1
|
He MY, Tong KI, Liu T, Whittaker Hawkins R, Shelton V, Zeng Y, Bakhtiari M, Xiao Y, Zheng G, Sakhdari A, Yang L, Xu W, Brooks DG, Laister RC, He HH, Kridel R. GNAS knockout potentiates HDAC3 inhibition through viral mimicry-related interferon responses in lymphoma. Leukemia 2024; 38:2210-2224. [PMID: 39117798 PMCID: PMC11436380 DOI: 10.1038/s41375-024-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024]
Abstract
Despite selective HDAC3 inhibition showing promise in a subset of lymphomas with CREBBP mutations, wild-type tumors generally exhibit resistance. Here, using unbiased genome-wide CRISPR screening, we identify GNAS knockout (KO) as a sensitizer of resistant lymphoma cells to HDAC3 inhibition. Mechanistically, GNAS KO-induced sensitization is independent of the canonical G-protein activities but unexpectedly mediated by viral mimicry-related interferon (IFN) responses, characterized by TBK1 and IRF3 activation, double-stranded RNA formation, and transposable element (TE) expression. GNAS KO additionally synergizes with HDAC3 inhibition to enhance CD8+ T cell-induced cytotoxicity. Moreover, we observe in human lymphoma patients that low GNAS expression is associated with high baseline TE expression and upregulated IFN signaling and shares common disrupted biological activities with GNAS KO in histone modification, mRNA processing, and transcriptional regulation. Collectively, our findings establish an unprecedented link between HDAC3 inhibition and viral mimicry in lymphoma. We suggest low GNAS expression as a potential biomarker that reflects viral mimicry priming for enhanced response to HDAC3 inhibition in the clinical treatment of lymphoma, especially the CREBBP wild-type cases.
Collapse
Affiliation(s)
- Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kit I Tong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ting Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ryder Whittaker Hawkins
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Victoria Shelton
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mehran Bakhtiari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ali Sakhdari
- Laboratory Medicine and Pathobiology, University Health Network, Toronto, ON, Canada
| | - Lin Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wenxi Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Rob C Laister
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Goto H, Kariya R, Kudo E, Katano H, Okada S. PAX5 functions as a tumor suppressor by RB-E2F-mediated cell cycle arrest in Kaposi sarcoma-associated herpesvirus-infected primary effusion lymphoma. Neoplasia 2024; 56:101035. [PMID: 39096792 PMCID: PMC11342765 DOI: 10.1016/j.neo.2024.101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Primary effusion lymphoma (PEL) is a malignant B-cell lymphoma attributable to Kaposi sarcoma-associated herpesvirus (KSHV) infection. PEL is characterized by invasive behavior, showing recurrent effusions in body cavities. The clinical outcome and typical prognosis in patients with PEL are poor and potentially lethal. Clarification of the pathogenesis in PEL is urgently needed in order to develop novel therapies. PEL cells generally lack B-cell surface markers, and we therefore hypothesized that the B-cell transcription factor, PAX5, would be down-regulated in PEL. The expression of PAX5 is detected from the pro-B to the mature B-cell stage and is indispensable for the differentiation of B-cells. PAX5 was silenced in PEL cells via its promoter methylation. Up-regulation of PAX5 induced several genes coding for B-cell surface marker mRNA, but not protein level. PAX5 inhibited cell growth via G1 cell cycle arrest. PAX5 bound to RB and increased its protein expression. RB/E2F-regulated genes were significantly down-regulated in microarray analysis and PCR experiments. To elucidate the in vivo role of PAX5, we examined the restoration of PAX5 in a PEL mouse model. The ascites volume and organ invasions were significantly suppressed by PAX5 restoration. Reduction of PAX5 has played a crucial role in the oncogenesis of PEL, and PAX5 is a tumor suppressor in PEL. Targeting PAX5 could represent a novel therapeutic strategy for patients with PEL.
Collapse
MESH Headings
- PAX5 Transcription Factor/metabolism
- PAX5 Transcription Factor/genetics
- Lymphoma, Primary Effusion/virology
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/pathology
- Lymphoma, Primary Effusion/etiology
- Animals
- Humans
- Herpesvirus 8, Human/genetics
- Mice
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Cell Proliferation
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/complications
- Herpesviridae Infections/genetics
- Herpesviridae Infections/virology
- Promoter Regions, Genetic
- Disease Models, Animal
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Radioisotope and Tumor Pathobiology, Institute of Resource Development and Analysis, Kumamoto University, Honjo, Kumamoto, Japan; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo, Kumamoto, Japan.
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo, Kumamoto, Japan
| | - Eriko Kudo
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo, Kumamoto, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo, Kumamoto, Japan.
| |
Collapse
|
3
|
Jin M, Fan W, Lv S, Xue T, Cong L, Liu X, Cui L. LncRNA018392 promotes the proliferation of Liaoning cashmere goat skin fibroblasts by upregulating CSF1R through binding to SPI1. Mol Biol Rep 2024; 51:920. [PMID: 39158794 DOI: 10.1007/s11033-024-09851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Liaoning cashmere goat is recognized as a valuable genetic resource breed, with restrictions on genetic outflow in China. Hair follicle development in the cashmere goat is influenced by melatonin and long non-coding RNAs (lncRNAs). However, the role of lncRNAs in facilitating melatonin-promoted cashmere growth remains poorly understood. Previous studies have identified a new lncRNA, lncRNA018392, which is involved in the melatonin-promoted proliferation of cashmere skin fibroblasts. METHOD Flow cytometry and CCK-8 assays confirmed that silencing lncRNA018392 negates the effects of melatonin on cell proliferation, and that proliferation was reduced when the gene CSF1R, located near lncRNA018392, was inhibited. Further investigation using a dual-luciferase reporter assay showed that lncRNA018392 could positively regulate the promoter of CSF1R. RESULTS Results from RNA-binding protein immunoprecipitation (RIP) and chromatin immunoprecipitation sequencing (ChIP-Seq) revealed that lncRNA018392 interacts with the transcription factor SPI1, with CSF1R being a downstream target gene regulated by SPI1. This interaction was confirmed by ChIP-PCR, which demonstrated SPI1's binding to CSF1R. CONCLUSIONS This study found that the melatonin-responsive lncRNA018392 accelerates the cell cycle and promotes cell proliferation by recruiting SPI1 to upregulate the expression of the neighboring gene CSF1R. These findings provide a theoretical foundation for elucidating the molecular mechanisms of cashmere growth and for the molecular breeding of cashmere goats.
Collapse
Affiliation(s)
- Mei Jin
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China.
| | - Weiyu Fan
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Suhe Lv
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Tianwei Xue
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Linlin Cong
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Xinyang Liu
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Lixin Cui
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| |
Collapse
|
4
|
Neugebauer E, Bastidas-Quintero AM, Weidl D, Full F. Pioneer factors in viral infection. Front Immunol 2023; 14:1286617. [PMID: 37876935 PMCID: PMC10591220 DOI: 10.3389/fimmu.2023.1286617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Pioneer factors are transcription factors sharing the fascinating ability to bind to compact chromatin and thereby alter its transcriptional fate. Most pioneer factors are known for their importance during embryonic development, for instance, in inducing zygotic genome activation or cell fate decision. Some pioneer factors are actively induced or downregulated by viral infection. With this, viruses are capable to modulate different signaling pathways resulting for example in MHC-receptor up/downregulation which contributes to viral immune evasion. In this article, we review the current state of research on how different viruses (Herpesviruses, Papillomaviruses and Hepatitis B virus) use pioneer factors for their viral replication and persistence in the host, as well as for the development of viral cancer.
Collapse
Affiliation(s)
- Eva Neugebauer
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Weidl
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Florian Full
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Liu X, Xu M, Jia W, Duan Y, Ma J, Tai W. PU.1 negatively regulates tumorigenesis in non-small-cell lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:79. [PMID: 36648591 DOI: 10.1007/s12032-023-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
PU.1 is a key transcription factor that modulates hematopoietic cell differentiation and is involved in various physiological and pathological processes. PU.1 has been described to have multiple roles in a diverse range of cancers, but its contribution in non-small-cell lung cancer (NSCLC) has not been clearly elucidated. Fifty pairs of lung adenocarcinoma (LUAD) tissues and paraneoplastic tissues were collected. RT-qPCR assay was used to test PU.1 expression. Expression of PU.1 in LUAD cell lines and control cell lines was detected by RT-qPCR, and the role of PU.1 in LUAD was investigated by in vitro experiment. Levels of the major proteins in the apoptotic pathway were also detected by Western blot. The expression of PU.1 was remarkably downregulated in LUAD. Overexpression of PU.1 impaired the viability of LUAD cells as well as their metastatic function. In addition, PU.1 promoted apoptosis of LUAD cells by decreasing Bcl2 and increasing Bax/Bak1 expression. PU.1 plays an inhibitory role in LUAD, mainly promoting the apoptosis of LUAD cells.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Muli Xu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wanting Jia
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Duan
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiaxuan Ma
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Tong W, Zhang H. Overexpression of long non-coding RNA WT1-AS or silencing of PIK3AP1 are inhibitory to cervical cancer progression. Cell Cycle 2021; 20:2583-2596. [PMID: 34839795 DOI: 10.1080/15384101.2021.1991106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence demonstrate that long non-coding RNAs (lncRNAs) play an important role in regulating the biological function of cervical cancer cells. However, the regulatory role of lncRNA Wilms tumor 1 homolog antisense RNA (WT1-AS) in cervical cancer cells remains uncertain. In this study, we explored the participation of WT1-AS in cervical cancer by first using the reverse transcription quantitative polymerase-chain reaction (RT-qPCR) was to analyze the expression of WT1-AS and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1) in cervical cancer tissues and cells. Dual-luciferase reporter gene assay, RNA pull-down/RNA immunoprecipitation (RIP) assays and Chromatin Immunoprecipitation (ChIP) assay were conducted to explore the interactions among WT1-AS, PIK3AP1, and SPI1. Gain- and loss-of-function approaches were carried out to determine the effects of lncRNA WT1-AS, PIK3AP1 on cell biological characteristics, followed by assays of cell proliferation, autophagy, and apoptosis abilities using, respectively, EdU, monodansylcadaverine (MDC) staining, and flow cytometry. Finally, we measured growth of xenograft tumors in nude mice. We found decreased expression of lncRNA WT1-AS and increased expression of PIK3AP1 in cervical cancer samples. Moreover, PIK3AP1 was negatively regulated by WT1-AS, which promoted apoptosis, but inhibited cell proliferation and autophagy of cervical cancer cells. Furthermore, WT1-AS inhibited PIK3AP1 expression by recruiting SPI1, and inhibited the progression of cervical cancer through the SPI1/PIK3AP1 axis in vivo and in vitro. In summary, lncRNA WT1-AS repressed the development of cervical cancer by reducing PIK3AP1 expression through an interaction with SPI1, which may suggest new therapeutic approaches for treating cervical cancer.Abbreviations: HPV, human papillomavirus; lncRNAs, Long non-coding RNAs; WT1-AS, wilms tumor 1 antisense RNA; HCC, hepatocellular carcinoma; SFFV, Spleen focus forming virus; SPI1, Spleen focus forming virus proviral integration oncogene 1; TF, transcription factor; PIK3AP1, Phosphoinositide-3-kinase adaptor protein 1; NCBI, National Center for Biotechnology Information; oe, overexpressed; sh-PIK3AP1, short hairpin RNA against PIK3AP1; RIPA, radioimmunoprecipitation; PMSF, phenylmethylsulfonyl fluoride; HRP, horseradish peroxidase; IgG, immunoglobulin G; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; PCR, polymerase chain reaction; EP, Eppendorf; RIP, RNA-binding protein immunoprecipitation; CHIP, Chromatin immunoprecipitation; EdU, 5-ethynyl-2'-deoxyuridine; PI, propidium iodide; MDC, Monodansylcadaverine; PFA, paraformaldehyde; SPF, specific pathogen free; TV, tumor volume; DLG1-AS1, discs large MAGUK scaffold protein 1 antisense RNA 1; TOB1-AS1, transducer of epidermal growth factor receptor-2.1 antisense RNA 1; LC3II, light chain 3 type II; LC3I, light chain 3 type I; IRF4, interferon regulatory factor 4.
Collapse
Affiliation(s)
- Wenjuan Tong
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, P. R. China
| | - Huiming Zhang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, P. R. China
| |
Collapse
|
7
|
Kaposi's Sarcoma-Associated Herpesvirus Drives a Super-Enhancer-Mediated Survival Gene Expression Program in Primary Effusion Lymphoma. mBio 2020; 11:mBio.01457-20. [PMID: 32843547 PMCID: PMC7448273 DOI: 10.1128/mbio.01457-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). The cellular transcription factor (TF) interferon (IFN) regulatory factor 4 (IRF4) is an essential oncogene in PEL, but its specific role in PEL and how KSHV deregulates IRF4 remain unknown. Here, we report that the KSHV latency protein viral interferon regulatory factor 3 (vIRF3) cooperates with IRF4 and cellular BATF (basic leucine zipper ATF-like TF) to drive a super-enhancer (SE)-mediated oncogenic transcriptional program in PEL. Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-Seq) experiments demonstrated that IRF4, vIRF3, and BATF cooccupy the SEs of key survival genes, in a pattern that is distinct from those seen with other IRF4-driven malignancies. All three proteins cooperatively drive SE-mediated IRF4 overexpression. Inactivation of vIRF3 and, to a lesser extent, BATF phenocopies the gene expression changes and loss of cellular viability observed upon inactivation of IRF4. In sum, this work suggests that KSHV vIRF3 and cellular IRF4 and BATF cooperate as oncogenic transcription factors on SEs to promote cellular survival and proliferation in KSHV-associated lymphomas.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) causes the aggressive disease primary effusion lymphoma (PEL). Here, we show that a viral transcription factor (vIRF3) cooperates with the cellular transcription factor IRF4 to control an oncogenic gene expression program in PEL cells. These proteins promote KSHV-mediated B cell transformation by activating the expression of prosurvival genes through super-enhancers. Our report thus demonstrates that this DNA tumor virus encodes a transcription factor that functions with cellular IRF4 to drive oncogenic transcriptional reprogramming.
Collapse
|
8
|
Wu HY, Wei Y, Pan SL. Down-regulation and clinical significance of miR-7-2-3p in papillary thyroid carcinoma with multiple detecting methods. IET Syst Biol 2019; 13:225-233. [PMID: 31538956 PMCID: PMC8687168 DOI: 10.1049/iet-syb.2019.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 04/05/2024] Open
Abstract
Altered miRNA expression participates in the biological progress of thyroid carcinoma and functions as a diagnostic marker or therapeutic agent. However, the role of miR-7-2-3p is currently unclear. The authors' study was the first investigation of miR-7-2-3p expression level and diagnostic ability in several public databases. Potential target genes were obtained from DIANA Tools, and function enrichment analysis was then performed. Furthermore, the authors examined expression levels of potential targets in the Human Protein Atlas (HPA) and the Cancer Genome Atlas (TCGA). Finally, the potential transcription factors (TFs) were predicted by JASPAR. TCGA, GSE62054, GSE73182, GSE40807, and GSE55780 revealed that miR-7-2-3p expression in papillary thyroid carcinoma (PTC) tissues was notably lower compared with non-tumour tissues, while its expression in E-MATB-736 showed no remarkable difference. Function enrichment analysis showed that 698 genes were enriched in pathways, including pathways in cancer, and glioma. CCND1, GSK3B, and ITGAV of pathways in cancer were inverse correlations with miR-7-2-3p in both post-transcription and protein levels. According to the TF prediction, the prospective upstream TFs of miR-7-2-3p were ISX, SPI1, PRRX1, and BARX1. MiR-7-2-3p was significantly down-regulated and may act on PTC progression by crucial pathways. However, the mechanisms of miR-7-2-3p need further investigation.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi Wei
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
9
|
Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther 2019; 203:107394. [PMID: 31356910 DOI: 10.1016/j.pharmthera.2019.107394] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly increased by various inflammatory and immunological conditions, including rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, and several cancers. However, its physiological and pathophysiological roles in the development of cancer and neurodegenerative and inflammatory diseases remain unclear. Several studies have reported that CHI3L1 promotes cancer proliferation, inflammatory cytokine production, and microglial activation, and that multiple receptors, such as advanced glycation end product, syndecan-1/αVβ3, and IL-13Rα2, are involved. In addition, the pro-inflammatory action of CHI3L1 may be mediated via the protein kinase B and phosphoinositide-3 signaling pathways and responses to various pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 could contribute to a vast array of inflammatory diseases. In this article, we review recent findings regarding the roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of cancers, neurodegenerative diseases, and inflammatory diseases.
Collapse
Affiliation(s)
- In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| |
Collapse
|