1
|
Wang H, Qian D, Wang J, Liu Y, Luo W, Zhang H, Cheng J, Li H, Wu Y, Li W, Wang J, Yang X, Zhang T, Han D, Wang Q, Zhang CZ, Liu L. HnRNPR-mediated UPF3B mRNA splicing drives hepatocellular carcinoma metastasis. J Adv Res 2025; 68:257-270. [PMID: 38402949 PMCID: PMC11785583 DOI: 10.1016/j.jare.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Abnormal alternative splicing (AS) contributes to aggressive intrahepatic invasion and metastatic spread, leading to the high lethality of hepatocellular carcinoma (HCC). OBJECTIVES This study aims to investigate the functional implications of UPF3B-S (a truncated oncogenic splice variant) in HCC metastasis. METHODS Basescope assay was performed to analyze the expression of UPF3B-S mRNA in tissues and cells. RNA immunoprecipitation, and in vitro and in vivo models were used to explore the role of UPF3B-S and the underlying mechanisms. RESULTS We show that splicing factor HnRNPR binds to the pre-mRNA of UPF3B via its RRM2 domain to generate an exon 8 exclusion truncated splice variant UPF3B-S. High expression of UPF3B-S is correlated with tumor metastasis and unfavorable overall survival in patients with HCC. The knockdown of UPF3B-S markedly suppresses the invasive and migratory capacities of HCC cells in vitro and in vivo. Mechanistically, UPF3B-S protein targets the 3'-UTR of CDH1 mRNA to enhance the degradation of CDH1 mRNA, which results in the downregulation of E-cadherin and the activation of epithelial-mesenchymal transition. Overexpression of UPF3B-S enhances the dephosphorylation of LATS1 and the nuclear accumulation of YAP1 to trigger the Hippo signaling pathway. CONCLUSION Our findings suggest that HnRNPR-induced UPF3B-S promotes HCC invasion and metastasis by exhausting CDH1 mRNA and modulating YAP1-Hippo signaling. UPF3B-S could potentially serve as a promising biomarker for the clinical management of invasive HCC.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Animals
- Gene Expression Regulation, Neoplastic
- Mice
- Neoplasm Metastasis
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Alternative Splicing/genetics
- Epithelial-Mesenchymal Transition/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Cell Movement/genetics
- Cadherins/metabolism
- Cadherins/genetics
- YAP-Signaling Proteins/genetics
- YAP-Signaling Proteins/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- RNA Splicing/genetics
- Male
- Mice, Nude
- Signal Transduction
- Female
- Antigens, CD
Collapse
Affiliation(s)
- Hong Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiabei Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenguang Luo
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyan Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC) West District/Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yang Wu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of General Surgery, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Wuhan Li
- Department of Emergency Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tianzhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Dong Han
- Tianjin Medical University Cancer Institute and Hospital, Department of Radiation Oncology, Tianjin, China
| | - Qinyao Wang
- Anhui Chest Hospital, Department of Radiation Oncology, Hefei, Anhui, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lianxin Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Fernandes Q, Inchakalody VP, Bedhiafi T, Mestiri S, Taib N, Uddin S, Merhi M, Dermime S. Chronic inflammation and cancer; the two sides of a coin. Life Sci 2024; 338:122390. [PMID: 38160787 DOI: 10.1016/j.lfs.2023.122390] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The correlation between chronic inflammation and cancer was initially identified in the 19th century. Biomolecules like interleukins, chemokines, tumor necrosis factors, growth factors, and adhesion molecules, which regulate inflammation, are recognized contributors to neoplastic transformation through various mechanisms, including oncogenic mutations, resistance to apoptosis, and adaptive responses like angiogenesis. This review aims to establish connections between the intricate and complex mechanisms of chronic inflammation and cancer. We illuminate implicit signaling mechanisms that drive the association between chronic inflammation and the initiation/progression of cancer, exploring potential impacts on other diseases. Additionally, we discuss the modalities of currently available therapeutic options for chronic inflammation and cancer, emphasizing the dual nature of such therapies. A thorough understanding of the molecular basis of chronic inflammation is crucial for developing novel approaches in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
3
|
Thrash HL, Pendergast AM. Multi-Functional Regulation by YAP/TAZ Signaling Networks in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4701. [PMID: 37835395 PMCID: PMC10572014 DOI: 10.3390/cancers15194701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The Hippo pathway transcriptional co-activators, YES-associated protein (YAP) and Transcriptional Co-Activator with PDZ Binding Motif (TAZ), have both been linked to tumor progression and metastasis. These two proteins possess overlapping and distinct functions, and their activities lead to the expression of genes involved in multiple cellular processes, including cell proliferation, survival, and migration. The dysregulation of YAP/TAZ-dependent cellular processes can result in altered tumor growth and metastasis. In addition to their well-documented roles in the regulation of cancer cell growth, survival, migration, and invasion, the YAP/TAZ-dependent signaling pathways have been more recently implicated in cellular processes that promote metastasis and therapy resistance in several solid tumor types. This review highlights the role of YAP/TAZ signaling networks in the regulation of tumor cell plasticity mediated by hybrid and reversible epithelial-mesenchymal transition (EMT) states, and the promotion of cancer stem cell/progenitor phenotypes. Mechanistically, YAP and TAZ regulate these cellular processes by targeting transcriptional networks. In this review, we detail recently uncovered mechanisms whereby YAP and TAZ mediate tumor growth, metastasis, and therapy resistance, and discuss new therapeutic strategies to target YAP/TAZ function in various solid tumor types. Understanding the distinct and overlapping roles of YAP and TAZ in multiple cellular processes that promote tumor progression to metastasis is expected to enable the identification of effective therapies to treat solid tumors through the hyper-activation of YAP and TAZ.
Collapse
Affiliation(s)
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Gao P, Yang Y, Li X, Zhao Q, Liu Y, Dong C, Zhang Y, Liu D. Circular RNA hsa_circ_0098181 inhibits metastasis in hepatocellular carcinoma by activating the Hippo signaling pathway via interaction with eEF2. Ann Hepatol 2023; 28:101124. [PMID: 37286166 DOI: 10.1016/j.aohep.2023.101124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION AND OBJECTIVES The development of hepatocellular carcinoma (HCC) is a multi-step process that accumulates genetic and epigenetic alterations, including changes in circular RNA (circRNA). This study aimed to understand the alterations in circRNA expression in HCC development and metastasis and to explore the biological functions of circRNA. MATERIALS AND METHODS Ten pairs of adjacent chronic hepatitis tissues and HCC tissues from patients without venous metastases, and ten HCC tissues from patients with venous metastases were analyzed using human circRNA microarrays. Differentially expressed circRNAs were then validated by quantitative real-time PCR. In vitro and in vivo assays were performed to assess the roles of the circRNA in HCC progression. RNA pull-down assay, mass spectrometry analysis, and RNA-binding protein immunoprecipitation were conducted to explore the protein partners of the circRNA. RESULTS CircRNA microarrays revealed that the expression patterns of circRNAs across the three groups were significantly different. Among these, hsa_circ_0098181 was validated to be lowly expressed and associated with poor prognosis in HCC patients. Ectopic expression of hsa_circ_0098181 delayed HCC metastasis in vitro and in vivo. Mechanistically, hsa_circ_0098181 sequestered eukaryotic translation elongation factor 2 (eEF2) and dissociated eEF2 from filamentous actin (F-actin) to prevent F-actin formation, which blocked activation of the Hippo signaling pathway. In addition, the RNA binding protein Quaking-5 bound directly to hsa_circ_0098181 and induced its biogenesis. CONCLUSIONS Our study reveals changes in circRNA expression from chronic hepatitis, primary HCC, to metastatic HCC. Further, the QKI5-hsa_circ_0098181-eEF2-Hippo signaling pathway exerts a regulatory role in HCC.
Collapse
Affiliation(s)
- Ping Gao
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuan Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaowei Li
- Changping District Center for Disease Control and Prevention of Beijing Municipality, Beijing, China
| | - Qi Zhao
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yujin Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Chunnan Dong
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Yanan Zhang
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Dianwu Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
5
|
Gallanis GT, Sharif GM, Schmidt MO, Friedland BN, Battina R, Rahhal R, Davis JE, Khan IS, Wellstein A, Riegel AT. Stromal Senescence following Treatment with the CDK4/6 Inhibitor Palbociclib Alters the Lung Metastatic Niche and Increases Metastasis of Drug-Resistant Mammary Cancer Cells. Cancers (Basel) 2023; 15:1908. [PMID: 36980794 PMCID: PMC10046966 DOI: 10.3390/cancers15061908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND CDK4/6 inhibitors (CDKi) have improved disease control in hormone-receptor-positive, HER2-negative metastatic breast cancer, but most patients develop progressive disease. METHODS We asked whether host stromal senescence after CDK4/6 inhibition affects metastatic seeding and growth of CDKi-resistant mammary cancer cells by using the p16-INK-ATTAC mouse model of inducible senolysis. RESULTS Palbociclib pretreatment of naïve mice increased lung seeding of CDKi-resistant syngeneic mammary cancer cells, and this effect was reversed by depletion of host senescent cells. RNA sequencing analyses of lungs from non-tumor-bearing p16-INK-ATTAC mice identified that palbociclib downregulates immune-related gene sets and gene expression related to leukocyte migration. Concomitant senolysis reversed a portion of these effects, including pathway-level enrichment of TGF-β- and senescence-related signaling. CIBERSORTx analysis revealed that palbociclib alters intra-lung macrophage/monocyte populations. Notably, lung metastases from palbociclib-pretreated mice revealed senescent endothelial cells. Palbociclib-treated endothelial cells exhibit hallmark senescent features in vitro, upregulate genes involved with the senescence-associated secretory phenotype, leukocyte migration, and TGF-β-mediated paracrine senescence and induce tumor cell migration and monocyte trans-endothelial invasion in co-culture. CONCLUSIONS These studies shed light on how stromal senescence induced by palbociclib affects lung metastasis, and they describe palbociclib-induced gene expression changes in the normal lung and endothelial cell models that correlate with changes in the tumor microenvironment in the lung metastatic niche.
Collapse
Affiliation(s)
| | | | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | - Anna T. Riegel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
6
|
Yang S, Gao W, Wang H, Zhang X, Mi Y, Ding Y, Geng C, Zhang J, Cheng M, Li S. Role of PAX2 in breast cancer verified by bioinformatics analysis and in vitro validation. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:58. [PMID: 36819548 PMCID: PMC9929765 DOI: 10.21037/atm-22-6360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/30/2023]
Abstract
Background Breast cancer (BC) is the most frequently diagnosed cancer in women and the second most common cancer among newly diagnosed cancers worldwide. Studies have shown that paired box 2 (PAX2) participates in the tumorigenesis of some cancer cells, but its role in BC is still unclear. Methods Transcriptome expression profiles and clinicopathological information of BC were downloaded from The Cancer Genome Atlas (TCGA) database to explore the expression level and prognostic value of PAX2. Gene set enrichment analysis (GSEA) and functional enrichment analysis were performed to investigate the functions and pathways of PAX2. Moreover, real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to determine the expression of PAX2 in BC tissues, and the predictive value of PAX2 in clinical samples was assessed. Cell Counting Kit-8 (CCK-8) assay was used to evaluate cell growth. The migration and invasive capacities of cells were assessed by wound healing assay and Transwell assay. Results PAX2 was upregulated in the TCGA-BC datasets. GSEA suggested that PAX2 may be involved in the regulation of signaling pathways such as MAPK. Moreover, PAX2 was overexpressed in BC tissues, and PAX2 expression was associated with tumor size and lymph node metastasis. PAX2 deficiency could promote the growth, migration, and invasion of BC cells. Conclusions Upregulation of PAX2 inhibited BC cell growth, migration, and invasion, making PAX2 a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Shan Yang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Gao
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haoqi Wang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi Zhang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunzhe Mi
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yawen Ding
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuizhi Geng
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Cheng
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sainan Li
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Piccolo S, Panciera T, Contessotto P, Cordenonsi M. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. NATURE CANCER 2023; 4:9-26. [PMID: 36564601 PMCID: PMC7614914 DOI: 10.1038/s43018-022-00473-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
Our understanding of the function of the transcriptional regulators YAP and TAZ (YAP/TAZ) in cancer is advancing. In this Review, we provide an update on recent progress in YAP/TAZ biology, their regulation by Hippo signaling and mechanotransduction and highlight open questions. YAP/TAZ signaling is an addiction shared by multiple tumor types and their microenvironments, providing many malignant attributes. As such, it represents an important vulnerability that may offer a broad window of therapeutic efficacy, and here we give an overview of the current treatment strategies and pioneering clinical trials.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|
8
|
Mir MA, Bashir M, Ishfaq. Role of the CXCL8–CXCR1/2 Axis in Cancer and Inflammatory Diseases. CYTOKINE AND CHEMOKINE NETWORKS IN CANCER 2023:291-329. [DOI: 10.1007/978-981-99-4657-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Li X, Li M. The application of zebrafish patient-derived xenograft tumor models in the development of antitumor agents. Med Res Rev 2023; 43:212-236. [PMID: 36029178 DOI: 10.1002/med.21924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/09/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
The cost of antitumor drug development is enormous, yet the clinical outcomes are less than satisfactory. Therefore, it is of great importance to develop effective drug screening methods that enable accurate, rapid, and high-throughput discovery of lead compounds in the process of preclinical antitumor drug research. An effective solution is to use the patient-derived xenograft (PDX) tumor animal models, which are applicable for the elucidation of tumor pathogenesis and the preclinical testing of novel antitumor compounds. As a promising screening model organism, zebrafish has been widely applied in the construction of the PDX tumor model and the discovery of antineoplastic agents. Herein, we systematically survey the recent cutting-edge advances in zebrafish PDX models (zPDX) for studies of pathogenesis mechanisms and drug screening. In addition, the techniques used in the construction of zPDX are summarized. The advantages and limitations of the zPDX are also discussed in detail. Finally, the prospects of zPDX in drug discovery, translational medicine, and clinical precision medicine treatment are well presented.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
FAM57A (Family with Sequence Similarity 57 Member A) Is a Cell-Density-Regulated Protein and Promotes the Proliferation and Migration of Cervical Cancer Cells. Cells 2022; 11:cells11203309. [PMID: 36291175 PMCID: PMC9600422 DOI: 10.3390/cells11203309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
The FAM57A (family with sequence similarity 57 member A) gene is controversially discussed to possess pro- or anti-tumorigenic potential. Here, we analyze the regulation of cellular FAM57A protein levels and study the functional role of FAM57A in HPV-positive cervical cancer cells. We find that FAM57A protein expression strongly depends on cell density, with FAM57A being readily detectable at low cell density, but undetectable at high cell density. This regulation occurs post-transcriptionally and is not mirrored by corresponding changes at the RNA level. We further show that FAM57A protein levels are highly increased in cervical cancer cells cultivated at hypoxia compared to normoxia and provide evidence that FAM57A is a hypoxia-responsive gene under control of the α-subunit of the HIF-1 (hypoxia-inducible factor-1) transcription factor. Yet, the strong relative increase of FAM57A protein levels in hypoxic cells is predominantly cell-density-dependent and occurs post-transcriptionally. Other anti-proliferative effectors besides hypoxia, such as silencing of HPV E6/E7 oncogene expression in cervical cancer cells, also result in an increase of FAM57A levels compared to untreated cells. Functional analyses reveal that FAM57A repression leads to pronounced anti-proliferative as well as anti-migratory effects in cervical cancer cells. Taken together, these results provide insights into the regulation of FAM57A protein levels and reveal that they underlie a tight cell-density-dependent control. Moreover, they identify FAM57A as a critical determinant for the phenotype of cervical cancer cells, which promotes their proliferation and migration capacities.
Collapse
|
11
|
Moon S, Hwang S, Kim B, Lee S, Kim H, Lee G, Hong K, Song H, Choi Y. Hippo Signaling in the Endometrium. Int J Mol Sci 2022; 23:ijms23073852. [PMID: 35409214 PMCID: PMC8998929 DOI: 10.3390/ijms23073852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
The uterus is essential for embryo implantation and fetal development. During the estrous cycle, the uterine endometrium undergoes dramatic remodeling to prepare for pregnancy. Angiogenesis is an essential biological process in endometrial remodeling. Steroid hormones regulate the series of events that occur during such remodeling. Researchers have investigated the potential factors, including angiofactors, involved in endometrial remodeling. The Hippo signaling pathway discovered in the 21st century, plays important roles in various cellular functions, including cell proliferation and cell death. However, its role in the endometrium remains unclear. In this review, we describe the female reproductive system and its association with the Hippo signaling pathway, as well as novel Hippo pathway genes and potential target genes.
Collapse
|
12
|
Distinct Response of Circulating microRNAs to the Treatment of Pancreatic Cancer Xenografts with FGFR and ALK Kinase Inhibitors. Cancers (Basel) 2022; 14:cancers14061517. [PMID: 35326668 PMCID: PMC8945909 DOI: 10.3390/cancers14061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic adenocarcinoma is typically detected at a late stage and thus shows only limited sensitivity to treatment, making it one of the deadliest malignancies. In this study, we evaluate changes in microRNA (miR) patterns in peripheral blood as a potential readout of treatment responses of pancreatic cancer to inhibitors that target tumor-stroma interactions. Mice with pancreatic cancer cell (COLO357PL) xenografts were treated with inhibitors of either fibroblast growth factor receptor kinase (FGFR; PD173074) or anaplastic lymphoma kinase receptor (ALK; TAE684). While both treatments inhibited tumor angiogenesis, signal transduction, and mitogenesis to a similar extent, they resulted in distinct changes in circulating miR signatures. Comparison of the miR pattern in the tumor versus that in circulation showed that the inhibitors can be distinguished by their differential impact on tumor-derived miRs as well as host-derived circulating miRs. Distinct signatures that include circulating miR-1 and miR-22 are associated with the efficacy of ALK and FGFR inhibition, respectively. We propose that monitoring changes in circulating miR profiles can provide an early signature of treatment response or resistance to pathway-targeted drugs, and thus provide a non-invasive measurement to rapidly assess the efficacy of candidate therapies.
Collapse
|
13
|
Lin YN, Schmidt MO, Sharif GM, Vietsch EE, Kiliti AJ, Barefoot ME, Riegel AT, Wellstein A. Impaired CXCL12 signaling contributes to resistance of pancreatic cancer subpopulations to T cell-mediated cytotoxicity. Oncoimmunology 2022; 11:2027136. [PMID: 35127250 PMCID: PMC8816404 DOI: 10.1080/2162402x.2022.2027136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Pancreatic cancer remains largely unresponsive to immune modulatory therapy attributable in part to an immunosuppressive, desmoplastic tumor microenvironment. Here, we analyze mechanisms of cancer cell-autonomous resistance to T cells. We used a 3D co-culture model of cancer cell spheroids from the KPC (LSL-KrasG12D/+ /LSL-Trp53R172H/+ /p48-Cre) pancreatic ductal adenocarcinoma (PDAC) model, to examine interactions with tumor-educated T cells isolated from draining lymph nodes of PDAC-bearing mice. Subpopulations of cancer cells resistant to these tumor-educated T cells were isolated from the in vitro co-culture and their properties compared with sensitive cancer cells. In co-culture with resistant cancer cell subpopulations, tumor-educated T cells showed reduced effector T cell functionality, reduced infiltration into tumor cell spheroids and decreased induction of apoptosis. A combination of comparative transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to dissect the role of differential gene expression and signaling pathways between sensitive and resistant cells. A decreased expression of the chemokine CXCL12 (SDF-1) was revealed as a common feature in the resistant cell subpopulations. Adding back CXCL12 reversed the resistant phenotype and was inhibited by the CXCR4 inhibitor AMD3100 (plerixafor). We conclude that reduced CXCL12 signaling contributes to PDAC subpopulation resistance to T cell-mediated attack.
Collapse
Affiliation(s)
- Yuan-Na Lin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Ghada M. Sharif
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Eveline E. Vietsch
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Surgery, Erasmus Mc, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Amber J. Kiliti
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Megan E. Barefoot
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anna T. Riegel
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
14
|
Sørensen MD, Kristensen BW. TUMOUR-ASSOCIATED CD204+ MICROGLIA/MACROPHAGES ACCUMULATE IN PERIVASCULAR AND PERINECROTIC NICHES AND CORRELATE WITH AN INTERLEUKIN-6 ENRICHED INFLAMMATORY PROFILE IN GLIOBLASTOMA. Neuropathol Appl Neurobiol 2021; 48:e12772. [PMID: 34713474 PMCID: PMC9306597 DOI: 10.1111/nan.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Cinar B, Alp E, Al-Mathkour M, Boston A, Dwead A, Khazaw K, Gregory A. The Hippo pathway: an emerging role in urologic cancers. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:301-317. [PMID: 34541029 PMCID: PMC8446764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The Hippo pathway controls several biological processes, including cell growth, differentiation, motility, stemness, cell contact, immune cell maturation, organ size, and tumorigenesis. The Hippo pathway core kinases MST1/2 and LATS1/2 in mammals phosphorylate and inactivate YAP1 signaling. Increasing evidence indicates that loss of MST1/2 and LATS1/2 function is linked to the biology of many cancer types with poorer outcomes, likely due to the activation of oncogenic YAP1/TEAD signaling. Therefore, there is a renewed interest in blocking the YAP1/TEAD functions to prevent cancer growth. This review introduces the Hippo pathway components and examines their role and therapeutic potentials in prostate, kidney, and bladder cancer.
Collapse
Affiliation(s)
- Bekir Cinar
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Esma Alp
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Marwah Al-Mathkour
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Ava Boston
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Abdulrahman Dwead
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Kezhan Khazaw
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Alexis Gregory
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| |
Collapse
|
16
|
Lopez-Hernandez A, Sberna S, Campaner S. Emerging Principles in the Transcriptional Control by YAP and TAZ. Cancers (Basel) 2021; 13:cancers13164242. [PMID: 34439395 PMCID: PMC8391352 DOI: 10.3390/cancers13164242] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary YAP and TAZ are transcriptional cofactors that integrate several upstream signals to generate context-dependent transcriptional responses. This requires extensive integration with epigenetic regulators and other transcription factors. The molecular and genomic characterization of YAP and TAZ nuclear function has broad implications both in physiological and pathological settings. Abstract Yes-associated protein (YAP) and TAZ are transcriptional cofactors that sit at the crossroad of several signaling pathways involved in cell growth and differentiation. As such, they play essential functions during embryonic development, regeneration, and, once deregulated, in cancer progression. In this review, we will revise the current literature and provide an overview of how YAP/TAZ control transcription. We will focus on data concerning the modulation of the basal transcriptional machinery, their ability to epigenetically remodel the enhancer–promoter landscape, and the mechanisms used to integrate transcriptional cues from multiple pathways. This reveals how YAP/TAZ activation in cancer cells leads to extensive transcriptional control that spans several hallmarks of cancer. The definition of the molecular mechanism of transcriptional control and the identification of the pathways regulated by YAP/TAZ may provide therapeutic opportunities for the effective treatment of YAP/TAZ-driven tumors.
Collapse
|
17
|
Cancer Cell Invasion and Metastasis in Zebrafish Models (Danio rerio). Methods Mol Biol 2021; 2294:3-16. [PMID: 33742390 DOI: 10.1007/978-1-0716-1350-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cancer cell vascular invasion and extravasation at metastatic sites are hallmarks of malignant progression of cancer and associated with poor disease outcome. Here we describe an in vivo approach to study the invasive ability of cancer cells into the vasculature and their hematogenous metastatic seeding in zebrafish (Danio rerio). In one approach, extravasation of fluorescently labeled cancer cells is monitored in zebrafish embryos whose vasculature is marked by a contrasting fluorescent reporter. After injection into the precardiac sinus of 2-day-old embryos, cancer cells can extravasate from the vasculature into tissues over the next few days. Extravasated cancer cells are identified and counted in live embryos via fluorescence microscopy. In a second approach, intravasation of cancer cells can be evaluated by changing their injection site to the yolk sac of zebrafish embryos. In addition to monitoring the impact of drivers of malignant progression, candidate inhibitors can be studied in this in vivo model system for their efficacy as well as their toxicity for the host.
Collapse
|
18
|
Sharif GM, Campbell MJ, Nasir A, Sengupta S, Graham GT, Kushner MH, Kietzman WB, Schmidt MO, Pearson GW, Loudig O, Fineberg S, Wellstein A, Riegel AT. An AIB1 Isoform Alters Enhancer Access and Enables Progression of Early-Stage Triple-Negative Breast Cancer. Cancer Res 2021; 81:4230-4241. [PMID: 34135000 DOI: 10.1158/0008-5472.can-20-3625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
AIB1Δ4 is an N-terminally truncated isoform of the oncogene amplified in breast cancer 1 (AIB1) with increased expression in high-grade human ductal carcinoma in situ (DCIS). However, the role of AIB1Δ4 in DCIS malignant progression has not been defined. Here we CRISPR-engineered RNA splice junctions to produce normal and early-stage DCIS breast epithelial cells that expressed only AIB1Δ4. These cells showed enhanced motility and invasion in 3D cell culture. In zebrafish, AIB1Δ4-expressing cells enabled invasion of parental cells when present in a mixed population. In mouse xenografts, a subpopulation of AIB1Δ4 cells mixed with parental cells enhanced tumor growth, recurrence, and lung metastasis. AIB1Δ4 chromatin immunoprecipitation sequencing revealed enhanced binding to regions including peroxisome proliferator-activated receptor (PPAR) and glucocorticoid receptor (GR) genomic recognition sites. H3K27ac and H3K4me1 genomic engagement patterns revealed selective activation of breast cancer-specific enhancer sites by AIB1Δ4. AIB1Δ4 cells displayed upregulated inflammatory response genes and downregulated PPAR signaling gene expression patterns. In the presence of AIB1Δ4 enabler cells, parental cells increased NF-κB and WNT signaling. Cellular cross-talk was inhibited by the PPARγ agonist efatutazone but was enhanced by treatment with the GR agonist dexamethasone. In conclusion, expression of the AIB1Δ4-selective cistrome in a small subpopulation of cells triggers an "enabler" phenotype hallmarked by an invasive transcriptional program and collective malignant progression in a heterogeneous tumor population. SIGNIFICANCE: A minor subset of early-stage breast cancer cells expressing AIB1Δ4 enables bulk tumor cells to become invasive, suggesting that selective eradication of this population could impair breast cancer metastasis.
Collapse
Affiliation(s)
- Ghada M Sharif
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Apsra Nasir
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Surojeet Sengupta
- The Hormel Institute, University of Minnesota, Medical Research Center, Austin, Minnesota
| | - Garrett T Graham
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Max H Kushner
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - William B Kietzman
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Marcel O Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Gray W Pearson
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Olivier Loudig
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Susan Fineberg
- Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Anna T Riegel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
19
|
Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. BIOLOGY 2021; 10:biology10040252. [PMID: 33804830 PMCID: PMC8063817 DOI: 10.3390/biology10040252] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The identification and development of new anti-cancer drugs requires extensive testing in animal models to establish safety and efficacy of drug candidates. The transplantation of human tumor tissue into mouse (tumor xenografts) is commonly used to study cancer progression and to test potential drugs for their anti-cancer activity. Mouse models do not afford the ability to test a large number of drug candidates quickly as it takes several weeks to conduct these experiments. In contrast, tumor xenograft studies in zebrafish provide an efficient platform for rapid testing of safety and efficacy in less than two weeks. Abstract In order to develop new cancer therapeutics, rapid, reliable, and relevant biological models are required to screen and validate drug candidates for both efficacy and safety. In recent years, the zebrafish (Danio rerio) has emerged as an excellent model organism suited for these goals. Larval fish or immunocompromised adult fish are used to engraft human cancer cells and serve as a platform for screening potential drug candidates. With zebrafish sharing ~80% of disease-related orthologous genes with humans, they provide a low cost, high-throughput alternative to mouse xenografts that is relevant to human biology. In this review, we provide background on the methods and utility of zebrafish xenograft models in cancer research.
Collapse
Affiliation(s)
- John T. Gamble
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Juliet A. Greenwood
- School of Mathematics and Natural Sciences, Arizona State University, Scotsdale, AZ 85257, USA;
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
- Correspondence:
| |
Collapse
|
20
|
Wang X, Ji C, Hu J, Deng X, Zheng W, Yu Y, Hua K, Zhou X, Fang L. Hsa_circ_0005273 facilitates breast cancer tumorigenesis by regulating YAP1-hippo signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:29. [PMID: 33436041 PMCID: PMC7802350 DOI: 10.1186/s13046-021-01830-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. METHODS The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. RESULTS Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. CONCLUSIONS Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xuehui Wang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.,Nanjing Medical University, Nanjing, 211166, China
| | - Changle Ji
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jiashu Hu
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xiaochong Deng
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenfang Zheng
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yunhe Yu
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Kaiyao Hua
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xiqian Zhou
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
21
|
Yuan JQ, Ding NH, Xiao Z. The Hippo Transducer YAP/TAZ as a Biomarker of Therapeutic Response and Prognosis in Trastuzumab-Based Neoadjuvant Therapy Treated HER2-Positive Breast Cancer Patients. Front Pharmacol 2020; 11:537265. [PMID: 32973536 PMCID: PMC7481481 DOI: 10.3389/fphar.2020.537265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023] Open
Abstract
Background We explored the therapeutic and prognostic effect of YAP/TAZ intensityinHER2-positive breast cancer patients. We also investigated the relationship between YAP/TAZ expression and Trastuzumab-resistance. Methods We collected clinicopathological information from 397 cases. We evaluated therapeutic and prognostic effect of YAP/TAZ and other variables. We also cultivated Trastuzumab-resistance cell lines and explored relationship between YAP/TAZ and Trastuzumab-resistance. Results Over-expression of YAP/TAZ was remarkable in Trastuzumab-resistant cells, and so did HER3 and HER2/HER3 heterodimer. Inhibition of YAP/TAZ expression reversed Trastuzumab-resistance.YAP/TAZ deficiency contributed to favorable therapeutic response, and so did hormone receptor insufficiency and chemotherapy dosage inferiority. Deficient YAP/TAZ intensity and abundant hormone receptor intensity contributed to better survival. Over-expression of YAP/TAZ was obvious in recurrent cases in comparison with their matching primary lesions. Prognostic superiority of insufficient YAP/TAZ intensity was more outstanding in hormone receptor negative cases. Over-expression of YAP/TAZ and HER3 was generally synchronous. Absence of HER3 expression in residual lesions might correlate with better breast cancer-free survival. Conclusions Over-expression of YAP/TAZ as well as HER-3 and HER2/HER3 heterodimer was synchronously remarkable in Trastuzumab-resistant cell lines. Inhibition of YAP/TAZ expression reversed Trastuzumab resistance. Deficient YAP/TAZ intensity as well as insufficient hormone receptor intensity and high chemotherapy dosage contributed to favorable therapeutic response. Deficient YAP/TAZ intensity and abundant hormone receptor intensity contributed to better survival, and so did absence of HER3expression in residual lesions. Prognostic superiority of YAP/TAZ expression depended on hormone receptor status. Cases with synchronous over-expression of YAP/TAZ and HER3 suffered poor survival, which revealed the potential effect of YAP/TAZ-HER2/HER3 crosstalk in prognosis of HER2-positive patients.
Collapse
Affiliation(s)
- Jia-Qi Yuan
- Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Nian-Hua Ding
- Department of Clinical Laboratory, The First Hospital of Changsha, Changsha, China
| | - Zhi Xiao
- Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
TAZ-regulated expression of IL-8 is involved in chemoresistance of hepatocellular carcinoma cells. Arch Biochem Biophys 2020; 693:108571. [PMID: 32898567 DOI: 10.1016/j.abb.2020.108571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
Chemotherapy resistance is one of the major challenges for the treatment of hepatocellular carcinoma (HCC). In order to investigate the mechanisms involved in chemoresistance of HCC, we established cisplatin (CDDP) and doxorubicin (Dox) resistant HCC cells. The expression of transcriptional coactivator with PDZ-binding motif (TAZ), one of the major downstream effectors of Hippo pathway, was upregulated in chemoresistant HCC cells. Targeted inhibition of TAZ via its siRNAs can restore CDDP and Dox sensitivity of chemoresistant HCC cells. The upregulation of TAZ increased the expression of IL-8 in HCC/CDDP and HCC/Dox cells. Recombinant IL-8 (rIL-8) antagonized the increased chemosensitivity mediated by TAZ knockdown. Mechanistically, TAZ can directly bind with the promoter of IL-8 to activate its transcription in chemoresistant HCC cells. Collectively, our data showed that TAZ-regulated expression of IL-8 was involved in chemoresistance of HCC cells. It indicated that targeted inhibition of TAZ/IL-8 axis might be helpful to improve chemotherapy efficiency for HCC.
Collapse
|
23
|
Benjamin DC, Kang JH, Hamza B, King EM, Lamar JM, Manalis SR, Hynes RO. YAP Enhances Tumor Cell Dissemination by Promoting Intravascular Motility and Reentry into Systemic Circulation. Cancer Res 2020; 80:3867-3879. [PMID: 32591412 DOI: 10.1158/0008-5472.can-20-0212] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
The oncogene YAP has been shown previously to promote tumor growth and metastasis. However, how YAP influences the behavior of tumor cells traveling within the circulatory system has not been as well explored. Given that rate-limiting steps of metastasis are known to occur while tumor cells enter, travel through, or exit circulation, we sought to study how YAP influences tumor cell behavior within the circulatory system. Intravital imaging in live zebrafish embryos revealed that YAP influenced the distribution of tumor cells within the animal following intravenous injection. Control cells became lodged in the first capillary bed encountered in the tail, whereas cells overexpressing constitutively active YAP were able to travel through this capillary plexus, reenter systemic circulation, and seed in the brain. YAP controlled transit through these capillaries by promoting active migration within the vasculature. These results were corroborated in a mouse model following intravenous injection, where active YAP increased the number of circulating tumor cells over time. Our results suggest a possible mechanism whereby tumor cells can spread to organs beyond the first capillary bed downstream from the primary tumor. These results also show that a specific gene can affect the distribution of tumor cells within an animal, thereby influencing the global pattern of metastasis in that animal. SIGNIFICANCE: These findings demonstrate that YAP endows tumor cells with the ability to move through capillaries, allowing them to return to and persist in circulation, thereby increasing their metastatic spread.See related commentary by Davidson, p. 3797.
Collapse
Affiliation(s)
- David C Benjamin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bashar Hamza
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Emily M King
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - John M Lamar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Richard O Hynes
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts. .,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
24
|
Xiao J, Glasgow E, Agarwal S. Zebrafish Xenografts for Drug Discovery and Personalized Medicine. Trends Cancer 2020; 6:569-579. [PMID: 32312681 DOI: 10.1016/j.trecan.2020.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Cancer is the second leading cause of death in the world. Given that cancer is a highly individualized disease, predicting the best chemotherapeutic treatment for individual patients can be difficult. Ex vivo models such as mouse patient-derived xenografts (PDX) and organoids are being developed to predict patient-specific chemosensitivity profiles before treatment in the clinic. Although promising, these models have significant disadvantages including long growth times that introduce genetic and epigenetic changes to the tumor. The zebrafish xenograft assay is ideal for personalized medicine. Imaging of the small, transparent fry is unparalleled among vertebrate organisms. In addition, the speed (5-7 days) and small patient tissue requirements (100-200 cells per animal) are unique features of the zebrafish xenograft model that enable patient-specific chemosensitivity analyses.
Collapse
Affiliation(s)
- Jerry Xiao
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
25
|
Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Cancers (Basel) 2020; 12:cancers12030645. [PMID: 32164350 PMCID: PMC7139637 DOI: 10.3390/cancers12030645] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors. Despite intensive basic and medical research studies to discover new therapeutics and to improve current treatments, almost 40% of osteosarcoma and Ewing sarcoma patients succumb to the disease. Patients with poor prognosis are related to either the presence of metastases at diagnosis or resistance to chemotherapy. Over the past ten years, considerable interest for the Hippo/YAP signaling pathway has taken place within the cancer research community. This signaling pathway operates at different steps of tumor progression: Primary tumor growth, angiogenesis, epithelial to mesenchymal transition, and metastatic dissemination. This review discusses the current knowledge about the involvement of the Hippo signaling pathway in cancer and specifically in paediatric bone sarcoma progression.
Collapse
|
26
|
Fan S, Price T, Huang W, Plue M, Warren J, Sundaramoorthy P, Paul B, Feinberg D, MacIver N, Chao N, Sipkins D, Kang Y. PINK1-Dependent Mitophagy Regulates the Migration and Homing of Multiple Myeloma Cells via the MOB1B-Mediated Hippo-YAP/TAZ Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900860. [PMID: 32154065 PMCID: PMC7055555 DOI: 10.1002/advs.201900860] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/23/2019] [Indexed: 05/07/2023]
Abstract
The roles of mitochondrial dysfunction in carcinogenesis remain largely unknown. The effects of PTEN-induced putative kinase 1 (PINK1)-dependent mitophagy on the pathogenesis of multiple myeloma (MM) are determined. The levels of the PINK1-dependent mitophagy markers PINK1 and parkin RBR E3 ubiquitin protein ligase (PARK2) in CD138+ plasma cells are reduced in patients with MM and correlate with clinical outcomes in myeloma patients. Moreover, the induction of PINK1-dependent mitophagy with carbonylcyanide-m-chlorophenylhydrazone (CCCP) or salinomycin, or overexpression of PINK1 leads to inhibition of transwell migration, suppression of myeloma cell homing to calvarium, and decreased osteolytic bone lesions. Furthermore, genetic deletion of pink1 accelerates myeloma development in a spontaneous X-box binding protein-1 spliced isoform (XBP-1s) transgenic myeloma mouse model and in VK*MYC transplantable myeloma recipient mice. Additionally, treatment with salinomycin shows significant antimyeloma activities in vivo in murine myeloma xenograft models. Finally, the effects of PINK1-dependent mitophagy on myeloma pathogenesis are driven by the activation of the Mps one binder kinase activator (MOB1B)-mediated Hippo pathway and the subsequent downregulation of Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) expression. These data provide direct evidence that PINK1-dependent mitophagy plays a critical role in the pathogenesis of MM and is a potential therapeutic target.
Collapse
Affiliation(s)
- Shengjun Fan
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Trevor Price
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Michelle Plue
- Shared Materials Instrumentation FacilityPratt School of EngineeringDuke UniversityDurhamNC27708USA
| | | | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Barry Paul
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Daniel Feinberg
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | | | - Nelson Chao
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Dorothy Sipkins
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| |
Collapse
|
27
|
Xu X, Zhou X, Gao C, Cao L, Zhang Y, Hu X, Cui Y. Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals. Biol Chem 2020; 400:777-785. [PMID: 30699065 DOI: 10.1515/hsz-2018-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Understanding the mechanisms responsible for the malignancy of NSCLC cells is important for therapy and drug development. Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. We found that Nodal can trigger the proliferation of NSCLC cells and decrease the sensitivity to doxorubicin (Dox) and cisplatin (CDDP) treatment. Targeted inhibition of Nodal can suppress the proliferation of NSCLC cells. Among the measured cytokines, Nodal can increase the expression of interleukin-6 (IL-6) and vascular endothelial growth factor A (VEGFA) in NSCLC cells. Inhibition of IL-6, while not VEGFA, attenuated Nodal induced cell proliferation, suggesting the essential roles of IL-6 in Nodal induced malignancy of NSCLC cells. Nodal can trigger the phosphorylation, nuclear translocation and transcriptional activities of p65, the key signal transducer of NF-κB. This was due to the fact that Nodal can increase the phosphorylation of IKKβ/IκBα. The inhibitor of IKKβ abolished Nodal induced activation of p65 and expression of IL-6. Collectively, we found that Nodal can increase the proliferation and decrease chemosensitivity of NSCLC cells via regulation of NF-κB/IL-6 signals. It indicated that Nodal might be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Ye Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Xue Hu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| |
Collapse
|
28
|
Antonosante A, Brandolini L, d’Angelo M, Benedetti E, Castelli V, Maestro MD, Luzzi S, Giordano A, Cimini A, Allegretti M. Autocrine CXCL8-dependent invasiveness triggers modulation of actin cytoskeletal network and cell dynamics. Aging (Albany NY) 2020; 12:1928-1951. [PMID: 31986121 PMCID: PMC7053615 DOI: 10.18632/aging.102733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Glioblastoma (GB) is the most representative form of primary malignant brain tumour. Several studies indicated a pleiotropic role of CXCL8 in cancer due to its ability to modulate the tumour microenvironment, growth and aggressiveness of tumour cell. Previous studies indicated that CXCL8 by its receptors (CXCR1 and CXCR2) induced activation of the PI3K/p-Akt pathway, a crucial event in the regulation of cytoskeleton rearrangement and cell mobilization. Human GB primary cell culture and U-87MG cell line were used to study the effects of CXCR1 and CXCR2 blockage, by a dual allosteric antagonist, on cell migration and cytoskeletal dynamics. The data obtained point towards a specific effect of autocrine CXCL8 signalling on GB cell invasiveness by the activation of pathways involved in cell migration and cytoskeletal dynamics, such as PI3K/p-Akt/p-FAK, p-cortactin, RhoA, Cdc42, Acetylated α-tubulin and MMP2. All the data obtained support the concept that autocrine CXCL8 signalling plays a key role in the activation of an aggressive phenotype in primary glioblastoma cells and U-87MG cell line. These results provide new insights about the potential of a pharmacological approach targeting CXCR1/CXCR2 pathways to decrease migration and invasion of GB cells in the brain parenchyma, one of the principal mechanisms of recurrence.
Collapse
Affiliation(s)
- Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Sabino Luzzi
- San Matteo Hospital, University of Pavia, Pavia, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
29
|
The Crucial Role of CXCL8 and Its Receptors in Colorectal Liver Metastasis. DISEASE MARKERS 2019; 2019:8023460. [PMID: 31827643 PMCID: PMC6886345 DOI: 10.1155/2019/8023460] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
CXCL8 (also known as IL-8) can produce different biological effects by binding to its receptors: CXCR1, CXCR2, and the Duffy antigen receptor for chemokines (DARC). CXCL8 and its receptors are associated with the development of various tumor types, especially colorectal cancer and its liver metastases. In addition to promoting angiogenesis, proliferation, invasion, migration, and the survival of colorectal cancer (CRC) cells, CXCL8 and its receptors have also been known to induce the epithelial-mesenchymal transition (EMT) of CRC cells, to help them to escape host immunosurveillance as well as to enhance resistance to anoikis, which promotes the formation of circulating tumor cells (CTCs) and their colonization of distant organs. In this paper, we will review the established roles of CXCL8 signaling in CRC and discuss the possible strategies of targeting CXCL8 signaling for overcoming CRC drug resistance and cancer progression, including direct targeting of CXCL8/CXCR1/2 or indirect targeting through the inhibition of CXCL8-CXCR1/2 signaling.
Collapse
|
30
|
Abstract
The Hippo signaling pathway is involved in tissue size regulation and tumorigenesis. Genetic deletion or aberrant expression of some Hippo pathway genes lead to enhanced cell proliferation, tumorigenesis, and cancer metastasis. Recently, multiple studies have identified a wide range of upstream regulators of the Hippo pathway, including mechanical cues and ligands of G protein-coupled receptors (GPCRs). Through the activation related G proteins and possibly rearrangements of actin cytoskeleton, GPCR signaling can potently modulate the phosphorylation states and activity of YAP and TAZ, two homologous oncogenic transcriptional co-activators, and major effectors of the Hippo pathway. Herein, we summarize the network, regulation, and functions of GPCR-Hippo signaling, and we will also discuss potential anti-cancer therapies targeting GPCR-YAP signaling.
Collapse
|
31
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
32
|
Zupanc GK, Zupanc FB, Sipahi R. Stochastic cellular automata model of tumorous neurosphere growth: Roles of developmental maturity and cell death. J Theor Biol 2019; 467:100-110. [DOI: 10.1016/j.jtbi.2019.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/13/2018] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
|
33
|
Mechanotransduction and Cytoskeleton Remodeling Shaping YAP1 in Gastric Tumorigenesis. Int J Mol Sci 2019; 20:ijms20071576. [PMID: 30934860 PMCID: PMC6480114 DOI: 10.3390/ijms20071576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
The essential role of Hippo signaling pathway in cancer development has been elucidated by recent studies. In the gastrointestinal tissues, deregulation of the Hippo pathway is one of the most important driving events for tumorigenesis. It is widely known that Yes-associated protein 1 (YAP1) and WW domain that contain transcription regulator 1 (TAZ), two transcriptional co-activators with a PDZ-binding motif, function as critical effectors negatively regulated by the Hippo pathway. Previous studies indicate the involvement of YAP1/TAZ in mechanotransduction by crosstalking with the extracellular matrix (ECM) and the F-actin cytoskeleton associated signaling network. In gastric cancer (GC), YAP1/TAZ functions as an oncogene and transcriptionally promotes tumor formation by cooperating with TEAD transcription factors. Apart from the classic role of Hippo-YAP1 cascade, in this review, we summarize the current investigations to highlight the prominent role of YAP1/TAZ as a mechanical sensor and responder under mechanical stress and address its potential prognostic and therapeutic value in GC.
Collapse
|
34
|
Jamous A, Salah Z. WW-Domain Containing Protein Roles in Breast Tumorigenesis. Front Oncol 2018; 8:580. [PMID: 30619734 PMCID: PMC6300493 DOI: 10.3389/fonc.2018.00580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are key factors in executing protein function. These interactions are mediated through different protein domains or modules. An important domain found in many different types of proteins is WW domain. WW domain-containing proteins were shown to be involved in many human diseases including cancer. Some of these proteins function as either tumor suppressor genes or oncogenes, while others show dual identity. Some of these proteins act on their own and alter the function(s) of specific or multiple proteins implicated in cancer, others interact with their partners to compose WW domain modular pathway. In this review, we discuss the role of WW domain-containing proteins in breast tumorigenesis. We give examples of specific WW domain containing proteins that play roles in breast tumorigenesis and explain the mechanisms through which these proteins lead to breast cancer initiation and progression. We discuss also the possibility of using these proteins as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Abrar Jamous
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| | - Zaidoun Salah
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| |
Collapse
|
35
|
Zhang Q, Han X, Chen J, Xie X, Xu J, Zhao Y, Shen J, Hu L, Xu P, Song H, Zhang L, Zhao B, Wang YJ, Xia Z. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) mediate cell density-dependent proinflammatory responses. J Biol Chem 2018; 293:18071-18085. [PMID: 30315101 DOI: 10.1074/jbc.ra118.004251] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
A proper inflammatory response is critical to the restoration of tissue homeostasis after injury or infection, but how such a response is modulated by the physical properties of the cellular and tissue microenvironments is not fully understood. Here, using H358, HeLa, and HEK293T cells, we report that cell density can modulate inflammatory responses through the Hippo signaling pathway. We found that NF-κΒ activation through the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) is not affected by cell density. However, we also noted that specific NF-κΒ target genes, such as cyclooxygenase 2 (COX-2), are induced much less at low cell densities than at high cell densities. Mechanistically, we observed that the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are localized to the nucleus, bind to TEA domain transcription factors (TEADs), recruit histone deacetylase 7 (HDAC7) to the promoter region of COX-2, and repress its transcription at low cell density and that high cell density abrogates this YAP/TAZ-mediated transcriptional repression. Of note, IL-1β stimulation promoted cell migration and invasion mainly through COX-2 induction, but YAP inhibited this induction and thus cell migration and invasion. These results suggest that YAP/TAZ-TEAD interactions can repress COX-2 transcription and thereby mediate cell density-dependent modulation of proinflammatory responses. Our findings highlight that the cellular microenvironment significantly influences inflammatory responses via the Hippo pathway.
Collapse
Affiliation(s)
- Qiong Zhang
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China,; Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China,; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and
| | - Xu Han
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Jinfeng Chen
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China
| | - Xiaomei Xie
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China,; Youth League Committee of Zhejiang Gongshang University, Hangzhou, 310018 Zhejiang, China, and
| | - Jiafeng Xu
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Yang Zhao
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Jie Shen
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215000 Jiangsu, China
| | - Pinglong Xu
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Hai Song
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Long Zhang
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Bin Zhao
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and
| | - Zongping Xia
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058 Zhejiang, China,; Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China,.
| |
Collapse
|
36
|
Zhou TY, Zhou YL, Qian MJ, Fang YZ, Ye S, Xin WX, Yang XC, Wu HH. Interleukin-6 induced by YAP in hepatocellular carcinoma cells recruits tumor-associated macrophages. J Pharmacol Sci 2018; 138:89-95. [PMID: 30340922 DOI: 10.1016/j.jphs.2018.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) has been regarded as the most prominent component in tumor microenvironment. The correlation between TAM density and poor prognosis in Hepatocellular carcinoma (HCC) patients suggests a supportive role for TAMs in tumor progression. Here we employed a co-culture system to interrogate the molecular link between Yes-Associated Protein (YAP) and TAMs chemotaxis in HCC cells. We found that YAP activation was critical for the recruitment of TAMs towards HCC cells. Furthermore, cytokine array and quantitative RT-PCR analyses showed that IL-6 secreted by YAP-activated HCC cells might induce the TAMs recruitment. Interrupting YAP function by statins, the inhibitors of hydroxymethylglutaryl-CoA reductase, could robustly suppress the chemotaxis of TAMs. Together with our findings that the expression levels ofIL-6inhumanHCC tumors were highly correlated with the prognosis of HCC patients, the current study highlight the possibility of improving HCC treatment by targeting YAP-IL-6 mediated TAMs recruitment.
Collapse
Affiliation(s)
- Tian-Yi Zhou
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Lu Zhou
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mei-Jia Qian
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Zheng Fang
- Hangzhou No. 14 Middle School, Hangzhou 310006, China
| | - Song Ye
- Clinical of Pharmacy, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Wen-Xiu Xin
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao-Chun Yang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hong-Hai Wu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Jayatilaka H, Umanzor FG, Shah V, Meirson T, Russo G, Starich B, Tyle P, Lee JSH, Khatau S, Gil-Henn H, Wirtz D. Tumor cell density regulates matrix metalloproteinases for enhanced migration. Oncotarget 2018; 9:32556-32569. [PMID: 30220965 PMCID: PMC6135685 DOI: 10.18632/oncotarget.25863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/18/2018] [Indexed: 02/01/2023] Open
Abstract
Matrix metalloproteinases (MMPs) may play a critical role in metastatic cancers, yet multiple human clinical trials targeting MMPs have surprisingly failed. Cancer cell density changes dramatically during the early growth of a primary tumor and during the early seeding steps of secondary tumors and has been implicated in playing an important role in regulating metastasis and drug resistance. This study reveals that the expression of MMPs is tightly regulated by local tumor cell density through the synergistic signaling mechanism of Interleukin 6 (IL-6) and Interleukin 8 (IL-8) via the JAK2/STAT3 complex. Local tumor cell density also plays a role in the responsiveness of cells to matrix metalloproteinases inhibitors (MMPI), such as Batimastat, Marimastat, Bryostatin I, and Cipemastat, where different migratory phenotypes are observed in low and high cell density conditions. Cell density-dependent MMP regulation can be directly targeted by the simultaneous inhibition of IL-6 and IL-8 receptors via Tocilizumab and Reparixin to significantly decrease the expression of MMPs in mouse xenograft models and decrease effective metastasis. This study reveals a new strategy to decrease MMP expression through pharmacological intervention of the cognate receptors of IL-6 and IL-8 to decrease metastatic capacity of tumor cells.
Collapse
Affiliation(s)
- Hasini Jayatilaka
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.,Department of Pediatrics, Bass Center for Childhood Cancer, Stanford University, Stanford, CA, USA
| | - Fatima G Umanzor
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Vishwesh Shah
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gabriella Russo
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Bartholomew Starich
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Pranay Tyle
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jerry S H Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Center for Strategic Scientific Initiatives, National Cancer Institute, Bethesda, MD, USA.,Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Medicine/Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shyam Khatau
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Zheng CH, Chen XM, Zhang FB, Zhao C, Tu SS. Inhibition of CXCR4 regulates epithelial mesenchymal transition of NSCLC via the Hippo-YAP signaling pathway. Cell Biol Int 2018; 42:1386-1394. [PMID: 29972256 DOI: 10.1002/cbin.11024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Chun-Hui Zheng
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Xiao-Mei Chen
- Operating Room, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Fang-Biao Zhang
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Chun Zhao
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Shao-Song Tu
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| |
Collapse
|
39
|
Abstract
The Hippo pathway is a novel and highly conserved mammalian signaling pathway. Mutations and altered expression of core Hippo pathway components promote the migration, invasion, malignancy, and chemotherapy resistance of breast cancer cells. In cancer metastasis, tumor cells must detach from the primary tumor, invade surrounding tissue, and enter and survive in a foreign microenvironment. The metastatic potential of breast cancer is closely related to individual patient genetic profile. Nevertheless, the exact molecular mechanism that regulates the Hippo pathway in breast cancer metastasis is yet to be fully elucidated. This article discusses the function and regulation of the Hippo pathway, with focus given to its role in the context of breast cancer metastasis.
Collapse
Affiliation(s)
- Changran Wei
- Department of Breast Surgery, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong Province, China
| | - Ying Wang
- Rehabilitation Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong Province, China
| | - Xiangqi Li
- Department of Breast Surgery, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong Province, China
| |
Collapse
|
40
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
41
|
The Immunoexpression of YAP1 and LATS1 Proteins in Clear Cell Renal Cell Carcinoma: Impact on Patients' Survival. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2653623. [PMID: 29850494 PMCID: PMC5903336 DOI: 10.1155/2018/2653623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/05/2018] [Indexed: 11/18/2022]
Abstract
The aim of the study was to determine by immunohistochemistry cellular localization and immunoreactivity levels of YAP1 and LATS1 proteins in paired sections of tumor and unchanged renal tissues of 54 clear cell renal cell carcinoma (ccRCC) patients. Associations between clinical-pathological and overall survival (OS; median follow-up was 40.6 months) data of patients and YAP1 and LATS1 immunoreactivity were analyzed by uni- and multivariate Cox regression model and log-rank test. YAP1 immunoreactivity was found in the nuclei of tumor cells in 64.8% of ccRCC patients, whereas only 24.1% of tumors revealed cytoplasmic YAP1 expression. LATS1 immunoexpression was observed only in the cytoplasm of tumor cells in 59.3% of patients. LATS1 immunoreactivity in cancer cells negatively correlated with the size of primary tumor. The overall YAP1 immunoreactivity did not correlate with clinical-pathological data of patients. However, the subgroup of ccRCC patients who presented with cytoplasmic YAP1 immunoexpression had significantly shorter OS (median = 26.8 months) than patients without cytoplasmic YAP1 expression (median undefined). Multivariate Cox analysis revealed that increased cytoplasmic YAP1 (HR = 4.53) and decreased LATS1 immunoreactivity levels (HR = 0.90) were associated with worse prognosis, being independent prognostic factors. These results suggest that YAP1 and LATS1 can be considered as new prognostic factors in ccRCC.
Collapse
|
42
|
Sapudom J, Pompe T. Biomimetic tumor microenvironments based on collagen matrices. Biomater Sci 2018; 6:2009-2024. [DOI: 10.1039/c8bm00303c] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides an overview of the current approaches to engineer defined 3D matrices for the investigation of tumor cell behaviorin vitro, with a focus on collagen-based fibrillar systems.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| | - Tilo Pompe
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| |
Collapse
|
43
|
Zhang J, Wang G, Chu SJ, Zhu JS, Zhang R, Lu WW, Xia LQ, Lu YM, Da W, Sun Q. Loss of large tumor suppressor 1 promotes growth and metastasis of gastric cancer cells through upregulation of the YAP signaling. Oncotarget 2017; 7:16180-93. [PMID: 26921249 PMCID: PMC4941306 DOI: 10.18632/oncotarget.7568] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/05/2016] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence shows that large tumor suppressor 1 (LATS1) as a novel resident governor of cellular homeostasis is implicated in multiple tumorigenic properties including cell growth, apoptosis and metastasis. However, the contribution of LATS1 to gastric carcinoma (GC) remains unclear. The correlation of LATS1 expression with clinicopathologic characteristics, GC prognosis and recurrence was analyzed by immunohistochemistry, Univariate and Kaplan-Meier analysis. Functional experiments were performed to investigate biological behaviors of GC cells and underlying molecular mechanisms. Tumor growth and metastasis was assessed in vivo using orthotopic implantation GC models in severe combined immune deficiency (SCID) mice. Consequently, decreased LATS1 expression was significantly associated with the lymph node metastasis, poor prognosis and recurrence. Ectopic expression of LATS1 decreased GC cell proliferation and invasion in vitro and inhibited tumor growth and liver metastasis in vivo, but depletion of LATS1 expression restored the invasive phenotype. Further observation indicated that YAP pathway was required for LATS1-induced inhibition of cell growth and invasion, and LATS1 restrained nuclear transfer of YAP, downregulated YAP, PCNA, CTGF, MMP-2, MMP-9, Bcl-2 and CyclinD1 expression and upregulated p-YAP and Bax expression. Our findings suggest that LATS1 is a potential candidate tumor suppressor and inhibits the growth and metastasis of GC cells via downregulation of the YAP signaling.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Ge Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Shao-Jun Chu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Wen-Wen Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Li-Qiong Xia
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Yun-Min Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Wei Da
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Qun Sun
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
44
|
Chen C, Choudhury S, Wangsa D, Lescott CJ, Wilkins DJ, Sripadhan P, Liu X, Wangsa D, Ried T, Moskaluk C, Wick MJ, Glasgow E, Schlegel R, Agarwal S. A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug. Sci Rep 2017; 7:11410. [PMID: 28900283 PMCID: PMC5595986 DOI: 10.1038/s41598-017-11764-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Adenoid cystic carcinomas (ACC) are rare salivary gland cancers with a high incidence of metastases. In order to study this tumor type, a reliable model system exhibiting the molecular features of this tumor is critical, but none exists, thereby inhibiting in-vitro studies and the analysis of metastatic behavior. To address this deficiency, we have coupled an efficient method to establish tumor cell cultures, conditional reprogramming (CR), with a rapid, reproducible and robust in-vivo zebrafish model. We have established cell cultures from two individual ACC PDX tumors that maintain the characteristic MYB translocation. Additional mutations found in one ACC culture also seen in the PDX tumor. Finally, the CR/zebrafish model mirrors the PDX mouse model and identifies regorafenib as a potential therapeutic drug to treat this cancer type that mimic the drug sensitivity profile in PDX model, further confirming the unique advantages of multiplex system.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Sujata Choudhury
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Darawalee Wangsa
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Chamille J Lescott
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Devan J Wilkins
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Praathibha Sripadhan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Danny Wangsa
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Thomas Ried
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher Moskaluk
- Department of Pathology, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Eric Glasgow
- Department of Oncology, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA.
| |
Collapse
|
45
|
雷 亮, 杨 延, 刘 江, 刘 德. 神经营养因子和趋化因子与胰腺癌神经浸润的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1265-1271. [DOI: 10.11569/wcjd.v25.i14.1265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
胰腺癌癌细胞浸润神经组织, 沿神经或进入神经束膜内沿束膜间隙浸润生长, 即发生神经浸润(perineural invasion, PNI). PNI是特殊的肿瘤转移通路, 在胰腺癌中的发生率极高, 为胰腺癌的重要生物学特性之一, 被认为是导致胰腺癌手术后高复发率和胰腺癌相关疼痛的最主要原因之一, 与患者不良预后和低存活率密切相关. PNI发生的机制十分复杂, 涉及多种生物分子和信号途径. 神经营养因子和趋化因子参与相关信号通路, 促进癌细胞神经交互作用, 导致胰腺癌PNI发生, 在胰腺癌PNI中扮演重要角色. 本文将神经营养因子家族和趋化因子与胰腺癌PNI的研究进展作一综述.
Collapse
|
46
|
The long noncoding RNA HOTAIR activates the Hippo pathway by directly binding to SAV1 in renal cell carcinoma. Oncotarget 2017; 8:58654-58667. [PMID: 28938586 PMCID: PMC5601682 DOI: 10.18632/oncotarget.17414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/14/2017] [Indexed: 12/05/2022] Open
Abstract
The long noncoding RNA HOTAIR promotes the development and progression of several tumors. Here, the clinical significance and role of HOTAIR in renal cell carcinoma (RCC) tumorigenesis were explored. The results showed that increased expression of HOTAIR predicted a poor prognosis of RCC after surgery. HOTAIR promoted RCC cell proliferation and growth in vitro and in vivo. The expressions of HOTAIR and Salvador homolog 1 (SAV1) were inversely correlated in clinical RCC samples. HOTAIR downregulated SAV1 by directly binding to the SAV1 protein and enhanced histone H3K27 methylation. Loss of function of SAV1 activated the Hippo pathway. HOTAIR could be a potential therapeutic target in RCC.
Collapse
|
47
|
Li N, Xie C, Lu N. Crosstalk between Hippo signalling and miRNAs in tumour progression. FEBS J 2017; 284:1045-1055. [PMID: 27973704 DOI: 10.1111/febs.13985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/16/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
The Hippo signalling pathway co-ordinately modulates cell regeneration and organ size, and its deregulation contributes to tumorigenesis through many cellular processes, including overproliferation, apoptosis resistance and cell migration. Recent discoveries have shed new light on how microRNAs (miRNAs) are closely linked to the Hippo pathway in tumour progression. Hippo signalling has been reported to affect widespread miRNA biogenesis. In turn, several miRNAs regulate Hippo signalling, which contributes to carcinogenesis. This article will provide an overview of the crosstalk between Hippo signalling and miRNAs in the development of cancer and further appraise potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
48
|
Gu JJ, Rouse C, Xu X, Wang J, Onaitis MW, Pendergast AM. Inactivation of ABL kinases suppresses non-small cell lung cancer metastasis. JCI Insight 2016; 1:e89647. [PMID: 28018973 DOI: 10.1172/jci.insight.89647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current therapies to treat non-small cell lung carcinoma (NSCLC) have proven ineffective owing to transient, variable, and incomplete responses. Here we show that ABL kinases, ABL1 and ABL2, promote metastasis of lung cancer cells harboring EGFR or KRAS mutations. Inactivation of ABL kinases suppresses NSCLC metastasis to brain and bone, and other organs. ABL kinases are required for expression of prometastasis genes. Notably, ABL1 and ABL2 depletion impairs extravasation of lung adenocarcinoma cells into the lung parenchyma. We found that ABL-mediated activation of the TAZ and β-catenin transcriptional coactivators is required for NSCLC metastasis. ABL kinases activate TAZ and β-catenin by decreasing their interaction with the β-TrCP ubiquitin ligase, leading to increased protein stability. High-level expression of ABL1, ABL2, and a subset of ABL-dependent TAZ- and β-catenin-target genes correlates with shortened survival of lung adenocarcinoma patients. Thus, ABL-specific allosteric inhibitors might be effective to treat metastatic lung cancer with an activated ABL pathway signature.
Collapse
Affiliation(s)
- Jing Jin Gu
- Department of Pharmacology and Cancer Biology
| | | | - Xia Xu
- Department of Pharmacology and Cancer Biology
| | - Jun Wang
- Department of Pharmacology and Cancer Biology
| | - Mark W Onaitis
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Surgery, University of California, San Diego, San Diego, California, USA
| | | |
Collapse
|
49
|
A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun 2016; 7:13781. [PMID: 28000790 PMCID: PMC5187498 DOI: 10.1038/ncomms13781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, but its molecular heterogeneity hampers the design of targeted therapies. Currently, the only therapeutic option for advanced HCC is Sorafenib, an inhibitor whose targets include RAF. Unexpectedly, RAF1 expression is reduced in human HCC samples. Modelling RAF1 downregulation by RNAi increases the proliferation of human HCC lines in xenografts and in culture; furthermore, RAF1 ablation promotes chemical hepatocarcinogenesis and the proliferation of cultured (pre)malignant mouse hepatocytes. The phenotypes depend on increased YAP1 expression and STAT3 activation, observed in cultured RAF1-deficient cells, in HCC xenografts, and in autochthonous liver tumours. Thus RAF1, although essential for the development of skin and lung tumours, is a negative regulator of hepatocarcinogenesis. This unexpected finding highlights the contribution of the cellular/tissue environment in determining the function of a protein, and underscores the importance of understanding the molecular context of a disease to inform therapy design.
The kinase RAF1 usually exerts pro-tumorigenic functions promoting proliferation in RAS-driven cancers. Here, the authors using a mouse model of HCC and clinical data describe an unexpected oncosuppressor role of RAF1 in hepatocarcinoma development linked to a gp130-dependent Stat3 activation and YAP1 regulation.
Collapse
|
50
|
Berens EB, Sharif GM, Wellstein A, Glasgow E. Testing the Vascular Invasive Ability of Cancer Cells in Zebrafish (Danio Rerio). J Vis Exp 2016:55007. [PMID: 27842376 PMCID: PMC5226185 DOI: 10.3791/55007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cancer cell vascular invasion and extravasation is a hallmark of metastatic progression. Traditional in vitro models of cancer cell invasion of endothelia typically lack the fluid dynamics that invading cells are otherwise exposed to in vivo. However, in vivo systems such as mouse models, though more physiologically relevant, require longer experimental timescales and present unique challenges associated with monitoring and data analysis. Here we describe a zebrafish assay that seeks to bridge this technical gap by allowing for the rapid assessment of cancer cell vascular invasion and extravasation. The approach involves injecting fluorescent cancer cells into the precardiac sinus of transparent 2-day old zebrafish embryos whose vasculature is marked by a contrasting fluorescent reporter. Following injection, the cancer cells must survive in circulation and subsequently extravasate from vessels into tissues in the caudal region of the embryo. Extravasated cancer cells are efficiently identified and scored in live embryos via fluorescence imaging at a fixed timepoint. This technique can be modified to study intravasation and/or competition amongst a heterogeneous mixture of cancer cells by changing the injection site to the yolk sac. Together, these methods can evaluate a hallmark behavior of cancer cells and help uncover mechanisms indicative of malignant progression to the metastatic phenotype.
Collapse
Affiliation(s)
- Eric B Berens
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University
| | - Ghada M Sharif
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University;
| | - Eric Glasgow
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University;
| |
Collapse
|