1
|
Erin N, Akdeniz Ö. ADAM10 and Neprilysin level decreases in immune cells of mice bearing metastatic breast carcinoma: Possible role in cancer inflammatory response. Int Immunopharmacol 2024; 127:111384. [PMID: 38141405 DOI: 10.1016/j.intimp.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE AND DESIGN ADAM10 and Neprilysin, proteases, play critical role in inflammatory disease, however their role in cancer immune response is not clear. We here evaluated changes in immune response using an experimental model for breast cancer. MATERIAL AND METHOD Highly metastatic breast cancer cells (4T1-derived) were injected orthotopically (mammary-pad of Balb-c mice) to induce tumors. Changes in enzyme level and activity as well as alterations in inflammatory cytokine release in the presence or absence of ADAM10 and NEP activity was determined using specific inhibitors and recombinant proteins. Cytokine response was evaluated using mix leucocyte cultures obtained from control and tumor-bearing mice. ANOVA with Dunnett's posttest was used for statistical analysis. RESULTS ADAM10 and NEP expression was decreased markedly in lymph nodes and spleens of tumor-bearing mice. ADAM10 activity was reduced together with apparent alterations of ADAM10 processing. ADAM10 and NEP activity decreased TNF-α, IL-6 and IFN-ɣ secretion. Suppression of these inflammatory cytokines were more prominent in cultures obtained from control mice demonstrating counteracting factors that are exist in tumor-bearing mice. CONCLUSION Loss of ADAM10 and NEP activity in immune cells during breast cancer metastasis might be one of the main factors involved in induction of chronic inflammation by tumors.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye.
| | - Özlem Akdeniz
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye
| |
Collapse
|
2
|
Hong L, Williams NL, Jaffe M, Shields CE, Haynes KA. Synthetic Reader-Actuators Targeted to Polycomb-Silenced Genes Block Triple-Negative Breast Cancer Proliferation and Invasion. GEN BIOTECHNOLOGY 2023; 2:301-316. [PMID: 37928406 PMCID: PMC10623628 DOI: 10.1089/genbio.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 11/07/2023]
Abstract
Scientists have used pharmacological inhibitors of polycomb proteins to restore the expression of tumor suppressor genes and stop cancer proliferation and invasion. A major limitation of this approach is that key transcriptional activators, such as TP53 and BAF SWI/SNF, are often mutated in cancer. Poor clinical results for polycomb-targeting therapies in solid cancers, including triple-negative breast cancer (TNBC), could discourage the further development of epigenetic monotherapies. Here, we performed epigenome actuation with a synthetic reader-actuator (SRA) that binds trimethylated histone H3 lysine 27 in polycomb chromatin and modulates core transcriptional activators. In SRA-expressing TNBC BT-549 cells, 122 genes become upregulated ≥2-fold, including the genes involved in cell death, cell cycle arrest, and migration inhibition. The SRA-expressing spheroids showed reduced size in Matrigel and loss of invasion. Therefore, targeting Mediator-recruiting regulators to silenced chromatin can activate tumor suppressors and stimulate anti-cancer phenotypes, and further development of robust gene regulators might benefit TNBC patients.
Collapse
Affiliation(s)
- Lauren Hong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; and Emory University, Atlanta, Georgia, USA
| | - Natecia L. Williams
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; and Emory University, Atlanta, Georgia, USA
| | - Cara E. Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| | - Karmella A. Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; and Emory University, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Hu WS, Lin CL. Association of Heart Failure Patients With and Without Sacubitril-Valsartan Use With Incident Cancer Risk. J Cardiovasc Pharmacol 2023; 82:157-161. [PMID: 37133967 DOI: 10.1097/fjc.0000000000001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
ABSTRACT This study was to evaluate the association between heart failure (HF) patients with and without sacubitril-valsartan use with incident cancer risk. This study consisted of 18,072 patients receiving sacubitril-valsartan and 18,072 control group participants. In the Fine and Gray model, which extends the standard Cox proportional hazards regression model, we estimated the relative risk of developing cancer between the sacubitril-valsartan cohort and the non-sacubitril-valsartan cohort by using subhazard ratios (SHRs) and 95% confidence intervals (CIs). The incidence rates of cancer were 12.02 per 1000 person-years for the sacubitril-valsartan cohort and 23.31 per 1000 person-years for the non-sacubitril-valsartan cohort. Patients receiving sacubitril-valsartan had a significantly lower risk of developing cancer with an adjusted SHR of 0.60 (0.51, 0.71). Sacubitril-valsartan users were less to be associated with the development of cancer.
Collapse
Affiliation(s)
- Wei-Syun Hu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan; and
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Lee HJ, Hoe HS. Inhibition of CDK4/6 regulates AD pathology, neuroinflammation and cognitive function through DYRK1A/STAT3 signaling. Pharmacol Res 2023; 190:106725. [PMID: 36907286 DOI: 10.1016/j.phrs.2023.106725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Repurposing approved drugs is an emerging therapeutic development strategy for Alzheimer's disease (AD). The CDK4/6 inhibitor abemaciclib mesylate is an FDA-approved drug for breast cancer treatment. However, whether abemaciclib mesylate affects Aβ/tau pathology, neuroinflammation, and Aβ/LPS-mediated cognitive impairment is unknown. In this study, we investigated the effects of abemaciclib mesylate on cognitive function and Aβ/tau pathology and found that abemaciclib mesylate improved spatial and recognition memory by regulating the dendritic spine number and neuroinflammatory responses in 5xFAD mice, an Aβ-overexpressing model of AD. Abemaciclib mesylate also inhibited Aβ accumulation by enhancing the activity and protein levels of the Aβ-degrading enzyme neprilysin and the α-secretase ADAM17 and decreasing the protein level of the γ-secretase PS-1 in young and aged 5xFAD mice. Importantly, abemaciclib mesylate suppressed tau phosphorylation in 5xFAD mice and tau-overexpressing PS19 mice by reducing DYRK1A and/or p-GSK3β levels. In wild-type (WT) mice injected with lipopolysaccharide (LPS), abemaciclib mesylate rescued spatial and recognition memory and restored dendritic spine number. In addition, abemaciclib mesylate downregulated LPS-induced microglial/astrocytic activation and proinflammatory cytokine levels in WT mice. In BV2 microglial cells and primary astrocytes, abemaciclib mesylate suppressed LPS-mediated proinflammatory cytokine levels by downregulating AKT/STAT3 signaling. Taken together, our results support repurposing the anticancer drug, CDK4/6 inhibitor abemaciclib mesylate as a multitarget therapeutic for AD pathologies.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Daegu, the Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Daegu, the Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, the Republic of Korea.
| |
Collapse
|
5
|
Williams NL, Hong L, Jaffe M, Shields CE, Haynes KA. PIC recruitment by synthetic reader-actuators to polycomb-silenced genes blocks triple-negative breast cancer invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525196. [PMID: 36747762 PMCID: PMC9900809 DOI: 10.1101/2023.01.23.525196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Scientists have used small molecule inhibitors and genetic knockdown of gene-silencing polycomb repressive complexes (PRC1/2) to determine if restoring the expression of tumor suppressor genes can block proliferation and invasion of cancer cells. A major limitation of this approach is that inhibitors can not restore key transcriptional activators that are mutated in many cancers, such as p53 and members of the BRAF SWI/SNF complex. Furthermore, small molecule inhibitors can alter the activity of, rather than inhibit, the polycomb enzyme EZH2. While chromatin has been shown to play a major role in gene regulation in cancer, poor clinical results for polycomb chromatin-targeting therapies for diseases like triple-negative breast cancer (TNBC) could discourage further development of this emerging avenue for treatment. To overcome the limitations of inhibiting polycomb to study epigenetic regulation, we developed an engineered chromatin protein to manipulate transcription. The synthetic reader-actuator (SRA) is a fusion protein that directly binds a target chromatin modification and regulates gene expression. Here, we report the activity of an SRA built from polycomb chromodomain and VP64 modules that bind H3K27me3 and subunits of the Mediator complex, respectively. In SRA-expressing BT-549 cells, we identified 122 upregulated differentially expressed genes (UpDEGs, ≥ 2-fold activation, adjusted p < 0.05). On-target epigenetic regulation was determined by identifying UpDEGs at H3K27me3-enriched, closed chromatin. SRA activity induced activation of genes involved in cell death, cell cycle arrest, and the inhibition of migration and invasion. SRA-expressing BT-549 cells showed reduced spheroid size in Matrigel over time, loss of invasion, and activation of apoptosis. These results show that Mediator-recruiting regulators broadly targeted to silenced chromatin activate silenced tumor suppressor genes and stimulate anti-cancer phenotypes. Therefore further development of gene-activating epigenetic therapies might benefit TNBC patients.
Collapse
Affiliation(s)
- Natecia L Williams
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30312 USA
| | - Lauren Hong
- Georgia Institute of Technology, Atlanta, GA 30332
| | - Maya Jaffe
- Georgia Institute of Technology, Atlanta, GA 30332
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30312 USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30312 USA
| |
Collapse
|
6
|
Alpha Ketoglutarate Downregulates the Neutral Endopeptidase and Enhances the Growth Inhibitory Activity of Thiorphan in Highly Aggressive Osteosarcoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010097. [PMID: 36615293 PMCID: PMC9821816 DOI: 10.3390/molecules28010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Since natural substances are widely explored as epigenetic modulators of gene expression and epigenetic abnormalities are important causes of cancerogenesis, factors with pro-tumor activities subjected to epigenetic control, e.g., neutral endopeptidase (NEP, neprilysin), are promising anticancer targets for potential therapies acting via epigenetic regulation of gene expression. Alpha-ketoglutarate (AKG) is a naturally occurring co-substrate for enzymes involved in histone and DNA demethylation with suggested anti-cancer activity. Hence, we investigated a potential effect of AKG on the NEP expression in cells derived from various cancers (cervical, colon, osteosarcoma) and normal epithelial cells and osteoblasts. Moreover, the overall methylation status of histone H3 was explored to establish the molecular target of AKG activity. Additionally, it was investigated whether AKG in combination with thiorphan (NEP specific inhibitor) exhibited enhanced anticancer activity. The results revealed that AKG downregulated the expression of NEP at the protein level only in highly aggressive osteosarcoma HOS cells (flow cytometry and fluorometric assays), and this protease was found to be involved in AKG-induced growth inhibition in osteosarcoma cells (siRNA NEP silencing, BrdU assay, flow cytometry). Unexpectedly, AKG-induced hypermethylation of H3K27 in HOS cells, which was partially dependent on EZH2 activity. However, this effect was not implicated in the AKG-induced NEP downregulation (flow cytometry). Finally, the combined treatment with AKG and thiorphan was shown to significantly enhance the growth inhibitory potential of each one towards HOS cells (BrdU assay). These preliminary studies have shown for the first time that the downregulation of NEP expression is a promising target in therapies of NEP-implicating HOS cells. Moreover, this therapeutic goal can be achieved via AKG-induced downregulation of NEP and synergistic activity of AKG with thiorphan, i.e., a NEP specific inhibitor. Furthermore, this study has reported for the first time that exogenous AKG can influence the activity of histone methyltransferase, EZH2. However, this issue needs further investigation to elucidate the mechanisms of this phenomenon.
Collapse
|
7
|
Wojciech Tynior, Joanna Katarzyna Strzelczyk. A Brief Landscape of Epigenetic Mechanisms in Dental Pathologies. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Mehranfard D, Perez G, Rodriguez A, Ladna JM, Neagra CT, Goldstein B, Carroll T, Tran A, Trivedi M, Speth RC. Alterations in Gene Expression of Renin-Angiotensin System Components and Related Proteins in Colorectal Cancer. J Renin Angiotensin Aldosterone Syst 2021; 2021:9987115. [PMID: 34285715 PMCID: PMC8277508 DOI: 10.1155/2021/9987115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
MATERIALS AND METHODS Quantitative expression of the RNA of these 17 genes in normal and cancerous tissues obtained using chip arrays from the public functional genomics data repository, Gene Expression Omnibus (GEO) application, was compared statistically. RESULTS Expression of four genes, AGT (angiotensinogen), ENPEP (aminopeptidase A) MME (neprilysin), and PREP (prolyl endopeptidase), was significantly upregulated in CRC specimens. Expression of REN (renin), THOP (thimet oligopeptidase), NLN (neurolysin), PRCP (prolyl carboxypeptidase), ANPEP (aminopeptidase N), and MAS1 (Mas receptor) was downregulated in CRC specimens. CONCLUSIONS Presuming gene expression parallel protein expression, these results suggest that increased production of the angiotensinogen precursor of angiotensin (ANG) peptides, with the reduction of the enzymes that metabolize it to ANG II, can lead to accumulation of angiotensinogen in CRC tissues. Downregulation of THOP, NLN, PRCP, and MAS1 gene expression, whose proteins contribute to the ACE2/ANG 1-7/Mas axis, suggests that reduced activity of this RAS branch could be permissive for oncogenicity. Components of the RAS may be potential therapeutic targets for treatment of CRC.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Gabriela Perez
- Department of Internal Medicine, Palmetto General Hospital, Hialeah, FL, USA
| | - Andres Rodriguez
- Department of Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | | | | | | | - Timothy Carroll
- College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Alice Tran
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Malav Trivedi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
9
|
Cruz Rodriguez JB, Cu C, Siddiqui T. Narrative review in the current role of angiotensin receptor-neprilysin inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:518. [PMID: 33850915 PMCID: PMC8039652 DOI: 10.21037/atm-20-4038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) accounts for a tremendous burden on health care systems and the society. Since the landmark PARADIGM-HF trial, sacubitril/valsartan, the first in the class of angiotensin receptor neprilysin inhibitor (ARNI) showed superiority to enalapril in patients with HF with reduced ejection fraction (HFrEF). We performed a narrative literature review, hand-searched the reference lists of included articles and relevant reviews. Inhibition of neprilysin increases bradykinin, natriuretic peptides and adrenomedullin levels counteract the neurohormal activation that leads to sodium retention, vasoconstriction, and cardiac remodeling. In PARADIGM-HF the primary outcome of CV death or HF hospitalization was reduced 20% in the ARNI group (HR 0.80, P<0.001) similar to mortality due to cardiovascular cause (HR 0.80, P<0.001) in patients with HFrEF, rendering a number needed to treat of 21 patients. This effect was consistent across subgroups. The safety of starting ARNI inpatient once the acute decompensation of HF is stabilized was demonstrated in PIONEER-HF trial. With willingness-to-pay thresholds commonly acceptable in the United States, sacubitril/valsartan is likely to be cost effective, which might not be in other health systems. Although its safety has been reassured in some clinical trials, common side effects are hypotension, worsening kidney function, hyperkalemia and angioedema. In HFpEF (PARAGON-HF), sacubitril/valsartan showed decrease in the level of the cardiac biomarkers, with improve functional NYHA and decrease in hospitalizations, predominately in women and patients with borderline ejection fraction. Some ongoing studies aim to demonstrate the effects of ARNI in acute coronary syndrome, stable ischemic heart disease, advanced HF, mitral regurgitation, aortic impedance and pulmonary hypertension. In conclusion, sacubitril/valsartan has proven to be an effective addition to the HFrEF arsenal, with safety comparable to current standard of care. In HFpEF, it improves quality of life, particularly in women and in patients with borderline ejection fraction, with no effect on mortality.
Collapse
Affiliation(s)
| | - Cameron Cu
- Department of Internal Medicine, Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | | |
Collapse
|
10
|
Sankhe R, Pai SRK, Kishore A. Tumour suppression through modulation of neprilysin signaling: A comprehensive review. Eur J Pharmacol 2020; 891:173727. [PMID: 33160935 DOI: 10.1016/j.ejphar.2020.173727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/09/2023]
Abstract
Peptidases are emerging as promising drug targets in tumour suppression. Neprilysin, also known as neutral endopeptidase, is a cell surface peptidase that degrades various peptides such as angiotensin II, endothelin I, Substance P, etc., and reduces their local concentration. Neprilysin is expressed in various tissues such as kidney, prostate, lung, breast, brain, intestine, adrenal gland, etc. The tumour-suppressor mechanisms of neprilysin include its peptidase activity that degrades mitogenic growth factors such as fibroblast growth factor-2 and insulin-like growth factors, and the protein-protein interaction of neprilysin with phosphatase and tensin homolog, focal adhesion kinase, ezrin/radixin/moesin, and phosphoinositide 3-kinase. Studies have shown that the levels of neprilysin play an important role in malignancies. NEP is downregulated in prostate, renal, lung, breast, urothelial, cervical, hepatic cancers, etc. Histone deacetylation and hypermethylation of the neprilysin promoter region are the common mechanisms involved in the downregulation of neprilysin. Downregulation of the peptidase promotes angiogenesis, cell survival and cell migration. This review presents an overview of the role of neprilysin in malignancy, the tumour suppression mechanisms of neprilysin, the epigenetic mechanisms responsible for downregulation of neprilysin, and the potential pharmacological approaches to upregulate neprilysin levels and its activity.
Collapse
Affiliation(s)
- Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
11
|
de Ruijter TC, van der Heide F, Smits KM, Aarts MJ, van Engeland M, Heijnen VCG. Prognostic DNA methylation markers for hormone receptor breast cancer: a systematic review. Breast Cancer Res 2020; 22:13. [PMID: 32005275 PMCID: PMC6993426 DOI: 10.1186/s13058-020-1250-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In patients with hormone receptor-positive breast cancer, differentiating between patients with a low and a high risk of recurrence is an ongoing challenge. In current practice, prognostic clinical parameters are used for risk prediction. DNA methylation markers have been proven to be of additional prognostic value in several cancer types. Numerous prognostic DNA methylation markers for breast cancer have been published in the literature. However, to date, none of these markers are used in clinical practice. METHODS We conducted a systematic review of PubMed and EMBASE to assess the number and level of evidence of published DNA methylation markers for hormone receptor-positive breast cancer. To obtain an overview of the reporting quality of the included studies, all were scored according to the REMARK criteria that were established as reporting guidelines for prognostic biomarker studies. RESULTS A total of 74 studies were identified reporting on 87 different DNA methylation markers. Assessment of the REMARK criteria showed variation in reporting quality of the studies. Eighteen single markers and one marker panel were studied in multiple independent populations. Hypermethylation of the markers RASSF1, BRCA, PITX2, CDH1, RARB, PCDH10 and PGR, and the marker panel GSTP1, RASSF1 and RARB showed a statistically significant correlation with poor disease outcome that was confirmed in at least one other, independent study. CONCLUSION This systematic review provides an overview on published prognostic DNA methylation markers for hormone receptor-positive breast cancer and identifies eight markers that have been independently validated. Analysis of the reporting quality of included studies suggests that future research on this topic would benefit from standardised reporting guidelines.
Collapse
Affiliation(s)
- Tim C. de Ruijter
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Frank van der Heide
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Kim M. Smits
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Maureen J. Aarts
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Manon van Engeland
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Vivianne C. G. Heijnen
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
12
|
Maternal Overweight Downregulates MME (Neprilysin) in Feto-Placental Endothelial Cells and in Cord Blood. Int J Mol Sci 2020; 21:ijms21030834. [PMID: 32012940 PMCID: PMC7037888 DOI: 10.3390/ijms21030834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022] Open
Abstract
Maternal overweight in pregnancy alters the metabolic environment and generates chronic low-grade inflammation. This affects fetal development and programs the offspring’s health for developing cardiovascular and metabolic disease later in life. MME (membrane-metalloendopeptidase, neprilysin) cleaves various peptides regulating vascular tone. Endothelial cells express membrane-bound and soluble MME. In adults, the metabolic environment of overweight and obesity upregulates endothelial and circulating MME. We here hypothesized that maternal overweight increases MME in the feto-placental endothelium. We used primary feto-placental endothelial cells (fpEC) isolated from placentas after normal vs. overweight pregnancies and determined MME mRNA, protein, and release. Additionally, soluble cord blood MME was analyzed. The effect of oxygen and tumor necrosis factor α (TNFα) on MME protein in fpEC was investigated in vitro. Maternal overweight reduced MME mRNA (−39.9%, p < 0.05), protein (−42.5%, p = 0.02), and MME release from fpEC (−64.7%, p = 0.02). Both cellular and released MME protein negatively correlated with maternal pre-pregnancy BMI. Similarly, cord blood MME was negatively associated with pre-pregnancy BMI (r = −0.42, p = 0.02). However, hypoxia and TNFα, potential negative regulators of MME expression, did not affect MME protein. Reduction of MME protein in fpEC and in cord blood may alter the balance of vasoactive peptides. Our study highlights the fetal susceptibility to maternal metabolism and inflammatory state.
Collapse
|
13
|
Feygina EE, Katrukha AG, Semenov AG. Neutral Endopeptidase (Neprilysin) in Therapy and Diagnostics: Yin and Yang. BIOCHEMISTRY (MOSCOW) 2019; 84:1346-1358. [PMID: 31760922 DOI: 10.1134/s0006297919110105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neprilysin (NEP) is a zinc-dependent metalloproteinase that exists in organisms in both transmembrane and soluble forms. NEP substrates are involved in regulating the cardiovascular and nervous systems. In this review, we discuss some of the biochemical characteristics and physiological functions of this enzyme with special emphasis on the use of NEP as a therapeutic target. The history and various physiological aspects of applying NEP inhibitors for treating heart failure and attempts to increase NEP activity when treating Alzheimer's disease using gene and cell therapies are described. Another important issue discussed is the role of NEP as a potential marker for predicting the risk of cardiovascular disease complications. The diagnostic and prognostic performance of soluble NEP in various types of heart failure is analyzed and presented. We also discuss the methods and approaches for measuring NEP activity for prognosis and diagnosis, as well as a possible new role of natriuretic peptides (NEP substrates) in cardiovascular diagnostics.
Collapse
Affiliation(s)
- E E Feygina
- HyTest Ltd., Turku, 20520, Finland. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A G Katrukha
- HyTest Ltd., Turku, 20520, Finland.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A G Semenov
- HyTest Ltd., Turku, 20520, Finland.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
14
|
Pavo N, Arfsten H, Cho A, Goliasch G, Bartko PE, Wurm R, Freitag C, Gisslinger H, Kornek G, Strunk G, Raderer M, Zielinski C, Hülsmann M. The circulating form of neprilysin is not a general biomarker for overall survival in treatment-naïve cancer patients. Sci Rep 2019; 9:2554. [PMID: 30796257 PMCID: PMC6385211 DOI: 10.1038/s41598-019-38867-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
The transmembrane zink-metalloendopeptidase neprilysin (NEP) is implicated in cardiovascular disease but also tumor biology. The aim of the study was to investigate the relationship of circulating NEP (cNEP) levels with established cardiovascular biomarkers and its effect on overall survival in an unselected cohort of treatment-naïve cancer patients. 555 consecutive cancer patients prior anticancer therapy were enrolled prospectively. NEP levels were determined alongside routine laboratory parameters, established cardiac biomarkers, i.e. NT-proBNP, hsTnT, MR-proANP, MR-proADM, CT-proET-1 and Copeptin, and inflammatory parameters, i.e. CRP, IL-6 and SAA, in venous plasma samples. All-cause mortality was the primary endpoint. cNEP levels of 276 pg/ml (IQR: 0–5981) displayed a weak inverse correlation with age [r = −0.12, p = 0.023] and inflammatory status [r = −0.14, p = 0.007 CRP; r = −0.20, p < 0.001 IL-6 and r = −0.18, p < 0.001 SAA]. cNEP was comparable between different tumor entities and stages and not related to functional parameters of other organ systems as kidney, liver or especially the heart. Moreover, cNEP was not associated with overall survival in the total cohort [adj.HR for ln (cNEP) 1.00, 95% CI: 0.94–1.06, p = 0.887] but in myelodysplatic malignancies [adj.HR for ln (cNEP) 1.27, 95% CI: 1.01–1.61, p = 0.044]. In conclusion, cNEP lacks association with outcome but for myelodysplastic disease. cNEP shows no correlation with established cardiovascular biomarkers related to prognosis, thereby holding a limited potential as a biomarker in cardio-oncology.
Collapse
Affiliation(s)
- Noemi Pavo
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Henrike Arfsten
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Anna Cho
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Philipp E Bartko
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Raphael Wurm
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Claudia Freitag
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Heinz Gisslinger
- Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriela Kornek
- Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Guido Strunk
- Complexity Research, Vienna, Austria.,FH Campus Vienna, Vienna, Austria.,Technical University Dortmund, Dortmund, Germany
| | - Markus Raderer
- Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Christoph Zielinski
- Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Martin Hülsmann
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
|
16
|
Abstract
PURPOSE OF REVIEW The goal of this article is to review potential expanded indications for neprilysin inhibitors. This article reviews the rationale and design for ongoing and future trials of sacubitril/valsartan in cardiovascular and non-cardiovascular disease. RECENT FINDINGS Randomized trial data are lacking for use of sacubitril/valsartan in acute heart failure and advanced heart failure. Mechanistic data from animal studies suggest a role for neprilysin inhibition in the treatment of post-myocardial infarction systolic dysfunction and heart failure with preserved ejection fraction. Beyond the cardiovascular system, renal and neurological function may be impacted by neprilysin inhibition. Forthcoming randomized trials will address the clinical impact of sacubitril/valsartan on these conditions. Neprilysin inhibition with sacubitril/valsartan offers a new therapeutic strategy with a broad range of potential therapeutic actions. In PARADIGM-HF, the combination of neprilysin and RAAS inhibition was proven to be superior to enalapril for patients with stable NYHA class II-III heart failure and reduced left ventricular ejection fraction. Preliminary data suggests it may also have a role in other cardiovascular and non-cardiovascular disease. Several ongoing and planned studies will determine the extent of its benefit for these other indications.
Collapse
Affiliation(s)
- Elizabeth Riddell
- Cardiovascular Division, Washington University School of Medicine, 660 S. Euclid Ave., Box 8086, St Louis, MO, 63110, USA
| | - Justin M Vader
- Cardiovascular Division, Washington University School of Medicine, 660 S. Euclid Ave., Box 8086, St Louis, MO, 63110, USA.
| |
Collapse
|
17
|
Abstract
Neprilysin has a major role in both the generation and degradation of bioactive peptides. LCZ696 (valsartan/sacubitril, Entresto), the first of the new ARNI (dual-acting angiotensin-receptor-neprilysin inhibitor) drug class, contains equimolar amounts of valsartan, an angiotensin-receptor blocker, and sacubitril, a prodrug for the neprilysin inhibitor LBQ657. LCZ696 reduced blood pressure more than valsartan alone in patients with hypertension. In the PARADIGM-HF study, LCZ696 was superior to the angiotensin-converting enzyme inhibitor enalapril for the treatment of heart failure with reduced ejection fraction, and LCZ696 was approved by the FDA for this purpose in 2015. This approval was the first for chronic neprilysin inhibition. The many peptides metabolized by neprilysin suggest many potential consequences of chronic neprilysin inhibitor therapy, both beneficial and adverse. Moreover, LBQ657 might inhibit enzymes other than neprilysin. Chronic neprilysin inhibition might have an effect on angio-oedema, bronchial reactivity, inflammation, and cancer, and might predispose to polyneuropathy. Additionally, inhibition of neprilysin metabolism of amyloid-β peptides might have an effect on Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy. Much of the evidence for possible adverse consequences of chronic neprilysin inhibition comes from studies in animal models, and the relevance of this evidence to humans is unknown. This Review summarizes current knowledge of neprilysin function and possible consequences of chronic neprilysin inhibition that indicate a need for vigilance in the use of neprilysin inhibitor therapy.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.,University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|