1
|
Davalos V, Esteller M. Cancer epigenetics in clinical practice. CA Cancer J Clin 2022. [PMID: 36512337 DOI: 10.3322/caac.21765] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer development is driven by the accumulation of alterations affecting the structure and function of the genome. Whereas genetic changes disrupt the DNA sequence, epigenetic alterations contribute to the acquisition of hallmark tumor capabilities by regulating gene expression programs that promote tumorigenesis. Shifts in DNA methylation and histone mark patterns, the two main epigenetic modifications, orchestrate tumor progression and metastasis. These cancer-specific events have been exploited as useful tools for diagnosis, monitoring, and treatment choice to aid clinical decision making. Moreover, the reversibility of epigenetic modifications, in contrast to the irreversibility of genetic changes, has made the epigenetic machinery an attractive target for drug development. This review summarizes the most advanced applications of epigenetic biomarkers and epigenetic drugs in the clinical setting, highlighting commercially available DNA methylation-based assays and epigenetic drugs already approved by the US Food and Drug Administration.
Collapse
Affiliation(s)
- Veronica Davalos
- Josep Carreras Leukaemia Research Institute, Badalona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer, Madrid, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Singh S, Abu-Zaid A, Jin H, Fang J, Wu Q, Wang T, Feng H, Quarni W, Shao Y, Maxham L, Abdolvahabi A, Yun MK, Vaithiyalingam S, Tan H, Bowling J, Honnell V, Young B, Guo Y, Bajpai R, Pruett-Miller SM, Grosveld GC, Hatley M, Xu B, Fan Y, Wu G, Chen EY, Chen T, Lewis PW, Rankovic Z, Li Y, Murphy AJ, Easton J, Peng J, Chen X, Wang R, White SW, Davidoff AM, Yang J. Targeting KDM4 for treating PAX3-FOXO1-driven alveolar rhabdomyosarcoma. Sci Transl Med 2022; 14:eabq2096. [PMID: 35857643 PMCID: PMC9548378 DOI: 10.1126/scitranslmed.abq2096] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chimeric transcription factors drive lineage-specific oncogenesis but are notoriously difficult to target. Alveolar rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue sarcoma transformed by the pathognomonic Paired Box 3-Forkhead Box O1 (PAX3-FOXO1) fusion protein, which governs a core regulatory circuitry transcription factor network. Here, we show that the histone lysine demethylase 4B (KDM4B) is a therapeutic vulnerability for PAX3-FOXO1+ RMS. Genetic and pharmacologic inhibition of KDM4B substantially delayed tumor growth. Suppression of KDM4 proteins inhibited the expression of core oncogenic transcription factors and caused epigenetic alterations of PAX3-FOXO1-governed superenhancers. Combining KDM4 inhibition with cytotoxic chemotherapy led to tumor regression in preclinical PAX3-FOXO1+ RMS subcutaneous xenograft models. In summary, we identified a targetable mechanism required for maintenance of the PAX3-FOXO1-related transcription factor network, which may translate to a therapeutic approach for fusion-positive RMS.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Surgery, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jie Fang
- Department of Surgery, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qiong Wu
- Department of Surgery, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Helin Feng
- Department of Orthopedics, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Waise Quarni
- Department of Surgery, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ying Shao
- Department of Computational Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lily Maxham
- Department of Computational Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alireza Abdolvahabi
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.,Protein Technologies Center, Molecular Interaction Analysis, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Haiyan Tan
- Department of Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.,Center for Proteomics and Metabolomics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Bowling
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Victoria Honnell
- Graduate School of Biomedical Sciences, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yian Guo
- Department of Biostatistics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark Hatley
- Department of Oncology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Eleanor Y. Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yimei Li
- Department of Biostatistics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew J. Murphy
- Department of Surgery, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Easton
- Department of Computational Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.,Center for Proteomics and Metabolomics, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Stephen W. White
- Department of Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.,Graduate School of Biomedical Sciences, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew M. Davidoff
- Department of Surgery, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.,Graduate School of Biomedical Sciences, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.,Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Ave, Suite 500, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Zhen H, Zhang X, Zhang L, Zhou M, Lu L, Wu L, He N, Wang J, Li R, Guo Y. SP2509, an inhibitor of LSD1, exerts potential antitumor effects by targeting the JAK/STAT3 signaling. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1098-1105. [PMID: 34169322 DOI: 10.1093/abbs/gmab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Hyperactivation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling promotes tumorigenesis and cancer progression. STAT3 participates in the essential processes of cell proliferation, survival, and differentiation in many types of tumors. In the present study, SP2509 was identified as a potent inhibitor of the JAK/STAT3 signaling pathway by high-throughput drug screening based on a STAT3-driven luciferase expression system. Our results indicated that SP2509 inhibits constitutive STAT3 activation and the expression of STAT3-driven downstream genes. Bcl-xL, c-Myc, and Cyclin D1 were downregulated after treatment with SP2509. In addition, SP2509 specifically inhibits JAK activity, which could cause cell cycle arrest, inhibit cell growth, and induce apoptosis of various cancer cells. These results confirmed that SP2509 inhibits tumor progression by suppressing the expression of JAK/STAT3 signaling and STAT3-related downstream genes. Moreover, we demonstrated that SP2509 inhibits tumor growth in vivo and induces cell death in vitro. SP2509-mediated inhibition of STAT3 phosphorylation is dependent on its original target lysine-specific demethylase 1 in cancer cells. In summary, our results indicate that SP2509 is a novel inhibitor of JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Huiyan Zhen
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Xinxin Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Lei Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Mingming Zhou
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Liangliang Lu
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Lihong Wu
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Na He
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Juan Wang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Rui Li
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Yan Guo
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
4
|
Affiliation(s)
- Nicolò Riggi
- From the Institute of Pathology, Faculty of Biology and Medicine, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N.R., I.S.); and the Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, and the Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge - both in Massachusetts (M.L.S.)
| | - Mario L Suvà
- From the Institute of Pathology, Faculty of Biology and Medicine, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N.R., I.S.); and the Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, and the Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge - both in Massachusetts (M.L.S.)
| | - Ivan Stamenkovic
- From the Institute of Pathology, Faculty of Biology and Medicine, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N.R., I.S.); and the Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, and the Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge - both in Massachusetts (M.L.S.)
| |
Collapse
|
5
|
Hontecillas-Prieto L, Flores-Campos R, Silver A, de Álava E, Hajji N, García-Domínguez DJ. Synergistic Enhancement of Cancer Therapy Using HDAC Inhibitors: Opportunity for Clinical Trials. Front Genet 2020; 11:578011. [PMID: 33024443 PMCID: PMC7516260 DOI: 10.3389/fgene.2020.578011] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy is one of the most established and effective treatments for almost all types of cancer. However, the elevated toxicity due to the non-tumor-associated effects, development of secondary malignancies, infertility, radiation-induced fibrosis and resistance to treatment limit the effectiveness and safety of treatment. In addition, these multiple factors significantly impact quality of life. Over the last decades, our increased understanding of cancer epigenetics has led to new therapeutic approaches and the promise of improved patient outcomes. Epigenetic alterations are commonly found in cancer, especially the increased expression and activity of histone deacetylases (HDACs). Dysregulation of HDACs are critical to the development and progression of the majority of tumors. Hence, HDACs inhibitors (HDACis) were developed and now represent a very promising treatment strategy. The use of HDACis as monotherapy has shown very positive pre-clinical results, but clinical trials have had only limited success. However, combinatorial regimens with other cancer drugs have shown synergistic effects both in pre-clinical and clinical studies. At the same time, these combinations have enhanced the efficacy, reduced the toxicity and tumor resistance to therapy. In this review, we will examine examples of HDACis used in combination with other cancer drugs and highlight the synergistic effects observed in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain.,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Nabil Hajji
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Daniel J García-Domínguez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| |
Collapse
|
6
|
Patel PO, Pishas KI, Taslim C, Selich-Anderson J, Theisen ER, Lessnick SL. Investigating the role of LSD2 as an epigenetic regulator in Ewing sarcoma. Oncotarget 2019; 10:3865-3878. [PMID: 31231465 PMCID: PMC6570473 DOI: 10.18632/oncotarget.26988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022] Open
Abstract
Ewing sarcoma is the second most common solid bone malignancy diagnosed in pediatric and young adolescent populations. Despite aggressive multi-modal treatment strategies, 5-year event-free survival remains at 75% for patients with localized disease and 20% for patients with metastases. Thus, the need for novel therapeutic options is imperative. Recent studies have focused on epigenetic misregulation in Ewing sarcoma development and potential new oncotargets for treatment. This project focused on the study of LSD2, a flavin-dependent histone demethylase found to be overexpressed in numerous cancers. We previously demonstrated that Ewing sarcoma cell lines are extremely susceptible to small molecule LSD1 blockade with SP-2509. Drug sensitivity correlated with the degree of LSD2 induction following treatment. As such, the purpose of this study was to determine the role of LSD2 in the epigenetic regulation of Ewing sarcoma, characterize genes regulated by LSD2, and examine the impact of SP-2509 drug treatment on LSD2 gene regulation. Genetic depletion (shRNA) of LSD2 significantly impaired oncogenic transformation with only a modest impact on proliferation. Transcriptional analysis of Ewing sarcoma cells following LSD2knockdown revealed modulation of genes primarily involved in metabolic regulation and nervous system development. Gene set enrichment analysis showed that SP-2509 does not impact LSD2 targeted genes. Although there are currently no small molecule agents that specifically target LSD2, our results support further investigations into agents that can inhibit this histone demethylase as a possible treatment for Ewing sarcoma.
Collapse
Affiliation(s)
- Priyal O Patel
- The Division of Pediatric Hematology, Oncology & Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathleen I Pishas
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily R Theisen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Stephen L Lessnick
- The Division of Pediatric Hematology, Oncology & Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
7
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
8
|
Bilke S, Schwentner R, Yang F, Kauer M, Jug G, Walker RL, Davis S, Zhu YJ, Pineda M, Meltzer PS, Kovar H. Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer. Genome Res 2013; 23:1797-809. [PMID: 23940108 PMCID: PMC3814880 DOI: 10.1101/gr.151340.112] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deregulated E2F transcription factor activity occurs in the vast majority of human tumors and has been solidly implicated in disturbances of cell cycle control, proliferation, and apoptosis. Aberrant E2F regulatory activity is often caused by impairment of control through pRB function, but little is known about the interplay of other oncoproteins with E2F. Here we show that ETS transcription factor fusions resulting from disease driving rearrangements in Ewing sarcoma (ES) and prostate cancer (PC) are one such class of oncoproteins. We performed an integrative study of genome-wide DNA-binding and transcription data in EWSR1/FLI1 expressing ES and TMPRSS2/ERG containing PC cells. Supported by promoter activity and mutation analyses, we demonstrate that a large fraction of E2F3 target genes are synergistically coregulated by these aberrant ETS proteins. We propose that the oncogenic effect of ETS fusion oncoproteins is in part mediated by the disruptive effect of the E2F–ETS interaction on cell cycle control. Additionally, a detailed analysis of the regulatory targets of the characteristic EWSR1/FLI1 fusion in ES identifies two functionally distinct gene sets. While synergistic regulation in concert with E2F in the promoter of target genes has a generally activating effect, EWSR1/FLI1 binding independent of E2F3 is predominantly associated with repressed differentiation genes. Thus, EWSR1/FLI1 appears to promote oncogenesis by simultaneously promoting cell proliferation and perturbing differentiation.
Collapse
Affiliation(s)
- Sven Bilke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Agra N, Cidre F, García-García L, de la Parra J, Alonso J. Lysyl oxidase is downregulated by the EWS/FLI1 oncoprotein and its propeptide domain displays tumor supressor activities in Ewing sarcoma cells. PLoS One 2013; 8:e66281. [PMID: 23750284 PMCID: PMC3672102 DOI: 10.1371/journal.pone.0066281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 05/09/2013] [Indexed: 12/15/2022] Open
Abstract
Ewing sarcoma is the second most common bone malignancy in children and young adults. It is driven by oncogenic fusion proteins (i.e. EWS/FLI1) acting as aberrant transcription factors that upregulate and downregulate target genes, leading to cellular transformation. Thus, identificating these target genes and understanding their contribution to Ewing sarcoma tumorigenesis are key for the development of new therapeutic strategies. In this study we show that lysyl oxidase (LOX), an enzyme involved in maintaining structural integrity of the extracellular matrix, is downregulated by the EWS/FLI1 oncoprotein and in consequence it is not expressed in Ewing sarcoma cells and primary tumors. Using a doxycycline inducible system to restore LOX expression in an Ewing sarcoma derived cell line, we showed that LOX displays tumor suppressor activities. Interestingly, we showed that the tumor suppressor activity resides in the propeptide domain of LOX (LOX-PP), an N-terminal domain produced by proteolytic cleavage during the physiological processing of LOX. Expression of LOX-PP reduced cell proliferation, cell migration, anchorage-independent growth in soft agar and formation of tumors in immunodeficient mice. By contrast, the C-terminal domain of LOX, which contains the enzymatic activity, had the opposite effects, corroborating that the tumor suppressor activity of LOX is mediated exclusively by its propeptide domain. Finally, we showed that LOX-PP inhibits ERK/MAPK signalling pathway, and that many pathways involved in cell cycle progression were significantly deregulated by LOX-PP, providing a mechanistic explanation to the cell proliferation inhibition observed upon LOX-PP expression. In summary, our observations indicate that deregulation of the LOX gene participates in Ewing sarcoma development and identify LOX-PP as a new therapeutic target for one of the most aggressive paediatric malignancies. These findings suggest that therapeutic strategies based on the administration of LOX propeptide or functional analogues could be useful for the treatment of this devastating paediatric cancer.
Collapse
Affiliation(s)
- Noelia Agra
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Florencia Cidre
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Laura García-García
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan de la Parra
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
10
|
Wiles ET, Lui-Sargent B, Bell R, Lessnick SL. BCL11B is up-regulated by EWS/FLI and contributes to the transformed phenotype in Ewing sarcoma. PLoS One 2013; 8:e59369. [PMID: 23527175 PMCID: PMC3601955 DOI: 10.1371/journal.pone.0059369] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/13/2013] [Indexed: 01/04/2023] Open
Abstract
The EWS/FLI translocation product is the causative oncogene in Ewing sarcoma and acts as an aberrant transcription factor. EWS/FLI dysregulates gene expression during tumorigenesis by abnormally activating or repressing genes. The expression levels of thousands of genes are affected in Ewing sarcoma, however, it is unknown which of these genes contribute to the transformed phenotype. Here we characterize BCL11B as an up-regulated EWS/FLI target that is necessary for the maintenance of transformation in patient derived Ewing sarcoma cells lines. BCL11B, a zinc finger transcription factor, acts as a transcriptional repressor in Ewing's sarcoma and contributes to the EWS/FLI repressed gene signature. BCL11B repressive activity is mediated by the NuRD co-repressor complex. We further demonstrate that re-expression of SPRY1, a repressed target of BCL11B, limits the transformation capacity of Ewing sarcoma cells. These data define a new pathway downstream of EWS/FLI required for oncogenic maintenance in Ewing sarcoma.
Collapse
Affiliation(s)
- Elizabeth T. Wiles
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Bianca Lui-Sargent
- Center for Children’s Cancer Research, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Russell Bell
- Center for Children’s Cancer Research, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Stephen L. Lessnick
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Center for Children’s Cancer Research, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
- Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|