pairs while neither single IHC was a marker, thus it improved the current state-of-the-art for identification of IHC markers.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Ta-Chih Liu
- Department of Hematology-Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ting Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Grace S Shieh
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.,Data Science Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Gómez-Gil V. Therapeutic Implications of TGFβ in Cancer Treatment: A Systematic Review. Cancers (Basel) 2021; 13:379. [PMID: 33498521 PMCID: PMC7864190 DOI: 10.3390/cancers13030379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a pleiotropic cytokine that participates in a wide range of biological functions. The alterations in the expression levels of this factor, or the deregulation of its signaling cascade, can lead to different pathologies, including cancer. A great variety of therapeutic strategies targeting TGFβ, or the members included in its signaling pathway, are currently being researched in cancer treatment. However, the dual role of TGFβ, as a tumor suppressor or a tumor-promoter, together with its crosstalk with other signaling pathways, has hampered the development of safe and effective treatments aimed at halting the cancer progression. This systematic literature review aims to provide insight into the different approaches available to regulate TGFβ and/or the molecules involved in its synthesis, activation, or signaling, as a cancer treatment. The therapeutic strategies most commonly investigated include antisense oligonucleotides, which prevent TGFβ synthesis, to molecules that block the interaction between TGFβ and its signaling receptors, together with inhibitors of the TGFβ signaling cascade-effectors. The effectiveness and possible complications of the different potential therapies available are also discussed.
Collapse
Affiliation(s)
- Verónica Gómez-Gil
- Department of Biomedical Sciences (Area of Pharmacology), School of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
15
|
Park Y, Pang K, Park J, Hong E, Lee J, Ooshima A, Kim HS, Cho JH, Han Y, Lee C, Song YS, Park KS, Yang KM, Kim SJ. Destablilization of TRAF6 by DRAK1 Suppresses Tumor Growth and Metastasis in Cervical Cancer Cells. Cancer Res 2020; 80:2537-2549. [PMID: 32265222 DOI: 10.1158/0008-5472.can-19-3428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
The adaptor protein TNF receptor-associated factor 6 (TRAF6) is a key mediator in inflammation. However, the molecular mechanisms controlling its activity and stability in cancer progression remain unclear. Here we show that death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK1) inhibits the proinflammatory signaling pathway by targeting TRAF6 for degradation, thereby suppressing inflammatory signaling-mediated tumor growth and metastasis in advanced cervical cancer cells. DRAK1 bound directly to the TRAF domain of TRAF6, preventing its autoubiquitination by interfering with homo-oligomerization, eventually leading to autophagy-mediated degradation of TRAF6. Depletion of DRAK1 in cervical cancer cells resulted in markedly increased levels of TRAF6 protein, promoting activation of the IL1β signaling-associated pathway and proinflammatory cytokine production. DRAK1 was specifically underexpressed in metastatic cervical cancers and inversely correlated with TRAF6 expression in mouse xenograft model tumor tissues and human cervical tumor tissues. Collectively, our findings highlight DRAK1 as a novel antagonist of inflammation targeting TRAF6 for degradation that limits inflammatory signaling-mediated progression of advanced cervical cancer. SIGNIFICANCE: Serine/threonine kinase DRAK1 serves a unique role as a novel negative regulator of the inflammatory signaling mediator TRAF6 in cervical cancer progression.
Collapse
Affiliation(s)
- Yuna Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Kyoungwha Pang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| | - Eunji Hong
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jihee Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hae-Suk Kim
- TheragenEtex Bio Institute, TheragenEtex Co., Suwon, Gyeonggi-do, Republic of Korea
| | - Jae Hyun Cho
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea. .,TheragenEtex Bio Institute, TheragenEtex Co., Suwon, Gyeonggi-do, Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
16
|
Wei W, Liu C. Prognostic and predictive roles of microRNA‑411 and its target STK17A in evaluating radiotherapy efficacy and their effects on cell migration and invasion via the p53 signaling pathway in cervical cancer. Mol Med Rep 2019; 21:267-281. [PMID: 31746360 PMCID: PMC6896360 DOI: 10.3892/mmr.2019.10826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies worldwide. However, the pathogenesis of cervical cancer remains to be fully elucidated. Increasing evidence shows that microRNAs (miRNAs) may be involved in the pathogenesis of cervical cancer. The present study tested the hypothesis that the overexpression of miRNA (miR)-411 may delay, whereas the overexpression of serine/threonine kinase 17a (STK17A) may contribute to, cervical cancer development and progression through the p53 pathway. Cervical cancer tissues and adjacent normal tissues were obtained from 141 patients with cervical cancer following radiotherapy, with efficacy evaluated. The receiver operating characteristic curve was plotted to show the value of miR-411 and STK17A in predicting the efficacy of radiotherapy. Cox's proportional hazards regression model was utilized for multivariate analysis. A series of inhibitors, mimics or small interfering RNAs against STK17A were introduced to validate the regulatory mechanism of miR-411 in governing STK17A, determined with a luciferase reporter gene assay. The expression of miR-411 and STK17A, and the status of the p53 signaling pathway were evaluated. The colony forming ability, proliferation, migration, invasion and apoptosis of CaSki cells were assessed using a colony formation assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Transwell assay and flow cytometry, respectively. miR-411 was upregulated but STK17A was reciprocal in cervical tissues. The overexpression of miR-411 and low expression of STK17A were correlated with high efficacy of radiotherapy. miR-411 and STK17A had predictive value for the efficacy of radiotherapy; miR-411 was the protective factor and STK17A was a risk factor for prognosis of cervical cancer. Increasing miR-411 activated the p53 signaling pathway and promoted cell apoptosis, but inhibited cell proliferation, invasion and migration. STK17A, an miR-411 target, increased following miR-411 over-expression, whereas the p53 signaling pathway was activated following STK17A inhibition. It was observed that the effect of miR-411 inhibition was lost following STK17A silencing. These findings indicate that the miR-411-mediated direct suppression of STK17A induces apoptosis and suppresses the proliferation, migration and invasion of human cervical cancer cells via the p53 signaling pathway. Additionally, miR-411 and STK17A have predictive value for the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Wei Wei
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Cun Liu
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
17
|
Johnson ND, Huang L, Li R, Li Y, Yang Y, Kim HR, Grant C, Wu H, Whitsel EA, Kiel DP, Baccarelli AA, Jin P, Murabito JM, Conneely KN. Age-related DNA hydroxymethylation is enriched for gene expression and immune system processes in human peripheral blood. Epigenetics 2019; 15:294-306. [PMID: 31506003 DOI: 10.1080/15592294.2019.1666651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
DNA methylation (DNAm) has a well-established association with age in many tissues, including peripheral blood mononuclear cells (PBMCs). Compared to DNAm, the closely related epigenetic modification known as DNA hydroxymethylation (DNAhm) was much more recently discovered in mammals. Preliminary investigations have observed a positive correlation between gene body DNAhm and cis-gene expression. While some of these studies have observed an association between age and global DNAhm, none have investigated region-specific age-related DNAhm in human blood samples. In this study, we investigated DNAhm and gene expression in PBMCs of 10 young and 10 old, healthy female volunteers. Thousands of regions were differentially hydroxymethylated in the old vs. young individuals in gene bodies, exonic regions, enhancers, and promoters. Consistent with previous work, we observed directional consistency between age-related differences in DNAhm and gene expression. Further, age-related DNAhm and genes with high levels of DNAhm were enriched for immune system processes which may support a role of age-related DNAhm in immunosenescence.
Collapse
Affiliation(s)
- Nicholas D Johnson
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, USA
| | - Luoxiu Huang
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Ronghua Li
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biostatistics, Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Yuchen Yang
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hye Rim Kim
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Cancer Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Crystal Grant
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Douglas P Kiel
- Hebrew SeniorLife, Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Joanne M Murabito
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Manivannan P, Reddy V, Mukherjee S, Clark KN, Malathi K. RNase L Induces Expression of A Novel Serine/Threonine Protein Kinase, DRAK1, to Promote Apoptosis. Int J Mol Sci 2019; 20:E3535. [PMID: 31330998 PMCID: PMC6679093 DOI: 10.3390/ijms20143535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 11/28/2022] Open
Abstract
Apoptosis of virus-infected cells is an effective antiviral mechanism in addition to interferon induction to establish antiviral state to restrict virus spread. The interferon-inducible 2'-5' oligoadenylate synthetase/RNase L pathway results in activation of RNase L in response to double stranded RNA and cleaves diverse RNA substrates to amplify interferon induction and promote apoptosis. Here we show that RNase L induces expression of Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 1 (DRAK1), a member of the death-associated protein kinase family and interferon-signaling pathway is required for induction. Overexpression of DRAK1 triggers apoptosis in the absence of RNase L activation by activating c-Jun N-terminal kinase (JNK), translocation of BCL2 Associated X (Bax) to the mitochondria accompanied by cytochrome C release and loss of mitochondrial membrane potential promoting cleavage of caspase 3 and Poly(ADP-Ribose) Polymerase 1 (PARP). Inhibitors of JNK and caspase 3 promote survival of DRAK1 overexpressing cells demonstrating an important role of JNK signaling pathway in DRAK1-mediated apoptosis. DRAK1 mutant proteins that lack kinase activity or nuclear localization fail to induce apoptosis highlighting the importance of cellular localization and kinase function in promoting cell death. Our studies identify DRAK1 as a mediator of RNase L-induced apoptosis.
Collapse
Affiliation(s)
- Praveen Manivannan
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Vidita Reddy
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Sushovita Mukherjee
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Kirsten Neytania Clark
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Krishnamurthy Malathi
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
| |
Collapse
|
19
|
Short SP, Thompson JJ, Bilotta AJ, Chen X, Revetta FL, Washington MK, Williams CS. Serine Threonine Kinase 17A Maintains the Epithelial State in Colorectal Cancer Cells. Mol Cancer Res 2019; 17:882-894. [PMID: 30655319 PMCID: PMC6941354 DOI: 10.1158/1541-7786.mcr-18-0990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 01/08/2023]
Abstract
Serine threonine kinase 17A (STK17A) is a ubiquitously expressed kinase originally identified as a regulator of apoptosis; however, whether it functionally contributes to colorectal cancer has not been established. Here, we have analyzed STK17A in colorectal cancer and demonstrated decreased expression of STK17A in primary tumors, which is further reduced in metastatic lesions, indicating a potential role in regulating the metastatic cascade. Interestingly, changes in STK17A expression did not modify proliferation, apoptosis, or sensitivity of colorectal cancer cell lines to treatment with the chemotherapeutic 5-fluorouracil. Instead, STK17A knockdown induced a robust mesenchymal phenotype consistent with the epithelial-mesenchymal transition, including spindle-like cell morphology, decreased expression of adherens junction proteins, and increased migration and invasion. Additionally, overexpression of STK17A decreased cell size and induced widespread membrane blebbing, a phenotype often associated with activation of cell contractility. Indeed, STK17A-overexpressing cells displayed heightened phosphorylation of myosin light chain in a manner dependent on STK17A catalytic activity. Finally, patient-derived tumor organoid cultures were used to more accurately determine STK17A's effect in primary human tumor cells. Loss of STK17A induced morphologic changes, decreased E-cadherin, increased invasion, and augmented organoid attachment on 2D substrates, all together suggesting a more metastatic phenotype. Collectively, these data indicate a novel role for STK17A in the regulation of epithelial phenotypes and indicate its functional contribution to colorectal cancer invasion and metastasis. IMPLICATIONS: Loss of serine threonine kinase 17A occurs in colorectal cancer metastasis, induces mesenchymal morphologies, and contributes to tumor cell invasion and migration in colorectal cancer.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Joshua J Thompson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Anthony J Bilotta
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xi Chen
- Department of Public Health Sciences and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Frank L Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee.
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
20
|
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev 2018; 39:349-385. [PMID: 29949198 DOI: 10.1002/med.21518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| |
Collapse
|
21
|
Reich SH, Sprengeler PA, Chiang GG, Appleman JR, Chen J, Clarine J, Eam B, Ernst JT, Han Q, Goel VK, Han EZR, Huang V, Hung INJ, Jemison A, Jessen KA, Molter J, Murphy D, Neal M, Parker GS, Shaghafi M, Sperry S, Staunton J, Stumpf CR, Thompson PA, Tran C, Webber SE, Wegerski CJ, Zheng H, Webster KR. Structure-based Design of Pyridone-Aminal eFT508 Targeting Dysregulated Translation by Selective Mitogen-activated Protein Kinase Interacting Kinases 1 and 2 (MNK1/2) Inhibition. J Med Chem 2018. [PMID: 29526098 DOI: 10.1021/acs.jmedchem.7b01795] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dysregulated translation of mRNA plays a major role in tumorigenesis. Mitogen-activated protein kinase interacting kinases (MNK)1/2 are key regulators of mRNA translation integrating signals from oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA binding proteins. Modulation of these key effector proteins regulates mRNA, which controls tumor/stromal cell signaling. Compound 23 (eFT508), an exquisitely selective, potent dual MNK1/2 inhibitor, was designed to assess the potential for control of oncogene signaling at the level of mRNA translation. The crystal structure-guided design leverages stereoelectronic interactions unique to MNK culminating in a novel pyridone-aminal structure described for the first time in the kinase literature. Compound 23 has potent in vivo antitumor activity in models of diffuse large cell B-cell lymphoma and solid tumors, suggesting that controlling dysregulated translation has real therapeutic potential. Compound 23 is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphoma. Compound 23 is the first highly selective dual MNK inhibitor targeting dysregulated translation being assessed clinically.
Collapse
Affiliation(s)
- Siegfried H Reich
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Paul A Sprengeler
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Gary G Chiang
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - James R Appleman
- Primmune Therapeutics, Inc. , 3210 Merryfield Row , San Diego , California 92121 , United States
| | - Joan Chen
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Jeff Clarine
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Boreth Eam
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Justin T Ernst
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Qing Han
- Structure-Based Design, Inc. , 6048 Cornerstone Court West #D , San Diego , California 92121 , United States
| | - Vikas K Goel
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Edward Z R Han
- Structure-Based Design, Inc. , 6048 Cornerstone Court West #D , San Diego , California 92121 , United States
| | - Vera Huang
- Molecular Stethoscope , 10835 Road to the Cure #100 , San Diego , California 92121 , United States
| | - Ivy N J Hung
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Adrianna Jemison
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Katti A Jessen
- Oncternal Therapeutics , 3525 Del Mar Heights Road #821 , San Diego , California 92130 , United States
| | - Jolene Molter
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Douglas Murphy
- Molcentrics, Inc. , 11835 Carmel Mountain Road #1304-110 , San Diego , California 92128 , United States
| | - Melissa Neal
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Gregory S Parker
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Michael Shaghafi
- Abide Therapeutics , 10835 Road to the Cure, Suite 250 , San Diego , California 92121 , United States
| | - Samuel Sperry
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Jocelyn Staunton
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Craig R Stumpf
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Peggy A Thompson
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Chinh Tran
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Stephen E Webber
- Polaris Pharmaceuticals , 9373 Towne Centre Drive #150 , San Diego , California 92121 , United States
| | - Christopher J Wegerski
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| | - Hong Zheng
- Structure-Based Design, Inc. , 6048 Cornerstone Court West #D , San Diego , California 92121 , United States
| | - Kevin R Webster
- eFFECTOR Therapeutics , 11180 Roselle Street , San Diego , California 92121 , United States
| |
Collapse
|
22
|
Oue Y, Murakami S, Isshiki K, Tsuji A, Yuasa K. Intracellular localization and binding partners of death associated protein kinase-related apoptosis-inducing protein kinase 1. Biochem Biophys Res Commun 2018; 496:1222-1228. [DOI: 10.1016/j.bbrc.2018.01.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
23
|
Wu F, Weigel KJ, Zhou H, Wang XJ. Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2018; 50:98-105. [PMID: 29206939 PMCID: PMC5846704 DOI: 10.1093/abbs/gmx127] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF-β) signaling either promotes or inhibits tumor formation and/or progression of many cancer types including squamous cell carcinoma (SCC). Canonical TGF-β signaling is mediated by a number of downstream proteins including Smad family proteins. Alterations in either TGF-β or Smad signaling can impact cancer. For instance, defects in TGF-β type I and type II receptors (TGF-βRI and TGF-βRII) and in Smad2/3/4 could promote tumor development. Conversely, increased TGF-β1 and activated TGF-βRI and Smad3 have all been shown to have tumor-promoting effects in experimental systems of human and mouse SCCs. Among TGF-β/Smad signaling, only TGF-βRII or Smad4 deletion in mouse epithelium causes spontaneous SCC in the mouse model, highlighting the critical roles of TGF-βRII and Smad4 in tumor suppression. Herein, we review the dual roles of the TGF-β/Smad signaling pathway and related mechanisms in SCC, highlighting the potential benefits and challenges of TGF-β/Smad-targeted therapies.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelsey J Weigel
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One 2017; 12:e0184129. [PMID: 28873455 PMCID: PMC5584762 DOI: 10.1371/journal.pone.0184129] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai, People’s Republic of China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - ShaoPeng Wang
- School of Life Sciences, Shanghai University, Shanghai, People’s Republic of China
| | - YunHua Zhang
- Anhui province key lab of farmland ecological conversation and pollution prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, People’s Republic of China
| |
Collapse
|
25
|
Metabolic characterization and pathway analysis of berberine protects against prostate cancer. Oncotarget 2017; 8:65022-65041. [PMID: 29029409 PMCID: PMC5630309 DOI: 10.18632/oncotarget.17531] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 12/26/2022] Open
Abstract
Recent explosion of biological data brings a great challenge for the traditional methods. With increasing scale of large data sets, much advanced tools are required for the depth interpretation problems. As a rapid-developing technology, metabolomics can provide a useful method to discover the pathogenesis of diseases. This study was explored the dynamic changes of metabolic profiling in cells model and Balb/C nude-mouse model of prostate cancer, to clarify the therapeutic mechanism of berberine, as a case study. Here, we report the findings of comprehensive metabolomic investigation of berberine on prostate cancer by high-throughput ultra performance liquid chromatography-mass spectrometry coupled with pattern recognition methods and network pathway analysis. A total of 30 metabolite biomarkers in blood and 14 metabolites in prostate cancer cell were found from large-scale biological data sets (serum and cell metabolome), respectively. We have constructed a comprehensive metabolic characterization network of berberine to protect against prostate cancer. Furthermore, the results showed that berberine could provide satisfactory effects on prostate cancer via regulating the perturbed pathway. Overall, these findings illustrated the power of the ultra performance liquid chromatography-mass spectrometry with the pattern recognition analysis for large-scale biological data sets may be promising to yield a valuable tool that insight into the drug action mechanisms and drug discovery as well as help guide testable predictions.
Collapse
|
26
|
HUI LIAN, WU HUA, YANG NING, GUO XING, JANG XUEJUN. Identification of prognostic microRNA candidates for head and neck squamous cell carcinoma. Oncol Rep 2016; 35:3321-30. [DOI: 10.3892/or.2016.4698] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/11/2016] [Indexed: 11/05/2022] Open
|
27
|
Lei ZG, Ren XH, Wang SS, Liang XH, Tang YL. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma. Onco Targets Ther 2016; 9:545-55. [PMID: 26869799 PMCID: PMC4734789 DOI: 10.2147/ott.s95633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mouse models can closely mimic human oral squamous epithelial carcinogenesis, greatly expand the in vivo research possibilities, and play a critical role in the development of diagnosis, monitoring, and treatment of head and neck squamous cell carcinoma. With the development of the recent research on the contribution of immunity/inflammation to cancer initiation and progression, mouse models have been divided into two categories, namely, immunocompromised and immunocompetent mouse models. And thus, this paper will review these two kinds of models applied in head and neck squamous cell carcinoma to provide a platform to understand the complicated histological, molecular, and genetic changes of oral squamous epithelial tumorigenesis.
Collapse
Affiliation(s)
- Zhen-Ge Lei
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiao-Hua Ren
- Department of Stomatology, Sichuan Medical Science Academy and Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China; Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
28
|
Ozeki M, Salah A, Aini W, Tamaki K, Haga H, Miyagawa-Hayashino A. Abnormal Localization of STK17A in Bile Canaliculi in Liver Allografts: An Early Sign of Chronic Rejection. PLoS One 2015; 10:e0136381. [PMID: 26305096 PMCID: PMC4549187 DOI: 10.1371/journal.pone.0136381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023] Open
Abstract
The biological significance of STK17A, a serine/threonine kinase, in the liver is not known. We analyzed STK17A expression in HepG2 cells and human liver tissue. Accordingly, we investigated whether STK17A could help in identifying earlier changes during the evolution of chronic rejection (CR) after liver transplantation. RT-PCR and immunofluorescence were used to analyze STK17A expression in HepG2 cells. Antibody microarray was performed using human liver samples from CR and healthy donors. Immunohistochemistry was used to verify the clinical utility of STK17A on sequential biopsies for the subsequent development of CR. A novel short isoform of STK17A was found in HepG2 cells. STK17A was localized in the nuclei and bile canaliculi in HepG2 cells and human livers. Microarray of STK17A revealed its decrease in failed liver allografts by CR. During the evolution of CR, the staining pattern of bile canalicular STK17A gradually changed from diffuse linear to focal intermittent. The focal intermittent staining pattern was observed before the definite diagnosis of CR. In conclusion, the present study was the first to find localization of STK17A in normal bile canaliculi. Abnormal expression and localization of STK17A were associated with CR of liver allografts since the early stage of the rejection process.
Collapse
Affiliation(s)
- Munetaka Ozeki
- Department of Forensic Medicine, Graduate school of Medicine, Kyoto University, Kyoto, Japan
| | - Adeeb Salah
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Wulamujiang Aini
- Experimental and Clinical Research Center, Diabetes and Research Laboratory, Kocaeli University, Izmit, Turkey
| | - Keiji Tamaki
- Department of Forensic Medicine, Graduate school of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Aya Miyagawa-Hayashino
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|