1
|
Chen X, Guo Y, Gu X, Wen D. Functional genomic imaging (FGI), a virtual tool for visualization of functional gene expression modules in heterogeneous tumor samples. Biol Direct 2025; 20:11. [PMID: 39838379 PMCID: PMC11753169 DOI: 10.1186/s13062-025-00598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
Advances in sequencing technologies are reshaping clinical diagnostics, prompting the development of new software tools to decipher big data. To this end, we developed functional genomic imaging (FGI), a visualization tool designed to assist clinicians in interpreting RNA-Seq results from patient samples. FGI uses weighted gene co-expression network analysis (WGCNA), followed by a modified Phenograph clustering algorithm to identify co-expression gene clusters. These gene modules were annotated and projected onto a t-SNE map for visualization. Annotation of FGI gene clusters revealed three categories: tissue-specific, functional, and positional. These clusters may be used to build tumor subtypes with pre-annotated functions. At the multi-cancer cohort level, tissue-specific clusters are enriched, whereas at the single cancer level, such as in lung cancer or ovarian cancer, positional clusters can be more prominent. Moreover, FGI analysis could also reveal molecular tumor subtypes not documented in clinical records and generated a more detailed co-expression gene cluster map. Based on different levels of FGI modeling, each individual tumor sample can be customized to display various types of information such as tissue origin, molecular subtypes, immune activation status, stromal signaling pathways, cell cycle activity, and potential amplicon regions which can aid in diagnosis and guide treatment decisions. Our results highlight the potential of FGI as a robust visualization tool for personalized medicine in molecular diagnosis.
Collapse
Affiliation(s)
- Xinlei Chen
- Shanghai LIDE Biotech Co., Ltd., Shanghai, 201203, China
| | - Youbing Guo
- Shanghai LIDE Biotech Co., Ltd., Shanghai, 201203, China
| | - Xiaorong Gu
- Shanghai LIDE Biotech Co., Ltd., Shanghai, 201203, China.
| | - Danyi Wen
- Shanghai LIDE Biotech Co., Ltd., Shanghai, 201203, China.
| |
Collapse
|
2
|
Mao S, Wang Y, Chao N, Zeng L, Zhang L. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals immune suppression subtypes and establishes a novel signature for determining the prognosis in lung adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1697-1713. [PMID: 38616208 DOI: 10.1007/s13402-024-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with lower survival rates. Recent advancements in targeted therapies and immunotherapies targeting immune checkpoints have achieved remarkable success, there is still a large percentage of LUAD that lacks available therapeutic options. Due to tumor heterogeneity, the diagnosis and treatment of LUAD are challenging. Exploring the biology of LUAD and identifying new biomarker and therapeutic targets options are essential. METHOD We performed single-cell RNA sequencing (scRNA-seq) of 6 paired primary and adjacent LUAD tissues, and integrative omics analysis of the scRNA-seq, bulk RNA-seq and whole-exome sequencing data revealed molecular subtype characteristics. Our experimental results confirm that CDC25C gene can serve as a potential marker for poor prognosis in LUAD. RESULTS We investigated aberrant gene expression in diverse cell types in LUAD via the scRNA-seq data. Moreover, multi-omics clustering revealed four subgroups defined by transcriptional profile and molecular subtype 4 (MS4) with poor survival probability, and immune cell infiltration signatures revealed that MS4 tended to be the immunosuppressive subtype. Our study revealed that the CDC25C gene can be a distinct prognostic biomarker that indicates immune infiltration levels and response to immunotherapy in LUAD patients. Our experimental results concluded that CDC25C expression affects lung cancer cell invasion and migration, might play a key role in regulating Epithelial-Mesenchymal Transition (EMT) pathways. CONCLUSIONS Our multi-omics result revealed a comprehensive set of molecular attributes associated with prognosis-related genes in LUAD at the cellular and tissue level. Identification of a subtype of immunosuppressive TME and prognostic signature for LUAD. We identified the cell cycle regulation gene CDC25C affects lung cancer cell invasion and migration, which can be used as a potential biomarker for LUAD.
Collapse
Affiliation(s)
- Shengqiang Mao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yilong Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ningning Chao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lingyan Zeng
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Feng F, Xu W, Lian C, Wang L, Wang Z, Chen H, Wang X, Wang H, Zhang J. Tuberculosis to lung cancer: application of tuberculosis signatures in identification of lung adenocarcinoma subtypes and marker screening. J Cancer 2024; 15:5329-5350. [PMID: 39247607 PMCID: PMC11375533 DOI: 10.7150/jca.97898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/21/2024] [Indexed: 09/10/2024] Open
Abstract
Background: There is an association between LUAD and TB, and TB increases the risk of lung adenocarcinogenesis. However, the role of TB in the development of lung adenocarcinoma has not been clarified. Methods: DEGs from TB and LUAD lung samples were obtained to identify TB-LUAD-shared DEGs. Consensus Clustering was performed on the TCGA cohort to characterize unique changes in TB transcriptome-derived lung adenocarcinoma subtypes. Prognostic models were constructed based on TB signatures to explore the characterization of subgroups. Finally, experimental validation and single-cell analysis of potential markers were performed. Results: We characterized three molecular subtypes with unique clinical features, cellular infiltration, and pathway change manifestations. We constructed and validated TB-related Signature in six cohorts. TB-related Signature has characteristic alterations, and can be used as an effective predictor of immunotherapy response. Prognostically relevant novel markers KRT80, C1QTNF6, and TRPA1 were validated by RT-qPCR. The association between KRT80 and lung adenocarcinoma disease progression was verified in Bulk transcriptome and single-cell transcriptome. Conclusion: For the first time, a comprehensive bioinformatics analysis of tuberculosis signatures was used to identify subtypes of lung adenocarcinoma. The TB-related Signature predicted prognosis and identified potential markers. This result reveals a potential pathogenic association of tuberculosis in the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fan Feng
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, China
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| | - Wanjie Xu
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, 233030, China
| | - Luyao Wang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, 233030, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, 233030, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of IHM, First Affiliated Hospital, Bengbu Medical University, Bengbu, 233030, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| |
Collapse
|
4
|
Amilo D, Izuchukwu C, Sadri K, Yao HR, Hincal E, Shehu Y. A fractional-order model for optimizing combination therapy in heterogeneous lung cancer: integrating immunotherapy and targeted therapy to minimize side effects. Sci Rep 2024; 14:18484. [PMID: 39122747 PMCID: PMC11395867 DOI: 10.1038/s41598-024-66531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/12/2024] Open
Abstract
This research presents a novel approach to address the complexities of heterogeneous lung cancer dynamics through the development of a Fractional-Order Model. Focusing on the optimization of combination therapy, the model integrates immunotherapy and targeted therapy with the specific aim of minimizing side effects. Notably, our approach incorporates a clever fusion of Proportional-Integral-Derivative (PID) feedback controls alongside the optimization process. Unlike previous studies, our model incorporates essential equations accounting for the interaction between regular and mutated cancer cells, delineates the dynamics between immune cells and mutated cancer cells, enhances immune cell cytotoxic activity, and elucidates the influence of genetic mutations on the spread of cancer cells. This refined model offers a comprehensive understanding of lung cancer progression, providing a valuable tool for the development of personalized and effective treatment strategies. the findings underscore the potential of the optimized treatment strategy in achieving key therapeutic goals, including primary tumor control, metastasis limitation, immune response enhancement, and controlled genetic mutations. The dynamic and adaptive nature of the treatment approach, coupled with economic considerations and memory effects, positions the research at the forefront of advancing precision and personalized cancer therapeutics.
Collapse
Affiliation(s)
- David Amilo
- Mathematics Research Center, Near East University TRNC, Mersin 10, 99138, Nicosia, Turkey
- Department of Mathematics, Near East University TRNC, Mersin 10, 99138, Nicosia, Turkey
- Faculty of Art and Science, University of Kyrenia, Kyrenia, TRNC, Mersin 10, Kyrenia, Turkey
| | - Chinedu Izuchukwu
- School of Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa.
| | - Khadijeh Sadri
- Mathematics Research Center, Near East University TRNC, Mersin 10, 99138, Nicosia, Turkey
- Department of Mathematics, Near East University TRNC, Mersin 10, 99138, Nicosia, Turkey
- Faculty of Art and Science, University of Kyrenia, Kyrenia, TRNC, Mersin 10, Kyrenia, Turkey
| | - Hao-Ren Yao
- National Institutes of Health, Bethesda, MD, USA
| | - Evren Hincal
- Mathematics Research Center, Near East University TRNC, Mersin 10, 99138, Nicosia, Turkey
- Department of Mathematics, Near East University TRNC, Mersin 10, 99138, Nicosia, Turkey
- Faculty of Art and Science, University of Kyrenia, Kyrenia, TRNC, Mersin 10, Kyrenia, Turkey
| | - Yekini Shehu
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
5
|
Khan F, Pitstick L, Lara J, Ventrella R. Rho-Associated Protein Kinase Activity Is Required for Tissue Homeostasis in the Xenopus laevis Ciliated Epithelium. J Dev Biol 2024; 12:17. [PMID: 38921484 PMCID: PMC11204898 DOI: 10.3390/jdb12020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Lung epithelial development relies on the proper balance of cell proliferation and differentiation to maintain homeostasis. When this balance is disturbed, it can lead to diseases like cancer, where cells undergo hyperproliferation and then can undergo migration and metastasis. Lung cancer is one of the deadliest cancers, and even though there are a variety of therapeutic approaches, there are cases where treatment remains elusive. The rho-associated protein kinase (ROCK) has been thought to be an ideal molecular target due to its role in activating oncogenic signaling pathways. However, in a variety of cases, inhibition of ROCK has been shown to have the opposite outcome. Here, we show that ROCK inhibition with y-27632 causes abnormal epithelial tissue development in Xenopus laevis embryonic skin, which is an ideal model for studying lung cancer development. We found that treatment with y-27632 caused an increase in proliferation and the formation of ciliated epithelial outgrowths along the tail edge. Our results suggest that, in certain cases, ROCK inhibition can disturb tissue homeostasis. We anticipate that these findings could provide insight into possible mechanisms to overcome instances when ROCK inhibition results in heightened proliferation. Also, these findings are significant because y-27632 is a common pharmacological inhibitor used to study ROCK signaling, so it is important to know that in certain in vivo developmental models and conditions, this treatment can enhance proliferation rather than lead to cell cycle suppression.
Collapse
Affiliation(s)
- Fayhaa Khan
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (F.K.); (J.L.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (F.K.); (J.L.)
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
6
|
Haga Y, Sakamoto Y, Kajiya K, Kawai H, Oka M, Motoi N, Shirasawa M, Yotsukura M, Watanabe SI, Arai M, Zenkoh J, Shiraishi K, Seki M, Kanai A, Shiraishi Y, Yatabe Y, Matsubara D, Suzuki Y, Noguchi M, Kohno T, Suzuki A. Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma. Nat Commun 2023; 14:8375. [PMID: 38102134 PMCID: PMC10724178 DOI: 10.1038/s41467-023-43732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The mechanism underlying the development of tumors, particularly at early stages, still remains mostly elusive. Here, we report whole-genome long and short read sequencing analysis of 76 lung cancers, focusing on very early-stage lung adenocarcinomas such as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma. The obtained data is further integrated with bulk and spatial transcriptomic data and epigenomic data. These analyses reveal key events in lung carcinogenesis. Minimal somatic mutations in pivotal driver mutations and essential proliferative factors are the only detectable somatic mutations in the very early-stage of AIS. These initial events are followed by copy number changes and global DNA hypomethylation. Particularly, drastic changes are initiated at the later AIS stage, i.e., in Noguchi type B tumors, wherein cancer cells are exposed to the surrounding microenvironment. This study sheds light on the pathogenesis of lung adenocarcinoma from integrated pathological and molecular viewpoints.
Collapse
Affiliation(s)
- Yasuhiko Haga
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yoshitaka Sakamoto
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Keiko Kajiya
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Hitomi Kawai
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Miho Oka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Ono Pharmaceutical Co., Ltd., Ibaraki, Japan
| | - Noriko Motoi
- Department of Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Pathology, Saitama Cancer Center, 780 Komuro, Ina, Kita-Adachi-gun, Saitama, 362-0806, Japan
| | - Masayuki Shirasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masaya Yotsukura
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Miyuki Arai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Junko Zenkoh
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasushi Yatabe
- Department of Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Masayuki Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Clinical Cancer Research Division, Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
7
|
Vasiukov G, Zou Y, Senosain MF, Rahman JSM, Antic S, Young KM, Grogan EL, Kammer MN, Maldonado F, Reinhart-King CA, Massion PP. Cancer-associated fibroblasts in early-stage lung adenocarcinoma correlate with tumor aggressiveness. Sci Rep 2023; 13:17604. [PMID: 37848457 PMCID: PMC10582049 DOI: 10.1038/s41598-023-43296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the predominant type of lung cancer in the U.S. and exhibits a broad variety of behaviors ranging from indolent to aggressive. Identification of the biological determinants of LUAD behavior at early stages can improve existing diagnostic and treatment strategies. Extracellular matrix (ECM) remodeling and cancer-associated fibroblasts play a crucial role in the regulation of cancer aggressiveness and there is a growing need to investigate their role in the determination of LUAD behavior at early stages. We analyzed tissue samples isolated from patients with LUAD at early stages and used imaging-based biomarkers to predict LUAD behavior. Single-cell RNA sequencing and histological assessment showed that aggressive LUADs are characterized by a decreased number of ADH1B+ CAFs in comparison to indolent tumors. ADH1B+ CAF enrichment is associated with distinct ECM and immune cell signatures in early-stage LUADs. Also, we found a positive correlation between the gene expression of ADH1B+ CAF markers in early-stage LUADs and better survival. We performed TCGA dataset analysis to validate our findings. Identified associations can be used for the development of the predictive model of LUAD aggressiveness and novel therapeutic approaches.
Collapse
Affiliation(s)
- Georgii Vasiukov
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yong Zou
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria-Fernanda Senosain
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamshedur S M Rahman
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sanja Antic
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine M Young
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric L Grogan
- Division of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael N Kammer
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fabien Maldonado
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Pierre P Massion
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Liu W, Yang H, Zhi F, Feng Y, Luo H, Zhu Y, Lei Y. Macrophage migration inhibitory factor may contribute to the occurrence of multiple primary lung adenocarcinomas. Clin Transl Med 2023; 13:e1368. [PMID: 37784249 PMCID: PMC10545892 DOI: 10.1002/ctm2.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND This study aimed to identify the key genes involved in the development of multiple primary lung cancers. METHODS Differential expression analysis was performed, followed by comparing the infiltration levels of 22 immune cell types between multiple and single primary lung adenocarcinomas. Marker genes for epithelial cells with different proportions between the two types of lung adenocarcinomas were identified. The common genes between the marker genes and differentially expressed genes were identified. Finally, the effects of the key genes were tested on the in vitro proliferation, migration and morphology. RESULTS The infiltration levels of helper follicular T cells, resting NK cells, activated NK cells, M2 macrophages and resting mast cells were higher in the patients with multiple than in those with single primary lung adenocarcinomas. A total of 1553 differentially expressed genes and 4414 marker genes of epithelial cells were identified. Logistic regression analysis was performed on the 164 resulting genes. The macrophage migration inhibitory factor expression was positively associated with the occurrence of multiple primary lung adenocarcinomas. Moreover, its signalling pathway was the key pathway among the epithelial cells and multiple and single primary lung adenocarcinoma cells, and it was upregulated in lung adenocarcinoma cells. It also increased the expression of lung cancer markers, including NES and CA125, induced morphological changes in alveolar epithelial type II cells, and promoted their proliferation, migration and invasion. CONCLUSIONS Multiple and single primary lung adenocarcinomas have different tumour immune microenvironments, and migration inhibitory factor may be a key factor in the occurrence of multiple primary lung adenocarcinomas.
Collapse
Affiliation(s)
- Wei Liu
- Department of Thoracic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hao‐Shuai Yang
- Department of Thoracic SurgeryChina‐Japan Friendship HospitalBeijingChina
| | - Fei‐Hang Zhi
- Department of Thoracic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yan‐Fen Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdongChina
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouGuangdongChina
| | - Hong‐He Luo
- Department of Thoracic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ying Zhu
- Department of RadiologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yi‐Yan Lei
- Department of Thoracic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
9
|
Ji XY, Li H, Chen HH, Lin J. Diagnostic performance of RASSF1A and SHOX2 methylation combined with EGFR mutations for differentiation between small pulmonary nodules. J Cancer Res Clin Oncol 2023; 149:8557-8571. [PMID: 37097393 DOI: 10.1007/s00432-023-04745-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND AND AIM Aberrant methylation of Ras association domain family 1, isoform A (RASSF1A), and short-stature homeobox gene 2 (SHOX2) promoters has been validated as a pair of valuable biomarkers for diagnosing early lung adenocarcinomas (LUADs). Epidermal growth factor receptor (EGFR) is the key driver mutation in lung carcinogenesis. This study aimed to investigate the aberrant promoter methylation of RASSF1A and SHOX2, and the genetic mutation of EGFR in 258 specimens of early LUADs. METHODS We retrospectively selected 258 paraffin-embedded samples of pulmonary nodules measuring 2 cm or less in diameter and evaluated the diagnostic performance of individual biomarker assays and multiple panels between noninvasive (group 1) and invasive lesions (groups 2A and 2B). Then, we investigated the interaction between genetic and epigenetic alterations. RESULTS The degree of RASSF1A and SHOX2 promoter methylation and EGFR mutation was significantly higher in invasive lesions than in noninvasive lesions. The three biomarkers distinguished between noninvasive and invasive lesions with reliable sensitivity and specificity: 60.9% sensitivity [95% confidence interval (CI) 52.41-68.78] and 80.0% specificity (95% CI 72.14-86.07). The novel panel biomarkers could further discriminate among three invasive pathological subtypes (area under the curve value > 0.6). The distribution of RASSF1A methylation and EGFR mutation was considerably exclusive in early LUAD (P = 0.002). CONCLUSION DNA methylation of RASSF1A and SHOX2 is a pair of promising biomarkers, which may be used in combination with other driver alterations, such as EGFR mutation, to support the differential diagnosis of LUADs, especially for stage I.
Collapse
Affiliation(s)
- Xiang-Yu Ji
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Hong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui-Hui Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China.
- National Virtual and Reality Experimental Education Center for Medical Morphology, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Ran X, Tong L, Chenghao W, Qi L, Bo P, Jiaying Z, Jun W, Linyou Z. Single-cell data analysis of malignant epithelial cell heterogeneity in lung adenocarcinoma for patient classification and prognosis prediction. Heliyon 2023; 9:e20164. [PMID: 37809682 PMCID: PMC10559937 DOI: 10.1016/j.heliyon.2023.e20164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death. Most advanced lung adenocarcinoma (LUAD) patients have poor survival because of drug resistance and relapse. Neglecting intratumoral heterogeneity might be one of the reasons for treatment insensitivity, while single-cell RNA sequencing (scRNA-seq) technologies can provide transcriptome information at the single-cell level. Herein, we combined scRNA-seq and bulk RNA-seq data of LUAD and identified a novel cluster of malignant epithelial cells - KRT81+ malignant epithelial cells - associated with worse prognoses. Further analysis revealed that the hypoxia and EMT pathways of these cells were activated to predispose them to differentiate into metastatic lung adenocarcinoma cells. Finally, we also studied the role of these tumor cells in the immune microenvironment and their role in the classification and prognosis prediction of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Xu Ran
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Lu Tong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Wang Chenghao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Li Qi
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Peng Bo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Zhao Jiaying
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Wang Jun
- Department of Thoracic Surgery, Baoji Central Hospital, Baoji, China
| | - Zhang Linyou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
He X, Su Y, Liu P, Chen C, Chen C, Guan H, Lv X, Guo W. Machine learning-based immune prognostic model and ceRNA network construction for lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:7379-7392. [PMID: 36939925 DOI: 10.1007/s00432-023-04609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/27/2023] [Indexed: 03/21/2023]
Abstract
PURPOSE Lung adenocarcinoma (LUAD) is a malignant tumor with a high lethality rate. Immunotherapy has become a breakthrough in cancer treatment and improves patient survival and prognosis. Therefore, it is necessary to find new immune-related markers. However, the current research on immune-related markers in LUAD is not sufficient. Therefore, there is a need to find new immune-related biomarkers to help treat LUAD patients. METHODS In this study, a bioinformatics approach combined with a machine learning approach screened reliable immune-related markers to construct a prognostic model to predict the overall survival (OS) of LUAD patients, thus promoting the clinical application of immunotherapy in LUAD. The experimental data were obtained from The Cancer Genome Atlas (TCGA) database, including 535 LUAD and 59 healthy control samples. Firstly, the Hub gene was screened using a bioinformatics approach combined with the Support Vector Machine Recursive Feature Elimination algorithm; then, a multifactorial Cox regression analysis by constructing an immune prognostic model for LUAD and a nomogram to predict the OS rate of LUAD patients. Finally, the regulatory mechanism of Hub genes in LUAD was analyzed by ceRNA. RESULTS Five genes, ADM2, CDH17, DKK1, PTX3, and AC145343.1, were screened as potential immune-related genes in LUAD. Among them, ADM2 and AC145343.1 had a good prognosis in LUAD patients (HR < 1) and were novel markers. The remaining three genes screened were associated with poor prognosis in LUAD patients (HR > 1). In addition, the experimental results showed that patients in the low-risk group had better OS rates than those in the high-risk group (P < 0.001). CONCLUSION In this paper, we propose an immune prognostic model to predict OS rate in LUAD patients and show the correlation between five immune genes and the level of immune-related cell infiltration. It provides new markers and additional ideas for immunotherapy in patients with LUAD.
Collapse
Affiliation(s)
- Xiaoqian He
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Ying Su
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Pei Liu
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi, 830046, China.
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Haoqin Guan
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi, 830046, China.
| | - Wenjia Guo
- Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
12
|
Topper MJ, Anagnostou V, Marrone KA, Velculescu VE, Jones PA, Brahmer JR, Baylin SB, Hostetter GH. Derivation of CD8 + T cell infiltration potentiators in non-small-cell lung cancer through tumor microenvironment analysis. iScience 2023; 26:107095. [PMID: 37456850 PMCID: PMC10344796 DOI: 10.1016/j.isci.2023.107095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/27/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Non-small-cell lung cancer remains a deadly form of human cancer even in the era of immunotherapy with existing immunotherapy strategies currently only benefiting a minority of patients. Therefore, the derivation of treatment options, which might extend the promise of immunotherapy to more patients, remains of paramount importance. Here, we define using TCGA lung squamous and lung adenocarcinoma RNAseq datasets a significant correlation between epigenetic therapy actionable interferon genes with both predicted tumor immune score generally, and CD8A specifically. IHC validation using primary sample tissue microarrays confirmed a pronounced positive association between CD8+ T cell tumor infiltration and the interferon-associated targets, CCL5 and MDA5. We next extended these findings to the assessment of clinical trial biopsies from patients with advanced non-small-cell lung cancer treated with epigenetic therapy with and without concurrent immunotherapy. These analyses revealed treatment-associated increases in both CD8+ T cell intratumoral infiltration and microenvironment CCL5 staining intensity.
Collapse
Affiliation(s)
- Michael J. Topper
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valsamo Anagnostou
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen A. Marrone
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victor E. Velculescu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Julie R. Brahmer
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen B. Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Van Andel Institute (VAI), Grand Rapids, MI, USA
| | - Galen H. Hostetter
- Van Andel Institute (VAI), Grand Rapids, MI, USA
- Department of Pathology, Van Andel Institute (VAI), Grand Rapids, MI, USA
| |
Collapse
|
13
|
Wang L, Chen Q, Liu T, Bai T, Zhang M, Hu Y, Li J, Chang F. Role and mechanism of benzo[a]pyrene in the transformation of chronic obstructive pulmonary disease into lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:4741-4760. [PMID: 36229541 DOI: 10.1007/s00432-022-04353-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/07/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE This experiment is explores the genes that play a key role, their expression changes and the biological processes in the transformation of chronic obstructive pulmonary disease (COPD) into lung adenocarcinoma (LAC). Meanwhile, identify the effects of Benzo[a]pyrene (BaP) in the conversion of COPD into LAC. METHODS 1. Differential expression genes of COPD and LAC were screened and analyzed by high-throughput microarray data between the two diseases and their respective control groups. 2. The screened genes were used for routine bioinformatics analysis such as functional analysis, expression verification, protein interaction analysis and functional enrichment. 3. Cigarette smoke extract (CSE) combined with lipopolysaccharide (LPS) was used to establish an in vitro COPD model. 4. MTT assay was used to detect the influence of B(a)P in effect on A549 cell proliferation. CCK-8, Transwell invasion test and scratch test were used to detect the cell proliferation, invasion and migration ability, while qPCR and Western Blot tests were used to observe the cell proliferation, apoptosis and changes in related indicators such as EMT. 5. Experimental method of separately adding agonists (tBHQ) and inhibitors (DIC) of NQO1 was used to confirm the effect of NQO1 on A549 cell proliferation, apoptosis, migration and invasion. 6. To further clarify whether BaP exerted effect on cell proliferation, apoptosis, migration and invasion through NQO1, we knocked down NQO1 gene and then infecting cells with BaP. RESULTS 1. We screened genes of COPD and LAC using datasets from GSE151052, GSE118370, and GSE140797. After screening, the genes upregulated in COPD and downregulated in LAC were RTKN2, SLC6A4, and HBB, the gene downregulated in COPD and upregulated in LAC was NQO1, the genes downregulated in both COPD and LAC were FPR1, LYVE1 and PKHD1L1. 2. The main signaling pathways in which the target genes were enriched are cell cycle, EMT, PI3K/AKT, and apoptosis. In the data included GEPIA, PKHD1L1, FPR1, LYVE1, RTKN2, HBB, and SLC6A4 were significantly downregulated and NQO1 was upregulated in LAC relative to controls. In addition, there were 46 interaction proteins in the target genes, and the functions they enriched included hydrogen peroxide catabolism, etc. 3. When A549 cell was stimulated with 100 ng/mL LPS+ 10% CSE, the COX-2 expression indicated that COPD model in vitro was successfully established. 4. The optimal dose and action time were screened which were 1 μM and 24 h. Compared to the control group, COPD and BaP group increased cell proliferation and invasion capabilities. On the basis of COPD, adding BaP could further increase the proliferation and migration capabilities. Interestingly, the levels of NQO1 decreased in COPD models, while increased by BaP. 5. tBHQ can increase the proliferation and migration capacity of A549 cells, which is inhibited by the addition of DIC. 6. The enhanced proliferation, migration and invasion of A549 cells by BaP were attenuated after knockdown of NQO1. CONCLUSION Our study reveals that PKHD1L1, FPR1, LYVE1, RTKN2, HBB, SLC6A4 and NQO1 may play an important role in the conversion of COPD to LAC. High NQO1 expression may increase the proliferation and migration ability of A549 cells, and BaP may promote the EMT state by increasing the expression of NQO1, thereby making the COPD model in vitro expose the tumor characteristics.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010000, China
| | - Qi Chen
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010000, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tingting Liu
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010000, China
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Tuya Bai
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010000, China
- New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China
| | - Mengdi Zhang
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010000, China
- New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China
| | - Yuxia Hu
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010000, China.
- New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China.
- New Drug Safety Evaluation Research Center, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, China.
| | - Jun Li
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010000, China.
- New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China.
- New Drug Safety Evaluation Research Center, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, China.
| | - Fuhou Chang
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010000, China.
- New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China.
| |
Collapse
|
14
|
Hayashi T, Kishi M, Takamochi K, Hosoya M, Kohsaka S, Kishikawa S, Ura A, Sano K, Sasahara N, Suehara Y, Takahashi F, Saito T, Suzuki K, Yao T. Expression of paired box 9 defines an aggressive subset of lung adenocarcinoma preferentially occurring in smokers. Histopathology 2023; 82:672-683. [PMID: 36527228 DOI: 10.1111/his.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
AIMS A distinct subset of lung adenocarcinomas (LADs), arising from a series of peripheral lung cells defined as the terminal respiratory unit (TRU), is characterised by thyroid transcription factor 1 (TTF-1) expression. The clinical relevance of transcription factors (TFs) other than TTF-1 remains unknown in LAD and was explored in the present study. METHODS AND RESULTS Seventy-one LAD samples were subjected to high-throughput transcriptome screening of LAD using cap analysis gene expression (CAGE) sequencing data; CAGE provides genome-wide expression levels of the transcription start sites (TSSs). In total, 1083 invasive LAD samples were subjected to immunohistochemical examination for paired box 9 (PAX9) and TTF-1 expression levels. PAX9 is an endoderm development-associated TF that most strongly and inversely correlates with the expression of TTF-1 TSS subsets. Immunohistochemically, PAX9 expression was restricted to the nuclei of ciliated epithelial and basal cells in the bronchi and bronchioles and the nuclei of epithelial cells of the bronchial glands; moreover, PAX9 expression was observed in 304 LADs (28%). PAX9-positive LADs were significantly associated with heavy smoking, non-lepidic subtype, EGFR wild-type tumours and PD-L1 expression (all P < 0.0001). All these characteristics were opposite to those of TRU-type LADs with TTF-1 expression. PAX9 expression was an independent prognostic factor for decreased overall survival (P = 0.022). CONCLUSIONS Our results revealed that PAX9 expression defines an aggressive subset of LADs preferentially occurring in smokers that may arise from bronchial or bronchiolar cells.
Collapse
Affiliation(s)
- Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Monami Kishi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Masaki Hosoya
- Department of Medical Oncology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo
| | - Satsuki Kishikawa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Ayako Ura
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Kei Sano
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo.,Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Noriko Sasahara
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | | |
Collapse
|
15
|
Liu C, Zhao W, Xie J, Lin H, Hu X, Li C, Shang Y, Wang Y, Jiang Y, Ding M, Peng M, Xu T, Hu A, Huang Y, Gao Y, Liu X, Liu J, Ma F. Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer. Front Immunol 2023; 14:1115291. [PMID: 36875128 PMCID: PMC9978193 DOI: 10.3389/fimmu.2023.1115291] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction The treatment response to neoadjuvant immunochemotherapy varies among patients with potentially resectable non-small cell lung cancers (NSCLC) and may have severe immune-related adverse effects. We are currently unable to accurately predict therapeutic response. We aimed to develop a radiomics-based nomogram to predict a major pathological response (MPR) of potentially resectable NSCLC to neoadjuvant immunochemotherapy using pretreatment computed tomography (CT) images and clinical characteristics. Methods A total of 89 eligible participants were included and randomly divided into training (N=64) and validation (N=25) sets. Radiomic features were extracted from tumor volumes of interest in pretreatment CT images. Following data dimension reduction, feature selection, and radiomic signature building, a radiomics-clinical combined nomogram was developed using logistic regression analysis. Results The radiomics-clinical combined model achieved excellent discriminative performance, with AUCs of 0.84 (95% CI, 0.74-0.93) and 0.81(95% CI, 0.63-0.98) and accuracies of 80% and 80% in the training and validation sets, respectively. Decision curves analysis (DCA) indicated that the radiomics-clinical combined nomogram was clinically valuable. Discussion The constructed nomogram was able to predict MPR to neoadjuvant immunochemotherapy with a high degree of accuracy and robustness, suggesting that it is a convenient tool for assisting with the individualized management of patients with potentially resectable NSCLC.
Collapse
Affiliation(s)
- Chaoyuan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| | - Junpeng Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha, China
| | - Xingsheng Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youlan Shang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yapeng Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingjia Jiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengge Ding
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Xu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ao'ran Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuda Huang
- Department of Ministry of science and technology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Gao
- Department of Basic Science, College of Chiropractic, Logan University, Chester field, MO, United States
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China.,Radiology Quality Control Center, Changsha, Hunan, China
| | - Fang Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
He T, Wu Z, Xia P, Wang W, Sun H, Yu L, Lv W, Hu J. The combination of a seven-autoantibody panel with computed tomography scanning can enhance the diagnostic efficiency of non-small cell lung cancer. Front Oncol 2022; 12:1047019. [DOI: 10.3389/fonc.2022.1047019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022] Open
Abstract
BackgroundNon-small cell lung cancer (NSCLC) is still of concern in differentiating it from benign disease. This study aims to validate the diagnostic efficacy of a novel seven-autoantibody (7-AAB) panel for the diagnosis of NSCLC.MethodsWe retrospectively enrolled 2650 patients who underwent both the 7-AAB panel test and CT scanning. We compared the sensitivity, specificity, and PPV of 7-AAB, CT, and PET-CT in the diagnosis of NSCLC in different subgroups. Then, we established a nomogram based on CT image features and the 7-AAB panel to further improve diagnostic efficiency. Moreover, we compared the pathological and molecular results of NSCLC patients in the 7-AABs positive group and the negative group to verify the prognostic value of the 7-AAB panel.ResultsThe strategy of a “both-positive rule” combination of 7-AABs and CT had a specificity of 95.4% and a positive predictive value (PPV) of 95.8%, significantly higher than those of CT or PET-CT used alone (P<0.05). The nomogram we established has passed the calibration test (P=0.987>0.05) with an AUC of 0.791. Interestingly, it was found that the 7-AABs positive group was associated with higher proportion of EGFR mutations (P<0.001), lower pathological differentiation degrees (P=0.018), more advanced pathological stages (P=0.040) and higher Ki-67 indexes (P=0.011) in patients with adenocarcinoma.ConclusionThis study shows that combination of a 7-AAB panel with CT has can significantly enhance the diagnostic efficiency of lung cancer. Moreover, the 7-AAB panel also has potential prognostic value and has reference significance for the formulation of the treatment plan.
Collapse
|
17
|
Sinjab A, Rahal Z, Kadara H. Cell-by-Cell: Unlocking Lung Cancer Pathogenesis. Cancers (Basel) 2022; 14:3424. [PMID: 35884485 PMCID: PMC9320562 DOI: 10.3390/cancers14143424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
For lung cancers, cellular trajectories and fates are strongly pruned by cell intrinsic and extrinsic factors. Over the past couple of decades, the combination of comprehensive molecular and genomic approaches, as well as the use of relevant pre-clinical models, enhanced micro-dissection techniques, profiling of rare preneoplastic lesions and surrounding tissues, as well as multi-region tumor sequencing, have all provided in-depth insights into the early biology and evolution of lung cancers. The advent of single-cell sequencing technologies has revolutionized our ability to interrogate these same models, tissues, and cohorts at an unprecedented resolution. Single-cell tracking of lung cancer pathogenesis is now transforming our understanding of the roles and consequences of epithelial-microenvironmental cues and crosstalk during disease evolution. By focusing on non-small lung cancers, specifically lung adenocarcinoma subtype, this review aims to summarize our knowledge base of tumor cells-of-origin and tumor-immune dynamics that have been primarily fueled by single-cell analysis of lung adenocarcinoma specimens at various stages of disease pathogenesis and of relevant animal models. The review will provide an overview of how recent reports are rewriting the mechanistic details of lineage plasticity and intra-tumor heterogeneity at a magnified scale thanks to single-cell studies of early- to late-stage lung adenocarcinomas. Future advances in single-cell technologies, coupled with analysis of minute amounts of rare clinical tissues and novel animal models, are anticipated to help transform our understanding of how diverse micro-events elicit macro-scale consequences, and thus to significantly advance how basic genomic and molecular knowledge of lung cancer evolution can be translated into successful targets for early detection and prevention of this lethal disease.
Collapse
Affiliation(s)
- Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Z.R.); (H.K.)
| | | | | |
Collapse
|
18
|
Chen J, Wen Y, Su H, Yu X, Hong R, Chen C, Su C. Deciphering Prognostic Value of TTN and Its Correlation With Immune Infiltration in Lung Adenocarcinoma. Front Oncol 2022; 12:877878. [PMID: 35875159 PMCID: PMC9304871 DOI: 10.3389/fonc.2022.877878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer, accounting for around 40%. Despite achievements in the treatment approach, the prognosis is still dismal, with overall survival of fewer than five years. Thus, novel prognostic biomarkers are needed to predict the clinical outcomes of individual patients better. TTN has a high mutation rate in the LUAD, which encodes a large abundant protein of striated muscle. However, the value of TTN in prognosis and the immune environment are poorly understood. Methods We investigated the clinicopathological characteristics, transcriptional and protein level, prognostic value, biological function, and its relationship with immune infiltration of TTN gene in LUAD patients through bioinformatics analysis. Results TTN expression was significantly lower in LUAD than that in normal lung tissue. Lower TTN expression was associated with worse survival. Besides, TTN is highly expressed in alveolar type 2 cells which were surmised as the origin of LUAD. Conclusion Our findings indicated the potential prognostic value of TTN and its role as a biomarker for determining the immune infiltration levels in patients with LUAD.
Collapse
Affiliation(s)
- Jianing Chen
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yaokai Wen
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ruisheng Hong
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chunxia Su, ; Chang Chen,
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chunxia Su, ; Chang Chen,
| |
Collapse
|
19
|
Stella GM, Scialò F, Bortolotto C, Agustoni F, Sanci V, Saddi J, Casali L, Corsico AG, Bianco A. Pragmatic Expectancy on Microbiota and Non-Small Cell Lung Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14133131. [PMID: 35804901 PMCID: PMC9264919 DOI: 10.3390/cancers14133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that lung cancer relies on a number of genes aberrantly expressed because of somatic lesions. Indeed, the lungs, based on their anatomical features, are organs at a high risk of development of extremely heterogeneous tumors due to the exposure to several environmental toxic agents. In this context, the microbiome identifies the whole assemblage of microorganisms present in the lungs, as well as in distant organs, together with their structural elements and metabolites, which actively interact with normal and transformed cells. A relevant amount of data suggest that the microbiota plays a role not only in cancer disease predisposition and risk but also in its initiation and progression, with an impact on patients’ prognosis. Here, we discuss the mechanistic insights of the complex interaction between lung cancer and microbiota as a relevant component of the microenvironment, mainly focusing on novel diagnostic and therapeutic objectives.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
- Correspondence:
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
- Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy;
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vincenzo Sanci
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Jessica Saddi
- Radiation Therapy IRCCS Unit, Department of Medical Sciences and Infective Diseases, Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- University of Milano-Bicocca, 20900 Monza, Italy
| | - Lucio Casali
- Honorary Consultant Student Support and Services, University of Pavia, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
| |
Collapse
|
20
|
Wang WZ, Shulman A, Amann JM, Carbone DP, Tsichlis PN. Small cell lung cancer: Subtypes and therapeutic implications. Semin Cancer Biol 2022; 86:543-554. [DOI: 10.1016/j.semcancer.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
|
21
|
Chen H, Tu S, Yuan C, Tian F, Zhang Y, Sun Y, Shao Z. HyperChIP: identification of hypervariable signals across ChIP-seq or ATAC-seq samples. Genome Biol 2022; 23:62. [PMID: 35227282 PMCID: PMC8883642 DOI: 10.1186/s13059-022-02627-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Identifying genomic regions with hypervariable ChIP-seq or ATAC-seq signals across given samples is essential for large-scale epigenetic studies. In particular, the hypervariable regions across tumors from different patients indicate their heterogeneity and can contribute to revealing potential cancer subtypes and the associated epigenetic markers. We present HyperChIP as the first complete statistical tool for the task. HyperChIP uses scaled variances that account for the mean-variance dependence to rank genomic regions, and it increases the statistical power by diminishing the influence of true hypervariable regions on model fitting. A pan-cancer case study illustrates the practical utility of HyperChIP.
Collapse
|
22
|
Hoang PH, Landi MT. DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers (Basel) 2022; 14:cancers14040961. [PMID: 35205708 PMCID: PMC8870477 DOI: 10.3390/cancers14040961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is the major leading cause of cancer-related mortality worldwide. Multiple epigenetic factors-in particular, DNA methylation-have been associated with the development of lung cancer. In this review, we summarize the current knowledge on DNA methylation alterations in lung tumorigenesis, as well as their associations with different histological subtypes, common cancer driver gene mutations (e.g., KRAS, EGFR, and TP53), and major epidemiological risk factors (e.g., sex, smoking status, race/ethnicity). Understanding the mechanisms of DNA methylation regulation and their associations with various risk factors can provide further insights into carcinogenesis, and create future avenues for prevention and personalized treatments. In addition, we also highlight outstanding questions regarding DNA methylation in lung cancer to be elucidated in future studies.
Collapse
|
23
|
Colangelo T, Carbone A, Mazzarelli F, Cuttano R, Dama E, Nittoli T, Albanesi J, Barisciano G, Forte N, Palumbo O, Graziano P, di Masi A, Colantuoni V, Sabatino L, Bianchi F, Mazzoccoli G. Loss of circadian gene Timeless induces EMT and tumor progression in colorectal cancer via Zeb1-dependent mechanism. Cell Death Differ 2022; 29:1552-1568. [PMID: 35034102 PMCID: PMC9345857 DOI: 10.1038/s41418-022-00935-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
The circadian gene Timeless (TIM) provides a molecular bridge between circadian and cell cycle/DNA replication regulatory systems and has been recently involved in human cancer development and progression. However, its functional role in colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide, has not been fully clarified yet. Here, the analysis of two independent CRC patient cohorts (total 1159 samples) reveals that loss of TIM expression is an unfavorable prognostic factor significantly correlated with advanced tumor stage, metastatic spreading, and microsatellite stability status. Genome-wide expression profiling, in vitro and in vivo experiments, revealed that TIM knockdown induces the activation of the epithelial-to-mesenchymal transition (EMT) program. Accordingly, the analysis of a large set of human samples showed that TIM expression inversely correlated with a previously established gene signature of canonical EMT markers (EMT score), and its ectopic silencing promotes migration, invasion, and acquisition of stem-like phenotype in CRC cells. Mechanistically, we found that loss of TIM expression unleashes ZEB1 expression that in turn drives the EMT program and enhances the aggressive behavior of CRC cells. Besides, the deranged TIM-ZEB1 axis sets off the accumulation of DNA damage and delays DNA damage recovery. Furthermore, we show that the aggressive and genetically unstable 'CMS4 colorectal cancer molecular subtype' is characterized by a lower expression of TIM and that patients with the combination of low-TIM/high-ZEB1 expression have a poorer outcome. In conclusion, our results as a whole suggest the engagement of an unedited TIM-ZEB1 axis in key pathological processes driving malignant phenotype acquisition in colorectal carcinogenesis. Thus, TIM-ZEB1 expression profiling could provide a robust prognostic biomarker in CRC patients, supporting targeted therapeutic strategies with better treatment selection and patients' outcomes.
Collapse
Affiliation(s)
- Tommaso Colangelo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Annalucia Carbone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Viale Cappuccini snc, 71013, San Giovanni Rotondo, (FG), Italy
| | - Francesco Mazzarelli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Roberto Cuttano
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Elisa Dama
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Teresa Nittoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Jacopo Albanesi
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, 00154, Rome, (RM), Italy
| | - Giovannina Barisciano
- Department of Sciences and Technologies, University of Sannio, Via Traiano, 3, 82100, Benevento, (BN), Italy
| | - Nicola Forte
- UOC- Patologia Clinica-Settore Anatomia Patologica, Ospedale Fatebenefratelli, Viale Principe di Napoli, 14/A, 82100, Benevento, (BN), Italy
| | - Orazio Palumbo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Medical Genetics, Viale Padre Pio, 7d, 71013, San Giovanni Rotondo, (FG), Italy
| | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, (FG), Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, 00154, Rome, (RM), Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Via Traiano, 3, 82100, Benevento, (BN), Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via Traiano, 3, 82100, Benevento, (BN), Italy
| | - Fabrizio Bianchi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy.
| | - Gianluigi Mazzoccoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Viale Cappuccini snc, 71013, San Giovanni Rotondo, (FG), Italy.
| |
Collapse
|
24
|
Wang Z, Li Z, Zhou K, Wang C, Jiang L, Zhang L, Yang Y, Luo W, Qiao W, Wang G, Ni Y, Dai S, Guo T, Ji G, Xu M, Liu Y, Su Z, Che G, Li W. Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing. Nat Commun 2021; 12:6500. [PMID: 34764257 PMCID: PMC8586023 DOI: 10.1038/s41467-021-26770-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
Lung adenocarcinomas (LUAD) arise from precancerous lesions such as atypical adenomatous hyperplasia, which progress into adenocarcinoma in situ and minimally invasive adenocarcinoma, then finally into invasive adenocarcinoma. The cellular heterogeneity and molecular events underlying this stepwise progression remain unclear. In this study, we perform single-cell RNA sequencing of 268,471 cells collected from 25 patients in four histologic stages of LUAD and compare them to normal cell types. We detect a group of cells closely resembling alveolar type 2 cells (AT2) that emerged during atypical adenomatous hyperplasia and whose transcriptional profile began to diverge from that of AT2 cells as LUAD progressed, taking on feature characteristic of stem-like cells. We identify genes related to energy metabolism and ribosome synthesis that are upregulated in early stages of LUAD and may promote progression. MDK and TIMP1 could be potential biomarkers for understanding LUAD pathogenesis. Our work shed light on the underlying transcriptional signatures of distinct histologic stages of LUAD progression and our findings may facilitate early diagnosis.
Collapse
Affiliation(s)
- Zhoufeng Wang
- grid.412901.f0000 0004 1770 1022Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan China
| | - Zhe Li
- Singlera Genomics Ltd, Shanghai, China
| | - Kun Zhou
- grid.13402.340000 0004 1759 700XDepartment of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China ,grid.412901.f0000 0004 1770 1022Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Chengdi Wang
- grid.412901.f0000 0004 1770 1022Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lili Jiang
- grid.412901.f0000 0004 1770 1022Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Zhang
- grid.412901.f0000 0004 1770 1022Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ying Yang
- grid.412901.f0000 0004 1770 1022Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Wenxin Luo
- grid.412901.f0000 0004 1770 1022Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Wenliang Qiao
- grid.412901.f0000 0004 1770 1022Lung Cancer Center, West China Hospital Sichuan University, Chengdu, Sichuan China
| | - Gang Wang
- grid.412901.f0000 0004 1770 1022Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yinyun Ni
- grid.412901.f0000 0004 1770 1022Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Shuiping Dai
- grid.412901.f0000 0004 1770 1022Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Tingting Guo
- grid.412901.f0000 0004 1770 1022Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Guiyi Ji
- grid.412901.f0000 0004 1770 1022Health Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Minjie Xu
- Singlera Genomics Ltd, Shanghai, China
| | | | - Zhixi Su
- Singlera Genomics Ltd, Shanghai, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Tanaka I, Dayde D, Tai MC, Mori H, Solis LM, Tripathi SC, Fahrmann JF, Unver N, Parhy G, Jain R, Parra ER, Murakami Y, Aguilar-Bonavides C, Mino B, Celiktas M, Dhillon D, Casabar JP, Nakatochi M, Stingo F, Baladandayuthapani V, Wang H, Katayama H, Dennison JB, Lorenzi PL, Do KA, Fujimoto J, Behrens C, Ostrin EJ, Rodriguez-Canales J, Hase T, Fukui T, Kajino T, Kato S, Yatabe Y, Hosoda W, Kawaguchi K, Yokoi K, Chen-Yoshikawa TF, Hasegawa Y, Gazdar AF, Wistuba II, Hanash S, Taguchi A. SRGN-Triggered Aggressive and Immunosuppressive Phenotype in a Subset of TTF-1-Negative Lung Adenocarcinomas. J Natl Cancer Inst 2021; 114:290-301. [PMID: 34524427 DOI: 10.1093/jnci/djab183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND About 20% of lung adenocarcinoma (LUAD) is negative for the lineage-specific oncogene Thyroid transcription factor 1 (TTF-1) and exhibits worse clinical outcome with a low frequency of actionable genomic alterations. To identify molecular features associated with TTF-1-negative LUAD, we compared the transcriptomic and proteomic profiles of LUAD cell lines. SRGN, a chondroitin sulfate proteoglycan Serglycin, was identified as a markedly overexpressed gene in TTF-1-negative LUAD. We therefore investigated the roles and regulation of SRGN in TTF-1-negative LUAD. METHODS Proteomic and metabolomic analyses of 41 LUAD cell lines were done using mass spectrometry. The function of SRGN was investigated in 3 TTF-1-negative and 4 TTF-1-positive LUAD cell lines and in a syngeneic mouse model (n = 5 to 8 mice per group). Expression of SRGN in was evaluated in 94 and 105 surgically resected LUAD tumor specimens using immunohistochemistry. All statistical tests were two-sided. RESULTS SRGN was markedly overexpressed at mRNA and protein levels in TTF-1-negative LUAD cell lines (P < .001 for both mRNA and protein levels). Expression of SRGN in LUAD tumor tissue was associated with poor outcome (hazard ratio = 4.22, 95% confidential interval = 1.12 to 15.86; likelihood ratio test, P = .03), and with higher expression of Programmed cell death 1 ligand 1 (PD-L1) in tumor cells and higher infiltration of Programmed cell death protein 1 (PD-1)-positive lymphocytes. SRGN regulated expression of PD-L1, as well as proinflammatory cytokines including Interleukin-6 (IL-6), Interleukin-8 (IL-8), and C-X-C motif chemokine 1 (CXCL1) in LUAD cell lines, and increased migratory and invasive properties of LUAD cells and fibroblasts, and enhanced angiogenesis. SRGN was induced by DNA de-methylation resulting from Nicotinamide N-methyltransferase (NNMT)-mediated impairment of methionine metabolism. CONCLUSION Our findings suggest that SRGN plays a pivotal role in tumor-stromal interaction and reprogramming into an aggressive and immunosuppressive tumor microenvironment in TTF-1-negative LUAD.
Collapse
Affiliation(s)
- Ichidai Tanaka
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Delphine Dayde
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mei Chee Tai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haruki Mori
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nese Unver
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gargy Parhy
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rekha Jain
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yoshiko Murakami
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Muge Celiktas
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dilsher Dhillon
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julian Phillip Casabar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Francesco Stingo
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veera Baladandayuthapani
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Kajino
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology, Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
Modulating cell differentiation in cancer models. Biochem Soc Trans 2021; 49:1803-1816. [PMID: 34436513 DOI: 10.1042/bst20210230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Cancer has been traditionally viewed as a disease characterised by excessive and uncontrolled proliferation, leading to the development of cytotoxic therapies against highly proliferating malignant cells. However, tumours frequently relapse due to the presence of slow-cycling cancer stem cells eluding chemo and radiotherapy. Since these malignant stem cells are largely undifferentiated, inducing their lineage commitment has been proposed as a potential intervention strategy to deplete tumours from their most resistant components. Pro-differentiation approaches have thus far yielded clinical success in the reversion of acute promyelocytic leukaemia (APL), and new developments are fast widening their therapeutic applicability to solid carcinomas. Recent advances in cancer differentiation discussed here highlight the potential and outstanding challenges of differentiation-based approaches.
Collapse
|
27
|
Melocchi V, Dama E, Mazzarelli F, Cuttano R, Colangelo T, Di Candia L, Lugli E, Veronesi G, Pelosi G, Ferretti GM, Taurchini M, Graziano P, Bianchi F. Aggressive early-stage lung adenocarcinoma is characterized by epithelial cell plasticity with acquirement of stem-like traits and immune evasion phenotype. Oncogene 2021; 40:4980-4991. [PMID: 34172935 DOI: 10.1038/s41388-021-01909-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Lung adenocarcinoma (LUAD) is the main non-small-cell lung cancer diagnosed in ~40-50% of all lung cancer cases. Despite the improvements in early detection and personalized medicine, even a sizable fraction of patients with early-stage LUAD would experience disease relapses and adverse prognosis. Previous reports indicated the existence of LUAD molecular subtypes characterized by specific gene expression and mutational profiles, and correlating with prognosis. However, the biological and molecular features of such subtypes have not been further explored. Consequently, the mechanisms driving the emergence of aggressive LUAD remained unclear. Here, we adopted a multi-tiered approach ranging from molecular to functional characterization of LUAD and used it on multiple cohorts of patients (for a total of 1227 patients) and LUAD cell lines. We investigated the tumor transcriptome and the mutational and immune gene expression profiles, and we used LUAD cell lines for cancer cell phenotypic screening. We found that loss of lung cell lineage and gain of stem cell-like characteristics, along with mutator and immune evasion phenotypes, explain the aggressive behavior of a specific subset of lung adenocarcinoma that we called C1-LUAD, including early-stage disease. This subset can be identified using a 10-gene prognostic signature. Poor prognosis patients appear to have this specific molecular lung adenocarcinoma subtype which is characterized by peculiar molecular and biological features. Our data support the hypothesis that transformed lung stem/progenitor cells and/or reprogrammed epithelial cells with CSC characteristics are hallmarks of this aggressive disease. Such discoveries suggest alternative, more aggressive, therapeutic strategies for early-stage C1-LUAD.
Collapse
Affiliation(s)
- Valentina Melocchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisa Dama
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Mazzarelli
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Roberto Cuttano
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Colangelo
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Leonarda Di Candia
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Giulia Veronesi
- Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Inter-Hospital Pathology Division, IRCCS MultiMedica, Milan, Italy
| | - Gian Maria Ferretti
- Thoracic Surgical Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Taurchini
- Thoracic Surgical Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
28
|
Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun 2021; 12:2540. [PMID: 33953163 PMCID: PMC8100173 DOI: 10.1038/s41467-021-22801-0] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is a highly heterogeneous disease. Cancer cells and cells within the tumor microenvironment together determine disease progression, as well as response to or escape from treatment. To map the cell type-specific transcriptome landscape of cancer cells and their tumor microenvironment in advanced non-small cell lung cancer (NSCLC), we analyze 42 tissue biopsy samples from stage III/IV NSCLC patients by single cell RNA sequencing and present the large scale, single cell resolution profiles of advanced NSCLCs. In addition to cell types described in previous single cell studies of early stage lung cancer, we are able to identify rare cell types in tumors such as follicular dendritic cells and T helper 17 cells. Tumors from different patients display large heterogeneity in cellular composition, chromosomal structure, developmental trajectory, intercellular signaling network and phenotype dominance. Our study also reveals a correlation of tumor heterogeneity with tumor associated neutrophils, which might help to shed light on their function in NSCLC. Comprehensive profiles of tumour and microenvironment are critical to understand heterogeneity in non-small cell lung cancer (NSCLC). Here, the authors profile 42 late-stage NSCLC patients with single-cell RNA-seq, revealing immune landscapes that are associated with cancer subtype or heterogeneity.
Collapse
|
29
|
Tian Y, Zhai X, Yan W, Zhu H, Yu J. Clinical outcomes of immune checkpoint blockades and the underlying immune escape mechanisms in squamous and adenocarcinoma NSCLC. Cancer Med 2020; 10:3-14. [PMID: 33230935 PMCID: PMC7826453 DOI: 10.1002/cam4.3590] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockades (ICBs) have changed the standard of care of squamous and adenocarcinoma non‐small cell lung cancer (NSCLC). Whereas detailed researches regarding ICBs in the two major histological subtypes are rare. In order to uncover the clinical efficacy differences between squamous and adenocarcinoma NSCLC and better understand the underlying immune‐regulatory mechanisms, we compared the survival benefits of ICBs between the two subtypes by revealing phase 3 randomized trials and attempted to uncover the immune‐regulatory discrepancy. Generally, compared with nonsquamous NSCLC, squamous NSCLC benefited more from ICBs in Keynote 024, CheckMate 026, CheckMate 227 and CheckMate 017 and similar in OAK, but less in Keynote 010 and PACIFIC. We revealed that the tumor mutation burden (TMB) level, the programmed cell death ligand 1 (PD‐L1) expression, tumor infiltrating lymphocytes (TILs) in the tumor microenvironment (TME), chemokines, and oncogenic driver alterations within the two subtypes may contributed to the clinical outcomes of ICBs. We prospected that the combinations of ICBs with chemotherapy, radiation therapy, and antiangiogenic therapy could be promising strategies to re‐immunize the less immunogenic tumors and further enhance the efficacy of ICBs.
Collapse
Affiliation(s)
- Yaru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Weiwei Yan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
30
|
LaFave LM, Kartha VK, Ma S, Meli K, Del Priore I, Lareau C, Naranjo S, Westcott PMK, Duarte FM, Sankar V, Chiang Z, Brack A, Law T, Hauck H, Okimoto A, Regev A, Buenrostro JD, Jacks T. Epigenomic State Transitions Characterize Tumor Progression in Mouse Lung Adenocarcinoma. Cancer Cell 2020; 38:212-228.e13. [PMID: 32707078 PMCID: PMC7641015 DOI: 10.1016/j.ccell.2020.06.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/20/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Regulatory networks that maintain functional, differentiated cell states are often dysregulated in tumor development. Here, we use single-cell epigenomics to profile chromatin state transitions in a mouse model of lung adenocarcinoma (LUAD). We identify an epigenomic continuum representing loss of cellular identity and progression toward a metastatic state. We define co-accessible regulatory programs and infer key activating and repressive chromatin regulators of these cell states. Among these co-accessibility programs, we identify a pre-metastatic transition, characterized by activation of RUNX transcription factors, which mediates extracellular matrix remodeling to promote metastasis and is predictive of survival across human LUAD patients. Together, these results demonstrate the power of single-cell epigenomics to identify regulatory programs to uncover mechanisms and key biomarkers of tumor progression.
Collapse
Affiliation(s)
- Lindsay M LaFave
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vinay K Kartha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sai Ma
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin Meli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Isabella Del Priore
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Caleb Lareau
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Venkat Sankar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zachary Chiang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alison Brack
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Travis Law
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Haley Hauck
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Annalisa Okimoto
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Aviv Regev
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, Lee JI, Suh YL, Ku BM, Eum HH, Choi S, Choi YL, Joung JG, Park WY, Jung HA, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ, Lee HO. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun 2020; 11:2285. [PMID: 32385277 PMCID: PMC7210975 DOI: 10.1038/s41467-020-16164-1] [Citation(s) in RCA: 613] [Impact Index Per Article: 122.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell transcriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Kyungjong Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 06351, Seoul, Korea
| | - Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Yeon-Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Bo Mi Ku
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hye Hyeon Eum
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Soyean Choi
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Yoon-La Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea
| | - Hyun Ae Jung
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jong-Mu Sun
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Se-Hoon Lee
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jin Seok Ahn
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Keunchil Park
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Myung-Ju Ahn
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea.
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea.
| |
Collapse
|
32
|
Wang J, Li X, Chen H. Organoid models in lung regeneration and cancer. Cancer Lett 2020; 475:129-135. [PMID: 32032677 DOI: 10.1016/j.canlet.2020.01.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 02/05/2023]
Abstract
Improper regeneration is associated with lung diseases including lung cancer. Lung cancer is one of the leading causes of death worldwide, with nearly 2 million new cases diagnosed each year. The diagnosis is often too late for successful therapeutic intervention. Lung cancer shows substantial phenotypic and genetic heterogeneity between individuals, making it difficult to model in animals. Organoids, derived from regional stem/progenitor cells in lung epithelia, have attracted extensive interest in both research studies and the clinic, because of their great potential for use in cancer treatment. Various lung cancer organoids have been established to recapitulate the tissue architecture of primary lung tumors and maintain the genomic alterations of the original tumors during long-term expansion in vitro. In this review, we summarize the current data on lung epithelial regeneration by regional endogenous stem/progenitor cells, describe the development of organoid technology, and present its applications in lung cancer research. Furthermore, recent challenges and future directions to improve organoid technologies for lung cancer treatment are discussed.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Basic Medicine, Tianjin University Haihe Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Xianglu Li
- Department of Regenerative Medicine, Panguard Cell Biotech. Co. Ltd, Guangdong, China
| | - Huaiyong Chen
- Department of Basic Medicine, Tianjin University Haihe Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China; Tianjin Institute of Respiratory Diseases, Tianjin, China.
| |
Collapse
|
33
|
Arnal-Estapé A, Cai WL, Albert AE, Zhao M, Stevens LE, López-Giráldez F, Patel KD, Tyagi S, Schmitt EM, Westbrook TF, Nguyen DX. Tumor progression and chromatin landscape of lung cancer are regulated by the lineage factor GATA6. Oncogene 2020; 39:3726-3737. [PMID: 32157212 PMCID: PMC7190573 DOI: 10.1038/s41388-020-1246-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Lineage selective transcription factors (TFs) are important regulators of tumorigenesis, but their biological functions are often context dependent with undefined epigenetic mechanisms of action. In this study, we uncover a conditional role for the endodermal and pulmonary specifying TF GATA6 in lung adenocarcinoma (LUAD) progression. Impairing Gata6 in genetically engineered mouse models reduces the proliferation and increases the differentiation of Kras mutant LUAD tumors. These effects are influenced by the epithelial cell type that is targeted for transformation and genetic context of Kras-mediated tumor initiation. In LUAD cells derived from surfactant protein C expressing progenitors, we identify multiple genomic loci that are bound by GATA6. Moreover, suppression of Gata6 in these cells significantly alters chromatin accessibility, particularly at distal enhancer elements. Analogous to its paradoxical activity in lung development, GATA6 expression fluctuates during different stages of LUAD progression and can epigenetically control diverse transcriptional programs associated with bone morphogenetic protein signaling, alveolar specification, and tumor suppression. These findings reveal how GATA6 can modulate the chromatin landscape of lung cancer cells to control their proliferation and divergent lineage dependencies during tumor progression.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Wesley L Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra E Albert
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Minghui Zhao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Laura E Stevens
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kiran D Patel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Siddhartha Tyagi
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Earlene M Schmitt
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Thomas F Westbrook
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX, USA
| | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA. .,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA. .,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
ONECUT2 overexpression promotes RAS-driven lung adenocarcinoma progression. Sci Rep 2019; 9:20021. [PMID: 31882655 PMCID: PMC6934839 DOI: 10.1038/s41598-019-56277-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Aberrant differentiation, driven by activation of normally silent tissue-specific genes, results in a switch of cell identity and often leads to cancer progression. The underlying genetic and epigenetic events are largely unexplored. Here, we report ectopic activation of the hepatobiliary-, intestinal- and neural-specific gene one cut homeobox 2 (ONECUT2) in various subtypes of lung cancer. ONECUT2 expression was associated with poor prognosis of RAS-driven lung adenocarcinoma. ONECUT2 overexpression promoted the malignant growth and invasion of A549 lung cancer cells in vitro, as well as xenograft tumorigenesis and bone metastases of these cells in vivo. Integrative transcriptomics and epigenomics analyses suggested that ONECUT2 promoted the trans-differentiation of lung cancer cells by preferentially targeting and regulating the activity of bivalent chromatin domains through modulating Polycomb Repressive Complex 2 (PRC2) occupancy. Our findings demonstrate that ONECUT2 is a lineage-specific and context-dependent oncogene in lung adenocarcinoma and suggest that ONECUT2 is a potential therapeutic target for these tumors.
Collapse
|
35
|
Saad MI, Rose-John S, Jenkins BJ. ADAM17: An Emerging Therapeutic Target for Lung Cancer. Cancers (Basel) 2019; 11:E1218. [PMID: 31438559 PMCID: PMC6769596 DOI: 10.3390/cancers11091218] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality, which histologically is classified into small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for approximately 85% of all lung cancer diagnoses, with the majority of patients presenting with lung adenocarcinoma (LAC). KRAS mutations are a major driver of LAC, and are closely related to cigarette smoking, unlike mutations in the epidermal growth factor receptor (EGFR) which arise in never-smokers. Although the past two decades have seen fundamental progress in the treatment and diagnosis of NSCLC, NSCLC still is predominantly diagnosed at an advanced stage when therapeutic interventions are mostly palliative. A disintegrin and metalloproteinase 17 (ADAM17), also known as tumour necrosis factor-α (TNFα)-converting enzyme (TACE), is responsible for the protease-driven shedding of more than 70 membrane-tethered cytokines, growth factors and cell surface receptors. Among these, the soluble interleukin-6 receptor (sIL-6R), which drives pro-inflammatory and pro-tumourigenic IL-6 trans-signaling, along with several EGFR family ligands, are the best characterised. This large repertoire of substrates processed by ADAM17 places it as a pivotal orchestrator of a myriad of physiological and pathological processes associated with the initiation and/or progression of cancer, such as cell proliferation, survival, regeneration, differentiation and inflammation. In this review, we discuss recent research implicating ADAM17 as a key player in the development of LAC, and highlight the potential of ADAM17 inhibition as a promising therapeutic strategy to tackle this deadly malignancy.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, D-24098 Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
36
|
Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, Nguyen K, Smith BA, Cheng C, Tsai BL, Cheng D, Huang J, Kurdistani SK, Graeber TG, Witte ON. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 2019; 362:91-95. [PMID: 30287662 DOI: 10.1126/science.aat5749] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
The use of potent therapies inhibiting critical oncogenic pathways active in epithelial cancers has led to multiple resistance mechanisms, including the development of highly aggressive, small cell neuroendocrine carcinoma (SCNC). SCNC patients have a dismal prognosis due in part to a limited understanding of the molecular mechanisms driving this malignancy and the lack of effective treatments. Here, we demonstrate that a common set of defined oncogenic drivers reproducibly reprograms normal human prostate and lung epithelial cells to small cell prostate cancer (SCPC) and small cell lung cancer (SCLC), respectively. We identify shared active transcription factor binding regions in the reprogrammed prostate and lung SCNCs by integrative analyses of epigenetic and transcriptional landscapes. These results suggest that neuroendocrine cancers arising from distinct epithelial tissues may share common vulnerabilities that could be exploited for the development of drugs targeting SCNCs.
Collapse
Affiliation(s)
- Jung Wook Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - John K Lee
- Division of Hematology and Oncology, Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine M Sheu
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Nikolas G Balanis
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Kim Nguyen
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Bryan A Smith
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon L Tsai
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaoti Huang
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA. .,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Crump Institute for Molecular Imaging, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA. .,Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Chen YL, Hu CM, Hsu JT, Chang CC, Huang TY, Chiang PH, Chen WY, Chang YT, Chang MC, Tien YW, Lee EYHP, Jeng YM, Lee WH. Cellular 5-hydroxylmethylcytosine content determines tumorigenic potential and prognosis of pancreatic ductal adenocarcinoma. Am J Cancer Res 2018; 8:2548-2563. [PMID: 30662811 PMCID: PMC6325483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023] Open
Abstract
We stratified pancreatic ductal adenocarcinoma (PDAC) based on the tumorigenic properties of cancer cells, and aimed to identify clinically useful immunohistochemical (IHC) markers with mechanistic insights. The tumorigenic properties of PDACs were determined using patient-derived xenograft in NOD/SCID/IL2Rγnull mice. The success of tumor engraftment was significantly correlated to poor survival, and its predictive values were superior to clinicopathological parameters. To search IHC-based biomarkers as surrogate for high tumorigenicity with prognostic values, 11 candidates of potentially clinical useful prognostic markers were selected. Among them, 5hmC content of the cancer cells was validated. Elevated 5hmC content positively correlated with in vivo tumorigenicity and poor prognosis in both primary and validation cohorts. Enrichment of cancer-associated 5hmC in CDX2 and FOXA1 lineage-specific transcriptional factor genes further pointed out the potential role of 5hmC in modulating cellular differentiation to enhance tumor malignancy during PDAC progression. Tumor-associated 5hmC content defined a subpopulation of PDAC with high lineage plasticity and tumorigenic potential, and was a prognostic IHC marker that provided a clinical basis for future management of PDAC.
Collapse
Affiliation(s)
- Yi-Lng Chen
- Genomics Research Center, Academia SinicaTaipei, Taiwan
- Ph.D. Program in Translational Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia SinicaTaipei, Taiwan
| | - Jeh-Ting Hsu
- Department of Information Management, Hsing Wu UniversityNew Taipei City, Taiwan
| | | | - Ting-Yu Huang
- Genomics Research Center, Academia SinicaTaipei, Taiwan
| | | | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming UniversityTaipei, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Eva YHP Lee
- Department of Biological Chemistry, University of CaliforniaIrvine, CA, USA
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia SinicaTaipei, Taiwan
- Drug Development Center, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
38
|
Nieto P, Ambrogio C, Esteban-Burgos L, Gómez-López G, Blasco MT, Yao Z, Marais R, Rosen N, Chiarle R, Pisano DG, Barbacid M, Santamaría D. A Braf kinase-inactive mutant induces lung adenocarcinoma. Nature 2017; 548:239-243. [PMID: 28783725 PMCID: PMC5648056 DOI: 10.1038/nature23297] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/16/2017] [Indexed: 12/31/2022]
Abstract
The initiating oncogenic event in almost half of human lung adenocarcinomas is still unknown, a fact that complicates the development of selective targeted therapies. Yet these tumours harbour a number of alterations without obvious oncogenic function including BRAF-inactivating mutations. Inactivating BRAF mutants in lung predominate over the activating V600E mutant that is frequently observed in other tumour types. Here we demonstrate that the expression of an endogenous Braf(D631A) kinase-inactive isoform in mice (corresponding to the human BRAF(D594A) mutation) triggers lung adenocarcinoma in vivo, indicating that BRAF-inactivating mutations are initiating events in lung oncogenesis. Moreover, inactivating BRAF mutations have also been identified in a subset of KRAS-driven human lung tumours. Co-expression of Kras(G12V) and Braf(D631A) in mouse lung cells markedly enhances tumour initiation, a phenomenon mediated by Craf kinase activity, and effectively accelerates tumour progression when activated in advanced lung adenocarcinomas. We also report a key role for the wild-type Braf kinase in sustaining Kras(G12V)/Braf(D631A)-driven tumours. Ablation of the wild-type Braf allele prevents the development of lung adenocarcinoma by inducing a further increase in MAPK signalling that results in oncogenic toxicity; this effect can be abolished by pharmacological inhibition of Mek to restore tumour growth. However, the loss of wild-type Braf also induces transdifferentiation of club cells, which leads to the rapid development of lethal intrabronchiolar lesions. These observations indicate that the signal intensity of the MAPK pathway is a critical determinant not only in tumour development, but also in dictating the nature of the cancer-initiating cell and ultimately the resulting tumour phenotype.
Collapse
Affiliation(s)
- Patricia Nieto
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Chiara Ambrogio
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Laura Esteban-Burgos
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - María Teresa Blasco
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Zhan Yao
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, M20 4BX Manchester, UK
| | - Neal Rosen
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Roberto Chiarle
- Department of Pathology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Mariano Barbacid
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - David Santamaría
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| |
Collapse
|
39
|
Potla R, Tulapurkar ME, Luzina IG, Atamas SP, Singh IS, Hasday JD. Exposure to febrile-range hyperthermia potentiates Wnt signalling and epithelial-mesenchymal transition gene expression in lung epithelium. Int J Hyperthermia 2017; 34:1-10. [PMID: 28540808 DOI: 10.1080/02656736.2017.1316875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND As environmental and body temperatures vary, lung epithelial cells experience temperatures significantly different from normal core temperature. Our previous studies in human lung epithelium showed that: (i) heat shock accelerates wound healing and activates profibrotic gene expression through heat shock factor-1 (HSF1); (ii) HSF1 is activated at febrile temperatures (38-41 °C) and (iii) hypothermia (32 °C) activates and hyperthermia (39.5 °C) reduces expression of a subset of miRNAs that target protein kinase-Cα (PKCα) and enhance proliferation. METHODS We analysed the effect of hypo- and hyperthermia exposure on Wnt signalling by exposing human small airway epithelial cells (SAECs) and HEK293T cells to 32, 37 or 39.5 °C for 24 h, then analysing Wnt-3a-induced epithelial-mesenchymal transition (EMT) gene expression by qRT-PCR and TOPFlash reporter plasmid activity. Effects of miRNA mimics and inhibitors and the HSF1 inhibitor, KNK437, were evaluated. RESULTS Exposure to 39.5 °C for 24 h increased subsequent Wnt-3a-induced EMT gene expression in SAECs and Wnt-3a-induced TOPFlash activity in HEK293T cells. Increased Wnt responsiveness was associated with HSF1 activation and blocked by KNK437. Overexpressing temperature-responsive miRNA mimics reduced Wnt responsiveness in 39.5 °C-exposed HEK293T cells, but inhibitors of the same miRNAs failed to restore Wnt responsiveness in 32 °C-exposed HEK293T cells. CONCLUSIONS Wnt responsiveness, including expression of genes associated with EMT, increases after exposure to febrile-range temperature through an HSF1-dependent mechanism that is independent of previously identified temperature-dependent miRNAs. This process may be relevant to febrile fibrosing lung diseases, including the fibroproliferative phase of acute respiratory distress syndrome (ARDS) and exacerbations of idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Ratnakar Potla
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Mohan E Tulapurkar
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Irina G Luzina
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,b Medicine and Research Services, Baltimore Veterans Affairs Medical Care System , Baltimore , MD , USA
| | - Sergei P Atamas
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,b Medicine and Research Services, Baltimore Veterans Affairs Medical Care System , Baltimore , MD , USA
| | - Ishwar S Singh
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Jeffrey D Hasday
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,b Medicine and Research Services, Baltimore Veterans Affairs Medical Care System , Baltimore , MD , USA
| |
Collapse
|
40
|
Hu H, Sun Z, Li Y, Zhang Y, Li H, Zhang Y, Pan Y, Shen L, Wang R, Sun Y, Chen H. The Histologic Classifications of Lung Adenocarcinomas Are Discriminable by Unique Lineage Backgrounds. J Thorac Oncol 2016; 11:2161-2172. [DOI: 10.1016/j.jtho.2016.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/09/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
|
41
|
Luo X, Zang X, Yang L, Huang J, Liang F, Rodriguez-Canales J, Wistuba II, Gazdar A, Xie Y, Xiao G. Comprehensive Computational Pathological Image Analysis Predicts Lung Cancer Prognosis. J Thorac Oncol 2016; 12:501-509. [PMID: 27826035 DOI: 10.1016/j.jtho.2016.10.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Pathological examination of histopathological slides is a routine clinical procedure for lung cancer diagnosis and prognosis. Although the classification of lung cancer has been updated to become more specific, only a small subset of the total morphological features are taken into consideration. The vast majority of the detailed morphological features of tumor tissues, particularly tumor cells' surrounding microenvironment, are not fully analyzed. The heterogeneity of tumor cells and close interactions between tumor cells and their microenvironments are closely related to tumor development and progression. The goal of this study is to develop morphological feature-based prediction models for the prognosis of patients with lung cancer. METHOD We developed objective and quantitative computational approaches to analyze the morphological features of pathological images for patients with NSCLC. Tissue pathological images were analyzed for 523 patients with adenocarcinoma (ADC) and 511 patients with squamous cell carcinoma (SCC) from The Cancer Genome Atlas lung cancer cohorts. The features extracted from the pathological images were used to develop statistical models that predict patients' survival outcomes in ADC and SCC, respectively. RESULTS We extracted 943 morphological features from pathological images of hematoxylin and eosin-stained tissue and identified morphological features that are significantly associated with prognosis in ADC and SCC, respectively. Statistical models based on these extracted features stratified NSCLC patients into high-risk and low-risk groups. The models were developed from training sets and validated in independent testing sets: a predicted high-risk group versus a predicted low-risk group (for patients with ADC: hazard ratio = 2.34, 95% confidence interval: 1.12-4.91, p = 0.024; for patients with SCC: hazard ratio = 2.22, 95% confidence interval: 1.15-4.27, p = 0.017) after adjustment for age, sex, smoking status, and pathologic tumor stage. CONCLUSIONS The results suggest that the quantitative morphological features of tumor pathological images predict prognosis in patients with lung cancer.
Collapse
Affiliation(s)
- Xin Luo
- Department of Bioinformatics, University of Texas Southwestern Medical Center at Dallas, Texas
| | - Xiao Zang
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Texas
| | - Lin Yang
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Texas; Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Junzhou Huang
- Department of Computer Sciences and Engineering, University of Texas at Arlington, Arlington, Texas
| | - Faming Liang
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Adi Gazdar
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Yang Xie
- Department of Bioinformatics, University of Texas Southwestern Medical Center at Dallas, Texas; Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Texas
| | - Guanghua Xiao
- Department of Bioinformatics, University of Texas Southwestern Medical Center at Dallas, Texas; Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Texas.
| |
Collapse
|
42
|
Affiliation(s)
- Charles Swanton
- From the Translational Cancer Therapeutics Laboratory, Francis Crick Institute, and the Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London Hospitals and Cancer Institute, London (C.S.); and the Division of Oncology, Department of Medicine, and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis (R.G.)
| | - Ramaswamy Govindan
- From the Translational Cancer Therapeutics Laboratory, Francis Crick Institute, and the Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London Hospitals and Cancer Institute, London (C.S.); and the Division of Oncology, Department of Medicine, and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis (R.G.)
| |
Collapse
|
43
|
Brady JJ, Chuang CH, Greenside PG, Rogers ZN, Murray CW, Caswell DR, Hartmann U, Connolly AJ, Sweet-Cordero EA, Kundaje A, Winslow MM. An Arntl2-Driven Secretome Enables Lung Adenocarcinoma Metastatic Self-Sufficiency. Cancer Cell 2016; 29:697-710. [PMID: 27150038 PMCID: PMC4864124 DOI: 10.1016/j.ccell.2016.03.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/23/2016] [Accepted: 03/05/2016] [Indexed: 02/06/2023]
Abstract
The ability of cancer cells to establish lethal metastatic lesions requires the survival and expansion of single cancer cells at distant sites. The factors controlling the clonal growth ability of individual cancer cells remain poorly understood. Here, we show that high expression of the transcription factor ARNTL2 predicts poor lung adenocarcinoma patient outcome. Arntl2 is required for metastatic ability in vivo and clonal growth in cell culture. Arntl2 drives metastatic self-sufficiency by orchestrating the expression of a complex pro-metastatic secretome. We identify Clock as an Arntl2 partner and functionally validate the matricellular protein Smoc2 as a pro-metastatic secreted factor. These findings shed light on the molecular mechanisms that enable single cancer cells to form allochthonous tumors in foreign tissue environments.
Collapse
Affiliation(s)
- Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peyton G Greenside
- Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zoë N Rogers
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deborah R Caswell
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ursula Hartmann
- Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Andrew J Connolly
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - E Alejandro Sweet-Cordero
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|