1
|
Jin J, Wang K, Lu C, Yao C, Xie F. NEDD4L Inhibits the Proliferation and Migration of Keloid Fibroblasts by Regulating YY1 Ubiquitination-Mediated Glycolytic Metabolic Reprogramming. Exp Dermatol 2024; 33:e70008. [PMID: 39494931 DOI: 10.1111/exd.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Keloid scarring is a complex fibroproliferative disorder characterised by excessive fibroblast proliferation. Inhibition of cellular glycolysis effectively suppresses the proliferation of keloid fibroblasts (KFs). Neural precursor cell-expressed developmentally downregulated gene 4-like (NEDD4L), a ubiquitin ligase, regulates cell proliferation in different diseases. This study investigated the effects of NEDD4L on glucose metabolism, proliferation and migration in KFs. Primary KFs were isolated from keloid skin tissues obtained from patients with active-stage keloids. Cell transfection was used to upregulate or downregulate NEDD4L and Yin Yang 1 (YY1) in KFs. Protein expression was assessed by immunohistochemistry and western blotting. The viability, proliferative capacity and migration ability of KFs were evaluated using the MTT method and the EdU and wound healing assays, respectively. The regulatory effect of NEDD4L on YY1 ubiquitination was examined by coimmunoprecipitation. The interaction between YY1 and hexokinase 2 (HK2) was confirmed by a dual-luciferase reporter assay. NEDD4L was downregulated, whereas YY1 and HK2 were highly expressed in keloid tissues compared with normal skin. Overexpression of NEDD4L inhibited the proliferation and migration of KFs. NEDD4L promoted YY1 degradation in KFs by inducing its ubiquitination. Upregulation of YY1 induced glucose consumption and lactate production in KFs via the transcriptional regulation of HK2. Increased expression of YY1 reversed the reduced viability, proliferation, and migration of KFs overexpressing NEDD4L. YY1 also reversed the NEDD4L-induced inhibition of glucose consumption and lactate production in KFs. Additionally, an in vivo study confirmed the inhibitory roles of NEDD4L overexpression and YY1 knockdown in keloid formation. NEDD4L suppressed the viability, proliferation and migration of KFs by regulating YY1 ubiquitination-mediated glycolysis through HK2. These findings suggest a novel regulatory axis, NEDD4L/YY1/HK2, that mediates glucose metabolism in keloid formation.
Collapse
Affiliation(s)
- Jun Jin
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Kai Wang
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Chenxi Lu
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Chenghao Yao
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Feng Xie
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| |
Collapse
|
2
|
Xu J, Jiang W, Hu T, Long Y, Shen Y. NEDD4 and NEDD4L: Ubiquitin Ligases Closely Related to Digestive Diseases. Biomolecules 2024; 14:577. [PMID: 38785984 PMCID: PMC11117611 DOI: 10.3390/biom14050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding of ubiquitin (Ub) to the protein substrate and influences substrate specificity. In recent years, the relationship between the subfamily of neuron-expressed developmental downregulation 4 (NEDD4), which belongs to the E3 ligase system, and digestive diseases has drawn widespread attention. Numerous studies have shown that NEDD4 and NEDD4L of the NEDD4 family can regulate the digestive function, as well as a series of related physiological and pathological processes, by controlling the subsequent degradation of proteins such as PTEN, c-Myc, and P21, along with substrate ubiquitination. In this article, we reviewed the appropriate functions of NEDD4 and NEDD4L in digestive diseases including cell proliferation, invasion, metastasis, chemotherapeutic drug resistance, and multiple signaling pathways, based on the currently available research evidence for the purpose of providing new ideas for the prevention and treatment of digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha 410000, China; (J.X.); (W.J.); (T.H.); (Y.L.)
| |
Collapse
|
3
|
Rotin D, Prag G. Physiological Functions of the Ubiquitin Ligases Nedd4-1 and Nedd4-2. Physiology (Bethesda) 2024; 39:18-29. [PMID: 37962894 DOI: 10.1152/physiol.00023.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023] Open
Abstract
The Nedd4 family of E3 ubiquitin ligases, consisting of a C2-WW(n)-HECT domain architecture, includes the closely related Nedd4/Nedd4-1 and Nedd4L/Nedd4-2, which play critical roles in human physiology and pathophysiology.This review focuses on the regulation of enzymatic activity of these Nedd4 proteins, as well as on their roles in regulating stability and function of membrane and other signaling proteins, such as ion channels, ion transporters, and growth factor receptors. The diseases caused by impairment of such regulation are discussed, as well as opportunities and challenges for targeting these enzymes for therapy.
Collapse
Affiliation(s)
- Daniela Rotin
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Biochemistry Department, University of Toronto, Ontario, Canada
| | - Gali Prag
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
4
|
Anand S, Nedeva C, Chitti SV, Fonseka P, Kang T, Gangoda L, Tabassum NI, Abdirahman S, Arumugam TV, Putoczki TL, Kumar S, Mathivanan S. The E3 ubiquitin ligase NEDD4 regulates chemoresistance to 5-fluorouracil in colorectal cancer cells by altering JNK signalling. Cell Death Dis 2023; 14:828. [PMID: 38097550 PMCID: PMC10721789 DOI: 10.1038/s41419-023-06349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths. Though chemotherapy is the main treatment option for advanced CRC, patients invariably acquire resistance to chemotherapeutic drugs and fail to respond to the therapy. Although understanding the mechanisms regulating chemoresistance has been a focus of intense research to manage this challenge, the pathways governing resistance to drugs are poorly understood. In this study, we provide evidence for the role of ubiquitin ligase NEDD4 in resistance developed against the most commonly used CRC chemotherapeutic drug 5-fluorouracil (5-FU). A marked reduction in NEDD4 protein abundance was observed in a panel of CRC cell lines and patient-derived xenograft samples that were resistant to 5-FU. Knockout of NEDD4 in CRC cells protected them from 5-FU-mediated apoptosis but not oxaliplatin or irinotecan. Furthermore, NEDD4 depletion in CRC cells reduced proliferation, colony-forming abilities and tumour growth in mice. Follow-up biochemical analysis highlighted the inhibition of the JNK signalling pathway in NEDD4-deficient cells. Treatment with the JNK activator hesperidin in NEDD4 knockout cells sensitised the CRC cells against 5-FU. Overall, we show that NEDD4 regulates cell proliferation, colony formation, tumour growth and 5-FU chemoresistance in CRC cells.
Collapse
Affiliation(s)
- Sushma Anand
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christina Nedeva
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sai V Chitti
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Pamali Fonseka
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Taeyoung Kang
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Lahiru Gangoda
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Nishat I Tabassum
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Suad Abdirahman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3052, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3052, Australia
| | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
5
|
Alrosan AZ, Alrosan K, Heilat GB, Alsharedeh R, Abudalo R, Oqal M, Alqudah A, Elmaghrabi YA. Potential roles of NEDD4 and NEDD4L and their utility as therapeutic targets in high‑incidence adult male cancers (Review). Mol Clin Oncol 2023; 19:68. [PMID: 37614371 PMCID: PMC10442760 DOI: 10.3892/mco.2023.2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023] Open
Abstract
The term 'cancer' refers to >100 disorders that progressively manifest over time and are characterized by uncontrolled cell division. Although malignant growth can occur in virtually any human tissue, the underlying mechanisms underlying all forms of cancer are consistent. The International Agency for Research on Cancer's annual GLOBOCAN 2020 report provided an update on the global cancer incidence and mortality. Excluding non-melanoma skin cancer, the report predicts that there will be 19.3 million new cancer cases and >10 million cancer-related fatalities in 2023. Lung, prostate, and colon cancers are the most prevalent and lethal cancers in males. It was recognized that post-translational modifications (PTMs) of proteins are necessary for almost all cellular biological processes, as well as in cancer development and metastasis to other bodily organs. Thus, PTMs have a considerable impact on how proteins behave. Various PTMs may have harmful roles by affecting the hallmarks of cancer, metabolism and the regulation of the tumor microenvironment. PTMs and genetic changes/mutations are essential in carcinogenesis and cancer development. A pivotal PTM mechanism is protein ubiquitination. Of note, the rate-limiting stage of the protein ubiquitination cascade is hypothesized to be E3-ligase-mediated ubiquitination. Numerous studies revealed that the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) E3 ligase is among the E3 ubiquitin ligases that have essential roles in cellular processes. It regulates protein degradation and substrate ubiquitination. In addition, it has been shown that NEDD4 primarily functions as an oncogene in various malignancies but can also act as a tumor suppressor in certain types of tumor. In the present review, the roles of NEDD4 as an anticancer protein in various high-incidence male malignancies and the significance of NEDD4 as a potential cancer therapeutic target are discussed. In addition, the targeting of NEDD4 as a therapeutic strategy for the treatment of human malignancies is explored.
Collapse
Affiliation(s)
- Amjad Z. Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Ghaith B. Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rawan Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The Yarmouk University, Irbid 21163, Jordan
| | - Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Muna Oqal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, The Hashemite University, Zarqa 13133, Jordan
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | | |
Collapse
|
6
|
Zou Q, Liu M, Liu K, Zhang Y, North BJ, Wang B. E3 ubiquitin ligases in cancer stem cells: key regulators of cancer hallmarks and novel therapeutic opportunities. Cell Oncol (Dordr) 2023; 46:545-570. [PMID: 36745329 PMCID: PMC10910623 DOI: 10.1007/s13402-023-00777-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human malignancies are composed of heterogeneous subpopulations of cancer cells with phenotypic and functional diversity. Among them, a unique subset of cancer stem cells (CSCs) has both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties. As such, CSCs are promising cellular targets for effective cancer therapy. At the molecular level, hyper-activation of multiple stemness regulatory signaling pathways and downstream transcription factors play critical roles in controlling CSCs establishment and maintenance. To regulate CSC properties, these stemness pathways are controlled by post-translational modifications including, but not limited to phosphorylation, acetylation, methylation, and ubiquitination. CONCLUSION In this review, we focus on E3 ubiquitin ligases and their roles and mechanisms in regulating essential hallmarks of CSCs, such as self-renewal, invasion and metastasis, metabolic reprogramming, immune evasion, and therapeutic resistance. Moreover, we discuss emerging therapeutic approaches to eliminate CSCs through targeting E3 ubiquitin ligases by chemical inhibitors and proteolysis-targeting chimera (PROTACs) which are currently under development at the discovery, preclinical, and clinical stages. Several outstanding issues such as roles for E3 ubiquitin ligases in heterogeneity and phenotypical/functional evolution of CSCs remain to be studied under pathologically and clinically relevant conditions. With the rapid application of functional genomic and proteomic approaches at single cell, spatiotemporal, and even single molecule levels, we anticipate that more specific and precise functions of E3 ubiquitin ligases will be delineated in dictating CSC properties. Rational design and proper translation of these mechanistic understandings may lead to novel therapeutic modalities for cancer procession medicine.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, People's Republic of China
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, People's Republic of China
| | - Kewei Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yi Zhang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, People's Republic of China.
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, 68178, USA.
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
7
|
Sun A, Chen Y, Tian X, Lin Q. The Role of HECT E3 Ubiquitin Ligases in Colorectal Cancer. Biomedicines 2023; 11:biomedicines11020478. [PMID: 36831013 PMCID: PMC9953483 DOI: 10.3390/biomedicines11020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Colorectal cancer (CRC) is estimated to rank as the second reason for cancer-related deaths, and the prognosis of CRC patients remains unsatisfactory. Numerous studies on gastrointestinal cell biology have shown that the E3 ligase-mediated ubiquitination exerts key functions in the pathogenesis of CRC. The homologous to E6-associated protein C-terminus (HECT) family E3 ligases are a major group of E3 enzymes, featured with the presence of a catalytic HECT domain, which participate in multiple cellular processes; thus, alterations in HECT E3 ligases in function or expression are closely related to the occurrence and development of many human malignancies, including-but not limited to-CRC. In this review, we summarize the potential role of HECT E3 ligases in colorectal carcinogenesis and the related underlying molecular mechanism to expand our understanding of their pathological functions. Exploiting specific inhibitors targeting HECT E3 ligases could be a potential therapeutic strategy for CRC therapy in the future.
Collapse
|
8
|
Li Q, Zhang W. Progress in Anticancer Drug Development Targeting Ubiquitination-Related Factors. Int J Mol Sci 2022; 23:ijms232315104. [PMID: 36499442 PMCID: PMC9737479 DOI: 10.3390/ijms232315104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
Ubiquitination is extensively involved in critical signaling pathways through monitoring protein stability, subcellular localization, and activity. Dysregulation of this process results in severe diseases including malignant cancers. To develop drugs targeting ubiquitination-related factors is a hotspot in research to realize better therapy of human diseases. Ubiquitination comprises three successive reactions mediated by Ub-activating enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3. As expected, multiple ubiquitination enzymes have been highlighted as targets for anticancer drug development due to their dominant effect on tumorigenesis and cancer progression. In this review, we discuss recent progresses in anticancer drug development targeting enzymatic machinery components.
Collapse
|
9
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
10
|
Liu J, Chen T, Li S, Liu W, Wang P, Shang G. Targeting matrix metalloproteinases by E3 ubiquitin ligases as a way to regulate the tumor microenvironment for cancer therapy. Semin Cancer Biol 2022; 86:259-268. [PMID: 35724822 DOI: 10.1016/j.semcancer.2022.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
The tumor microenvironment (TME) plays an important role in neoplastic development. Matrix metalloproteinases (MMPs) are critically involved in tumorigenesis by modulation of the TME and degradation of the extracellular matrix (ECM) in a large variety of malignancies. Evidence has revealed that dysregulated MMPs can lead to ECM damage, the promotion of cell migration and tumor metastasis. The expression and activities of MMPs can be tightly regulated by TIMPs, multiple signaling pathways and noncoding RNAs. MMPs are also finely controlled by E3 ubiquitin ligases. The current review focuses on the molecular mechanism by which MMPs are governed by E3 ubiquitin ligases in carcinogenesis. Due to the essential role of MMPs in oncogenesis, they have been considered the attractive targets for antitumor treatment. Several strategies that target MMPs have been discovered, including the use of small-molecule inhibitors, peptides, inhibitory antibodies, natural compounds with anti-MMP activity, and RNAi therapeutics. However, these molecules have multiple disadvantages, such as poor solubility, severe side-effects and low oral bioavailability. Therefore, it is necessary to discover the novel inhibitors that suppress MMPs for cancer therapy. Here, we discuss the therapeutic potential of targeting E3 ubiquitin ligases to inhibit MMPs. We hope this review will stimulate the discovery of novel therapeutics for the MMP-targeted treatment of a variety of human cancers.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Wenjun Liu
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China
| | - Peter Wang
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
11
|
Lin L, Wu X, Jiang Y, Deng C, Luo X, Han J, Hu J, Cao X. Down-regulated NEDD4L facilitates tumor progression through activating Notch signaling in lung adenocarcinoma. PeerJ 2022; 10:e13402. [PMID: 35646490 PMCID: PMC9138047 DOI: 10.7717/peerj.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4-like protein (NEDD4L), an E3 ubiquitin ligase, exerts an important role in diverse biological processes including development, tumorigenesis, and tumor progression. Although the role of NEDD4L in the pathogenesis of lung adenocarcinoma (LUAD) has been described, the mechanism by which NEDD4L promotes LUAD progression remains poorly understood. In the study, the correlation between NEDD4L level and clinical outcome in LUAD patients was analysed using the data from The Cancer Genome Atlas (TCGA) database. NEDD4L expression in LUAD cell lines and tissue samples was assessed through quantitative real-time PCR (qRT-PCR). The biological function of NEDD4L on regulating LUAD cell proliferation was tested with Cell Counting Kit-8 (CCK-8) assay in vitro, and mouse xenograft tumor model in vivo. We found that NEDD4L expression was significantly decreased in LUAD tissues and cell lines. Lower expression of NEDD4L exhibited a significantly poorer overall survival. Functionally, NEDD4L knockdown in H1299 cells accelerated cell growth, whereas NEDD4L overexpression in A549 cells repressed cell proliferation. NEDD4L overexpression also inhibited tumor xenograft growth in vivo. Mechanistically, NEDD4L decreased the protein stability of notch receptor 2 (Notch2) through facilitating its ubiquitination and degradation by ubiquitin-proteasome system. Consequently, NEDD4L negatively regulated Notch signaling activation in LUAD cells, and RO4929097 (a Notch inhibitor) treatment effectively repressed the effect of NEDD4L knockdown on LUAD cell proliferation. Taken together, these results demonstrate that down-regulated NEDD4L facilitates LUAD progression by activating Notch signaling, and NEDD4L may be a promising target to treat LUAD.
Collapse
Affiliation(s)
- Liping Lin
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Xuan Wu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Yuanxue Jiang
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Caijiu Deng
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Jianjun Han
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Jiazhu Hu
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Xiaolong Cao
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
The NEDD4 ubiquitin E3 ligase: a snapshot view of its functional activity and regulation. Biochem Soc Trans 2022; 50:473-485. [PMID: 35129615 DOI: 10.1042/bst20210731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Due to its fundamental role in all eukaryotic cells, a deeper understanding of the molecular mechanisms underlying ubiquitination is of central importance. Being responsible for chain specificity and substrate recognition, E3 ligases are the selective elements of the ubiquitination process. In this review, we discuss different cellular pathways regulated by one of the first identified E3 ligase, NEDD4, focusing on its pathophysiological role, its known targets and modulators. In addition, we highlight small molecule inhibitors that act on NEDD4 and discuss new strategies to effectively target this E3 enzyme.
Collapse
|
13
|
Sun L, Amraei R, Rahimi N. NEDD4 regulates ubiquitination and stability of the cell adhesion molecule IGPR-1 via lysosomal pathway. J Biomed Sci 2021; 28:35. [PMID: 33962630 PMCID: PMC8103646 DOI: 10.1186/s12929-021-00731-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background The cell adhesion molecule IGPR-1 regulates various critical cellular processes including, cell–cell adhesion, mechanosensing and autophagy and plays important roles in angiogenesis and tumor growth; however, the molecular mechanism governing the cell surface levels of IGPR-1 remains unknown. Results In the present study, we used an in vitro ubiquitination assay and identified ubiquitin E3 ligase NEDD4 and the ubiquitin conjugating enzyme UbcH6 involved in the ubiquitination of IGPR-1. In vitro GST-pulldown and in vivo co-immunoprecipitation assays demonstrated that NEDD4 binds to IGPR-1. Over-expression of wild-type NEDD4 downregulated IGPR-1 and deletion of WW domains (1–4) of NEDD4 revoked its effects on IGPR-1. Knockdown of NEDD4 increased IGPR-1 levels in A375 melanoma cells. Deletion of 57 amino acids encompassing the polyproline rich (PPR) motifs on the C-terminus of IGPR-1 nullified its binding with NEDD4. Furthermore, we demonstrate that NEDD4 promotes K48- and K63-dependent polyubiquitination of IGPR-1. The NEDD4-mediated polyubiquitination of IGPR-1 stimulates lysosomal-dependent degradation of IGPR-1 as the treatment of cells with the lysosomal inhibitors, bafilomycine or ammonium chloride increased IGPR-1 levels ectopically expressed in HEK-293 cells and in multiple endogenously IGPR-1 expressing human skin melanoma cell lines. Conclusions NEDD4 ubiquitin E3 ligase binds to and mediates polyubiquitination of IGPR-1 leading to its lysosomal-dependent degradation. NEDD4 is a key regulator of IGPR-1 expression with implication in the therapeutic targeting of IGPR-1 in human cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00731-9.
Collapse
Affiliation(s)
- Linzi Sun
- Department of Pathology, School of Medicine, Boston University Medical Campus, 670 Albany Street, Boston, MA, 02118, USA
| | - Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, 670 Albany Street, Boston, MA, 02118, USA
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, 670 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
14
|
Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin Cancer Biol 2020; 67:92-101. [PMID: 32171886 DOI: 10.1016/j.semcancer.2020.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
A growing amount of evidence indicates that the neuronally expressed developmentally downregulated 4 (NEDD4, also known as NEDD4-1) E3 ligase plays a critical role in a variety of cellular processes via the ubiquitination-mediated degradation of multiple substrates. The abnormal regulation of NEDD4 protein has been implicated in cancer development and progression. In this review article, we briefly delineate the downstream substrates and upstream regulators of NEDD4, which are involved in carcinogenesis. Moreover, we succinctly elucidate the functions of NEDD4 protein in tumorigenesis and progression, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial mesenchymal transition (EMT), cancer stem cells, and drug resistance. The findings regarding NEDD4 functions are further supported by knockout mouse models and human tumor tissue studies. This review could provide a promising and optimum anticancer therapeutic strategy via targeting the NEDD4 protein.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
15
|
Huang X, Gu H, Zhang E, Chen Q, Cao W, Yan H, Chen J, Yang L, Lv N, He J, Yi Q, Cai Z. The NEDD4-1 E3 ubiquitin ligase: A potential molecular target for bortezomib sensitivity in multiple myeloma. Int J Cancer 2020; 146:1963-1978. [PMID: 31390487 PMCID: PMC7027789 DOI: 10.1002/ijc.32615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/04/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Abstract
E3 ubiquitin ligases primarily determine the substrate specificity of the ubiquitin-proteasome system and play an essential role in the resistance to bortezomib in multiple myeloma (MM). Neural precursor cell-expressed developmentally downregulated gene 4-1 (NEDD4-1, also known as NEDD4) is a founding member of the NEDD4 family of E3 ligases and is involved in the proliferation, migration, invasion and drug sensitivity of cancer cells. In the present study, we investigated the role of NEDD4-1 in MM cells and explored its underlying mechanism. Clinically, low NEDD4-1 expression has been linked to poor prognosis in patients with MM. Functionally, NEDD4-1 knockdown (KD) resulted in bortezomib resistance in MM cells in vitro and in vivo. The overexpression (OE) of NEDD4-1, but not an enzyme-dead NEDD4-1-C867S mutant, had the opposite effect. Furthermore, the overexpression of NEDD4-1 in NEDD4-1 KD cells resensitized the cells to bortezomib in an add-back rescue experiment. Mechanistically, pAkt-Ser473 levels and Akt signaling were elevated and decreased by NEDD4-1 KD and OE, respectively. NEDD4-1 ubiquitinated Akt and targeted pAkt-Ser473 for proteasomal degradation. More importantly, the NEDD4-1 KD-induced upregulation of Akt expression sensitized MM cells to growth inhibition after treatment with an Akt inhibitor. Collectively, our results suggest that high NEDD4-1 levels may be a potential new therapeutic target in MM.
Collapse
Affiliation(s)
- Xi Huang
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Huiyao Gu
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Enfan Zhang
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Wen Cao
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Haimeng Yan
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jing Chen
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Li Yang
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Ning Lv
- Department of PharmacyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jingsong He
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qing Yi
- Center for Hematologic Malignancy Research Institute, Houston MethodistHoustonTX
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of HematologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Institute of Hematology, Zhejiang UniversityChina
| |
Collapse
|
16
|
Novellasdemunt L, Kucharska A, Jamieson C, Prange‐Barczynska M, Baulies A, Antas P, van der Vaart J, Gehart H, Maurice MM, Li VSW. NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor. EMBO J 2020; 39:e102771. [PMID: 31867777 PMCID: PMC6996568 DOI: 10.15252/embj.2019102771] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal stem cell (ISC) marker LGR5 is a receptor for R-spondin (RSPO) that functions to potentiate Wnt signalling in the proliferating crypt. It has been recently shown that Wnt plays a priming role for ISC self-renewal by inducing RSPO receptor LGR5 expression. Despite its pivotal role in homeostasis, regeneration and cancer, little is known about the post-translational regulation of LGR5. Here, we show that the HECT-domain E3 ligases NEDD4 and NEDD4L are expressed in the crypt stem cell regions and regulate ISC priming by degrading LGR receptors. Loss of Nedd4 and Nedd4l enhances ISC proliferation, increases sensitivity to RSPO stimulation and accelerates tumour development in Apcmin mice with increased numbers of high-grade adenomas. Mechanistically, we find that both NEDD4 and NEDD4L negatively regulate Wnt/β-catenin signalling by targeting LGR5 receptor and DVL2 for proteasomal and lysosomal degradation. Our findings unveil the previously unreported post-translational control of LGR receptors via NEDD4/NEDD4L to regulate ISC priming. Inactivation of NEDD4 and NEDD4L increases Wnt activation and ISC numbers, which subsequently enhances tumour predisposition and progression.
Collapse
Affiliation(s)
| | - Anna Kucharska
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Cara Jamieson
- Oncode Institute and Department of Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Anna Baulies
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Pedro Antas
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Jelte van der Vaart
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) UtrechtUtrechtThe Netherlands
| | - Helmuth Gehart
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) UtrechtUtrechtThe Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Vivian SW Li
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
17
|
Wan L, Liu T, Hong Z, Pan Y, Sizemore ST, Zhang J, Ma Z. NEDD4 expression is associated with breast cancer progression and is predictive of a poor prognosis. Breast Cancer Res 2019; 21:148. [PMID: 31856858 PMCID: PMC6923956 DOI: 10.1186/s13058-019-1236-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background A role for neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) in tumorigenesis has been suggested. However, information is lacking on its role in breast tumor biology. The purpose of this study was to determine the role of NEDD4 in the promotion of the growth and progression of breast cancer (BC) and to evaluate the clinicopathologic and prognostic significance of NEDD4. Methods The impact of NEDD4 expression in BC cell growth was determined by Cell Counting Kit-8 and colony formation assays. Formalin-fixed paraffin-embedded specimens were collected from 133 adjacent normal tissues (ANTs), 445 BC cases composed of pre-invasive ductal carcinoma in situ (DCIS, n = 37), invasive ductal carcinomas (IDC, n = 408, 226 without and 182 with lymph node metastasis), and 116 invaded lymph nodes. The expression of NEDD4 was analyzed by immunohistochemistry. The association between NEDD4 expression and clinicopathological characteristics was analyzed by chi-square test. Survival was evaluated using the Kaplan–Meier method, and curves were compared using a log-rank test. Univariate and multivariate analyses were performed using the Cox regression method. Results NEDD4 promoted BC growth in vitro. In clinical retrospective studies, 16.5% of ANTs (22/133) demonstrated positive NEDD4 staining. Strikingly, the proportion of cases showing NEDD4-positive staining increased to 51.4% (19/37) in DCIS, 58.4% (132/226) in IDC without lymph node metastasis, and 73.1% (133/182) in BC with lymph node metastasis (BCLNM). In addition, NEDD4-positive staining was associated with clinical parameters, including tumor size (P = 0.030), nodal status (P = 0.001), estrogen receptor status (P = 0.035), and progesterone receptor status (P = 0.023). Moreover, subset analysis in BCLNM revealed that high NEDD4 expression correlated with an elevated risk of relapse (P = 0.0276). Further, NEDD4 expression was an independent prognostic predictor. Lastly, the rates for 10-year overall survival and disease-free survival were significantly lower in patients with positive NEDD4 staining than those in BC patients with negative NEDD4 staining BC (P = 0.0024 and P = 0.0011, respectively). Conclusions NEDD4 expression is elevated in BC and is associated with BC growth. NEDD4 correlated with clinicopathological parameters and predicts a poor prognosis. Thus, NEDD4 is a potential biomarker of poor prognosis and a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Lingfeng Wan
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China.,Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA
| | - Tao Liu
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China.,Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA
| | - Zhipeng Hong
- Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA.,Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - You Pan
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Steven T Sizemore
- Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA.
| | - Zhefu Ma
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China. .,Department of Breast Surgery and Plastic Surgery, Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
18
|
The many substrates and functions of NEDD4-1. Cell Death Dis 2019; 10:904. [PMID: 31787758 PMCID: PMC6885513 DOI: 10.1038/s41419-019-2142-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
Tumorigenesis, tumor growth, and prognosis are highly related to gene alterations and post-translational modifications (PTMs). Ubiquitination is a critical PTM that governs practically all aspects of cellular function. An increasing number of studies show that E3 ubiquitin ligases (E3s) are important enzymes in the process of ubiquitination that primarily determine substrate specificity and thus need to be tightly controlled. Among E3s, neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) has been shown to play a critical role in modulating the proliferation, migration, and invasion of cancer cells and the sensitivity of cancer cells to anticancer therapies via regulating multiple substrates. This review discusses some significant discoveries on NEDD4-1 substrates and the signaling pathways in which NEDD4-1 participates. In addition, we introduce the latest potential therapeutic strategies that inhibit or activate NEDD4-1 activity using small molecules. NEDD4-1 likely acts as a novel drug target or diagnostic marker in the battle against cancer.
Collapse
|
19
|
Li YF, Zhang J, Yu L. Circular RNAs Regulate Cancer Onset and Progression via Wnt/β-Catenin Signaling Pathway. Yonsei Med J 2019; 60:1117-1128. [PMID: 31769242 PMCID: PMC6881706 DOI: 10.3349/ymj.2019.60.12.1117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer remains to be a major challenge for public health providers, and is the second leading cause of death worldwide. Therefore, it is imperative to explore the mechanisms underlying cancer initiation and development, and design novel diagnostics and therapeutics. Circular RNAs (circRNAs), which exhibit a covalently closed loop structure, are involved in a variety of diseases, including cancer. The aberrant expression of circRNAs contributes to the initiation and development of various cancers by disrupting the interplay of specific signaling pathways, including the Wnt/β-catenin pathway, which controls a plethora of cellular processes that drive cancer development. The interactions between circRNAs (specifically expressed in different cancer tissues) and Wnt/β-catenin signaling pathway presents potential diagnostic biomarkers and novel therapeutic targets. In this review, we have summarized research discoveries on the functions of Wnt/β-catenin pathway-related circRNAs in the modulation of oncogenesis and progression of different types of cancer. We anticipate that our findings will contribute to the improvement or development of circRNAs-based strategies for cancer treatment.
Collapse
Affiliation(s)
- Yun Feng Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|
21
|
Yang F, Fang E, Mei H, Chen Y, Li H, Li D, Song H, Wang J, Hong M, Xiao W, Wang X, Huang K, Zheng L, Tong Q. Cis-Acting circ-CTNNB1 Promotes β-Catenin Signaling and Cancer Progression via DDX3-Mediated Transactivation of YY1. Cancer Res 2018; 79:557-571. [PMID: 30563889 DOI: 10.1158/0008-5472.can-18-1559] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/27/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Circular RNAs (circRNA), a subclass of noncoding RNA characterized by covalently closed continuous loops, play emerging roles in tumorigenesis and aggressiveness. However, the functions and underlying mechanisms of circRNA in regulating Wnt/β-catenin signaling and cancer progression remain elusive. Here, we screen cis-acting circRNA generated by β-catenin (CTNNB1)/transcription factor 7-like 2 genes and identify one intronic circRNA derived from CTNNB1 (circ-CTNNB1) as a novel driver of cancer progression. Circ-CTNNB1 was predominantly expressed in the nucleus, upregulated in cancer tissues and cell lines, and associated with unfavorable outcomes in patients with cancer. Circ-CTNNB1 promoted β-catenin activation, growth, invasion, and metastasis in cancer cells. Circ-CTNNB1 bound DEAD-box polypeptide 3 (DDX3) to facilitate its physical interaction with transcription factor Yin Yang 1 (YY1), resulting in the transactivation of YY1 and transcriptional alteration of downstream genes associated with β-catenin activation and cancer progression. Preclinically, administration of lentivirus-mediated short hairpin RNA targeting circ-CTNNB1 or a cell-penetrating inhibitory peptide blocking the circ-CTNNB1-DDX3 interaction inhibited downstream gene expression, tumorigenesis, and aggressiveness in cancer cells. Taken together, these results demonstrate cis-acting circ-CTNNB1 as a mediator of β-catenin signaling and cancer progression through DDX3-mediated transactivation of YY1. SIGNIFICANCE: These findings reveal the oncogenic functions of a cis-acting circular RNA in β-catenin activation and cancer progression, with potential value as a therapeutic target for human cancers.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Mei Hong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Wenjing Xiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| |
Collapse
|
22
|
Yu S, Yin Y, Wang Q, Wang L. Dual gene deficient models of Apc Min/+ mouse in assessing molecular mechanisms of intestinal carcinogenesis. Biomed Pharmacother 2018; 108:600-609. [PMID: 30243094 DOI: 10.1016/j.biopha.2018.09.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
The ApcMin/+ mouse, carrying an inactivated allele of the adenomatous polyposis coli (Apc) gene, is a widely used animal model of human colorectal tumorigenesis. While crossed with other gene knockout or knock-in mice, these mice possess advantages in investigation of human intestinal tumorigenesis. Intestinal tumor pathogenesis involves multiple gene alterations; thus, various double gene deficiency models could provide novel insights into molecular mechanisms of tumor biology, as well as gene-gene interactions involved in intestinal tumor development and assessment of novel strategies for preventing and treating intestinal cancer. This review discusses approximately 100 double gene deficient mice and their associated intestinal tumor development and progression phenotypes. The dual gene knockouts based on the Apc mutation background consist of inflammation and immune-related, cell cycle-related, Wnt/β-catenin signaling-related, tumor growth factor (TGF)-signaling-related, drug metabolism-related, and transcription factor genes, as well as some oncogenes and tumor suppressors. Future studies should focus on conditional or inducible dual or multiple mouse gene knockout models to investigate the molecular mechanisms underlying intestinal tumor development, as well as potential drug targets.
Collapse
Affiliation(s)
- Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Yanhui Yin
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qian Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
23
|
Feng S, Yang G, Yang H, Liang Z, Zhang R, Fan Y, Zhang G. NEDD4 is involved in acquisition of epithelial-mesenchymal transition in cisplatin-resistant nasopharyngeal carcinoma cells. Cell Cycle 2017; 16:869-878. [PMID: 28379054 DOI: 10.1080/15384101.2017.1308617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive head-neck cancer derived from the nasopharyngeal epithelium, mainly prevalent in southern China and Southeast Asia. Radiotherapy and adjuvant cisplatin (DDP) chemotherapy are standard administrations applied in the treatment of NPC. However, resistance to chemotherapeutic drugs has recently become more common, resulting in worse treatment outcome for NPC therapy. To elucidate the underlying molecular basis of drug resistance to DDP in NPC cells, we examined the morphocytology, cell motility and molecular changes in DDP-resistant NPC cells with respect to epithelial-mesenchymal transition (EMT) features. We found that EMT is closely associated with DDP-induced drug resistance in NPC cells, as DDP-resistant cells displayed morphological and molecular markers changes consistent with EMT. Wound healing and Transwell Boyden chamber assays revealed an enhanced migration and invasion potential in DDP-resistant NPC cells. Mechanistically, upregulation of NEDD4 was observed to relate to EMT in DDP-resistant cells. More importantly, depletion of NEDD4 in resistant cells led to a partial reversion of EMT phenotypes to MET characteristics. These data suggest that NEDD4 is largely involved in EMT features and chemoresistance of NPC cancer cells. NEDD4 could be a novel therapeutic target to overcome drug resistance in successful administrations of NPC.
Collapse
Affiliation(s)
- Shaoyan Feng
- a Department of Otorhinolaryngology, Head and Neck Surgery , The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China.,b Department of Otorhinolaryngology , Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Guangwei Yang
- c Department of Radiation Oncology , The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Haidi Yang
- d Department of Otolaryngology , Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou , China
| | - Zibin Liang
- c Department of Radiation Oncology , The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Rongkai Zhang
- e Department of Orthopaedics , The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Yunping Fan
- b Department of Otorhinolaryngology , Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Gehua Zhang
- a Department of Otorhinolaryngology, Head and Neck Surgery , The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|