1
|
Sanghvi G, Roopashree R, Kashyap A, Sabarivani A, Ray S, Bhakuni PN. KIFC1 in cancer: Understanding its expression, regulation, and therapeutic potential. Exp Cell Res 2025; 447:114510. [PMID: 40058447 DOI: 10.1016/j.yexcr.2025.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Kinesins are a family of motor proteins essential for intracellular transport and cellular dynamics, with kinesin family member C1 (KIFC1) emerging as a key regulator of cancer progression. Recent studies highlight KIFC1's crucial role in mitotic spindle assembly, chromosome segregation, and cell migration-processes frequently dysregulated in cancer. Its involvement in promoting malignant cell proliferation and metastasis underscores its significance in tumor biology. In various cancer types, aberrant KIFC1 expression correlates with poor prognosis and aggressive phenotypes, suggesting its potential as a biomarker for disease severity. Mechanistically, KIFC1 influences signaling pathways linked to cell cycle regulation and programmed cell death, reinforcing its role in oncogenesis. Given its pivotal function in cancer cell dynamics, KIFC1 represents a promising therapeutic target. Strategies aimed at modulating its activity, including small molecules or RNA interference, could disrupt cancer cell viability and proliferation. The current review article highlights KIFC1's importance in cancer biology, advocating for further investigation into its mechanisms and the development of KIFC1-targeted therapies to enhance treatment efficacy and improve patient outcomes across various malignancies.
Collapse
Affiliation(s)
- Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Pushpa Negi Bhakuni
- Department of Allied Science, Graphic Era Hill University, Bhimtal, Uttarakhand, 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India.
| |
Collapse
|
2
|
Dong Q, Li X, Cheng K. Hsp90 and HIF-1α regulate mitophagy by promoting BNIP3 expression in renal ischemia-reperfusion injury. Transpl Immunol 2025; 89:102177. [PMID: 39892761 DOI: 10.1016/j.trim.2025.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Studies have shown that mitochondrial damage is involved in the pathogenesis of AKI, and that inhibition of Hsp90 expression can improve IR-induced AKI. However, the mechanisms by which Hsp90 improves IR-induced AKI and whether it is involved in mitochondrial autophagy remain unclear. METHODS An IR-induced AKI mouse model was established, and the degree of renal injury was analyzed using hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining. The expression of Hsp90, HIF-1α, BNIP3, and mitochondrial autophagy proteins was detected by western blotting in vivo and in vitro. HK2 cell viability, apoptosis, mitochondrial autophagy, reactive oxygen species (ROS), and inflammatory cytokines levels were detected using Cell Counting Kit 8 (CCK8) assays, Terminal·deoxynucleotidyl transferase-mediated dUTP nick end·labeling (TUNEL) labeling, immunofluorescence, and enzyme-linked immunosorbent (ELISA). RESULTS A murine IR-induced AKI model was successfully generated, and increased expression levels of Hsp90, HIF-1α, and inflammatory cytokines were observed, accompanied by a worsening of renal injury. After induction of IRI in HK2 cells, downregulation of Hsp90 or HIF-1α expression resulted in decreased downstream BNIP3 expression, an increase in HK2 cell viability, and a decrease in the level of mitochondrial autophagy. CONCLUSION Hsp90 upregulated the expression of HIF-1αand BNIP3, thereby enhancing mitochondrial autophagy in IR-induced AKI.
Collapse
Affiliation(s)
- Qi Dong
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Xia Li
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Ke Cheng
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China.
| |
Collapse
|
3
|
Feng F, Liu T, Hou X, Lin X, Zhou S, Tian Y, Qi X. Targeting the FSH/FSHR axis in ovarian cancer: advanced treatment using nanotechnology and immunotherapy. Front Endocrinol (Lausanne) 2024; 15:1489767. [PMID: 39741875 PMCID: PMC11685086 DOI: 10.3389/fendo.2024.1489767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Ovarian cancer (OC) is the gynecological malignancy with the poorest prognosis. Surgery and chemotherapy are the primary therapies for OC; however, patients often experience recurrence. Given the intimate interaction between OC cells and the tumor microenvironment (TME), it is imperative to devise treatments that target both tumor cells and TME components. Recently, follicle-stimulating hormone (FSH) levels in the blood have been shown to correlate with poorer prognosis in individuals with OC. Ovarian carcinoma cells express FSH receptors (FSHRs). Thus, FSH is an important target in the development of novel therapeutic agents. Here, we review the effects of FSH on normal physiology, including the reproductive, skeletal, cardiac, and fat metabolic systems. Importantly, this review outlines the role and mechanism of the FSH/FSHR axis in the proliferation, survival, and metastasis of OC, providing theoretical support for the targeted FSHR treatment of OC. Current progress in targeting FSHR for OC, including the recent application of nanotechnology and immunotherapy, is presented. Finally, we discuss prospects and future directions of targeted FSHR therapy in OC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyi Qi
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Kang Y, Wang Z, An K, Hou Q, Zhang Z, Su J. Introgression drives adaptation to the plateau environment in a subterranean rodent. BMC Biol 2024; 22:187. [PMID: 39218870 PMCID: PMC11368017 DOI: 10.1186/s12915-024-01986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Introgression has repeatedly been shown to play an important role in the adaptation of species to extreme environments, yet how introgression enables rodents with specialized subterranean lifestyle to acclimatize to high altitudes is still unclear. Myospalacinae is a group of subterranean rodents, among which the high-altitude plateau zokors (Eospalax baileyi) and the low-altitude Gansu zokors (E. cansus) are sympatrically distributed in the grassland ecosystems of the Qinghai-Tibet Plateau (QTP). Together, they provide a model for the study of the role of introgression in the adaptation of low-altitude subterranean rodents to high altitudes. RESULTS Applying low-coverage whole-genome resequencing and population genetics analyses, we identified evidence of adaptive introgression from plateau zokors into Gansu zokors, which likely facilitated the adaptation of the latter to the high-altitude environment of the QTP. We identified positively selected genes with functions related to energy metabolism, cardiovascular system development, calcium ion transport, and response to hypoxia which likely made critical contributions to adaptation to the plateau environment in both plateau zokors and high-altitude populations of Gansu zokors. CONCLUSIONS Introgression of genes associated with hypoxia adaptation from plateau zokors may have played a role in the adaptation of Gansu zokors to the plateau environment. Our study provides new insights into the understanding of adaptive evolution of species on the QTP and the importance of introgression in the adaptation of species to high-altitude environments.
Collapse
Affiliation(s)
- Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiqi Hou
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiming Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei, 733200, China.
| |
Collapse
|
5
|
Solidoro R, Centonze A, Miciaccia M, Baldelli OM, Armenise D, Ferorelli S, Perrone MG, Scilimati A. Fluorescent imaging probes for in vivo ovarian cancer targeted detection and surgery. Med Res Rev 2024; 44:1800-1866. [PMID: 38367227 DOI: 10.1002/med.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer is the most lethal gynecological cancer, with a survival rate of approximately 40% at five years from the diagno. The first-line treatment consists of cytoreductive surgery combined with chemotherapy (platinum- and taxane-based drugs). To date, the main prognostic factor is related to the complete surgical resection of tumor lesions, including occult micrometastases. The presence of minimal residual diseases not detected by visual inspection and palpation during surgery significantly increases the risk of disease relapse. Intraoperative fluorescence imaging systems have the potential to improve surgical outcomes. Fluorescent tracers administered to the patient may support surgeons for better real-time visualization of tumor lesions during cytoreductive procedures. In the last decade, consistent with the discovery of an increasing number of ovarian cancer-specific targets, a wide range of fluorescent agents were identified to be employed for intraoperatively detecting ovarian cancer. Here, we present a collection of fluorescent probes designed and developed for fluorescence-guided ovarian cancer surgery. Original articles published between 2011 and November 2022 focusing on fluorescent probes, currently under preclinical and clinical investigation, were searched in PubMed. The keywords used were targeted detection, ovarian cancer, fluorescent probe, near-infrared fluorescence, fluorescence-guided surgery, and intraoperative imaging. All identified papers were English-language full-text papers, and probes were classified based on the location of the biological target: intracellular, membrane, and extracellular.
Collapse
Affiliation(s)
- Roberta Solidoro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Antonella Centonze
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Olga Maria Baldelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Domenico Armenise
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | | | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
6
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Bina AR, Saburi E, Forouzanfar F, Moghbeli M. Role of microRNAs in tumor progression by regulation of kinesin motor proteins. Int J Biol Macromol 2024; 270:132347. [PMID: 38754673 DOI: 10.1016/j.ijbiomac.2024.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Li X, Hou Z, Meng S, Jia Q, Xing S, Wang Z, Chen M, Xu H, Li M, Cai H. LncRNA BlncAD1 Modulates Bovine Adipogenesis by Binding to MYH10, PI3K/Akt Signaling Pathway, and miR-27a-5p/CDK6 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11094-11110. [PMID: 38661523 DOI: 10.1021/acs.jafc.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Research on adipogenesis will help to improve the meat quality of livestock. Long noncoding RNAs (lncRNAs) are involved in mammalian adipogenesis as epigenetic modulators. In this study, we analyzed lncRNA expression during bovine adipogenesis and detected 195 differentially expressed lncRNAs, including lncRNA BlncAD1, which was significantly upregulated in mature bovine adipocytes. Gain- and loss-of-function experiments confirmed that BlncAD1 promoted the proliferation, apoptosis, and differentiation of bovine preadipocytes. RNA pull-down revealed that the nonmuscle myosin 10 (MYH10) is a potential binding protein of BlncAD1. Then, we elucidated that loss of BlncAD1 caused increased ubiquitination of MYH10, which confirmed that BlncAD1 regulates adipogenesis by enhancing the stability of the MYH10 protein. Western blotting was used to demonstrate that BlncAD1 activated the PI3K/Akt signaling pathway. Bioinformatic analysis and dual-luciferase reporter assays indicated that BlncAD1 competitively absorbed miR-27a-5p. The overexpression and interference of miR-27a-5p in bovine preadipocytes displayed that miR-27a-5p inhibited proliferation, apoptosis, and differentiation. Further results suggested that miR-27a-5p targeted the CDK6 gene and that BlncAD1 controlled the proliferation of bovine preadipocytes by modulating the miR-27a-5p/CDK6 axis. This study revealed the complex mechanisms of BlncAD1 underlying bovine adipogenesis for the first time, which would provide useful information for genetics and breeding improvement of Chinese beef cattle.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongyi Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shengbo Meng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shanshan Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhitong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
8
|
Lv M, Xu Y, Chen P, Li J, Qin Z, Huang B, Liu Y, Tao X, Xiang J, Wang Y, Feng Y, Zheng W, Zhang Z, Li L, Liao H. TSLP enhances progestin response in endometrial cancer via androgen receptor signal pathway. Br J Cancer 2024; 130:585-596. [PMID: 38172534 PMCID: PMC10876595 DOI: 10.1038/s41416-023-02545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The enriched proteins within in vitro fertilisation (IVF)-generated human embryonic microenvironment could reverse progestin resistance in endometrial cancer (EC). METHODS The expression of thymic stromal lymphopoietin (TSLP) in EC was evaluated by immunoblot and IHC analysis. Transcriptome sequencing screened out the downstream pathway regulated by TSLP. The role of TSLP, androgen receptor (AR) and KANK1 in regulating the sensitivity of EC to progestin was verified through a series of in vitro and in vivo experiments. RESULTS TSLP facilitates the formation of a BMP4/BMP7 heterodimer, resulting in activation of Smad5, augmenting AR signalling. AR in turn sensitises EC cells to progestin via KANK1. Downregulation of TSLP, loss of AR and KANK1 in EC patients are associated with tumour malignant progress. Moreover, exogenous TSLP could rescue the anti-tumour effect of progestin on mouse in vivo xenograft tumour. CONCLUSIONS Our findings suggest that TSLP enhances the sensitivity of EC to progestin through the BMP4/Smad5/AR/KANK1 axis, and provide a link between embryo development and cancer progress, paving the way for the establishment of novel strategy overcoming progestin resistance using embryo original factors.
Collapse
Affiliation(s)
- Mu Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yuan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Peiqin Chen
- Department of Obstetrics and Gynecology, The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Jingjie Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Zuoshu Qin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Baozhu Huang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, China
| | - Jun Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yanqiu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China.
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, 200137, Shanghai, China.
| | - Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 200040, Shanghai, China.
| |
Collapse
|
9
|
Xu J, Wu F, Zhu Y, Wu T, Cao T, Gao W, Liu M, Qian W, Feng G, Xi X, Hou S. ANGPTL4 regulates ovarian cancer progression by activating the ERK1/2 pathway. Cancer Cell Int 2024; 24:54. [PMID: 38311733 PMCID: PMC10838463 DOI: 10.1186/s12935-024-03246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) has the highest mortality rate among all gynecological malignancies. A hypoxic microenvironment is a common feature of solid tumors, including ovarian cancer, and an important driving factor of tumor cell survival and chemo- and radiotherapy resistance. Previous research identified the hypoxia-associated gene angiopoietin-like 4 (ANGPTL4) as both a pro-angiogenic and pro-metastatic factor in tumors. Hence, this work aimed to further elucidate the contribution of ANGPTL4 to OC progression. METHODS The expression of hypoxia-associated ANGPTL4 in human ovarian cancer was examined by bioinformatics analysis of TCGA and GEO datasets. The CIBERSORT tool was used to analyze the distribution of tumor-infiltrating immune cells in ovarian cancer cases in TCGA. The effect of ANGPTL4 silencing and overexpression on the proliferation and migration of OVCAR3 and A2780 OC cells was studied in vitro, using CCK-8, colony formation, and Transwell assays, and in vivo, through subcutaneous tumorigenesis assays in nude mice. GO enrichment analysis and WGCNA were performed to explore biological processes and genetic networks associated with ANGPTL4. The results obtained were corroborated in OC cells in vitro by western blotting. RESULTS Screening of hypoxia-associated genes in OC-related TCGA and GEO datasets revealed a significant negative association between ANGPTL4 expression and patient survival. Based on CIBERSORT analysis, differential representation of 14 distinct tumor-infiltrating immune cell types was detected between low- and high-risk patient groups. Silencing of ANGPTL4 inhibited OVCAR3 and A2780 cell proliferation and migration in vitro and reduced the growth rate of xenografted OVCAR3 cells in vivo. Based on results from WGCNA and previous studies, western blot assays in cultured OC cells demonstrated that ANGPTL4 activates the Extracellular signal-related kinases 1 and 2 (ERK1/2) pathway and this results in upregulation of c-Myc, Cyclin D1, and MMP2 expression. Suggesting that the above mechanism mediates the pro-oncogenic actions of ANGPTL4T in OC, the pro-survival effects of ANGPTL4 were largely abolished upon inhibition of ERK1/2 signaling with PD98059. CONCLUSIONS Our work suggests that the hypoxia-associated gene ANGPTL4 stimulates OC progression through activation of the ERK1/2 pathway. These findings may offer a new prospect for targeted therapies for the treatment of OC.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Tianyue Cao
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Meng Liu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Weifeng Qian
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Guannan Feng
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Xiaoxue Xi
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China.
| | - Shunyu Hou
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China.
| |
Collapse
|
10
|
Wu F, Wang F, Yang Q, Zhang Y, Cai K, Zhang J, Xia M, Wang Y, Wang X, Gui Y, Li Q. Upregulation of miR-21-5p rescues the inhibition of cardiomyocyte proliferation induced by high glucose through negative regulation of Rhob. J Dev Orig Health Dis 2023; 14:670-677. [PMID: 38073570 DOI: 10.1017/s2040174423000351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Increasing evidence shows that maternal hyperglycemia inhibits cardiomyocyte (CM) proliferation and promotes cell apoptosis during fetal heart development, which leads to cardiac dysplasia. Accumulating evidence suggests that the overexpression of miR-21 in CMs has a protective role in cardiac function. Therefore, we investigated whether miR-21 can rescue CM injury caused by high glucose. First, we performed biological function analysis of miR-21-5p overexpression in H9c2 cells treated with high glucose. We found that the proliferation of H9c2 cells treated with high glucose decreased significantly and was rescued after overexpression of miR-21-5p. CCK-8 and EdU incorporation assays were performed to assess cell proliferation. The cell proliferation of the miR-21-5p mimic transfection group was improved compared with that of the NC mimic group (*p < 0.05, miR-21-5p mimics vs. NC mimics) when the proliferation of H9c2 cells was reduced by high glucose (****p < 0.0001, high glucose (HG) vs. normal glucose (NG)). Then, we verified the targeted and negative regulation of miR-21-5p on Rhob using a dual-luciferase activity assay and RT-qPCR, respectively. We further demonstrated that miR-21-5p regulates Rhob to rescue the inhibition of CM proliferation induced by high glucose. The CCK-8 results showed that the cell proliferation of the siRNA-Rhob group was higher than that of the NC mimic group (***p < 0.001) and that of the cotransfection group with Up-Rhob plasmids and miR-21-5p mimics was lower than that of the miR-21-5p mimic group (*p < 0.05). Conclusion: Overexpression of miR-21-5p rescues the inhibition of high glucose-induced CM proliferation through regulation of Rhob.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neonatology, Shanghai General Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, National Health Commission Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qian Yang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, National Health Commission Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, National Health Commission Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ke Cai
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jialing Zhang
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Min Xia
- Department of Neonatology, Shanghai General Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youhua Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yonghao Gui
- Cardiovascular Center, National Health Commission Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, National Health Commission Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
11
|
Cahyanur R, Utari AP, Rahadiani N. Cyclin D1 expression, clinicopathological characteristics, and 2-year survival rate of gastric cancer in Cipto Mangunkusumo General Hospital. Niger J Clin Pract 2023; 26:1057-1062. [PMID: 37635596 DOI: 10.4103/njcp.njcp_222_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Background Cyclin D1 is a protein that can increase the proliferation of cancer cells. Its expression has been found in various malignancies, including gastric cancer. Cyclin D1 examinations have not been routinely performed for gastric cancer cases in Indonesia. A recent study of cyclin D1 in gastric cancer was associated with lymph node involvement, metastasis, poor prognosis, and a lack of response to platinum chemotherapy. Aim This study aimed to determine the relationships among cyclin D1 expression, clinicopathological features, and 2-year survival rates in gastric cancer. Materials and Methods This retrospective cohort study used medical records and paraffin blocks of patients suffering from gastric cancer at Cipto Mangunkusumo General Hospital, Jakarta, between 2015 and 2020. Data analysis was performed using Statistical Package for the Social Sciences (SPSS) version 20. The data were collected from 39 subjects, most of whom experienced eating disorder (69.23%), weight loss (76.92%), melena (53.85%), and anemia (51.28%). Tumor location was mostly found in the cardia and corpus of the gaster. Results This study found that the proportion of overexpression of cyclin D1 was 30.77%. Cyclin D1 expression was greater in subjects with liver metastases (50% vs. 14.8%, P = 0.04). Cyclin D1 expression was not associated with tumor location, tumor, node, and metastasis (TNM) stage, or histopathological findings. Analysis of the 2-year survival rate did not find any differences between patients with cyclin D1 overexpression and those with cyclin D1 negative. Conclusions Cyclin D1 expression was associated with liver metastases in patients with gastric cancer.
Collapse
Affiliation(s)
- R Cahyanur
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - A P Utari
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - N Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
12
|
Zhu L, Liu H, Dou Y, Luo Q, Gu L, Liu X, Zhou Q, Han J, Wang F. A Photoactivated Ru (II) Polypyridine Complex Induced Oncotic Necrosis of A549 Cells by Activating Oxidative Phosphorylation and Inhibiting DNA Synthesis as Revealed by Quantitative Proteomics. Int J Mol Sci 2023; 24:ijms24097756. [PMID: 37175463 PMCID: PMC10178167 DOI: 10.3390/ijms24097756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The ruthenium polypyridine complex [Ru(dppa)2(pytp)] (PF6)2 (termed as ZQX-1), where dppa = 4,7-diphenyl-1,10-phenanthroline and pytp = 4'-pyrene-2,2':6',2''-terpyridine, has been shown a high and selective cytotoxicity to hypoxic and cisplatin-resistant cancer cells either under irradiation with blue light or upon two-photon excitation. The IC50 values of ZQX-1 towards A549 cancer cells and HEK293 health cells are 0.16 ± 0.09 µM and >100 µM under irradiation at 420 nm, respectively. However, the mechanism of action of ZQX-1 remains unclear. In this work, using the quantitative proteomics method we identified 84 differentially expressed proteins (DEPs) with |fold-change| ≥ 1.2 in A549 cancer cells exposed to ZQX-1 under irradiation at 420 nm. Bioinformatics analysis of the DEPs revealed that photoactivated ZQX-1 generated reactive oxygen species (ROS) to activate oxidative phosphorylation signaling to overproduce ATP; it also released ROS and pyrene derivative to damage DNA and arrest A549 cells at S-phase, which synergistically led to oncotic necrosis and apoptosis of A549 cells to deplete excess ATP, evidenced by the elevated level of PRAP1 and cleaved capase-3. Moreover, the DNA damage inhibited the expression of DNA repair-related proteins, such as RBX1 and GPS1, enhancing photocytotoxicity of ZQX-1, which was reflected in the inhibition of integrin signaling and disruption of ribosome assembly. Importantly, the photoactivated ZQX-1 was shown to activate hypoxia-inducible factor 1A (HIF1A) survival signaling, implying that combining use of ZQX-1 with HIF1A signaling inhibitors may further promote the photocytotoxicity of the prodrug.
Collapse
Affiliation(s)
- Li Zhu
- College of Applied Science and Technology, Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100101, China
| | - Hui Liu
- College of Applied Science and Technology, Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100101, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Dou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianxiong Zhou
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
13
|
Mohammadi-Motlagh HR, Sadeghalvad M, Yavari N, Primavera R, Soltani S, Chetty S, Ganguly A, Regmi S, Fløyel T, Kaur S, Mirza AH, Thakor AS, Pociot F, Yarani R. β Cell and Autophagy: What Do We Know? Biomolecules 2023; 13:biom13040649. [PMID: 37189396 DOI: 10.3390/biom13040649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in β cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects β cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect β cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to β cell failure.
Collapse
Affiliation(s)
- Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155-1616, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rosita Primavera
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Shashank Chetty
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abantika Ganguly
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avnesh S Thakor
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Reza Yarani
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
14
|
Abstract
Significance: Liver disease is one of the biggest threats to public health, affecting as much as 5.5 million people worldwide. Mitochondrial dysfunction is associated with various acute and chronic liver diseases. Mitophagy, a selective form of autophagy for damaged/excessive mitochondria, plays a key role either in the pathogenesis or in maintaining hepatic homeostasis in response to various liver diseases. Recent Advances: Significant progress has been achieved to ascertain the causes of liver disease. The conserved pathways for mitochondrial degradation via mitophagy, the deregulation of mitophagy in liver diseases, and pharmacological or genetic maneuvers that alter the mitophagic flux for liver disease treatment have been widely studied but yet to be comprehensively reviewed. Critical Issues: Liver disease is considered a leading cause of mortality globally, causing the heavy burden of disability and the increased health care utilization that needs to be settled urgently. Mitophagy plays an important role in protecting liver from tissue damage to maintain hepatic homeostasis or in pathogenesis of liver disease. Elaborating mitophagy implicated in the pathogenesis of liver disease, as well as potential therapeutic regimens by targeting mitophagy is of great significance for the understanding and treatment of liver disease. Future Directions: This review comprehensively describes the distinct mitophagy signaling pathways and their interplay with various liver diseases. Given that mitophagy affects a wide array of physiological processes, a deeper understanding of how to modulate mitophagy could provide innovative avenues for precise therapy. Future studies based on pharmacologically or genetically targeting mitophagy-relevant factors will uncover the links between intact mitophagic responses and hepatic homeostasis in physiological and pathological settings. This will allow us to overcome obstacles of applying mitophagy as the therapeutic target in the clinic. Antioxid. Redox Signal. 38, 529-549.
Collapse
Affiliation(s)
- Chunling Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Peng G, Wang C, Wang H, Qu M, Dong K, Yu Y, Jiang Y, Gan S, Gao X. Gankyrin-mediated interaction between cancer cells and tumor-associated macrophages facilitates prostate cancer progression and androgen deprivation therapy resistance. Oncoimmunology 2023; 12:2173422. [PMID: 36776524 PMCID: PMC9908295 DOI: 10.1080/2162402x.2023.2173422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Increasing evidence reveals that the interaction between tumor cells and tumor-associated macrophages (TAMs) facilitates the progression of prostate cancer, but the related mechanisms remained unclear. This study determined how gankyrin, a component of the 19S regulatory complex of the 26S proteasome, regulates the progression and androgen deprivation therapy (ADT) resistance of prostate cancer through tumor cell-TAM interactions. In vitro functional experiments and in vivo subcutaneous tumor models were used to explore the biological role and molecular mechanisms of gankyrin in prostate cancer cell-TAM interactions. 234 prostate cancer patients were randomly divided into training and validation cohorts to examine the prognostic value of gankyrin through immunohistochemistry (IHC) and statistical analyses, and high gankyrin expression was correlated with poor prognosis. In addition, gankyrin facilitated the progression and ADT resistance of prostate cancer. Mechanistically, gankyrin recruited and upregulated non-POU-domain-containing octamer-binding protein (NONO) expression, resulting in increased androgen receptor (AR) expression. AR then bound to the high-mobility group box 1 (HMGB1) promoter to trigger HMGB1 transcription, expression, and secretion. Moreover, HMGB1 was found to promote the recruitment and activation of TAMs, which secrete IL-6 to reciprocally promote prostate cancer progression, ADT resistance and gankyrin expression via STAT3, resulting in formation of a gankyrin/NONO/AR/HMGB1/IL-6/STAT3 positive feedback loop. Furthermore, targeting the interaction between tumor cells and TAMs by blocking this loop inhibited ADT resistance in a tumor xenograft model. Taken together, the data show that gankyrin serves as a reliable prognostic indicator and therapeutic target for prostate cancer patients.
Collapse
Affiliation(s)
- Guang Peng
- Department of Urinary Surgery, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China,Department of Orthopedic, Joint Logistic Support Force No. 925 Hospital of PLA, Guiyang, China,Department of Burns and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Chao Wang
- Department of Urinary Surgery, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China,Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China,CONTACT Chao Wang (Main corresponding author) Department of Urinary Surgery, Gongli Hospital of Shanghai Pudong New Area, 219 Miaopu Road, Shanghai, 200135, China
| | - Hongru Wang
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Min Qu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Keqin Dong
- Department of Urology, Chinese PLA general hospital of central theater command, Wuhan, China
| | - Yongwei Yu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuquan Jiang
- Department of Orthopedic, Joint Logistic Support Force No. 925 Hospital of PLA, Guiyang, China,Central Lab of Joint Logistic Support Force No. 925 Hospital of PLA, Guiyang, China,Yuquan Jiang Department of Orthopedic Central Lab of Joint Logistic Support Force No. 925 Hospital of PLA, Guiyang, China
| | - Sishun Gan
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China,Sishun Gan Department of Urinary Surgery, The Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai 201805, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China,Gao Xu Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Xiao C, Liu S, Ge G, Jiang H, Wang L, Chen Q, Jin C, Mo J, Li J, Wang K, Zhang Q, Zhou J. Roles of hypoxia-inducible factor in hepatocellular carcinoma under local ablation therapies. Front Pharmacol 2023; 14:1086813. [PMID: 36814489 PMCID: PMC9939531 DOI: 10.3389/fphar.2023.1086813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common digestive malignancies. HCC It ranges as the fifth most common cause of cancer mortality worldwide. While The prognosis of metastatic or advanced HCC is still quite poor. Recently, locoregional treatment, especially local ablation therapies, plays an important role in the treatment of HCC. Radiofrequency ablation (RFA) and high-intensity focused ultrasound (HIFU) ablation are the most common-used methods effective and feasible for treating HCC. However, the molecular mechanisms underlying the actions of ablation in the treatments for HCC and the HCC recurrence after ablation still are poorly understood. Hypoxia-inducible factor (HIF), the key gene switch for adaptive responses to hypoxia, has been found to play an essential role in the rapid aggressive recurrence of HCC after ablation treatment. In this review, we summarized the current evidence of the roles of HIF in the treatment of HCC with ablation. Fifteen relevant studies were included and further analyzed. Among them, three clinical studies suggested that HIF-1α might serve as a crucial role in the RAF treatment of HCC or the local recurrence of HCC after RFA. The remainder included experimental studies demonstrated that HIF-1, 2α might target the different molecules (e.g., BNIP3, CA-IX, and arginase-1) and signaling cascades (e.g., VEGFA/EphA2 pathway), constituting a complex network that promoted HCC invasion and metastasis after ablation. Currently, the inhibitors of HIF have been developed, providing important proof of targeting HIF for the prevention of HCC recurrence after IRFA and HIFU ablation. Further confirmation by prospective clinical and in-depth experimental studies is still warranted to illustrate the effects of HIF in HCC recurrence followed ablation treatment in the future.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Sheng Liu
- Department of Hepatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Ge
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jin Li
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qianqian Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Zhou
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
17
|
Mahmoud GA, Ali HE, Radwan RR. Design of pH-responsive polymeric nanocarrier for targeted delivery of pyrogallol with enhanced antitumor potential in colon cancer. Arch Biochem Biophys 2022; 731:109431. [DOI: 10.1016/j.abb.2022.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022]
|
18
|
Therachiyil L, Hussein OJ, Uddin S, Korashy HM. Regulation of the aryl hydrocarbon receptor in cancer and cancer stem cells of gynecological malignancies: An update on signaling pathways. Semin Cancer Biol 2022; 86:1186-1202. [PMID: 36252938 DOI: 10.1016/j.semcancer.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
Gynecological malignancies are a female type of cancers that affects the reproductive system. Cancer metastasis or recurrence mediated by cellular invasiveness occurs at advanced stages of cancer progression. Cancer Stem Cells (CSCs) enrichment in tumors leads to chemoresistance, which results in cancer mortality. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons is associated with an increased the risk of CSC enrichment in gynecological cancers. One of the important pathways that mediates the metabolism and bioactivation of these environmental chemicals is the transcription factor, aryl hydrocarbon receptor (AhR). The present review explores the molecular mechanisms regulating the crosstalk and interaction of the AhR with cancer-related signaling pathways, such as apoptosis, epithelial-mesenchymal transition, immune checkpoints, and G-protein-coupled receptors in several gynecological malignancies such as ovarian, uterine, endometrial, and cervical cancers. The review also discusses the potential of targeting the AhR pathway as a novel chemotherapy for gynecological cancers.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
19
|
Tian W, Qi H, Wang Z, Qiao S, Wang P, Dong J, Wang H. Hormone supply to the pituitary gland: A comprehensive investigation of female‑related tumors (Review). Int J Mol Med 2022; 50:122. [PMID: 35946461 PMCID: PMC9387558 DOI: 10.3892/ijmm.2022.5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The hypothalamus acts on the pituitary gland after signal integration, thus regulating various physiological functions of the body. The pituitary gland includes the adenohypophysis and neurohypophysis, which differ in structure and function. The hypothalamus-hypophysis axis controls the secretion of adenohypophyseal hormones through the pituitary portal vein system. Thyroid-stimulating hormone, adrenocorticotropic hormone, gonadotropin, growth hormone (GH), and prolactin (PRL) are secreted by the adenohypophysis and regulate the functions of the body in physiological and pathological conditions. The aim of this review was to summarize the functions of female-associated hormones (GH, PRL, luteinizing hormone, and follicle-stimulating hormone) in tumors. Their pathophysiology was described and the mechanisms underlying female hormone-related diseases were investigated.
Collapse
Affiliation(s)
- Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Zhimei Wang
- Jiangsu Province Hi‑Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, D‑66421 Homburg‑Saar, Germany
| | - Ping Wang
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Junhong Dong
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
20
|
Zhu T, Xiao Z, Yuan H, Tian H, Chen T, Chen Q, Chen M, Yang J, Zhou Q, Guo W, Xue K, Xia M, Bao J, Yang C, Duan H, Wang H, Huang Z, Liu C, Zhou J. ACO1 and IREB2 downregulation confer poor prognosis and correlate with autophagy-related ferroptosis and immune infiltration in KIRC. Front Oncol 2022; 12:929838. [PMID: 36059676 PMCID: PMC9428356 DOI: 10.3389/fonc.2022.929838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background ACO1 and IREB2 are two homologous cytosolic regulatory proteins, which sense iron levels and change iron metabolism–linked molecules. These two genes were noticeably decreased in kidney renal clear cell carcinoma (KIRC), which confer poor survival. Meanwhile, there is a paucity of information about the mechanisms and clinical significance of ACO1 and IREB2 downregulation in renal cancers. Methods The expression profiles of ACO1 and IREB2 were assessed using multiple public data sets via several bioinformatics platforms. Clinical and pathological information was utilized to stratify cohorts for comparison. Patient survival outcomes were evaluated using the Kaplan–Meier plotter, a meta-analysis tool. The correlations of ACO1 and IREB2 with ferroptosis were further evaluated in The Cancer Genome Atlas (TCGA)–KIRC database. Tumor immune infiltration was analyzed using the CIBERSORT, TIMER, and GEPIA data resources. ACO1 antagonist sodium oxalomalate (OMA) and IREB2 inhibitor sodium nitroprusside (SNP) was used to treat renal cancer ACHN cells together with sorafenib. Results KIRC patients with low ACO1 or IREB2 contents exhibited a remarkably worse survival rate in contrast with those with high expression in Kaplan–Meier survival analyses. Meanwhile, ACO1 and IREB2 regulate autophagy-linked ferroptosis along with immune cell invasion in the tumor microenvironment in KIRC patients. Blocking the activation of these two genes by their inhibitors OMA and SNP ameliorated sorafenib-triggered cell death, supporting that ACO1 and IREB2 could be participated in its cytotoxic influence on renal cancer cells. Conclusion ACO1 and IREB2 downregulation in renal cancers were correlated with cancer aggressiveness, cellular iron homeostasis, cytotoxic immune cell infiltration, and patient survival outcomes. Our research is integral to verify the possible significance of ACO1 and IREB2 contents as a powerful signature for targeted treatment or novel immunotherapy in clinical settings.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhuoyu Xiao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Haoyu Yuan
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hu Tian
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Taoyi Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qi Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Mingkun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiankun Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qizhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenbin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kangyi Xue
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiming Bao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Haifeng Duan
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongyi Wang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhipeng Huang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Junhao Zhou, ; Cundong Liu,
| | - Junhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Junhao Zhou, ; Cundong Liu,
| |
Collapse
|
21
|
Yu T, Liu Y, Xue J, Sun X, Zhu D, Ma L, Guo Y, Jin T, Cao H, Chen Y, Zhu T, Li X, Liang H, Du Z, Shan H. Gankyrin modulated non-small cell lung cancer progression via glycolysis metabolism in a YAP1-dependent manner. Cell Death Dis 2022; 8:312. [PMID: 35810157 PMCID: PMC9271063 DOI: 10.1038/s41420-022-01104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is highly malignant and heterogeneous form of lung cancer and involves various oncogene alterations. Glycolysis, an important step in tumor metabolism, is closely related to cancer progression. In this study, we investigated the biological function and mechanism of action of Gankyrin in glycolysis and its association with NSCLC. Analyzed of data from The Cancer Genome Atlas as well as NSCLC specimens and adjacent tissues demonstrated that Gankyrin expression was upregulated in NSCLC tissues compared to adjacent normal tissues. Gankyrin was found to significantly aggravate cancer-related phenotypes, including cell viability, migration, invasion, and epithelial mesenchymal transition (EMT), whereas Gankyrin silencing alleviated the malignant phenotype of NSCLC cells. Our results reveal that Gankyrin exerted its function by regulating YAP1 expression and increasing its nuclear translocation. Importantly, YAP1 actuates glycolysis, which involves glucose uptake, lactic acid production, and ATP generation and thus might contribute to the tumorigenic effect of Gankyrin. Furthermore, the Gankyrin-accelerated glycolysis in NSCLC cells was reversed by YAP1 deficiency. Gankyrin knockdown reduced A549 cell tumorigenesis and EMT and decreased YAP1 expression in a subcutaneous xenograft nude mouse model. In conclusion, both Gankyrin and YAP1 play important roles in tumor metabolism, and Gankyrin-targeted inhibition may be a potential anti-cancer therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, P. R. China
| | - Yanyan Liu
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, P. R. China
| | - Junwen Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xiang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Di Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lu Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Yingying Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Huiying Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Yingzhun Chen
- Department of Pathology, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Tong Zhu
- Department of General Surgery, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, P. R. China
| | - Zhimin Du
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, P. R. China. .,Institute of Clinical Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China. .,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China. .,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, P. R. China.
| |
Collapse
|
22
|
Action Sites and Clinical Application of HIF-1α Inhibitors. Molecules 2022; 27:molecules27113426. [PMID: 35684364 PMCID: PMC9182161 DOI: 10.3390/molecules27113426] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 01/02/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is widely distributed in human cells, and it can form different signaling pathways with various upstream and downstream proteins, mediate hypoxia signals, regulate cells to produce a series of compensatory responses to hypoxia, and play an important role in the physiological and pathological processes of the body, so it is a focus of biomedical research. In recent years, various types of HIF-1α inhibitors have been designed and synthesized and are expected to become a new class of drugs for the treatment of diseases such as tumors, leukemia, diabetes, and ischemic diseases. This article mainly reviews the structure and functional regulation of HIF-1α, the modes of action of HIF-1α inhibitors, and the application of HIF-1α inhibitors during the treatment of diseases.
Collapse
|
23
|
Integrated Network Pharmacology and Mice Model to Investigate Qing Zao Fang for Treating Sjögren's Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3690016. [PMID: 35341135 PMCID: PMC8941571 DOI: 10.1155/2022/3690016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease, and its conventional treatment has exhibited limited therapeutic efficacy. Qing Zao Fang (QZF), a traditional Chinese medicine formula, is used in the treatment of Sjögren's syndrome, but its chemical composition is complex, and its pharmacological mechanism is not clear. Therefore, this study aims to explore the potential mechanism of QZF in the treatment of Sjögren's syndrome based on network pharmacology and SS mouse model. The main active components and predicted targets of QZF were analyzed by network pharmacology. The SS mouse model was constructed and divided into 6 groups: control, SS, SS + hydroxychloroquine (HCQ)-treated, SS + low-dose QZF-treated, SS + medium-dose QZF-treated, and SS + high-dose QZF-treated group. Immunohistochemical, ELISA, and qRT-PCR assays were performed to detect the expressions of targets associated with SS. TUNEL staining was used to detect apoptosis. Cumulatively, 230 active compounds and 1883 targets of QZF were identified. There were 227 common targets for QZF and SS. The effective active ingredients were stigmasterol, neocryptotanshinone II, neotanshinone C, miltionone I, and beta-pinene. It mainly acts on biological processes such as inflammatory response, chemokine metabolic process, and immune response as well as pathways such as FoxO signaling pathway, Yersinia infection, HIF-1 signaling pathway, and TNF signaling pathway. In SS mice, levels of AKT1, HIF-1α, TNF-α, IL-6, and IL-17A were increased, while decreased after QZF treatment. In contrast, IL-10 levels were decreased in SS mice and increased in QZF-treated mice. In addition, QZF reduced apoptosis in the submandibular gland tissue compared to SS mice. It can be concluded that the QZF in treatment of SS is the result of the combined action of multiple components, multiple targets, and multiple pathways. This study improves the understanding of the link between QZF and SS on molecular mechanisms.
Collapse
|
24
|
Zou J, Li Y, Liao N, Liu J, Zhang Q, Luo M, Xiao J, Chen Y, Wang M, Chen K, Zeng J, Mo Z. Identification of key genes associated with polycystic ovary syndrome (PCOS) and ovarian cancer using an integrated bioinformatics analysis. J Ovarian Res 2022; 15:30. [PMID: 35227296 PMCID: PMC8886837 DOI: 10.1186/s13048-022-00962-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests a strong association between polycystic ovary syndrome (PCOS) and ovarian cancer (OC), but the potential molecular mechanism remains unclear. In this study, we identified previously unrecognized genes that are significantly correlated with PCOS and OC via bioinformatics. MATERIALS AND METHODS Multiple bioinformatic analyses, such as differential expression analysis, univariate Cox analysis, functional and pathway enrichment analysis, protein-protein interaction (PPI) network construction, survival analysis, and immune infiltration analysis, were utilized. We further evaluated the effect of OGN on FSHR expression via immunofluorescence. RESULTS TCGA-OC, GSE140082 (for OC) and GSE34526 (for PCOS) datasets were downloaded. Twelve genes, including RNF144B, LPAR3, CRISPLD2, JCHAIN, OR7E14P, IL27RA, PTPRD, STAT1, NR4A1, OGN, GALNT6 and CXCL11, were identified as signature genes. Drug sensitivity analysis showed that OGN might represent a hub gene in the progression of PCOS and OC. Experimental analysis found that OGN could increase FSHR expression, indicating that OGN could regulate the hormonal response in PCOS and OC. Furthermore, correlation analysis indicated that OGN function might be closely related to m6A and ferroptosis. CONCLUSIONS Our study identified a 12-gene signature that might be involved in the prognostic significance of OC. Furthermore, the hub gene OGN represent a significant gene involved in OC and PCOS progression by regulating the hormonal response.
Collapse
Affiliation(s)
- Juan Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Yukun Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Nianchun Liao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China
| | - Jue Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China
| | - Min Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Yanhua Chen
- Institute of Basic Medical Sciences, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, China
- Department of Laboratory Medicine, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Mengjie Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China
| | - Kexin Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China
| | - Juan Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| | - Zhongcheng Mo
- Institute of Basic Medical Sciences, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
25
|
Xu J, Yu X, Ye H, Gao S, Deng N, Lu Y, Lin H, Zhang Y, Lu D. Comparative Metabolomics and Proteomics Reveal Vibrio parahaemolyticus Targets Hypoxia-Related Signaling Pathways of Takifugu obscurus. Front Immunol 2022; 12:825358. [PMID: 35095928 PMCID: PMC8793131 DOI: 10.3389/fimmu.2021.825358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) raises the issue of how hypoxia destroys normal physiological function and host immunity against pathogens. However, there are few or no comprehensive omics studies on this effect. From an evolutionary perspective, animals living in complex and changeable marine environments might develop signaling pathways to address bacterial threats under hypoxia. In this study, the ancient genomic model animal Takifugu obscurus and widespread Vibrio parahaemolyticus were utilized to study the effect. T. obscurus was challenged by V. parahaemolyticus or (and) exposed to hypoxia. The effects of hypoxia and infection were identified, and a theoretical model of the host critical signaling pathway in response to hypoxia and infection was defined by methods of comparative metabolomics and proteomics on the entire liver. The changing trends of some differential metabolites and proteins under hypoxia, infection or double stressors were consistent. The model includes transforming growth factor-β1 (TGF-β1), hypoxia-inducible factor-1α (HIF-1α), and epidermal growth factor (EGF) signaling pathways, and the consistent changing trends indicated that the host liver tended toward cell proliferation. Hypoxia and infection caused tissue damage and fibrosis in the portal area of the liver, which may be related to TGF-β1 signal transduction. We propose that LRG (leucine-rich alpha-2-glycoprotein) is widely involved in the transition of the TGF-β1/Smad signaling pathway in response to hypoxia and pathogenic infection in vertebrates as a conserved molecule.
Collapse
Affiliation(s)
- Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Hangyu Ye
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Songze Gao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Ocean, Hainan University, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
26
|
Zeng P, Liu W, Yang X, Zhang S, Du S, Fan Y, Zhao L, Wang A. Qing Zao Fang (QZF) Alleviates the Inflammatory Microenvironment of the Submandibular Gland in Sjögren's Syndrome Based on the PI3K/Akt/HIF-1 α/VEGF Signaling Pathway. DISEASE MARKERS 2022; 2022:6153459. [PMID: 35140821 PMCID: PMC8820932 DOI: 10.1155/2022/6153459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Sjögren's syndrome (SS) which could lead to a disorder of our immune system is a chronic autoimmune disease characterized by invading exocrine glands such as salivary glands and lacrimal glands and other exocrine glands. Its common symptom is dry mouth and dry eyes, often accompanied by a large number of lymphocyte infiltrations and can involve other organs to cause complex clinical manifestations. In this study, we aimed at investigating the effect of QZF in SS, identifying the molecular mechanism in modulating autoimmune response, and determining the important roles of these factors' function as a modulator in the pathogenesis of SS. The NOD mice were utilized to establish the rats' model of Sjögren's syndrome. After 10 weeks' hydroxychloroquine and QZF in different dose interference, submandibular gland tissue was collected. The therapeutic effect of QZF on SS rats was identified, and the results suggest the comparable potential to hydroxychloroquine. In submandibular gland tissue, interleukin- (IL-) 17 was significantly lower in high-dose QZF than that in SS rats and the focal lymphocytes were highly attenuated. Moreover, we found that PI3K/Akt signals were activated and the downstream HIF-1α/VEGF signals were enhanced in SS rats whose protein expression could be inhibited by QZF treatment. In addition, QZF could modulate autophagy in submandibular gland tissue and then inhibit the inflammation response and therefore facilitate the tissue repair.
Collapse
Affiliation(s)
- Ping Zeng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaochun Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Shumin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shaopeng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yihua Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Longmei Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Aihua Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
27
|
Haldar S, Agrawal H, Saha S, Straughn AR, Roy P, Kakar SS. Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells. Int J Biol Sci 2022; 18:675-692. [PMID: 35002517 PMCID: PMC8741861 DOI: 10.7150/ijbs.63721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Follicle stimulating hormone (FSH) and its receptor (FSHR) have been reported to be responsible for several physiological functions and cancers. The responsiveness of stem cells and cancer stem cells towards the FSH-FSHR system make the function of FSH and its receptors more interesting in the context of cancer biology. This review is comprised of comprehensive information on FSH-FSHR signaling in normal physiology, gonadal stem cells, cancer cells, and potential options of utilizing FSH-FSHR system as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Current address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand 249405
| | - Himanshu Agrawal
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Alex R Straughn
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sham S Kakar
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
28
|
Zeng C, Yuan G, Hu Y, Wang D, Shi X, Zhu D, Hu A, Meng Y, Lu J. Repressing phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma by microRNA-142-3p restrains the progression of hepatocellular carcinoma. Bioengineered 2022; 13:1491-1506. [PMID: 34986757 PMCID: PMC8805872 DOI: 10.1080/21655979.2021.2020549] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
This paper probes the mechanisms underlying miR-142-3p's modulation of hepatocellular carcinoma (HCC) invasion and apoptosis. Quantitative real-time PCR and Western blot monitored the miR-142-3p profile in HCC tissues and non-tumor tissues. The correlation between miR-142-3p expression and HCC patients' clinicopathological indicators was analyzed. miR-142-3p overexpression and knockdown models were established in HCC cell lines. Cell proliferation was gauged by the colony formation assay and BrdU staining. For measuring apoptosis, flow cytometry and Western blot were implemented. Transwell assay tested cell migration and invasion. miR-142-3p mimics or inhibitors were transfected in Huh7 and HCCLM3 cells. The targeting association between miR-142-3p and PIK3CG was predicted through bioinformatics and further verified by related experiments. The influence of PIK3CG overexpression on miR-142-3p's role in HCC was assayed. A xenografted tumor model was built in mice to validate miR-142-3p knockdown's influence on HCC in vivo. As a result, miR-142-3p exhibited a decreased profile in HCC tissues and cells. Overexpressing miR-142-3p accelerated apoptosis and suppressed the PI3K/AKT/HIF-1α signal. Knocking down miR-142-3p presented opposite effects. PIK3CG overexpression dampened the anti-tumor effect of miR-142-3p. miR-142-3p repressed HCC invasion and intensified apoptosis to restrain HCC by abating the PIK3CG-mediated PI3K/AKT/HIF-1α pathway.
Collapse
Affiliation(s)
- Chuanli Zeng
- Department of Severe Liver Disease, Ningbo HuaMei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Gang Yuan
- Department of Acute Infection, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System, Tumors of Zhejiang Province, China
| | - Yaoren Hu
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Donghui Wang
- Department of Acute Infection, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Xiaojun Shi
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Dedong Zhu
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Airong Hu
- Institute of Liver Disease, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yina Meng
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jialin Lu
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
29
|
Adhikari S, Guha D, Mohan C, Mukherjee S, Tyler JK, Das C. Reprogramming Carbohydrate Metabolism in Cancer and Its Role in Regulating the Tumor Microenvironment. Subcell Biochem 2022; 100:3-65. [PMID: 36301490 PMCID: PMC10760510 DOI: 10.1007/978-3-031-07634-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Altered metabolism has become an emerging feature of cancer cells impacting their proliferation and metastatic potential in myriad ways. Proliferating heterogeneous tumor cells are surrounded by other resident or infiltrating cells, along with extracellular matrix proteins, and other secretory factors constituting the tumor microenvironment. The diverse cell types of the tumor microenvironment exhibit different molecular signatures that are regulated at their genetic and epigenetic levels. The cancer cells elicit intricate crosstalks with these supporting cells, exchanging essential metabolites which support their anabolic processes and can promote their survival, proliferation, EMT, angiogenesis, metastasis and even therapeutic resistance. In this context, carbohydrate metabolism ensures constant energy supply being a central axis from which other metabolic and biosynthetic pathways including amino acid and lipid metabolism and pentose phosphate pathway are diverged. In contrast to normal cells, increased glycolytic flux is a distinguishing feature of the highly proliferative cancer cells, which supports them to adapt to a hypoxic environment and also protects them from oxidative stress. Such rewired metabolic properties are often a result of epigenetic alterations in the cancer cells, which are mediated by several factors including, DNA, histone and non-histone protein modifications and non-coding RNAs. Conversely, epigenetic landscapes of the cancer cells are also dictated by their diverse metabolomes. Altogether, this metabolic and epigenetic interplay has immense potential for the development of efficient anti-cancer therapeutic strategies. In this book chapter we emphasize upon the significance of reprogrammed carbohydrate metabolism in regulating the tumor microenvironment and cancer progression, with an aim to explore the different metabolic and epigenetic targets for better cancer treatment.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Deblina Guha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chitra Mohan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
30
|
Ling M, Quan L, Lai X, Lang L, Li F, Yang X, Fu Y, Feng S, Yi X, Zhu C, Gao P, Zhu X, Wang L, Shu G, Jiang Q, Wang S. VEGFB Promotes Myoblasts Proliferation and Differentiation through VEGFR1-PI3K/Akt Signaling Pathway. Int J Mol Sci 2021; 22:13352. [PMID: 34948148 PMCID: PMC8707860 DOI: 10.3390/ijms222413352] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023] Open
Abstract
It has been demonstrated that vascular endothelial growth factor B (VEGFB) plays a vital role in regulating vascular biological function. However, the role of VEGFB in regulating skeletal muscle cell proliferation and differentiation remains unclear. Thus, this study aimed to investigate the effects of VEGFB on C2C12 myoblast proliferation and differentiation and to explore the underlying mechanism. For proliferation, VEGFB significantly promoted the proliferation of C2C12 myoblasts with the upregulating expression of cyclin D1 and PCNA. Meanwhile, VEGFB enhanced vascular endothelial growth factor receptor 1 (VEGFR1) expression and activated the PI3K/Akt signaling pathway in a VEGFR1-dependent manner. In addition, the knockdown of VEGFR1 and inhibition of PI3K/Akt totally abolished the promotion of C2C12 proliferation induced by VEGFB, suggesting that VEGFB promoted C2C12 myoblast proliferation through the VEGFR1-PI3K/Akt signaling pathway. Regarding differentiation, VEGFB significantly stimulated the differentiation of C2C12 myoblasts via VEGFR, with elevated expressions of MyoG and MyHC. Furthermore, the knockdown of VEGFR1 rather than NRP1 eliminated the VEGFB-stimulated C2C12 differentiation. Moreover, VEGFB activated the PI3K/Akt/mTOR signaling pathway in a VEGFR1-dependent manner. However, the inhibition of PI3K/Akt/mTOR blocked the promotion of C2C12 myoblasts differentiation induced by VEGFB, indicating the involvement of the PI3K/Akt pathway. To conclude, these findings showed that VEGFB promoted C2C12 myoblast proliferation and differentiation via the VEGFR1-PI3K/Akt signaling pathway, providing new insights into the regulation of skeletal muscle development.
Collapse
Affiliation(s)
- Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Lulu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
31
|
Chen YC, Sung HC, Chuang TY, Lai TC, Lee TL, Lee CW, Lee IT, Chen YL. Vitamin D 3 decreases TNF-α-induced inflammation in lung epithelial cells through a reduction in mitochondrial fission and mitophagy. Cell Biol Toxicol 2021; 38:427-450. [PMID: 34255241 PMCID: PMC8275919 DOI: 10.1007/s10565-021-09629-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023]
Abstract
Previous work has shown an association between vitamin D3 deficiency and an increased risk for acquiring various inflammatory diseases. Vitamin D3 can reduce morbidity and mortality in these patients via different mechanisms. Lung inflammation is an important event in the initiation and development of respiratory disorders. However, the anti-inflammatory effects of vitamin D3 and the underlying mechanisms remained to be determined. The purpose of this study was to examine the effects and mechanisms of action of vitamin D3 (Vit. D) on the expression of intercellular adhesion molecule-1 (ICAM-1) in vitro and in vivo with or without tumor necrosis factor α (TNF-α) treatment. Pretreatment with Vit. D reduced the expression of ICAM-1 and leukocyte adhesion in TNF-α-treated A549 cells. TNF-α increased the accumulation of mitochondrial reactive oxygen species (mtROS), while Vit. D reduced this effect. Pretreatment with Vit. D attenuated TNF-α-induced mitochondrial fission, as shown by the increased expression of mitochondrial fission factor (Mff), phosphorylated dynamin-related protein 1 (p-DRP1), and mitophagy-related proteins (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3, Bnip3) in A549 cells. Inhibition of DRP1 or Mff significantly decreased ICAM-1 expression. In addition, we found that Vit. D decreased TNF-α-induced ICAM-1 expression, mitochondrial fission, and mitophagy via the AKT and NF-κB pathways. Moreover, ICAM-1 expression, mitochondrial fission, and mitophagy were increased in the lung tissues of TNF-α-treated mice, while Vit. D supplementation reduced these effects. In this study, we elucidated the mechanisms by which Vit. D reduces the expression of adhesion molecules in models of airway inflammation. Vit. D might be served as a novel therapeutic agent for the targeting of epithelial activation in lung inflammation.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan. .,Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| | - Tzu-Yi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Min-Sheng General Hospital, No. 168 Jin-Kuo Road, Taoyuan City, Taiwan. .,Department of Internal Medicine, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
| | - Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan.
| |
Collapse
|
32
|
Wang C, Jing J, Hu X, Yu S, Yao F, Li Z, Cheng L. Gankyrin activates the hedgehog signalling to drive metastasis in osteosarcoma. J Cell Mol Med 2021; 25:6232-6241. [PMID: 34089292 PMCID: PMC8366451 DOI: 10.1111/jcmm.16576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gankyrin is a regulatory subunit of the 26-kD proteasome complex and promotes the occurrence and progression of many malignancies. However, the role of gankyrin in osteosarcoma (OS) metastasis remains unclear. Hedgehog signalling has been shown to regulate stem cell homeostasis and cancer metastasis, but the mechanisms that activate this pathway in OS are still poorly understood. Here, a series of in vitro and in vivo assays were carried out to explore the function and mechanism of gankyrin regulating Hedgehog signalling in OS. We demonstrated that gankyrin promotes migration, invasion and regulates the expression of some stemness factors by up-regulating Gli1 in OS. Importantly, our data showed an interaction between gankyrin and Gli1. Moreover, gankyrin suppresses the ubiquitin-mediated degradation of Gli1 protein in OS. Gankyrin also significantly promotes the lung metastasis of OS in vivo. Our findings suggest that gankyrin drives metastasis and regulates the expression of some stemness factors in osteosarcoma by activating Hedgehog signalling, indicating that drug screening for compounds targeting gankyrin may contribute to the development of novel and effective therapies for OS.
Collapse
Affiliation(s)
- Chongchong Wang
- Department of OncologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Juehua Jing
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xuyang Hu
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shuisheng Yu
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Fei Yao
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ziyu Li
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Li Cheng
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- School of pharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
33
|
Xu R, Zhang Y, Li A, Ma Y, Cai W, Song L, Xie Y, Zhou S, Cao W, Tang X. LY‑294002 enhances the chemosensitivity of liver cancer to oxaliplatin by blocking the PI3K/AKT/HIF‑1α pathway. Mol Med Rep 2021; 24:508. [PMID: 33982772 PMCID: PMC8134878 DOI: 10.3892/mmr.2021.12147] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Liver cancer remains one of the leading causes of cancer deaths worldwide. The therapeutic effect of oxaliplatin on liver cancer is often limited by acquired resistance of the cancer cells. Abnormal activation of the PI3K/AKT pathway plays an important role in the acquired resistance of oxaliplatin. The present study investigated the effects of the PI3K inhibitor LY-294002 and AKT inhibitor MK2206 on the chemosensitivity of oxaliplatin-resistant liver cancer cells and the molecular mechanism involved. An oxaliplatin-resistant liver cancer cell line HepG2R was developed. MTT assay, clone formation experiments, flow cytometry and Annexin V-FITC/PI staining were used to determine the proliferation, cycle and apoptosis of HepG2R cells when oxaliplatin was combined with LY-294002 or MK2206 treatment. The effects of LY-294002 and MK-2206 on the abnormal activation of PI3K/AKT pathway and hypoxia inducible factor (HIF)-1α protein level in HepG2R cells were detected using western blotting. The results indicated that the PI3K/AKT pathway is stably activated in HepG2R cells. Compared with the AKT inhibitor MK2206, the PI3K inhibitor LY-294002 more effectively downregulated the phosphorylation levels of p85, p110α, p110β, p110γ and AKT in the PI3K/AKT pathway in HepG2R cells, and more effectively inhibited the proliferation of the cells. LY-294002 enhanced the chemotherapy sensitivity of HepG2R cells to oxaliplatin by inducing G0/G1 phase arrest and increasing the proportion of apoptotic cells. In addition, LY-294002 reduced the level of HIF-1α, which is highly expressed in HepG2R cells. It was concluded that LY-294002 enhanced the chemosensitivity of liver cancer cells to oxaliplatin by inhibiting the PI3K/AKT signaling pathway, which may be related to the inhibition of HIF-1α expression. These findings may have clinical significance for the treatment of oxaliplatin-resistant liver cancer.
Collapse
Affiliation(s)
- Ruyue Xu
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yinci Zhang
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Amin Li
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yongfang Ma
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Wenpeng Cai
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Li Song
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yinghai Xie
- Institute of Environmentally Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, Anhui 241000, P.R. China
| | - Shuping Zhou
- Institute of Environmentally Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, Anhui 241000, P.R. China
| | - Weiya Cao
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Xiaolong Tang
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| |
Collapse
|
34
|
Theasaponin E 1 Inhibits Platinum-Resistant Ovarian Cancer Cells through Activating Apoptosis and Suppressing Angiogenesis. Molecules 2021; 26:molecules26061681. [PMID: 33802884 PMCID: PMC8002815 DOI: 10.3390/molecules26061681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
Novel therapeutic strategies for ovarian cancer treatment are in critical need due to the chemoresistance and adverse side effects of platinum-based chemotherapy. Theasaponin E1 (TSE1) is an oleanane-type saponin from Camellia sinensis seeds. Its apoptosis-inducing, cell cycle arresting and antiangiogenesis activities against platinum-resistant ovarian cancer cells were elucidated in vitro and using the chicken chorioallantoic membrane (CAM) assay. The results showed that TSE1 had more potent cell growth inhibitory effects on ovarian cancer OVCAR-3 and A2780/CP70 cells than cisplatin and was lower in cytotoxicity to normal ovarian IOSE-364 cells. TSE1 significantly induced OVCAR-3 cell apoptosis via the intrinsic and extrinsic apoptotic pathways, slightly arresting cell cycle at the G2/M phase, and obviously inhibited OVCAR-3 cell migration and angiogenesis with reducing the protein secretion and expression of vascular endothelial growth factor (VEGF). Western bolt assay showed that Serine/threonine Kinase (Akt) signaling related proteins including Ataxia telangiectasia mutated kinase (ATM), Phosphatase and tensin homolog (PTEN), Akt, Mammalian target of rapamycin (mTOR), Ribosome S6 protein kinase (p70S6K) and e IF4E-binding protein 1(4E-BP1) were regulated, and Hypoxia inducible factor-1α (HIF-1α) protein expression was decreased by TSE1 in OVCAR-3 cells. Moreover, TSE1 treatment potently downregulated protein expression of the Notch ligands including Delta-like protein 4 (Dll4) and Jagged1, and reduced the protein level of the intracellular domain (NICD) of Notch1. Combination treatment of TSE1 with the Notch1 signaling inhibitor tert-butyl (2S)-2-[[(2S)-2-[[2-(3,5-difluorophenyl)acetyl]amino]propanoyl]amino]-2-phenylacetate (DAPT), or the Akt signaling inhibitor wortmannin, showed a stronger inhibition toward HIF-1α activation compared with single compound treatment. Taken together, TSE1 might be a potential candidate compound for improving platinum-resistant ovarian cancer treatment via Dll4/Jagged1-Notch1-Akt-HIF-1α axis.
Collapse
|
35
|
Montalto FI, De Amicis F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020; 9:cells9122648. [PMID: 33317149 PMCID: PMC7763888 DOI: 10.3390/cells9122648] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin D1, an important regulator of cell cycle, carries out a central role in the pathogenesis of cancer determining uncontrolled cellular proliferation. In normal cells, Cyclin D1 expression levels are strictly regulated, conversely, in cancer, its activity is intensified in various manners. Different studies demonstrate that CCDN1 gene is amplified in several tumor types considering it as a negative prognostic marker of this pathology. Cyclin D1 is known for its role in the nucleus, but recent clinical studies associate the amount located in the cytoplasmic membrane with tumor invasion and metastasis. Cyclin D1 has also other functions: it governs the expression of specific miRNAs and it plays a crucial role in the tumor-stroma interactions potentiating most of the cancer hallmarks. In the present review, we will summarize the current scientific evidences that highlight the involvement of Cyclin D1 in the pathogenesis of different types of cancer, best of all in breast cancer. We will also focus on recent insights regarding the Cyclin D1 as molecular bridge between cell cycle control, adhesion, invasion, and tumor/stroma/immune-system interplay in cancer.
Collapse
Affiliation(s)
- Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-984-496204
| |
Collapse
|
36
|
Casarini L, Lazzaretti C, Paradiso E, Limoncella S, Riccetti L, Sperduti S, Melli B, Marcozzi S, Anzivino C, Sayers NS, Czapinski J, Brigante G, Potì F, La Marca A, De Pascali F, Reiter E, Falbo A, Daolio J, Villani MT, Lispi M, Orlando G, Klinger FG, Fanelli F, Rivero-Müller A, Hanyaloglu AC, Simoni M. Membrane Estrogen Receptor (GPER) and Follicle-Stimulating Hormone Receptor (FSHR) Heteromeric Complexes Promote Human Ovarian Follicle Survival. iScience 2020; 23:101812. [PMID: 33299978 PMCID: PMC7702187 DOI: 10.1016/j.isci.2020.101812] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/25/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Classically, follicle-stimulating hormone receptor (FSHR)-driven cAMP-mediated signaling boosts human ovarian follicle growth and oocyte maturation. However, contradicting in vitro data suggest a different view on physiological significance of FSHR-mediated cAMP signaling. We found that the G-protein-coupled estrogen receptor (GPER) heteromerizes with FSHR, reprogramming cAMP/death signals into proliferative stimuli fundamental for sustaining oocyte survival. In human granulosa cells, survival signals are missing at high FSHR:GPER ratio, which negatively impacts follicle maturation and strongly correlates with preferential Gαs protein/cAMP-pathway coupling and FSH responsiveness of patients undergoing controlled ovarian stimulation. In contrast, FSHR/GPER heteromers triggered anti-apoptotic/proliferative FSH signaling delivered via the Gβγ dimer, whereas impairment of heteromer formation or GPER knockdown enhanced the FSH-dependent cell death and steroidogenesis. Therefore, our findings indicate how oocyte maturation depends on the capability of GPER to shape FSHR selective signals, indicating hormone receptor heteromers may be a marker of cell proliferation. G-protein-coupled estrogen receptor (GPER) interacts with FSH receptor (FSHR) FSHR/GPER heteromers reprogram FSH-induced death signals to proliferative stimuli Anti-apoptotic signaling of heteromers is via a GPER-Gαs inhibitory complex and Gβγ Heteromer formation impacts follicle maturation and FSH responses of IVF patients
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Melli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Serena Marcozzi
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Anzivino
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Niamh S Sayers
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Jakub Czapinski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, Parma, Italy
| | - Antonio La Marca
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy.,Clinica EUGIN, Modena, Italy
| | | | - Eric Reiter
- PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Angela Falbo
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Jessica Daolio
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Monica Lispi
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy.,Global Medical Affair, Merck KGaA, Darmstadt, Germany
| | | | - Francesca G Klinger
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.,PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
37
|
Zhu Y, Zhou J, Niu P, Chen H, Shi D. Cardamonin inhibits cell proliferation by caspase-mediated cleavage of Raptor. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:809-817. [PMID: 33043385 DOI: 10.1007/s00210-020-01986-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
The antiproliferative effect of cardamonin on mTORC1 is related with downregulation of Raptor. We investigated the mechanism that cardamonin decreases Raptor expression through caspase-mediated protein degradation. SKOV3 cells and HeLa cells were pretreated with caspase inhibitor z-VAD-fmk for 30 min and then exposed to different doses of cardamonin and cisplatin, respectively. We analyzed the gene expression of caspases based on TCGA and GTEx gene expression data in serous cystadenocarcinoma and normal tissues, monitored caspase activity by caspase colorimetric assay kit, detected expression of mTORC1-associated proteins and apoptosis-associated proteins by western blotting, and finally detected cell viability by methyl thiazolyl tetrazolium (MTT) assay. A different expression of caspases except caspase-1 was found between serous cystadenocarcinoma and normal tissues. Raptor was cleaved when caspases were activated by cisplatin and caspase-6/caspase-8 was activated by cardamonin in SKOV3 cells. We further used a monoclonal antibody recognizing the N-terminal part of Raptor to find that Raptor was cleaved into a smaller fragment of about 70 kDa by cardamonin and was rescued by z-VAD-fmk treatment. As a result of Raptor cleavage, mTORC1 activity was decreased and cell viability was inhibited, while cell apoptosis was induced in SKOV3 cells. Notably, similar results are only observed in HeLa cells with a high dose of cardamonin. We concluded that caspase-mediated cleavage of Raptor might be an important mechanism in that cardamonin regulated Raptor and mTORC1 activity.
Collapse
Affiliation(s)
- Yanting Zhu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Peiguang Niu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Huajiao Chen
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Daohua Shi
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
38
|
Guo X, Piao H, Xue Y, Liu Y, Zhao H. LMX1B-associated gankyrin expression predicts poor prognosis in glioma patients. J Int Med Res 2020; 48:300060520954764. [PMID: 32960116 PMCID: PMC7513415 DOI: 10.1177/0300060520954764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To explore the potential of the transcription factor LMX1B and downstream gankyrin as prognostic biomarkers of glioma. METHODS The expression levels of gankyrin and LMX1B were detected in 52 normal brain specimens and 339 glioma specimens. Correlations of gankyrin and LMX1B expression levels with pathological stages and clinical characteristics were statistically analyzed. Furthermore, the binding of LMX1B to the gankyrin promoter was evaluated using ALGGEN PROMO. RESULTS Levels of LMX1B and gankyrin were significantly increased in tumor tissue, and were significantly associated with advanced glioma grade and poor survival. Compared with gankyrin- and LMX1B-negative glioma, the mean survival of patients with higher gankyrin and LMX1B expression was significantly reduced, from 83.46 to 18.87 months and from 63.79 to 18.29 months, respectively. Furthermore, LMX1B had a moderate positive correlation with gankyrin expression (Pearson's r = 0.650), and it was also found to act as a transcription factor with NF-κB and E47 on the gankyrin promoter. CONCLUSIONS Increased expression of LMX1B and gankyrin has independent prognostic value in glioma patients. The transcription factor LMX1B may have an upstream role in the mechanism of action.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Shengjing Hospital of China Medical
University, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical
University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China
Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical
University, Shenyang, China
| | - Hongyu Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical
University, Shenyang, China
| |
Collapse
|
39
|
Follicle-stimulating hormone promotes the proliferation of epithelial ovarian cancer cells by activating sphingosine kinase. Sci Rep 2020; 10:13834. [PMID: 32796926 PMCID: PMC7428003 DOI: 10.1038/s41598-020-70896-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Follicle-stimulating hormone (FSH) is closely related to the pathogenesis and progression of epithelial ovarian cancer (EOC). However, until now, knowledge relating to FSH-driven signalling pathways that lead to the growth of EOC remained incomplete. We sought to explore whether sphingosine kinase (SphK) could mediate FSH-induced ovarian cancer cell proliferation and which pathway might be involved in this process. The expression of phospho-SphK1 and phospho-SphK2 was detected in sections of EOC tissues by Immunohistochemical staining, and clinical significances were analyzed by statistical analysis. EOC cells were treated with FSH or/and SKI-II. CCK8 assays and colony formation assays were used to investigate cell proliferation. Western blot was carried out to detect protein expression in EOC cell line after treated with FSH. Here, for the first time, we provide evidence that high expression levels of phospho-SphK1 and phospho-SphK2 were both prognostic indicators of overall survival (OS) in EOC. Additionally, the expression levels of both phospho-SphK1 and phospho-SphK2 were closely correlated with the expression level of follicle-stimulating hormone receptor (FSHR) in ovarian cancer tissues. FSH stimulated the phosphorylation of both SphK1 and SphK2 and was able to regulate the survival and growth of ovarian cancer cells by activating SphK1 and SphK2 through ERK1/2. Both isoenzymes of SphK were equally responsible for FSH-induced cell proliferation of EOC. Both Erk1/2 and Akt activation play important roles in mediating FSH-induced cell proliferation after phosphorylation of SphK. Moreover, our data demonstrated that S1P receptor 1 (S1PR1) and S1PR3, key components of the SphK signalling system, were involved in FSH-mediated proliferation of EOC. Taken together, the results of the current study revealed that SphK is an essential mediator in FSH-induced proliferation of ovarian cancer cells in EOC, which indicates a new signalling pathway that controls FSH-mediated growth in EOC and suggests a new strategy that pharmaceutically targets both isoenzymes of SphK for the management of ovarian cancer.
Collapse
|
40
|
Progranulin expression induced by follicle-stimulating hormone in ovarian cancer cell lines depends on the histological subtype. Med Oncol 2020; 37:59. [PMID: 32474861 DOI: 10.1007/s12032-020-01383-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous disease that can be categorized into four major histological subtypes. Its etiology remains poorly understood due mainly to this heterogeneity. Follicle-stimulating hormone (FSH) has been implicated as a risk factor in EOC and has been suggested that may influence the development of specific subtypes. In addition, FSH regulates different aspects of ovarian cancer tumorigenesis. FSH downstream target genes in EOC have not been fully identified. Progranulin (PGRN) overexpression is associated with cell proliferation, invasion, chemoresistance, and shortened overall survival in ovarian cancer. Recently, we demonstrated that PGRN expression is regulated through the PI3K signaling pathway in clear cell ovarian carcinoma (CCOC) cells. In contrast, we also demonstrated that PGRN synthesis in serous ovarian cancer (SOC) cells is regulated via PKC but not by the PI3K signaling pathway. Several studies have demonstrated that FSH induces PKC and PI3K activation. Thus, this study was to investigate the effect of FSH on PGRN production in the CCOC cell line TOV-21G as compared to the SOC cell lines SKOV3 and OVCAR3. Cultured TOV-21G, SKOV3, and OVCAR3 cells were incubated with different concentrations of FSH for 48 h. PGRN mRNA and protein expression were assessed by RT-PCR and Western blotting, while PGRN secretion was measured by ELISA. PGRN mRNA and protein expression, as well as PGRN secretion, significantly increased after FSH stimulation in TOV-21G but not in SKOV3 and OVCAR3 cells. These data indicate that FSH induces PGRN expression and secretion only in CCOC cells. Establishing specific features for CCOC could reveal potential diagnostic and therapeutic targets.
Collapse
|
41
|
Liu H, You L, Wu J, Zhao M, Guo R, Zhang H, Su R, Mao Q, Deng D, Hao Y. Berberine suppresses influenza virus-triggered NLRP3 inflammasome activation in macrophages by inducing mitophagy and decreasing mitochondrial ROS. J Leukoc Biol 2020; 108:253-266. [PMID: 32272506 DOI: 10.1002/jlb.3ma0320-358rr] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid extracted from several commonly used Chinese herbs. Our previous studies demonstrated BBR-mediated alleviation of lung injury due to inflammation and decrease in the mortality of mice with influenza viral pneumonia. The recent argument of autophagy against inflammatory responses has aroused wide concerns. This study focuses on the reactive oxygen species-Nod-like receptor protein 3 (ROS-NLRP3) pathway to investigate whether BBR inhibits NLRP3 inflammasome activation by inducing mitophagy. Our results demonstrate that BBR and mitochondrion-targeted superoxide dismutase mimetic (Mito-TEMPO; a specific mitochondrial ROS scavenger) significantly restricted NLRP3 inflammasome activation, increased mitochondrial membrane potential (MMP), and decreased mitochondrial ROS (mtROS) generation in J774A.1 macrophages infected with PR8 influenza virus. These observations suggest that the inhibitory effects of BBR on NLRP3 inflammasome activation were associated with the amelioration of mtROS generation. BBR treatment induced regular mitophagy, as evident from the increase in microtubule-associated protein 1 light chain 3 II, decrease in p62, colocalization of LC3 and mitochondria, and formation of autophagosomes. However, 3-methyladenine, an autophagy inhibitor, reversed the inhibitory effects of BBR on mitochondrial damage and NLRP3 inflammasome activation in influenza virus-infected macrophages, indicating the involvement of mitophagy in mediating the inhibitory effects of BBR on NLRP3 inflammasome activation. Furthermore, the knockdown of Bcl-2/adenovirus E18-19-kDa interacting protein 3 (BNIP3) expression attenuated the effects of BBR on mitophagy induction to some extent, suggesting that the BBR-induced mitophagy may be, at least in part, mediated in a BNIP3-dependent manner. Similar results were obtained in vivo using a mouse model of influenza viral pneumonia that was administered with BBR. Taken together, these findings suggest that restricting NLRP3 inflammasome activation by decreasing ROS generation through mitophagy induction may be crucial for the BBR-mediated alleviation of influenza virus-induced inflammatory lesions.
Collapse
Affiliation(s)
- Hui Liu
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Wu
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Mengfan Zhao
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Guo
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Haili Zhang
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Su
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Mao
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Di Deng
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Hao
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
42
|
Effects of Dietary Supplementation of Lauric Acid on Lactation Function, Mammary Gland Development, and Serum Lipid Metabolites in Lactating Mice. Animals (Basel) 2020; 10:ani10030529. [PMID: 32235692 PMCID: PMC7143820 DOI: 10.3390/ani10030529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Milk secreted from mammary glands is an important nutrition source for offspring after parturition. Mammary gland development and lactation ability have important effects on the growth and health of the offspring. Many studies have demonstrated that external factors, including the environment and nutrition influence the development of mammary glands. Lauric acid is a fatty acid that has many nutritional and physiological properties. In this study, we investigated the effects of dietary supplementation of lauric acid on lactation function and mammary gland development in lactating mice. We found that dietary supplementation of lauric acid during lactation might enhance the mammary development to promote the lactation function of mice. Through the study of mice, we hoped that the results could be applied to animal feed development and animal breeding production. Abstract Our previous studies demonstrated that lauric acid (LA) stimulated mammary gland development during puberty. However, the roles of LA on lactation in mice remain indeterminate. Thus, the aim of this study was to investigate the effects of dietary LA supplementation on lactation functioning and to study the potential mechanisms during lactation. in vivo, there was no effect of 1% LA dietary supplementation during lactation on the feed intake or body weight of breast-feeding mice. However, maternal LA supplementation significantly expanded the number of mammary gland alveoli of mice during lactation and the average body weight of the offspring, suggesting that LA supplementation enhanced the development and lactation function of the mammary glands. in vitro, 100 μM of LA significantly increased the content of triglycerides (TG) in the cell supernatant of induced HC11 cells, however, with no effect on the expression of the genes associated with fatty acid synthesis. LA also activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. LA dietary supplementation significantly expanded the serum levels of lipid metabolites, including sphingomyelin and other metabolites with the sn-2 position of C12 and sn-1 position of C18 in the TG of the lactating mice. Taken together, dietary supplementation of LA during lactation could promote the lactation function of mice, which might be related to increasing the development of the mammary glands and alternation of serum lipid metabolites. These findings provided more theoretical and experimental basis for the application of lauric acid in the development of mammary glands and lactation function of lactating animals.
Collapse
|
43
|
Xu Q, Chen J, Peng M, Duan S, Hu Y, Guo D, Geng J, Zhou J. POTEE promotes colorectal carcinoma progression via activating the Rac1/Cdc42 pathway. Exp Cell Res 2020; 390:111933. [PMID: 32142855 DOI: 10.1016/j.yexcr.2020.111933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
Current studies have shown that POTE ankyrin domain family members have high expressions as tumor antigens in malignant tumors, such as prostate cancer, ovarian cancer, breast cancer and the like. POTEE is a member of the POTE anchor protein family E. However, its role in colorectal carcinoma (CRC) has not been studied. In this study, the function of POTEE in CRC was examined for the first time and its correlation with CRC cell biological behaviors was analyzed. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry revealed that POTEE was remarkably overexpressed in CRC and associated with an aggressive phenotype. We also found that POTEE was localized in the cytoplasm. In addition, downregulation of POTEE expression can notably inhibit the proliferation, migration, and invasion of CRC cell in vitro, and repressed tumor growth and metastasis in vivo. In contrast, overexpression of POTEE could promote the aggressive behaviors of CRC cells. Mechanistically, POTEE promoted CRC migration, invasion and epithelial-mesenchymal transition (EMT) by increasing the activation of Rac1 and Cdc42. To summarize, these results suggested that POTEE might serve as an oncogene for CRC tumorigenesis and progression, and may become a novel molecular marker for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Man Peng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Duan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yukun Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
44
|
Liu X, Cui Y, Li X, Yang H. In-depth transcriptomic and proteomic analyses of the hippocampus and cortex in a rat model after cerebral ischemic injury and repair by Shuxuetong (SXT) injection. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112362. [PMID: 31676400 DOI: 10.1016/j.jep.2019.112362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/29/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is a lack of systematic descriptions and characterization of strokes and their effects in both the cerebral hippocampus and cortex. Shuxuetong (SXT) injection was reported to have good therapeutic effects in the clinic; therefore, it was selected as a drug intervention method for cerebral ischemia repair in rat models. The aim of this study was to understand the features of molecules and pathways and to reveal key processes of SXT repair. MATERIALS AND METHODS Evaluation of neurological deficit and infarct volume measurement was used to estimate the pharmacological effects of SXT injection on Ischemia-reperfusion(I/R) model rats. LC-MS/MS and RNA-Seq analysis were used to analyze the proteins and mRNA expression in the cerebral hippocampus and cortex 6 h and 24 h after ischemic injury and repair. A label-free approach (IBAQ) for proteomics analysis and FPKM based on gene read count for transcriptomics analysis were used to quantify the differences among the three experimental groups (Sham, Model and SXT-treated groups). Transcriptomics and proteomics analyses were verified by RT-qPCR and western blotting. RESULTS By combining LC-MS/MS and RNA-Seq, eight larger datasets (two time points and two tissues) were confidently identified in more than three biological replicates. An average of 4500 unique proteins and 8200 protein-coding genes were confidently identified. By combining the subcellular localization, hierarchical clustering, pathway enrichment analysis in the injury and repair phase, six core proteins and related genes that were significantly expressed were verified as candidates for cerebral ischemic injury by western blotting and quantitative real-time PCR. Meanwhile, the results indicated that there was better expression in the 6 h group by significant proteomics analysis during the development and progression of cerebral ischemia. Two primary co-enriched pathways, the PI3K-AKT and MAPK signaling pathways, and six related core candidates may play key roles in molecular mechanisms related to cerebral ischemic injury and repair by SXT injection. CONCLUSION Our data not only identified six core candidates and two key signaling pathways for cerebral ischemic injury and verification but also provided evidence for the explanation, prevention and treatment of cerebral ischemia by SXT injection. The results of the present study provide evidence for the explanation, prevention and treatment of cerebral ischemia by SXT injection.
Collapse
Affiliation(s)
- Xin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yiran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
45
|
Blocking the autocrine regulatory loop of Gankyrin/STAT3/CCL24/CCR3 impairs the progression and pazopanib resistance of clear cell renal cell carcinoma. Cell Death Dis 2020; 11:117. [PMID: 32051393 PMCID: PMC7015941 DOI: 10.1038/s41419-020-2306-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/09/2023]
Abstract
The poor prognosis of clear-cell renal cell carcinoma (ccRCC) patients is due to progression and targeted drug resistance, but the underlying molecular mechanisms need further elucidation. This study examined the biological function and related mechanisms of gankyrin in ccRCC based on the results of our previous study. To this end, in vitro functional experiments; in vivo models of subcutaneous tumor formation, lung metastasis, and orthotopic ccRCC; and antibody chip detection, co-IP, ChIP assays were performed to examine the biological role and molecular mechanisms of gankyrin in ccRCC. Two hundred fifty-six ccRCC patients were randomly divided into training and validation cohorts to examine the prognostic value of gankyrin and other markers through IHC and statistical analyses. We observed that the gankyrin-overexpressing ccRCC cell lines 786-O and 769-P exhibited increased proliferation, invasion, migration, tumorigenicity, and pazopanib resistance and decreased apoptosis, while gankyrin knockdown achieved the opposite results. Mechanistically, gankyrin recruited STAT3 via direct binding, and STAT3 binding to the CCL24 promoter promoted its expression. Reciprocally, an increase in autocrine CCL24 enhanced the expression of gankyrin and STAT3 activation via CCR3 in ccRCC, forming a positive autocrine-regulatory loop. Furthermore, in vivo experimental results revealed that blocking the positive loop through gankyrin knockdown or treatment with the CCR3 inhibitor SB328437 reversed the resistance to pazopanib and inhibited lung metastasis in ccRCC. Moreover, a positive correlation between gankyrin and STAT3 or CCL24 expression in ccRCC specimens was observed, and improved accuracy for ccRCC patient prognosis was achieved by combining gankyrin and STAT3 or CCL24 expression with existing clinical prognostic indicators, including the TNM stage and SSIGN score. In summary, targeting the gankyrin/STAT3/CCL24/CCR3 autocrine-regulatory loop may serve as a remedy for patients with advanced ccRCC, and combining gankyrin and STAT3 or CCL24 expression with the current clinical indicators better predicts ccRCC patient prognosis.
Collapse
|
46
|
Yu G, Li N, Wang W, Niu M, Feng X. p28GANK overexpression is associated with chemotherapy resistance and poor prognosis in ovarian cancer. Oncol Lett 2020; 19:505-512. [PMID: 31897164 DOI: 10.3892/ol.2019.11081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/11/2019] [Indexed: 11/06/2022] Open
Abstract
The non-ATPase regulatory subunit 10 of the human 26S proteasome (p28GANK) has been implicated in the tumorigenesis and progression of several types of malignant tumor. The aim of the present study was to detect the expression of p28GANK in ovarian cancer (OC) and investigate its association with the clinicopathological features and prognosis of OC. The expression levels of p28GANK were determined in 114 OC tissue samples and 30 normal ovarian tissue samples using immunohistochemistry. An association was observed between p28GANK overexpression and certain clinicopathological factors, including advanced International Federation of Gynecology and Obstetrics stage (P=0.042), residual tumor size (P=0.005) and response to chemotherapy (P<0.001). Furthermore, patients with high expression of p28GANK demonstrated worse overall survival (OS) and disease-free survival (DFS) rates compared with patients with low expression of p28GANK (both P<0.001). Multivariate Cox regression analysis revealed that overexpression of p28GANK was an independent prognostic factor of OS and DFS in patients with OC (P=0.013 and P=0.001, respectively). In summary, the current results indicate that p28GANK may be a predictive marker and a therapeutic target for OC.
Collapse
Affiliation(s)
- Ge Yu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China.,Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Na Li
- Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Wei Wang
- Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Ming Niu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
47
|
Cheng L, Wu B, Zhang L, Bian E, An R, Yu S, Liu W, Xiong Z. Gankyrin promotes osteosarcoma tumorigenesis by forming a positive feedback loop with YAP. Cell Signal 2019; 65:109460. [PMID: 31678253 DOI: 10.1016/j.cellsig.2019.109460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although gankyrin has been identified as a vital regulator of tumorigenesis, its role and regulatory mechanism in osteosarcoma (OS) remain unclear. METHODS QRT-PCR, western blot and IHC staining were conducted to detect the expression of gankyrin in OS. Pearson's χ² test was adopted to examine the associations between gankyrin expression and clinicopathologic characteristics. Kaplan-Meier method was used to investigate the relationship between gankyrin expression and overall survival of patients with OS. Next, a series of in vitro and in vivo assays were performed to determine the positive feedback loop between gankyrin and YAP in OS. RESULTS We first reported that gankyrin is upregulated in human OS specimens and cell lines and predicts OS progression and poor prognosis. Furthermore, we demonstrated that gankyrin protects miR-200a-mediated yes-associated protein (YAP) downregulation through p53 and establishes a positive feedback loop to regulate YAP signaling in U2OS and MG63 cells. Intriguingly, gankyrin interacts with YAP to promote OS cell growth in vitro. In addition, our results showed that gankyrin promotes OS tumor growth and regulates YAP levels in vivo. Notably, we also observed a positive correlation between gankyrin and YAP expression in human OS tissues, and co-upregulation of gankyrin and YAP indicated a poor prognosis. CONCLUSIONS Our results identify that gankyrin acts as an oncogene in OS by forming a positive feedback loop with YAP, and disrupting the gankyrin-YAP regulation may be beneficial for controlling OS tumorigenesis.
Collapse
Affiliation(s)
- Li Cheng
- School of pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui Province, People's Republic of China
| | - Baoming Wu
- School of pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui Province, People's Republic of China
| | - Lei Zhang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, 218 Ji Xi Road, Hefei 230032, Anhui Province, People's Republic of China
| | - Erbao Bian
- School of pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui Province, People's Republic of China
| | - Ran An
- Department of Biochemistry and Molecular Biology, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui Province, People's Republic of China
| | - Shuisheng Yu
- Department of Orthopaedics, Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei 230601, Anhui Province, People's Republic of China
| | - Wei Liu
- Department of Orthopaedics, Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei 230601, Anhui Province, People's Republic of China
| | - Zhigang Xiong
- School of pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui Province, People's Republic of China.
| |
Collapse
|
48
|
Zhang J, Zhang J, Wei Y, Li Q, Wang Q. ACTL6A regulates follicle-stimulating hormone-driven glycolysis in ovarian cancer cells via PGK1. Cell Death Dis 2019; 10:811. [PMID: 31649264 PMCID: PMC6813335 DOI: 10.1038/s41419-019-2050-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Enhanced glycolysis has been identified as a hallmark of cancer. As a novel oncogene, ACTL6A is aberrantly amplified in several types of human cancers and has been shown to regulate tumor growth and progression. However, the roles of ACTL6A in the development of ovarian cancer and the regulation of cancer glucose metabolism are mostly unknown. Here we show that ACTL6A is overexpressed in ovarian cancers compared with adjacent non-tumor tissues, and that ACTL6A overexpression correlates with poor prognosis. Silencing of ACTL6A in vitro inhibits proliferation, clonal growth, and migration, and decreases glucose utilization, lactate production, and pyruvate levels of ovarian cancer cells. We found a positive correlation between ACTL6A and PGK1 expression in ovarian cancer tissues. Enforced ACTL6A expression increased PGK1 expression, whereas knockdown of ACTL6A had the opposite effect. Altered ACTL6A expression inhibits the tumorigenicity of ovarian cancer cells in vivo by downregulating PGK1. In addition, the expression of ACTL6A is regulated by follicle-stimulating hormone (FSH) stimulation via PI3K/AKT pathway. Importantly, ACTL6A regulates FSH-enhanced glycolysis in ovarian cancer. Taken together, our findings highlight the critical role of ACTL6A in ovarian cancer development and identify its contribution to glucose metabolism of cancer cells.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingze Wei
- Department of Pathology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Qingxian Li
- Department of Gynaecology and Obstetrics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
49
|
Zhang Y, Liu D, Hu H, Zhang P, Xie R, Cui W. HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed Pharmacother 2019; 120:109464. [PMID: 31590128 DOI: 10.1016/j.biopha.2019.109464] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE The study was established to inquire into the protective effect of the HIF-1α (Hypoxia-inducible factor-1α)/ BNIP3(Bcl-2/adenovirus E1B 19-kDa interacting protein) signal path-induced-autophagy during myocardial ischemia/ reperfusion (I/R) and oxygen-glucose deprivation/recovery (OGD/R) injury in heart-derived H9C2 cells as well as its potential underlying mechanism. METHODS Immediate myocardial I/R in SD (Spraque Dawley) rats and cytotoxicity of OGD/R injury on H9C2 cells with and without inhibitors or agonists of HIF-1α and BNIP3 were evaluated. Expression of mitochondrial autophagic protein were detected by Western blot and immunofluorescence. And the mitochondrial autophagosome were detected using Transmission Electron Microscope (TEM). RESULTS I/R and OGD/R injury increased the expression level of HIF-1α, activated the downstream BNIP3 and subsequently triggered mitochondria-dependent autophagy. Up-regulation the expression of HIF-1α and BNIP3 may promote the cardiac myocytes of SD rats of I/R injure and OGD/R injury-induced autophagy of H9C2 cells. Moreover, down-regulation the expression of HIF-1α or BNIP3-siRNA decreased H9C2 cells autophagy under OGD/R injury. CONCLUSIONS Together, our studies indicated that HIF-1α synchronization regulate BNIP3 during OGD/R injury-induced autophagy in H9C2 cells, though BNIP3-induced autophagy acting as a survival mechanism.
Collapse
Affiliation(s)
- Yanan Zhang
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Dawei Liu
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Haijuan Hu
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Puqiang Zhang
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Ruiqin Xie
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Wei Cui
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China.
| |
Collapse
|
50
|
Lv T, Kong L, Jiang L, Wu H, Wen T, Shi Y, Yang J. Dicer1 facilitates liver regeneration in a manner dependent on the inhibitory effect of miR-21 on Pten and Rhob expression. Life Sci 2019; 232:116656. [PMID: 31306658 DOI: 10.1016/j.lfs.2019.116656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
AIMS Tamoxifen-induced liver-specific Dicer1 deletion (iDicer1-/-) in mature mice may provide clues demonstrating the genuine effects of acute loss of Dicer1 and miRNAs in the liver regeneration process. MAIN METHODS In this study, mice with tamoxifen-induced Dicer1 deletion through the Cre/LoxP system were constructed and then underwent classic 70% partial hepatectomy or CCl4-induced liver injury. To rescue the inhibitory effect of Dicer1 ablation on liver regeneration, miR-21 agomir was injected into the tail vein of iDicer1-/- mice. KEY FINDINGS Unlike constitutive embryonic deletion of Dicer1, tamoxifen-induced Dicer1 deletion did not result in severe liver injury or lesions, providing an ideal model for investigating acute loss of Dicer1 and miRNAs in liver regeneration. Dicer1 deletion led to impaired liver regeneration through the inhibitory effect of miR-21 on PTEN and Rhob expression. SIGNIFICANCE In our previous study, we found that embryonic loss of Dicer1 impairs hepatocyte survival and leads to chronic inflammation and progenitor cell activation, while the role of Dicer1 in liver regeneration remains largely unknown. We clearly identified the promotion effect of Dicer1 on liver regeneration by increasing miR-21 expression, which inhibits the expression of two negative cell proliferation regulators, Pten and Rhob.
Collapse
Affiliation(s)
- Tao Lv
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lingxiang Kong
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Jiang
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong Wu
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tianfu Wen
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu 610041, China
| | - Jiayin Yang
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|