1
|
Yin Z, Fu L, Wang Y, Tai S. Impact of gut microbiota on cardiac aging. Arch Gerontol Geriatr 2025; 128:105639. [PMID: 39312851 DOI: 10.1016/j.archger.2024.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Recent research has suggested imbalances in gut microbiota composition as contributors to cardiac aging. An individual's physical condition, along with lifestyle-associated factors, including diet and medication, are significant determinants of gut microbiota composition. This review discusses evidence of bidirectional associations between aging and gut microbiota, identifying gut microbiota-derived metabolites as potential regulators of cardiac aging. It summarizes the effects of gut microbiota on cardiac aging diseases, including cardiac hypertrophy and fibrosis, heart failure, and atrial fibrillation. Furthermore, this review discusses the potential anti-aging effects of modifying gut microbiota composition through dietary and pharmacological interventions. Lastly, it underscores critical knowledge gaps and outlines future research directions. Given the current limited understanding of the direct relationship between gut microbiota and cardiac aging, there is an urgent need for preclinical and clinical investigations into the mechanistic interactions between gut microbiota and cardiac aging. Such endeavors hold promise for shedding light on the pathophysiology of cardiac aging and uncovering new therapeutic targets for cardiac aging diseases.
Collapse
Affiliation(s)
- Zhiyi Yin
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Liyao Fu
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Shi Tai
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Semenova N, Garashchenko N, Kolesnikov S, Darenskaya M, Kolesnikova L. Gut Microbiome Interactions with Oxidative Stress: Mechanisms and Consequences for Health. PATHOPHYSIOLOGY 2024; 31:309-330. [PMID: 39051221 PMCID: PMC11270257 DOI: 10.3390/pathophysiology31030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Understanding how gut flora interacts with oxidative stress has been the subject of significant research in recent years. There is much evidence demonstrating the existence of the microbiome-oxidative stress interaction. However, the biochemical basis of this interaction is still unclear. In this narrative review, possible pathways of the gut microbiota and oxidative stress interaction are presented, among which genetic underpinnings play an important role. Trimethylamine-N-oxide, mitochondria, short-chain fatty acids, and melatonin also appear to play roles. Moreover, the relationship between oxidative stress and the gut microbiome in obesity, metabolic syndrome, chronic ethanol consumption, dietary supplements, and medications is considered. An investigation of the correlation between bacterial community features and OS parameter changes under normal and pathological conditions might provide information for the determination of new research methods. Furthermore, such research could contribute to establishing a foundation for determining the linkers in the microbiome-OS association.
Collapse
Affiliation(s)
- Natalya Semenova
- Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia; (N.G.); (S.K.); (M.D.); (L.K.)
| | | | | | | | | |
Collapse
|
3
|
Naseri S, Cordova MM, Wenthe J, Lövgren T, Eriksson E, Loskog A, Ullenhag GJ. CD40 stimulation via CD40 ligand enhances adenovirus-mediated tumour immunogenicity including 'find-me', 'eat-me', and 'kill-me' signalling. J Cell Mol Med 2024; 28:e18162. [PMID: 38494863 PMCID: PMC10945091 DOI: 10.1111/jcmm.18162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024] Open
Abstract
Immunostimulatory gene therapy using oncolytic viruses is currently evaluated as a promising therapy for cancer aiming to induce anti-tumour immunity. Here, we investigate the capacity of oncolytic adenoviruses (LOAd) and their transgenes to induce immunogenicity in the infected tumour cells. Oncolysis and death-related markers were assessed after infection of eight human solid cancer cell lines with different LOAd viruses expressing a trimerized, membrane-bound (TMZ)-CD40L, TMZ-CD40L and 41BBL, or no transgenes. The viruses induced transgene expression post infection before they were killed by oncolysis. Death receptors TRAIL-R1, TRAIL-R2 and Fas as well as immunogenic cell death marker calreticulin were upregulated in cell lines post infection. Similarly, caspase 3/7 activity was increased in most cell lines. Interestingly, in CD40+ cell lines there was a significant effect of the TMZ-CD40L-encoding viruses indicating activation of the CD40-mediated apoptosis pathway. Further, these cell lines showed a significant increase of calreticulin, and TRAIL receptor 1 and 2 post infection. However, LOAd viruses induced PD-L1 upregulation which may hamper anti-tumour immune responses. In conclusion, LOAd infection increased the immunogenicity of infected tumour cells and this was potentiated by CD40 stimulation. Due to the simultaneous PD-L1 increase, LOAd viruses may benefit from combination with antibodies blocking PD1/PD-L1.
Collapse
Affiliation(s)
- Sedigheh Naseri
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Mariela Mejia Cordova
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Jessica Wenthe
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Tanja Lövgren
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
- Lokon Pharma ABUppsalaSweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
- Lokon Pharma ABUppsalaSweden
| | - Gustav J. Ullenhag
- Department of Immunology, Genetics and Pathology (IGP), Science for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of OncologyUppsala University HospitalUppsalaSweden
| |
Collapse
|
4
|
Bessone F, Hillotte GL, Ahumada N, Jaureguizahar F, Medeot AC, Roma MG. UDCA for Drug-Induced Liver Disease: Clinical and Pathophysiological Basis. Semin Liver Dis 2024; 44:1-22. [PMID: 38378025 DOI: 10.1055/s-0044-1779520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Drug-induced liver injury (DILI) is an adverse reaction to medications and other xenobiotics that leads to liver dysfunction. Based on differential clinical patterns of injury, DILI is classified into hepatocellular, cholestatic, and mixed types; although hepatocellular DILI is associated with inflammation, necrosis, and apoptosis, cholestatic DILI is associated with bile plugs and bile duct paucity. Ursodeoxycholic acid (UDCA) has been empirically used as a supportive drug mainly in cholestatic DILI, but both curative and prophylactic beneficial effects have been observed for hepatocellular DILI as well, according to preliminary clinical studies. This could reflect the fact that UDCA has a plethora of beneficial effects potentially useful to treat the wide range of injuries with different etiologies and pathomechanisms occurring in both types of DILI, including anticholestatic, antioxidant, anti-inflammatory, antiapoptotic, antinecrotic, mitoprotective, endoplasmic reticulum stress alleviating, and immunomodulatory properties. In this review, a revision of the literature has been performed to evaluate the efficacy of UDCA across the whole DILI spectrum, and these findings were associated with the multiple mechanisms of UDCA hepatoprotection. This should help better rationalize and systematize the use of this versatile and safe hepatoprotector in each type of DILI scenarios.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Geraldine L Hillotte
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Ahumada
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Fernanda Jaureguizahar
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
5
|
Bandyopadhyay S, Gurjar D, Saha B, Bodhale N. Decoding the contextual duality of CD40 functions. Hum Immunol 2023; 84:590-599. [PMID: 37596136 DOI: 10.1016/j.humimm.2023.08.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Previously, we established that as a function of its mode of interaction with its ligand or cellular conditions such as membrane lipids, preexisting signaling intermediates activation status, a transmembrane receptor, as represented here with CD40, can induce counteractive cellular responses. Using CD40-binding peptides, recombinant mutated CD40-ligands, and an agonistic antibody, we have established the functional duality of CD40. CD40 builds up two constitutionally different signalosomes on lipid raft and non-raft membrane domains initiating two different signaling pathways. Although this initial signaling may be modified by the pre-existing signaling conditions downstream and may be subjected to feed-forward or negative signaling effects, the initial CD40-CD40L interaction plays a crucial role in the functional outcome of CD40. Herein, we have reviewed the influence of interaction between the CD40-CD40L evoking the functional duality of CD40 contingent upon different physiological states of the cells.
Collapse
Affiliation(s)
| | - Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| |
Collapse
|
6
|
Jung J, Gokhale S, Xie P. TRAF3: A novel regulator of mitochondrial physiology and metabolic pathways in B lymphocytes. Front Oncol 2023; 13:1081253. [PMID: 36776285 PMCID: PMC9911533 DOI: 10.3389/fonc.2023.1081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Mitochondria, the organelle critical for cell survival and metabolism, are exploited by cancer cells and provide an important therapeutic target in cancers. Mitochondria dynamically undergo fission and fusion to maintain their diverse functions. Proteins controlling mitochondrial fission and fusion have been recognized as essential regulators of mitochondrial functions, mitochondrial quality control, and cell survival. In a recent proteomic study, we identified the key mitochondrial fission factor, MFF, as a new interacting protein of TRAF3, a known tumor suppressor of multiple myeloma and other B cell malignancies. This interaction recruits the majority of cytoplasmic TRAF3 to mitochondria, allowing TRAF3 to regulate mitochondrial morphology, mitochondrial functions, and mitochondria-dependent apoptosis in resting B lymphocytes. Interestingly, recent transcriptomic, metabolic and lipidomic studies have revealed that TRAF3 also vitally regulates multiple metabolic pathways in B cells, including phospholipid metabolism, glucose metabolism, and ribonucleotide metabolism. Thus, TRAF3 emerges as a novel regulator of mitochondrial physiology and metabolic pathways in B lymphocytes and B cell malignancies. Here we review current knowledge in this area and discuss relevant clinical implications.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Nakashima M, Utsunomiya A, Watanabe T, Horie R, Uchimaru K. The oncogenic driving force of CD30 signaling-induced chromosomal instability in adult T-cell leukemia/lymphoma. Cancer Sci 2022; 114:1556-1568. [PMID: 36541483 PMCID: PMC10067402 DOI: 10.1111/cas.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) develops via stepwise accumulation of gene mutations and chromosome aberrations. However, the molecular mechanisms underlying this tumorigenic process are poorly understood. We previously reported the presence of a biological link between the expression of CD30, which serves as a marker for ATL progression, and the actively proliferating fraction of human T-cell leukemia virus type 1 (HTLV-1)-infected cells that display polylobulation. Here, we demonstrated that CD30 signaling induced chromosomal instability with clonal expansion through DNA double-strand breaks (DSBs) via an increase of intracellular reactive oxygen species. CD30+ ATL cells were composed of subclones with additional genomic aberrations compared with CD30- ATL cells in ATL patients. Furthermore, we found an accumulation of copy number loss of DSB repair-related genes as the disease progressed. Taken together, CD30 expression on ATL cells appears to be correlated with genomic instability, suggesting that CD30 signaling is one of the oncogenic factors of ATL progression with clonal evolution. This study provides new insight into the biological roles of CD30 signaling and could improve our understanding of tumorigenic processes of HTLV-1-infected cells.
Collapse
Affiliation(s)
- Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Toshiki Watanabe
- Laboratory of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki, Kanagawa, Japan
| | - Ryouichi Horie
- Division of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Ibraheem K, Yhmed AMA, Nasef MM, Georgopoulos NT. TRAF3/p38-JNK Signalling Crosstalk with Intracellular-TRAIL/Caspase-10-Induced Apoptosis Accelerates ROS-Driven Cancer Cell-Specific Death by CD40. Cells 2022; 11:cells11203274. [PMID: 36291141 PMCID: PMC9600997 DOI: 10.3390/cells11203274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
The capacity to induce tumour-cell specific apoptosis represents the most unique feature of the TNF receptor (TNFR) family member CD40. Recent studies on the signalling events triggered by its membrane-presented ligand CD40L (mCD40L) in normal and malignant epithelial cells have started to unravel an exquisite context and cell type specificity for the functional effects of CD40. Here, we demonstrate that, in comparison to other carcinomas, mCD40L triggered strikingly more rapid apoptosis in colorectal carcinoma (CRC) cells, underpinned by its ability to entrain two concurrently operating signalling axes. CD40 ligation initially activates TNFR-associated factor 3 (TRAF3) and subsequently NADPH oxidase (NOX)/Apoptosis signal-regulating kinase 1 (ASK1)-signalling and induction of reactive oxygen species (ROS) to mediate p38/JNK- and ROS-dependent cell death. At that point, p38/JNK signalling directly activates the mitochondrial pathway, and triggers rapid induction of intracellular TNF-related apoptosis-inducing ligand (TRAIL) that signals from internal compartments to initiate extrinsic caspase-10-asscociated apoptosis, leading to truncated Bid (tBid)-activated mitochondrial signalling. p38 and JNK are essential both for direct mitochondrial apoptosis induction and the TRAIL/caspase-10/tBid pathway, but their involvement follows functional hierarchy and temporally controlled interplay, as p38 function is required for JNK phosphorylation. By engaging both intrinsic and extrinsic pathways to activate apoptosis via two signals simultaneously, CD40 can accelerate CRC cell death. Our findings further unravel the multi-faceted properties of the CD40/mCD40L dyad, highlighted by the novel TNFR crosstalk that accelerates tumour cell-specific death, and may have implications for the use of CD40 as a therapeutic target.
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Albashir M. A. Yhmed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Department of Medical Laboratory Sciences, Faculty of Medical Technology, Wadi Alshatti University, Wadi Alshatti P.O. Box 68, Libya
| | - Mohamed M. Nasef
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Correspondence: ; Tel.: +44-(0)1484-25-6860
| |
Collapse
|
9
|
Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2606928. [PMID: 35799889 PMCID: PMC9256443 DOI: 10.1155/2022/2606928] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
According to numerous animal studies, adverse environmental stimuli, including physical, chemical, and biological factors, can cause low-grade chronic inflammation and subsequent tumor development. Human epidemiological evidence has confirmed the close relationship between chronic inflammation and tumorigenesis. However, the mechanisms driving the development of persistent inflammation toward tumorigenesis remain unclear. In this study, we assess the potential role of reactive oxygen species (ROS) and associated mechanisms in modulating inflammation-induced tumorigenesis. Recent reports have emphasized the cross-talk between oxidative stress and inflammation in many pathological processes. Exposure to carcinogenic environmental hazards may lead to oxidative damage, which further stimulates the infiltration of various types of inflammatory cells. In turn, increased cytokine and chemokine release from inflammatory cells promotes ROS production in chronic lesions, even in the absence of hazardous stimuli. Moreover, ROS not only cause DNA damage but also participate in cell proliferation, differentiation, and apoptosis by modulating several transcription factors and signaling pathways. We summarize how changes in the redox state can trigger the development of chronic inflammatory lesions into tumors. Generally, cancer cells require an appropriate inflammatory microenvironment to support their growth, spread, and metastasis, and ROS may provide the necessary catalyst for inflammation-driven cancer. In conclusion, ROS bridge the gap between chronic inflammation and tumor development; therefore, targeting ROS and inflammation represents a new avenue for the prevention and treatment of cancer.
Collapse
|
10
|
Lee J, Lee H, Kim HJ, Yun J, Lee T, Lee G, Kim HS, Hong Y. Quantification of doping state of redox sensitive nanoparticles for probing the invasiveness of cancer cells using surface enhanced Raman scattering. Mater Today Bio 2022; 14:100241. [PMID: 35313446 PMCID: PMC8933517 DOI: 10.1016/j.mtbio.2022.100241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/19/2022] Open
Abstract
Redox activity is known to regulate migration, invasion, metastasis, proliferation, and vascularization of cancer. Because cancer is heterogeneous, the role of redox activity in different cancers and cancer-related processes vary widely. In this study, water soluble, Tween 80-coated polyaniline (TPAni) nanoparticles were synthesized and used as nano-agents for sensing the redox activities of various cancer cells. To identify the relationship between the redox activity and the aggressiveness of cancer cells, two different cancer cell lines, derived from the same tissue but different with regards to aggressiveness, were selected for study. First, the cancer cell lines were incubated with TPAni nanoparticles, and an absorbance ratio obtained from the cell culture media was used as a colorimetric indicator of the redox activities of the cells. Simultaneously, hydrophobically modified filter papers coated with silver nanosnowflakes (SNSF) were used as sensing substrates for surface enhanced Raman scattering (SERS). SERS spectra obtained from varying concentrations of rhodamine 6G were used to confirm the detection limit of the SNSF-based SERS substrate. Cell culture media containing TPAni nanoparticles were treated with the SNSF-containing SERS substrates to examine the redox activities of the various cancer cell lines.The redox activities of cancer cell lines were confirmed by absorbance spectral analysis, and these redox activities were better identified via an SERS analysis method. A SNSF-containing SERS substrate, fabricated from SNSF and filter paper, was used to sense redox activity in cancer cell lines and to further identify correlations between redox activity and cancer cell line aggressiveness, as indicated by the use of EpCAM as a biomarker. Finally, potential of in vivo redox activity sensing was also confirmed.
Collapse
Affiliation(s)
- Jaehun Lee
- Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu, 42994, Republic of Korea
| | - Hwunjae Lee
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Graduate Program of Nanoscience and Technology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Jung Kim
- Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu, 42994, Republic of Korea
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Jongsu Yun
- Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu, 42994, Republic of Korea
| | - Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Corresponding author.
| | - Yoochan Hong
- Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu, 42994, Republic of Korea
- Corresponding author.
| |
Collapse
|
11
|
Liu Y, Gokhale S, Jung J, Zhu S, Luo C, Saha D, Guo JY, Zhang H, Kyin S, Zong WX, White E, Xie P. Mitochondrial Fission Factor Is a Novel Interacting Protein of the Critical B Cell Survival Regulator TRAF3 in B Lymphocytes. Front Immunol 2021; 12:670338. [PMID: 34745083 PMCID: PMC8564014 DOI: 10.3389/fimmu.2021.670338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Proteins controlling mitochondrial fission have been recognized as essential regulators of mitochondrial functions, mitochondrial quality control and cell apoptosis. In the present study, we identified the critical B cell survival regulator TRAF3 as a novel binding partner of the key mitochondrial fission factor, MFF, in B lymphocytes. Elicited by our unexpected finding that the majority of cytoplasmic TRAF3 proteins were localized at the mitochondria in resting splenic B cells after ex vivo culture for 2 days, we found that TRAF3 specifically interacted with MFF as demonstrated by co-immunoprecipitation and GST pull-down assays. We further found that in the absence of stimulation, increased protein levels of mitochondrial TRAF3 were associated with altered mitochondrial morphology, decreased mitochondrial respiration, increased mitochondrial ROS production and membrane permeabilization, which eventually culminated in mitochondria-dependent apoptosis in resting B cells. Loss of TRAF3 had the opposite effects on the morphology and function of mitochondria as well as mitochondria-dependent apoptosis in resting B cells. Interestingly, co-expression of TRAF3 and MFF resulted in decreased phosphorylation and ubiquitination of MFF as well as decreased ubiquitination of TRAF3. Moreover, lentivirus-mediated overexpression of MFF restored mitochondria-dependent apoptosis in TRAF3-deficient malignant B cells. Taken together, our findings provide novel insights into the apoptosis-inducing mechanisms of TRAF3 in B cells: as a result of survival factor deprivation or under other types of stress, TRAF3 is mobilized to the mitochondria through its interaction with MFF, where it triggers mitochondria-dependent apoptosis. This new role of TRAF3 in controlling mitochondrial homeostasis might have key implications in TRAF3-mediated regulation of B cell transformation in different cellular contexts. Our findings also suggest that mitochondrial fission is an actionable therapeutic target in human B cell malignancies, including those with TRAF3 deletion or relevant mutations.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Debanjan Saha
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
12
|
Sun L, Jiang Y, Yan X, Dai X, Huang C, Chen L, Li T, Zhang Y, Xiao H, Yang M, Xiang L, Zhang Y, Chen S, Li S, Chen A, He F, Lian J. Dichloroacetate enhances the anti-tumor effect of sorafenib via modulating the ROS-JNK-Mcl-1 pathway in liver cancer cells. Exp Cell Res 2021; 406:112755. [PMID: 34332981 DOI: 10.1016/j.yexcr.2021.112755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Liver cancer is one of the most common and high recurrence malignancies. Besides radiotherapy and surgery, chemotherapy also plays an essential role in the treatment of liver cancer. Sorafenib and sorafenib-based combination therapies have been proven efficacy against tumors. However, previous clinical studies have indicated that some patients with liver cancer are resistant to sorafenib treatment and the existing strategies are not satisfactory in the clinic. Therefore, it is urgent to investigate strategies to improve the effectiveness of sorafenib for liver cancer and to explore effective drug combinations. In the present study, we found that dichloroacetate (DCA) could significantly enhance the anti-tumor effect of sorafenib on liver cancer cells, including reduced viability and dramatically promoted apoptosis in liver cancer cells. Moreover, compared to sorafenib alone, the combination of DCA and sorafenib markedly increased the degradation of anti-apoptotic protein Mcl-1 by enhancing its phosphorylation. Overexpression of Mcl-1 could significantly attenuate the synergetic effect of DCA and sorafenib on apoptosis induction in liver cancer cells. Furthermore, we found that the ROS-JNK pathway was obviously activated in the DCA combined sorafenib group. The levels of ROS and p-JNK were dramatically up-regulated in the two drug combination groups. Antioxidant NAC could alleviate the synergetic effects of DCA and sorafenib on ROS generation, JNK activation, Mcl-1 degradation, and cell apoptosis. Moreover, DCA and sorafenib's effects on Mcl-1 degradation and apoptosis could also be inhibited by JNK inhibitor 'SP'600125. Finally, the synergetic effects of DCA and sorafenib on tumor growth suppression, Mcl-1 degradation and induction of apoptosis were also validated in liver cancer xenograft in vivo. These findings indicate that DCA enhances the anti-tumor effect of sorafenib via the ROS-JNK-Mcl-1 pathway in liver cancer cells. This study may provide new insights to improve the chemotherapeutic effect of sorafenib, which may be beneficial for further clinical application of sorafenib in liver cancer treatment.
Collapse
Affiliation(s)
- Liangbo Sun
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangzhou Jiang
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Battalion One of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojing Yan
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xufang Dai
- Department of Educational College, Chongqing Normal University, Chongqing, 400038, China
| | - Chen Huang
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lingxi Chen
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yueting Zhang
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hanxi Xiao
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Li Xiang
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Zhang
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Sha Chen
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shuhui Li
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - An Chen
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
13
|
Yan C, Saleh N, Yang J, Nebhan CA, Vilgelm AE, Reddy EP, Roland JT, Johnson DB, Chen SC, Shattuck-Brandt RL, Ayers GD, Richmond A. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer 2021; 20:85. [PMID: 34092233 PMCID: PMC8182921 DOI: 10.1186/s12943-021-01366-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy. METHODS Rigosertib (RGS) is a non-ATP-competitive small molecule RAS mimetic. RGS monotherapy or in combination therapy with ICB were investigated using immunocompetent mouse models of BRAFwt and BRAFmut melanoma and analyzed in reference to patient data. RESULTS RGS treatment (300 mg/kg) was well tolerated in mice and resulted in ~ 50% inhibition of tumor growth as monotherapy and ~ 70% inhibition in combination with αPD1 + αCTLA4. RGS-induced tumor growth inhibition depends on CD40 upregulation in melanoma cells followed by immunogenic cell death, leading to enriched dendritic cells and activated T cells in the tumor microenvironment. The RGS-initiated tumor suppression was partially reversed by either knockdown of CD40 expression in melanoma cells or depletion of CD8+ cytotoxic T cells. Treatment with either dabrafenib and trametinib or with RGS, increased CD40+SOX10+ melanoma cells in the tumors of melanoma patients and patient-derived xenografts. High CD40 expression level correlates with beneficial T-cell responses and better survival in a TCGA dataset from melanoma patients. Expression of CD40 by melanoma cells is associated with therapeutic response to RAF/MEK inhibition and ICB. CONCLUSIONS Our data support the therapeutic use of RGS + αPD1 + αCTLA4 in RAS/RAF/PI3K pathway-activated melanomas and point to the need for clinical trials of RGS + ICB for melanoma patients who do not respond to ICB alone. TRIAL REGISTRATION NCT01205815 (Sept 17, 2010).
Collapse
Affiliation(s)
- Chi Yan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nabil Saleh
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jinming Yang
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caroline A Nebhan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph T Roland
- Departments of Surgery and Pediatrics and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca L Shattuck-Brandt
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
14
|
Salti S, Al-Zoobi L, Darif Y, Hassan GS, Mourad W. CD154 Resistant to Cleavage from Intracellular Milieu and Cell Surface Induces More Potent CD40-Mediated Responses. THE JOURNAL OF IMMUNOLOGY 2021; 206:1793-1805. [PMID: 33762325 DOI: 10.4049/jimmunol.2001340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022]
Abstract
In addition to the membrane-bound form, CD154 also exists as a soluble molecule originating from an intracellular and membrane cleavage. We have previously shown that CD154 cleavage from T cell surface is mediated by CD40 and involves the action of ADAM10/ADAM17 enzymes. In the aim of defining the importance of CD154 maintained on cell surface, we generated a CD154 mutated at the cleavage site. Our data show that the double mutation of E112 and M113 residues of CD154 abolishes its spontaneous release and the CD40-mediated cleavage from cell surface but does not affect its binding to CD40. We also demonstrated that both the release of CD154 from the intracellular milieu and its CD40-mediated cleavage from cell surface are highly dependent on ADAM10/ADAM17 enzymes. The CD154-EM mutant was shown capable of inducing a more prominent apoptotic response in susceptible B cell lines than the wild-type (WT) form of the molecule. In addition, human B cells cultured in the presence of the CD154-EM mutant exhibited upregulated proliferative responses compared with the CD154-WT. The CD154-EM mutant was also shown to trigger differentiation of human B cells, reflected by an increased Ig production, more significantly than CD154-WT. Thus, our data strongly suggest that cleavage-resistant CD154 is a more prominent stimulant than the cleavable form of the molecule. Therefore, a maintained expression of CD154 on cell membrane and a disturbed cleavage of the molecule could be a mechanism by which CD154 is involved in some pathological conditions and should be revisited.
Collapse
Affiliation(s)
- Suzanne Salti
- Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebc H2X 0A9, Canada
| | - Loubna Al-Zoobi
- Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebc H2X 0A9, Canada
| | - Youssef Darif
- Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebc H2X 0A9, Canada
| | - Ghada S Hassan
- Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebc H2X 0A9, Canada
| | - Walid Mourad
- Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebc H2X 0A9, Canada
| |
Collapse
|
15
|
Li S, Cong C, Liu Y, Liu X, Kluwe L, Shan X, Liu H, Gao M, Zhao L, Gao X, Xu L. Tiao Geng decoction for treating menopausal syndrome exhibits anti-aging effects likely via suppressing ASK1/MKK7/JNK mediated apoptosis in ovariectomized rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113061. [PMID: 32525065 DOI: 10.1016/j.jep.2020.113061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TG-decoction (Tiao Geng decoction) is the extract of a Chinese herb mixture that has been used for treating menopausal symptoms for over 30 years. We have previously reported anti-aging and anti-oxidative effects of the TG-decoction on hypothalamic neurons in ovariectomized (OVX) rats. AIM OF THE STUDY The present study further investigates the effects of TG-decoction on the prevention of aging-related ultrastructural changes in menopausal hypothalamic neurons and the likely molecular mechanism. MATERIALS AND METHODS A total of 120 four-month-old female SPF Sprague Dawley rats were divided into six groups. Five groups were ovariectomized (OVX) and one group served as a sham control. Three OVX groups received TG-decoction at three different doses. The remaining two OVX groups served as positive and negative controls by receiving estradiol valerate and saline solution. The sham group received saline. After one month, aging-related ultrastructural alterations in hypothalamic neurons were evaluated using transmission electron microscopy. Nissl staining was used to assess the pathomorphological changes of the hypothalamic neurons. Cell apoptosis was evaluated by TUNEL. Expression of Bcl-2 family genes was studied using qRT-PCR. Expression of the apoptosis-related proteins ASK1, MKK7, JNK, c-Jun, Bax, Casp3 and Bcl-2 was studied using western blotting. RESULTS Ovariectomy of female rats led to visible damage and aging-like alterations in the mitochondria and endoplasmic reticulum as well as large deposits of lipofuscin in hypothalamic tissue. TG-decoction treatment prevented this visible damage and lipofuscin deposition, increased the number of nerve cells and normally-shaped Nissl bodies, and reduced the number of TUNEL-positive cells. Expression of Bcl-2 gene was increased, while Bax gene reduced. Expression of the proteins ASK1, MKK7, JNK, c-Jun, Bax and Casp3 was reduced, while that of Bcl-2 was increased. CONCLUSION TG-decoction reduces aging-related ultrastructural changes in hypothalamic neurons, likely by suppressing ASK1/MKK7/JNK-mediated apoptosis in neuronal mitochondria or nuclei.
Collapse
Affiliation(s)
- Shengnan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Chao Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Xiaofei Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | - Xin Shan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Huicong Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Min Gao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Xianwei Gao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| | - Lianwei Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| |
Collapse
|
16
|
Zartner L, Muthwill MS, Dinu IA, Schoenenberger CA, Palivan CG. The rise of bio-inspired polymer compartments responding to pathology-related signals. J Mater Chem B 2020; 8:6252-6270. [PMID: 32452509 DOI: 10.1039/d0tb00475h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-organized nano- and microscale polymer compartments such as polymersomes, giant unilamellar vesicles (GUVs), polyion complex vesicles (PICsomes) and layer-by-layer (LbL) capsules have increasing potential in many sensing applications. Besides modifying the physicochemical properties of the corresponding polymer building blocks, the versatility of these compartments can be markedly expanded by biomolecules that endow the nanomaterials with specific molecular and cellular functions. In this review, we focus on polymer-based compartments that preserve their structure, and highlight the key role they play in the field of medical diagnostics: first, the self-assembling abilities that result in preferred architectures are presented for a broad range of polymers. In the following, we describe different strategies for sensing disease-related signals (pH-change, reductive conditions, and presence of ions or biomolecules) by polymer compartments that exhibit stimuli-responsiveness. In particular, we distinguish between the stimulus-sensitivity contributed by the polymer itself or by additional compounds embedded in the compartments in different sensing systems. We then address necessary properties of sensing polymeric compartments, such as the enhancement of their stability and biocompatibility, or the targeting ability, that open up new perspectives for diagnostic applications.
Collapse
Affiliation(s)
- Luisa Zartner
- Chemistry Department, University of Basel, Mattenstr. 24a, BPR1096, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
17
|
Ibraheem K, Yhmed AMA, Qayyum T, Bryan NP, Georgopoulos NT. CD40 induces renal cell carcinoma-specific differential regulation of TRAF proteins, ASK1 activation and JNK/p38-mediated, ROS-dependent mitochondrial apoptosis. Cell Death Discov 2019; 5:148. [PMID: 31815003 PMCID: PMC6892818 DOI: 10.1038/s41420-019-0229-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
A unique feature of CD40 among the TNF receptor (TNFR) superfamily is its exquisitely contextual effects, as originally demonstrated in normal and malignant B-lymphocytes. We studied renal cell carcinoma (RCC) in comparison to normal (human renal proximal tubule) cells, as a model to better understand the role of CD40 in epithelial cells. CD40 ligation by membrane-presented CD40 ligand (mCD40L), but not soluble CD40 agonist, induced extensive apoptosis in RCC cells; by contrast, normal cells were totally refractory to mCD40L. These findings underline the importance of CD40 'signal-quality' on cell fate and explain the lack of pro-apoptotic effects in RCC cells previously, while confirming the tumour specificity of CD40 in epithelial cells. mCD40L differentially regulated TRAF expression, causing sustained TRAF2/TRAF3 induction in RCC cells, yet downregulation of TRAF2 and no TRAF3 induction in normal cells, observations strikingly reminiscent of TRAF modulation in B-lymphocytes. mCD40L triggered reactive oxygen species (ROS) production, critical in apoptosis, and NADPH oxidase (Nox)-subunit p40phox phosphorylation, with Nox blockade abrogating apoptosis thus implying Nox-dependent initial ROS release. mCD40L mediated downregulation of Thioredoxin-1 (Trx-1), ASK1 phosphorylation, and JNK and p38 activation. Although both JNK/p38 were essential in apoptosis, p38 activation was JNK-dependent, which is the first report of such temporally defined JNK-p38 interplay during an apoptotic programme. CD40-killing entrained Bak/Bax induction, controlled by JNK/p38, and caspase-9-dependent mitochondrial apoptosis, accompanied by pro-inflammatory cytokine secretion, the repertoire of which also depended on CD40 signal quality. Previous reports suggested that, despite the ability of soluble CD40 agonist to reduce RCC tumour size in vivo via immunocyte activation, RCC could be targeted more effectively by combining CD40-mediated immune activation with direct tumour CD40 signalling. Since mCD40L represents a potent tumour cell-specific killing signal, our work not only offers insights into CD40's biology in normal and malignant epithelial cells, but also provides an avenue for a 'double-hit' approach for inflammatory, tumour cell-specific CD40-based therapy.
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Albashir M. A. Yhmed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Present Address: Department of Medical Laboratory Sciences, University of Sebha, Tripoli, Libya
| | - Tahir Qayyum
- Urology Department, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield Royal Infirmary, Huddersfield, UK
| | - Nicolas P. Bryan
- Urology Department, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield Royal Infirmary, Huddersfield, UK
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
18
|
Islam A, Kagawa Y, Miyazaki H, Shil SK, Umaru BA, Yasumoto Y, Yamamoto Y, Owada Y. FABP7 Protects Astrocytes Against ROS Toxicity via Lipid Droplet Formation. Mol Neurobiol 2019; 56:5763-5779. [PMID: 30680690 DOI: 10.1007/s12035-019-1489-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
Fatty acid-binding proteins (FABPs) bind and internalize long-chain fatty acids, controlling lipid dynamics. Recent studies have proposed the involvement of FABPs, particularly FABP7, in lipid droplet (LD) formation in glioma, but the physiological significance of LDs is poorly understood. In this study, we sought to examine the role of FABP7 in primary mouse astrocytes, focusing on its protective effect against reactive oxygen species (ROS) stress. In FABP7 knockout (KO) astrocytes, ROS induction significantly decreased LD accumulation, elevated ROS toxicity, and impaired thioredoxin (TRX) but not peroxiredoxin 1 (PRX1) signalling compared to ROS induction in wild-type astrocytes. Consequently, activation of apoptosis signalling molecules, including p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and increased expression of cleaved caspase 3 were observed in FABP7 KO astrocytes under ROS stress. N-acetyl L-cysteine (NAC) application successfully rescued the ROS toxicity in FABP7 KO astrocytes. Furthermore, FABP7 overexpression in U87 human glioma cell line revealed higher LD accumulation and higher antioxidant defence enzyme (TRX, TRX reductase 1 [TRXRD1]) expression than mock transfection and protected against apoptosis signalling (p38 MAPK, SAPK/JNK and cleaved caspase 3) activation. Taken together, these data suggest that FABP7 protects astrocytes from ROS toxicity through LD formation, providing new insights linking FABP7, lipid homeostasis, and neuropsychiatric/neurodegenerative disorders, including Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Ariful Islam
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Banlanjo A Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Yasumoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Anatomy, Tohoku Medical and Pharmaceutical University, Sendai, 983-8536, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
19
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018; 9:2111. [PMID: 30294322 PMCID: PMC6158389 DOI: 10.3389/fimmu.2018.02111] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M. Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
20
|
Ibraheem K, Dunnill CJ, Ioannou M, Mohamed A, Albarbar B, Georgopoulos NT. An in vitro Co-culture System for the Activation of CD40 by Membrane-presented CD40 Ligand versus Soluble Agonist. Bio Protoc 2018; 8:e2907. [PMID: 34395739 DOI: 10.21769/bioprotoc.2907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
One fundamental property of the TNR receptor (TNFR) family relates to how 'signal quality' (the extent of receptor ligation or cross-linking) influences the outcome of receptor ligation, for instance the induction of death in tumour cells. It is unequivocal that membrane-presented ligand (delivered to target cells via cell-surface presentation by co-culture with ligand-expressing third-party cells) induces a greater extent of carcinoma cell death in vitro in comparison to non-cross-linked agonists (agonistic antibodies and/or recombinant ligands). The CD40 receptor epitomises this fundamental property of TNF receptor-ligand interactions, as the extent of CD40 cross-linking dictates cell fate. Membrane-presented CD40 ligand (mCD40L), but not soluble agonists (e.g., agonistic anti-CD40 antibody), induces high level of pro-inflammatory cytokine secretion and causes extensive cell death (apoptosis) in malignant (but not normal) epithelial cells. In this article, we describe a co-culture system for the activation of CD40 by mCD40L and subsequent detection of various features of apoptosis (including cell membrane permeabilisation, DNA fragmentation, caspase activation) as well as detection of intracellular mediators of cell death (including adaptor proteins, pro-apoptotic kinases and reactive oxygen species, ROS).
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Christopher J Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Myria Ioannou
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Albashir Mohamed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Balid Albarbar
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Nikolaos T Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
21
|
Hydrogen Sulfide Alleviates Lipopolysaccharide-Induced Diaphragm Dysfunction in Rats by Reducing Apoptosis and Inflammation through ROS/MAPK and TLR4/NF- κB Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9647809. [PMID: 29977458 PMCID: PMC5994286 DOI: 10.1155/2018/9647809] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/11/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022]
Abstract
Diaphragm dysfunction is an important clinical problem worldwide. Hydrogen sulfide (H2S) is involved in many physiological and pathological processes in mammals. However, the effect and mechanism of H2S in diaphragm dysfunction have not been fully elucidated. In this study, we detected that the level of H2S was decreased in lipopolysaccharide- (LPS-) treated L6 cells. Treatment with H2S increased the proliferation and viability of LPS-treated L6 cells. We found that H2S decreased reactive oxygen species- (ROS-) induced apoptosis through the mitogen-activated protein kinase (MAPK) signaling pathway in LPS-treated L6 cells. Administration of H2S alleviated LPS-induced inflammation by mediating the toll-like receptor-4 (TLR-4)/nuclear factor-kappa B (NF-κB) signaling pathway in L6 cells. Furthermore, H2S improved diaphragmatic function and structure through the reduction of inflammation and apoptosis in the diaphragm of septic rats. In conclusion, these findings indicate that H2S ameliorates LPS-induced diaphragm dysfunction in rats by reducing apoptosis and inflammation through ROS/MAPK and TLR4/NF-κB signaling pathways. Novel slow-releasing H2S donors can be designed and applied for the treatment of diaphragm dysfunction.
Collapse
|
22
|
Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment. Nat Commun 2018; 9:1127. [PMID: 29555899 PMCID: PMC5859287 DOI: 10.1038/s41467-018-03560-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy. The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo.
Collapse
|
23
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018. [PMID: 30294322 DOI: 10.3389/fimmu.2018.02111/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
24
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|