1
|
Gao Y, Qiao X, Liu Z, Zhang W. The role of E2F2 in cancer progression and its value as a therapeutic target. Front Immunol 2024; 15:1397303. [PMID: 38807594 PMCID: PMC11130366 DOI: 10.3389/fimmu.2024.1397303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The E2F family of transcription factors plays a crucial role in the regulation of cell cycle progression and cell proliferation. Accumulative evidence indicates that aberrant expression or activation of E2F2 is a common phenomenon in malignances. E2F2 has emerged as a key player in the development and progression of various types of tumors. A wealth of research has substantiated that E2F2 could contribute to the enhancement of tumor cell proliferation, angiogenesis, and invasiveness. Moreover, E2F2 exerts its influence on a myriad of cellular processes by engaging with a spectrum of auxiliary factors and downstream targets, including apoptosis and DNA repair. The dysregulation of E2F2 in the context of carcinogenesis may be attributable to a multitude of mechanisms, which encompass modifications in upstream regulatory elements or epigenetic alterations. This review explores the function of E2F2 in cancer progression and both established and emerging therapeutic strategies aiming at targeting this oncogenic pathway, while also providing a strong basis for further research on the biological function and clinical applications of E2F2.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinjie Qiao
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenhui Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer. Cancer Gene Ther 2023; 30:192-208. [PMID: 36151333 DOI: 10.1038/s41417-022-00538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.
Collapse
|
3
|
Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022; 12:biom12081040. [PMID: 36008934 PMCID: PMC9405547 DOI: 10.3390/biom12081040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has received extensive attention in recent years as one prospective oncogene with tumor-promoting features in many malignancies. ATAD2 is a highly conserved bromodomain family protein that exerts its biological functions by mainly AAA ATPase and bromodomain. ATAD2 acts as an epigenetic decoder and transcription factor or co-activator, which is engaged in cellular activities, such as transcriptional regulation, DNA replication, and protein modification. ATAD2 has been reported to be highly expressed in a variety of human malignancies, including gastrointestinal malignancies, reproductive malignancies, urological malignancies, lung cancer, and other types of malignancies. ATAD2 is involved in the activation of multiple oncogenic signaling pathways and is closely associated with tumorigenesis, progression, chemoresistance, and poor prognosis, but the oncogenic mechanisms vary in different cancer types. Moreover, the direct targeting of ATAD2’s bromodomain may be a very challenging task. In this review, we summarized the role of ATAD2 in various types of malignancies and pointed out the pharmacological direction.
Collapse
|
4
|
Dutta M, Das B, Mohapatra D, Behera P, Senapati S, Roychowdhury A. MicroRNA-217 modulates pancreatic cancer progression via targeting ATAD2. Life Sci 2022; 301:120592. [PMID: 35504332 DOI: 10.1016/j.lfs.2022.120592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
AIMS Pancreatic cancer is a fatal disease across the world with 5 years survival rate less than 10%. ATAD2, a valid cancer drug-target, is overexpressed in pancreatic malignancy with high oncogenic potential. However, the mechanism of the upregulated expression of ATAD2 in pancreatic cancer is unknown. Since microRNAs (miRNAs) could potentially control target mRNA expressions, and are involved in cancer as tumor-suppressors, oncomiR or both, we examine the possibility of miRNA-mediated regulation of ATAD2 in pancreatic cancer cells (PCCs). MAIN METHODS Our in-silico approach first identifies hsa-miR-217 as a candidate regulator for ATAD2 expression. For further validation, luciferase reporter assay is performed. We overexpress hsa-miRNA-217 and assess cellular viability, migration, apoptosis and cell cycle progression in three different PCCs (BxPC3, PANC1, and MiaPaCa2). KEY FINDINGS We find hsa-miRNA-217 has potential binding site at the 3'UTR of ATAD2. Luciferase assay confirms that ATAD2 is a direct target of hsa-miR-217. Overexpression of hsa-miR-217 drastically downregulates ATAD2 expression in PCCs, thus, corroborating binding studies. The elevated expression of hsa-miRNA-217 diminishes cell proliferation and migration as well as induces apoptosis and cell cycle arrest in PCCs. Finally, siRNA mediated ATAD2 knockdown or overexpression of hsa-miRNA-217 in PCCs showed inactivation of the AKT signaling pathway. Therefore, hsa-miR-217 abrogates pancreatic cancer progression through inactivation of the AKT signaling pathway and this might be partly due to miR-217 mediated suppression of ATAD2 expression. SIGNIFICANCE The application of hsa-miR-217 mimic could be a promising therapeutic strategy for the treatment of pancreatic cancer patients in near future.
Collapse
Affiliation(s)
- Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Debasish Mohapatra
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Padmanava Behera
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India; Department of Microbiology, Shiksha 'O' Anusandhan (SOA) University, Bhubaneswar, Odisha 751003, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India.
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
5
|
Ekin U, Yuzugullu H, Ozen C, Korhan P, Bagirsakci E, Yilmaz F, Yuzugullu OG, Uzuner H, Alotaibi H, Kirmizibayrak PB, Atabey N, Karakülah G, Ozturk M. Evaluation of ATAD2 as a Potential Target in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1356-1369. [PMID: 34738187 DOI: 10.1007/s12029-021-00732-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide with lack of effective systemic chemotherapy. In this study, we aimed to evaluate the value of ATPase family AAA domain-containing protein 2 (ATAD2) as a biomarker and potential therapeutic target for HCC. METHODS The expression of ATAD2 was tested in different HCC patient cohorts by immunohistochemistry and comparative transcriptional analysis. The co-expression of ATAD2 and proliferation markers was compared during liver regeneration and malignancy with different bioinformatics tools. The cellular effects of ATAD2 inactivation in liver malignancy was tested on cell cycle, apoptosis, and colony formation ability as well as tumor formation using RNA interference. The genes affected by ATAD2 inactivation in three different HCC cell lines were identified by global gene expression profiling and bioinformatics tools. RESULTS ATAD2 overexpression is closely correlated with HCC tumor stage. There was gradual increase from dysplasia, well-differentiated and poorly-differentiated HCC, respectively. We also observed transient upregulation of ATAD2 expression during rat liver regeneration in parallel to changes in Ki-67 expression. ATAD2 knockdown resulted in apoptosis and decreased cell survival in vitro and decreased tumor formation in some HCC cell lines. However, three other HCC cell lines tested were not affected. Similarly, gene expression response to ATAD2 inactivation in different HCC cell lines was highly heterogeneous. CONCLUSIONS ATAD2 is a potential proliferation marker for liver regeneration and HCC. It may also serve as a therapeutic target despite heterogeneous response of malignant cells.
Collapse
Affiliation(s)
- Umut Ekin
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Haluk Yuzugullu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Institut Albert Bonniot, Grenoble, France
| | - Cigdem Ozen
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Present Address: Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Bioinformatics group, Dresden, Germany
| | - Peyda Korhan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ezgi Bagirsakci
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Funda Yilmaz
- Department of Pathology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozge Gursoy Yuzugullu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Institut Albert Bonniot, Grenoble, France
| | - Hamdiye Uzuner
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Nese Atabey
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Faculty of Medicine, Izmir Tinaztepe University, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey. .,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey. .,Institut Albert Bonniot, Grenoble, France. .,Faculty of Medicine, Izmir Tinaztepe University, Izmir, Turkey.
| |
Collapse
|
6
|
Zhu X, Feng Y, He D, Wang Z, Huang F, Tu J. Clinical Value and Underlying Mechanisms of Upregulated LINC00485 in Hepatocellular Carcinoma. Front Oncol 2021; 11:654424. [PMID: 34290977 PMCID: PMC8288074 DOI: 10.3389/fonc.2021.654424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Aims This study aimed to reveal the functional role of LINC00485 in hepatocellular carcinoma (HCC). Materials & Methods 210 serum samples from Zhongnan Hospital of Wuhan University were employed to evaluate clinical value of LINC00485. Bioinformatics analysis was adopted to explore its potential mechanisms. Results LINC00485 was confirmed to be upregulated in HCC tissues and serum samples. Survival analysis and receiver operating characteristic curve revealed its prognostic and diagnostic roles. The combination of serum LINC00485 with AFP can remarkably improve diagnostic ability of HCC. Exploration of the underlying mechanism demonstrated that LINC00485 might exert pro-oncogenic activity by LINC00485—three miRNAs—four mRNAs network. Conclusions Our study unveiled that upregulated LINC00485 could act as a potential diagnostic and prognostic biomarker and provide a novel insight into the molecular mechanisms of LINC00485 in HCC pathogenesis.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanlin Feng
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dingdong He
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zi Wang
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fangfang Huang
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Nayak A, Dutta M, Roychowdhury A. Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. Life Sci 2021; 276:119322. [PMID: 33711386 DOI: 10.1016/j.lfs.2021.119322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
ATAD2 is a promising oncoprotein with tumor-promoting functions in many cancers. It is a valid cancer drug-target and a potential cancer-biomarker for multiple malignancies. As a cancer/testis antigen (CTA), ATAD2 could also be a probable candidate for immunotherapy. It is a unique CTA that belongs to both AAA+ ATPase and bromodomain family proteins. Since 2007, several research groups have been reported on the pleiotropic oncogenic functions of ATAD2 in diverse signaling pathways, including Rb/E2F-cMyc pathway, steroid hormone signaling pathway, p53 and p38-MAPK-mediated apoptotic pathway, AKT pathway, hedgehog signaling pathway, HIF1α signaling pathway, and Epithelial to Mesenchymal Transition (EMT) pathway in various cancers. In all these pathways, ATAD2 participates in chromatin dynamics, DNA replication, and gene transcription, demonstrating its role as an epigenetic reader and transcription factor or coactivator to promote tumorigenesis. However, despite the progress, an overall mechanism of ATAD2-mediated oncogenesis in diverse origin is elusive. In this review, we summarize the accumulated evidence to envision the overall ATAD2 signaling networks during carcinogenesis and highlight the area where missing links await further research. Besides, the structure-function aspect of ATAD2 is also discussed. Since the efforts have already been initiated to explore targeted drug molecules and RNA-based therapeutic alternatives against ATAD2, their potency and prospects have been elucidated. Together, we believe this is a well-rounded review on ATAD2, facilitating a new drift in ATAD2 research, essential for its clinical implication as a biomarker and/or cancer drug-target.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
8
|
Feng Y, Dramani Maman ST, Zhu X, Liu X, Bongolo CC, Liang C, Tu J. Clinical value and potential mechanisms of LINC00221 in hepatocellular carcinoma based on integrated analysis. Epigenomics 2021; 13:299-317. [PMID: 33406920 DOI: 10.2217/epi-2020-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aims:This study aimed to unveil the functional roles of LINC00221 in hepatocellular carcinoma (HCC). Materials and methods:A discovery cohort and a validation cohort were respectively used to identify and verify the clinical value of LINC00221 in HCC. Bioinformatics analysis was performed to explore its potential mechanisms. Results:LINC00221 was upregulated in HCC tissues and serum samples. Survival analysis and receiver operating characteristic curve further revealed its prognostic and diagnostic roles. Exploration of the mechanism showed that LINC00221 might exert a pro-cancer role via the lncRNA-miRNA-mRNA network.Conclusions: Our study reveals that upregulated LINC00221 can serve as a potential diagnostic and prognostic biomarker and provides novel clues as to the role of LINC00221 in HCC.
Collapse
Affiliation(s)
- Yanlin Feng
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Souraka Tapara Dramani Maman
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinyu Zhu
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuefang Liu
- Department of Clinical Laboratory, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Christian Cedric Bongolo
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunzi Liang
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiancheng Tu
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
9
|
Li Z, Zhou Y, Zhang L, Jia K, Wang S, Wang M, Li N, Yu Y, Cao X, Hou J. microRNA-199a-3p inhibits hepatic apoptosis and hepatocarcinogenesis by targeting PDCD4. Oncogenesis 2020; 9:95. [PMID: 33099584 PMCID: PMC7585580 DOI: 10.1038/s41389-020-00282-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Hepatic apoptosis and the initiated liver inflammation play the initial roles in inflammation-induced hepatocarcinogenesis. Molecular mechanisms underlying the regulation of hepatocyte apoptosis and their roles in hepatocarcinogenesis have attracted much attention. A set of microRNAs (miRNAs) have been determined to be dysregulated in hepatocellular carcinoma (HCC) and participated in cancer progression, however, the roles of these dysregulated miRNAs in carcinogenesis are still poorly understood. We previously analyzed the dysregulated miRNAs in HCC using high-throughput sequencing, and found that miR-199a/b-3p was abundantly expressed in human normal liver while markedly decreased in HCC, which promotes HCC progression. Whether miR-199a/b-3p participates in HCC carcinogenesis is still unknown up to now. Hence, we focused on the role and mechanism of miR-199a/b-3p in hepatocarcinogenesis in this study. Hepatic miR-199a/b-3p was determined to be expressed by miR-199a-2 gene in mice, and we constructed miR-199a-2 knockout and hepatocyte-specific miR-199a-2 knockout mice. Diethylnitrosamine (DEN)-induced hepatocarcinogenesis were markedly increased by hepatocyte-specific miR-199a-3p knockout, which is mediated by the enhanced hepatocyte apoptosis and hepatic injury by DEN administration. In acetaminophen (APAP)-induced acute hepatic injury model, hepatocyte-specific miR-199a-3p knockout also aggravated hepatic apoptosis. By proteomic screening and reporter gene validation, we identified and verified that hepatic programed cell death 4 (PDCD4), which promotes apoptosis, was directly targeted by miR-199a-3p. Furthermore, we confirmed that miR-199a-3p-suppressed hepatocyte apoptosis and hepatic injury by targeting and suppressing PDCD4. Thus, hepatic miR-199a-3p inhibits hepatocyte apoptosis and hepatocarcinogenesis, and decreased miR-199a-3p in hepatocytes may aggravate hepatic injury and HCC development.
Collapse
Affiliation(s)
- Zhenyang Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Ye Zhou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Liyuan Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Kaiwei Jia
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Suyuan Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Mu Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China.
| | - Jin Hou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China.
| |
Collapse
|
10
|
Jin M, Shi C, Hua Q, Li T, Yang C, Wu Y, Zhao L, Yang H, Zhang J, Hu C, Huang G. High circ-SEC31A expression predicts unfavorable prognoses in non-small cell lung cancer by regulating the miR-520a-5p/GOT-2 axis. Aging (Albany NY) 2020; 12:10381-10397. [PMID: 32499446 PMCID: PMC7346017 DOI: 10.18632/aging.103264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Dysregulation of circular RNAs (circRNAs) has recently been shown to play important regulatory roles in cancer development and progression, including non-small cell lung cancer (NSCLC). However, the roles of most circRNAs in NSCLC are still unknown. In this study, we found that hsa_circ_0001421 (circ-SEC31A) was upregulated in NSCLC tissues and cell lines. Increased circ-SEC31A expression in NSCLC was significantly correlated with malignant characteristics and served as an independent risk factor for the post-surgical overall survival of NSCLC patients. Reduced circ-SEC31A expression in NSCLC decreased tumor cell proliferation, migration, invasion, and malate-aspartate metabolism. Mechanistically, we demonstrated that silencing circ-SEC31A downregulated GOT-2 expression by relieving the sponging effect of miR-520a-5p, which resulted in significantly reduced malate-aspartate metabolism in NSCLC cells. Taken together, these results revealed the important role of circ-SEC31A in the proliferation, migration, invasion, and metabolic regulation of NSCLC cells, providing a new perspective on circRNAs in NSCLC progression.
Collapse
Affiliation(s)
- Mingming Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201203, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Chunzi Shi
- Shanghai University of Traditional Chinese Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201203, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Qian Hua
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Tian Li
- Shanghai University of Traditional Chinese Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201203, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yue Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201203, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Licong Zhao
- China Medical University, Shenyang 110011, Liaoning, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Jiaqi Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
11
|
Yan L, Yue C, Xu Y, Jiang X, Zhang L, Wu J. Identification of Potential Diagnostic and Prognostic Pseudogenes in Hepatocellular Carcinoma Based on Pseudogene-miRNA-mRNA Competitive Network. Med Sci Monit 2020; 26:e921895. [PMID: 32457285 PMCID: PMC7249743 DOI: 10.12659/msm.921895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background It is widely known that hepatocellular carcinoma (HCC) has high rates of morbidity and mortality. A large number of studies have indicated that pseudogenes have an important effect on the carcinogenesis of HCC. Pseudogenes can play a role through the ceRNA network. There have been numerous studies on lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks. However, the pseudogene-miRNA-mRNA network in HCC has rarely been researched or reported on. Material/Methods The Cancer Genome Atlas (TCGA) database was researched and differences between selected genes were studied. A pseudogene-miRNA-mRNA network was then constructed and clustering of pseudogenes was studied. The diagnostic value of the selected pseudogenes, their functions, and pathways were investigated using available databases to understand their possible pathogenic mechanism in HCC. The protein-protein interaction network of target genes was found and the top 10 hub genes were identified. Expression of hub genes in HCC tissues was then detected by RT-qPCR. Results By analyzing the gene difference and clinical data of HCC, we constructed a ceRNA network composed of 4 pseudogenes, 8 miRNAs, and 30 mRNAs. The pseudogenes AP000769.1, KRT16P1, KRT16P3, and RPLP0P2 were all correlated with the diagnosis and prognosis of HCC. Functional analyses through the Kyoto Encyclopedia of Genes and Genomes and the Gene Ontology databases indicated that pseudogenes can affect the physiological process of HCC through the p53 pathway. The top 10 hub genes identified were all highly expressed in HCC tissues and affected the patient survival rate. Conclusions In this study, 4 pseudogenes related to the diagnosis and prognosis of liver cancer were found through the construction of a ceRNA network. These 4 pseudogenes might constitute new therapeutic targets for liver cancer patients.
Collapse
Affiliation(s)
- Lijun Yan
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Chaosen Yue
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yingchen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Xincen Jiang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Lijun Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jixiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
12
|
Wu J, Zhang L, Song Q, Yu L, Wang S, Zhang B, Wang W, Xia P, Chen X, Xiao Y, Xu C. Systematical identification of cell-specificity of CTCF-gene binding based on epigenetic modifications. Brief Bioinform 2020; 22:589-600. [PMID: 32022856 DOI: 10.1093/bib/bbaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) mediates transcriptional regulation and implicates epigenetic modifications in cancers. However, the systematically unveiling inverse regulatory relationship between CTCF and epigenetic modifications still remains unclear, especially the mechanism by which histone modification mediates CTCF binding. Here, we developed a systematic approach to investigate how epigenetic changes affect CTCF binding. Through integration analysis of CTCF binding in 30 cell lines, we concluded that CTCF generally binds with higher intensity in normal cell lines than that in cancers, and higher intensity in genome regions closed to transcription start sites. To facilitate the better understanding of their associations, we constructed linear mixed-effect models to analyze the effects of the epigenetic modifications on CTCF binding in four cancer cell lines and six normal cell lines, and identified seven epigenetic modifications as potential epigenetic patterns that influence CTCF binding intensity in promoter regions and six epigenetic modifications in enhancer regions. Further analysis of the effects in different locations revealed that the epigenetic regulation of CTCF binding was location-specific and cancer cell line-specific. Moreover, H3K4me2 and H3K9ac showed the potential association with immune regulation of disease. Taken together, our method can contribute to improve the understanding of the epigenetic regulation of CTCF binding and provide potential therapeutic targets for treating tumors associated with CTCF.
Collapse
Affiliation(s)
- Jie Wu
- Bioinformatics at Harbin Medical University, China
| | - Li Zhang
- Bioinformatics at Harbin Medical University, China
| | - Qian Song
- Bioinformatics at Harbin Medical University, China
| | - Lei Yu
- Bioinformatics at Harbin Medical University, China
| | - Shuyuan Wang
- Bioinformatics at Harbin Medical University, China
| | - Bo Zhang
- Bioinformatics at Harbin Medical University, China
| | - Weida Wang
- Bioinformatics at Harbin Medical University, China
| | - Peng Xia
- Bioinformatics at Harbin Medical University, China
| | - Xiaowen Chen
- Bioinformatics at Harbin Medical University, China
| | - Yun Xiao
- Bioinformatics at Harbin Medical University, China
| | - Chaohan Xu
- Bioinformatics at Harbin Medical University, China
| |
Collapse
|
13
|
Han HJ, Huang QY, Huang LJ, Chang F, Diao QZ. Prognostic value of ATPase family, AAA+ domain containing 2 expression in human cancers: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e17180. [PMID: 31574824 PMCID: PMC6775384 DOI: 10.1097/md.0000000000017180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND ATPase family, AAA+ domain containing 2 (ATAD2) is also known as AAA+ nuclear coregulator cancer-associated protein or PRO2000. ATAD2 has been reported as a prognostic factor in different cancer types, but the association between ATAD2 high expression and survival is still unclear. Thereby, this meta-analysis was performed to evaluate the prognostic value of ATAD2 high expression in human cancers. METHODS All of the studies included were retrieved from PubMed, EMBASE, and Cochrane Library electronic databases. The clinical outcomes were evaluated by calculating hazard ratio (HR) with their 95% confidence interval (CI). RESULTS Thirteen studies including 2689 patients were eligible for this analysis. The pooled results showed that ATAD2 over-expression was significantly associated with shorter overall survival (OS) (HR = 2.32, 95% CI = 1.77-3.02), as well as shorter recurrence-free survival (RFS), disease-free survival (DFS), and disease-specific survival (DSS) (HR = 1.83, 95% CI = 1.51-2.23) among human cancers. Subgroup analyses for OS were implemented in terms of region, tumor type, and sample size and the results were coincident with overall pooled results. Begg funnel plot and Egger test showed the presence of publication bias for OS. Sensitivity analysis indicated that both results were not affected for removing any study. CONCLUSION ATAD2 would be likely to act as a prognostic biomarker for the patients of different cancer types and provide a guide on clinical treatment. Prospective clinical studies are needed to support these findings.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Zhi Diao
- The Department of Clinical Laboratory Medicine, Yongchuan Hospital, Chongqing Medical University, Yongchuan, Chongqing, China
| |
Collapse
|
14
|
Huang YL, Ning G, Chen LB, Lian YF, Gu YR, Wang JL, Chen DM, Wei H, Huang YH. Promising diagnostic and prognostic value of E2Fs in human hepatocellular carcinoma. Cancer Manag Res 2019; 11:1725-1740. [PMID: 30863181 PMCID: PMC6388971 DOI: 10.2147/cmar.s182001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background A growing body of evidence suggests that E2Fs, by regulating gene expression related to cell cycle progression and other cellular processes, play a pivotal role in human cancer. However, the distinct roles of each E2F in the development and treatment of hepatocellular carcinoma (HCC) remain unknown. In the present study, the mRNA expression and prognostic value of different E2Fs in HCC are analyzed. Materials and methods Transcriptional and survival data related to E2F expression in patients with HCC were obtained through ONCOMINE and UALCAN databases. Survival analysis plots were drawn with Kaplan-Meier Plotter. The sequence alteration data for E2Fs were obtained from The Cancer Genome Atlas and c-BioPortal. Gene functional enrichment analyses were performed in Database for Annotation, Visualization and Integrated Discovery. Results The mRNA expression levels of E2F1-E2F8 were all significantly upregulated in HCC patients, and high expression of each E2F was obviously related to poor prognosis. Similarly, the expression of E2Fs showed prognostic prediction value in HCC patients with different cancer stages and pathological grades. Moreover, the mutation rate of E2Fs was relatively high in HCC patients, and the DNA sequence alterations primarily occurred in E2F5, E2F3, and E2F6, which were associated with worse overall survival and disease-free survival in HCC patients. Network analysis confirmed that the expression levels of cell cycle-related genes were mostly affected by E2F mutations. Conclusion High expression of individual E2Fs was associated with poor prognosis in all liver cancer patients. E2Fs may be exploited as good prognostic targets for comprehensive management of HCC patients, but this notion should be further evaluated in clinical studies.
Collapse
Affiliation(s)
- Yan-Lin Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, .,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Gang Ning
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Lu-Biao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Yu-Rong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, .,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Jia-Liang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Dong-Mei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Huan Wei
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Yue-Hua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, .,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| |
Collapse
|
15
|
Sun W, Zhang J, Chen J. MicroRNA-520a suppresses HBV replication in HepG2.2.15 cells by inactivating AKT. J Int Med Res 2018; 46:4693-4704. [PMID: 30191752 PMCID: PMC6259377 DOI: 10.1177/0300060518792780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective To investigate whether the mechanism by which a microRNA, miR-520a, suppresses the replication of hepatitis B virus (HBV) involves the regulation of the serine/threonine kinase (AKT) gene. Methods The effects of miR-520a on the proliferation, mitotic index and apoptosis of the HBV-replicating human hepatocellular carcinoma cell line HepG2.2.15 were measured using standard laboratory methods including flow cytometry. The effects of miR-520a on HBV transcription and replication were assessed using methods including immunoassays and reverse transcription–polymerase chain reaction. The effect of small interfering RNA (siRNA) to AKT on the levels of AKT mRNA and protein were also evaluated. Results In HepG2.2.15 cells, miRNA-520a reduced HBV transcription and replication by reducing AKT levels. MiRNA-520a decreased cell proliferation and mitosis entry of cells and increased apoptosis in HepG2.2.15 cells. AKT levels were reduced significantly by its siRNA, which resulted in suppression of HBV replication in HepG2.2.15 cells. Conclusions MiRNA-520a inhibited AKT gene expression and suppressed HBV transcription and replication. These findings suggest that miRNA-520a may be a novel target for the treatment of HBV infection because miRNA-520a reduced HepG2.2.15 cell survival and inhibited HBV replication associated with the AKT signalling pathway.
Collapse
Affiliation(s)
- Wei Sun
- 1 Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinqian Zhang
- 2 Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China
| | - Jinglong Chen
- 1 Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Hong S, Chen S, Wang X, Sun D, Yan Z, Tai J, Bi M. ATAD2 silencing decreases VEGFA secretion through targeting has-miR-520a to inhibit angiogenesis in colorectal cancer. Biochem Cell Biol 2018; 96:761-768. [PMID: 29958090 DOI: 10.1139/bcb-2018-0081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) is involved in various types of cancers, including colorectal cancer. This study aimed to determine the role of ATAD2 in angiogenesis in colorectal cancer. Here, we downregulated ATAD2 expression in HCT116 and SW480 cells, and collected the conditioned medium (CM) from control and ATAD2-silenced cells. The effect of CM on human umbilical vein endothelial cells (HUVEC) was evaluated by using CCK-8, wound healing, tube formation, Western blot, and dual-luciferase reporter assays. Our results showed that the proliferation, migration, and tube formation of HUVEC were reduced in presence of ATAD2-silenced CM, and the levels of phosphorylated vascular endothelial growth factor receptor 2 (P-VEGFR2), CD31, and CD34 were downregulated. Mechanism studies showed that ATAD2 silencing regulated the expression of vascular endothelial growth factor A (VEGFA) and miR-520a. Moreover, we found that miR-520a could bind to ATAD2, and its inhibitor partly reversed the alterations in HUVEC induced by CM from ATAD2-silenced cells. In addition, we demonstrated that miR-520a directly bound to 3'-UTR of VEGFA and inhibited its expression. Collectively, our results indicate that ATAD2 inhibition suppresses VEGFA secretion by increasing miR-520a levels. Our study suggests ATAD2 as a potential therapeutic target for angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Sen Hong
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Si Chen
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Xu Wang
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Di Sun
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhenkun Yan
- b Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Jiandong Tai
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Miaomiao Bi
- c Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| |
Collapse
|
17
|
Chen L, Huang X, Chen X. miR-365 Suppresses Cholangiocarcinoma Cell Proliferation and Induces Apoptosis by Targeting E2F2. Oncol Res 2018; 26:1375-1382. [PMID: 29471889 PMCID: PMC7844787 DOI: 10.3727/096504018x15188352857437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most malignant adenocarcinomas arising from bile duct epithelial cells. However, the molecular mechanism regulating CCA development and progression still needs to be investigated. Here we found that miR-365 was downregulated in CCA tissues compared with adjacent normal tissues. By functional experiments, we found that overexpression of miR-365 significantly inhibited CCA cell proliferation and promoted cellular apoptosis in vitro. Furthermore, administration with miR-365 markedly suppressed the growth of tumor tissues in vivo. Mechanistically, we identified E2F2 as the target gene of miR-365 in CCA cells. We found that overexpression significantly inhibited the expression of E2F2 in CCA cells, and there was an inverse correlation between the expression levels of E2F2 and miR-365 in CCA tissues. We also found that E2F2 was highly expressed in CCA tissues and cell lines. Restoration of E2F2 in miR-365-overexpressing CCA cells promoted cell viability and reduced cellular apoptosis in CCA. Collectively, our study demonstrated the essential role of miR-365 and its functional mechanism in CCA cells, which provided a new insight on the design of therapeutic targets for CCA treatment.
Collapse
Affiliation(s)
- Lunjian Chen
- Department of Hepatobiliary Surgery, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, P.R. China
| | - Xiaorong Huang
- Otorhinolaryngology Center, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, P.R. China
| | - Xinxin Chen
- Department of Preventive Health Care, First Affiliated Hospital of Medical College of Shihezi University, Shihezi, P.R. China
| |
Collapse
|
18
|
Li N, Shi H, Zhang L, Li X, Gao L, Zhang G, Shi Y, Guo S. miR-188 Inhibits Glioma Cell Proliferation and Cell Cycle Progression Through Targeting β-Catenin. Oncol Res 2017; 26:785-794. [PMID: 29268818 PMCID: PMC7844764 DOI: 10.3727/096504017x15127309628257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in several human cancers. Although miR-188 has been suggested to function as a tumor repressor in cancers, its precise role in glioma and the molecular mechanism remain unknown. In the present study, we investigated the effect of miR-188 on glioma and explored its relevant mechanisms. We found that the expression of miR-188 is dramatically downregulated in glioma tissues and cell lines. Subsequent investigation revealed that miR-188 expression was inversely correlated with β-catenin expression in glioma tissue samples. Using a luciferase reporter assay, β-catenin was determined to be a direct target of miR-188. Overexpression of miR-188 reduced β-catenin expression at both the mRNA and protein levels, and inhibition of miR-188 increased β-catenin expression. Moreover, we found that overexpression of miR-188 suppressed glioma cell proliferation and cell cycle G1–S transition, whereas inhibition of miR-188 promoted glioma cell proliferation. Importantly, silencing β-catenin recapitulated the cellular and molecular effects seen upon miR-188 overexpression, which included inhibiting glioma cell proliferation and G1–S transition. Taken together, our results demonstrated that miR-188 inhibits glioma cell proliferation by targeting β-catenin, representing an effective therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Nan Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Hangyu Shi
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Lu Zhang
- Department of Foreign Languages, Ming De College of Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Xu Li
- Department of First Internal Medicine, Shaanxi Province Tumor Hospital, Xi'an, Shaanxi, P.R. China
| | - Lu Gao
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Gang Zhang
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Yongqiang Shi
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Shiwen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
19
|
Wang Q, Zeng F, Sun Y, Qiu Q, Zhang J, Huang W, Huang J, Huang X, Guo L. Etk Interaction with PFKFB4 Modulates Chemoresistance of Small-cell Lung Cancer by Regulating Autophagy. Clin Cancer Res 2017; 24:950-962. [PMID: 29208667 DOI: 10.1158/1078-0432.ccr-17-1475] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Epithelial and endothelial tyrosine kinase (Etk), also known as bone marrow X kinase (Bmx), was found to be critical in modulating the chemoresistance of small-cell lung cancer (SCLC) in our preliminary study. However, the molecular mechanisms of Etk in SCLC chemoresistance remain poorly understood.Experimental Design: We determined correlation of Etk with autophagy in SCLC. And direct inhibition of autophagy was performed to validate its effect on chemoresistance. Coimmunoprecipitation (co-IP) and GST-pull down experiments were conducted to verify the interaction of Etk and PFKFB4, after a microarray analysis. In vitro and in vivo gain or loss-of-function analyses and evaluation of PFKFB4 expression in SCLC specimens, were done to validate its role in chemoresistance. Ibrutinib was administrated in SCLC cells to verify its synergistic anti-tumor effect with chemotherapy using preclinical models including a PDX model.Results: Downregulation of Etk suppressed autophagy in chemoresistant SCLC cells, and direct inhibition of autophagy sensitized cells to chemotherapy. PFKFB4 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4) was identified as a downstream target of Etk and an Etk-interacting protein, which promoted chemoresistance in SCLC and was associated with poor therapeutic response and prognosis. Furthermore, ibrutinib was found to exhibit a synergistic anti-tumor effect with chemotherapy in targeting Etk.Conclusions: Our results demonstrated for the first time that Etk interacts with PFKFB4 to promote SCLC chemoresistance through regulation of autophagy. Aberrant Etk and PFKFB4 can be predictive factors for the chemotherapy response as well as potential therapeutic targets in SCLC. Clin Cancer Res; 24(4); 950-62. ©2017 AACR.
Collapse
Affiliation(s)
- Qiongyao Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Fanrui Zeng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan, P.R. China
| | - Qianqian Qiu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Weimei Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Xiaomin Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China.
| |
Collapse
|
20
|
Yan Y, Xu Z, Li Z, Sun L, Gong Z. An Insight into the Increasing Role of LncRNAs in the Pathogenesis of Gliomas. Front Mol Neurosci 2017; 10:53. [PMID: 28293170 PMCID: PMC5328963 DOI: 10.3389/fnmol.2017.00053] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/15/2017] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are essential epigenetic regulators with critical roles in tumor initiation and malignant progression. However, the roles and mechanisms of aberrantly expressed lncRNAs in the pathogenesis of gliomas are not fully understood. With the development of deep sequencing analyses, an extensive amount of functional non-coding RNAs has been discovered in glioma tissues and cell lines. Additionally, the contributions of several lncRNAs, such as Hox transcript antisense intergenic RNA, H19 and Colorectal neoplasia differentially expressed, previously reported to be involved in other pathogenesis and processes to the oncogenesis of glioblastoma are currently addressed. Thus, lncRNAs detected in tumor tissues could serve as candidate diagnostic biomarkers and therapeutic targets for gliomas. To understand the potential function of lncRNAs in gliomas, in this review, we briefly describe the profile of lncRNAs in human glioma research and therapy. Then, we discuss the individual lncRNA that has been under intensive investigation in glioma research, and the focus is its mechanism and clinical implication.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha, China; Institute of Hospital Pharmacy, Central South UniversityChangsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University Changsha, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University Changsha, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha, China; Institute of Hospital Pharmacy, Central South UniversityChangsha, China
| |
Collapse
|