1
|
Nakano Y, Masuda T, Sakamoto T, Tanaka N, Tobo T, Hashimoto M, Tatsumi T, Saito H, Takahashi J, Koike K, Abe T, Ando Y, Ozato Y, Hosoda K, Hirose K, Higuchi S, Ikehara T, Hisamatsu Y, Toshima T, Yonemura Y, Ogino T, Uemura M, Eguchi H, Doki Y, Mimori K. SHARPIN is a novel gene of colorectal cancer that promotes tumor growth potentially via inhibition of p53 expression. Int J Oncol 2024; 65:113. [PMID: 39450547 PMCID: PMC11542962 DOI: 10.3892/ijo.2024.5701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) is widely prevalent and represents a significant contributor to global cancer‑related mortality. There remains a pressing demand for advancements in CRC treatment modalities. The E3 ubiquitin ligase is a critical enzyme involved in modulating protein expression levels via posttranslational ubiquitin‑mediated proteolysis, and it is reportedly involved in the progression of various cancers, making it a target of recent interest in anticancer therapy. In the present study, using comprehensive expression analysis involving spatial transcriptomic analysis with single‑cell RNA sequencing in clinical CRC datasets, the ubiquitin‑associated protein Shank‑associated RH domain interactor (SHARPIN) was identified, located on amplified chromosome 8q, which could promote CRC progression. SHARPIN was found to be upregulated in tumor cells, with elevated expression observed in tumor tissues. This heightened expression of SHARPIN was positively associated with lymphatic invasion and served as an independent predictor of a poor prognosis in patients with CRC. In vitro and in vivo analyses using SHARPIN‑overexpressing or ‑knockout CRC cells revealed that SHARPIN overexpression upregulated MDM2, resulting in the downregulation of p53, while SHARPIN silencing or knockout downregulated MDM2, leading to p53 upregulation, which affects cell cycle progression, tumor cell apoptosis and tumor growth in CRC. Furthermore, SHARPIN was found to be overexpressed in several cancer types, exerting significant effects on survival outcomes. In conclusion, SHARPIN represents a newly identified novel gene with the potential to promote tumor growth following apoptosis inhibition and cell cycle progression in part by inhibiting p53 expression via MDM2 upregulation; therefore, SHARPIN represents a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Breast and Endocrine Surgery, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Noritaka Tanaka
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Masahiro Hashimoto
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takanari Tatsumi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Kensuke Koike
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Tadashi Abe
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuki Ando
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kiyotaka Hosoda
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Kosuke Hirose
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Satoshi Higuchi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomohiko Ikehara
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| |
Collapse
|
2
|
Asanomi Y, Kimura T, Shimoda N, Shigemizu D, Niida S, Ozaki K. CRISPR/Cas9-mediated knock-in cells of the late-onset Alzheimer's disease-risk variant, SHARPIN G186R, reveal reduced NF-κB pathway and accelerated Aβ secretion. J Hum Genet 2024; 69:171-176. [PMID: 38351238 PMCID: PMC11043039 DOI: 10.1038/s10038-024-01224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Yuya Asanomi
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Tetsuaki Kimura
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Nobuyoshi Shimoda
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shumpei Niida
- Center for Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
3
|
Ioannidis V, Pandey R, Bauer HF, Schön M, Bockmann J, Boeckers TM, Lutz AK. Disrupted extracellular matrix and cell cycle genes in autism-associated Shank3 deficiency are targeted by lithium. Mol Psychiatry 2024; 29:704-717. [PMID: 38123724 PMCID: PMC11153165 DOI: 10.1038/s41380-023-02362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Shank3 gene encodes the major postsynaptic scaffolding protein SHANK3. Its mutation causes a syndromic form of autism spectrum disorder (ASD): Phelan-McDermid Syndrome (PMDS). It is characterized by global developmental delay, intellectual disorders (ID), ASD behavior, affective symptoms, as well as extra-cerebral symptoms. Although Shank3 deficiency causes a variety of molecular alterations, they do not suffice to explain all clinical aspects of this heterogenic syndrome. Since global gene expression alterations in Shank3 deficiency remain inadequately studied, we explored the transcriptome in vitro in primary hippocampal cells from Shank3∆11(-/-) mice, under control and lithium (Li) treatment conditions, and confirmed the findings in vivo. The Shank3∆11(-/-) genotype affected the overall transcriptome. Remarkably, extracellular matrix (ECM) and cell cycle transcriptional programs were disrupted. Accordingly, in the hippocampi of adolescent Shank3∆11(-/-) mice we found proteins of the collagen family and core cell cycle proteins downregulated. In vitro Li treatment of Shank3∆11(-/-) cells had a rescue-like effect on the ECM and cell cycle gene sets. Reversed ECM gene sets were part of a network, regulated by common transcription factors (TF) such as cAMP responsive element binding protein 1 (CREB1) and β-Catenin (CTNNB1), which are known downstream effectors of synaptic activity and targets of Li. These TFs were less abundant and/or hypo-phosphorylated in hippocampi of Shank3∆11(-/-) mice and could be rescued with Li in vitro and in vivo. Our investigations suggest the ECM compartment and cell cycle genes as new players in the pathophysiology of Shank3 deficiency, and imply involvement of transcriptional regulators, which can be modulated by Li. This work supports Li as potential drug in the management of PMDS symptoms, where a Phase III study is ongoing.
Collapse
Affiliation(s)
- Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Rakshita Pandey
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Helen Friedericke Bauer
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Li Y, Zhu J, Yu Z, Zhai F, Li H, Jin X. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res 2023; 13:4832-4871. [PMID: 37970337 PMCID: PMC10636691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Apoptosis is a programmed cell death process critical to cell development and tissue homeostasis in multicellular organisms. Defective apoptosis is a crucial step in the malignant transformation of cells, including hepatocellular carcinoma (HCC), where the apoptosis rate is higher than in normal liver tissues. Ubiquitination, a post-translational modification process, plays a precise role in regulating the formation and function of different death-signaling complexes, including those involved in apoptosis. Aberrant expression of E3 ubiquitin ligases (E3s) in liver cancer (LC), such as cellular inhibitors of apoptosis proteins (cIAPs), X chromosome-linked IAP (XIAP), and linear ubiquitin chain assembly complex (LUBAC), can contribute to HCC development by promoting cell survival and inhibiting apoptosis. Therefore, the review introduces the main apoptosis pathways and the regulation of proteins in these pathways by E3s and deubiquitinating enzymes (DUBs). It summarizes the abnormal expression of these regulators in HCC and their effects on cancer inhibition or promotion. Understanding the role of ubiquitination in apoptosis and LC can provide insights into potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
5
|
Xiong X, Song Q, Jing M, Yan W. Identification of PANoptosis-Based Prognostic Signature for Predicting Efficacy of Immunotherapy and Chemotherapy in Hepatocellular Carcinoma. Genet Res (Camb) 2023; 2023:6879022. [PMID: 37313428 PMCID: PMC10260314 DOI: 10.1155/2023/6879022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Background PANoptosis has been a research hotspot, but the role of PANoptosis in hepatocellular carcinoma (HCC) remains widely unknown. Drug resistance and low response rate are the main limitations of chemotherapy and immunotherapy in HCC. Thus, construction of a prognostic signature to predict prognosis and recognize ideal patients for corresponding chemotherapy and immunotherapy is necessary. Method The mRNA expression data of HCC patients was collected from TCGA database. Through LASSO and Cox regression, we developed a prognostic signature based on PANoptosis-related genes. KM analysis and ROC curve were implemented to evaluate the prognostic efficacy of this signature, and ICGC and GEO database were used as external validation cohorts. The immune cell infiltration, immune status, and IC50 of chemotherapeutic drugs were compared among different risk subgroups. The relationships between the signature and the efficacy of ICI therapy, sorafenib treatment, and transcatheter arterial chemoembolization (TACE) therapy were investigated. Result A 3-gene prognostic signature was constructed which divided the patients into low- and high-risk subgroups. Low-risk patients had better prognosis, and the risk score was proved to be an independent predictor of overall survival (OS), which had a well predictive effect. Patients in high-risk population had more immunosuppressive cells (Tregs, M0 macrophages, and MDSCs), higher TIDE score and TP53 mutation rate, and elevated activity of base excision repair (BER) pathways. Patients with low risk benefited more from ICI, TACE, and sorafenib therapy. The predictive value of the risk score was comparable with TIDE and MSI for OS under ICI therapy. The risk score could be a biomarker to predict the response to ICI, TACE, and sorafenib therapy. Conclusion The novel signature based on PANoptosis is a promising biomarker to distinguish the prognosis predict the benefit of ICI, TACE, and sorafenib therapy, and forecast the response to them.
Collapse
Affiliation(s)
- Xiaofeng Xiong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chang W, Zhu J, Yang D, Shang A, Sun Z, Quan W, Li D. Plasma versican and plasma exosomal versican as potential diagnostic markers for non-small cell lung cancer. Respir Res 2023; 24:140. [PMID: 37259101 DOI: 10.1186/s12931-023-02423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/16/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND AND AIMS This study aimed to investigate the expression of plasma versican and plasma exosomal versican in non-small cell lung cancer (NSCLC) and its correlation with clinicopathological features, and to evaluate its diagnostic performance in NSCLC and its predictive function for NSCLC incidence and metastasis risk. MATERIALS AND METHODS There were 110 instances of NSCLC, 42 cases of benign lung disease, and 55 healthy controls from September 2018 to October 2020 at Tongji Hospital Affiliated to Tongji University. Blood was collected and plasma was separated before surgery, and plasma exosomes were extracted by ExoQuick kit. Morphological and molecular phenotype identification of exosomes was performed by transmission electron microscopy, Nanosight particle tracking analysis, and western blotting. Plasma versican and plasma exosomal versican were detected in all subjects to assess their expression levels and diagnostic value in NSCLC. Clinicopathological data were collected to explore correlations between abnormal plasma versican and plasma exosomal versican expression and clinicopathological parameters. Receiver operating characteristic (ROC) curve was used to judge its diagnostic performance in NSCLC, and binary logistic regression analysis was used to predict the risk of NSCLC incidence and metastasis. RESULTS Plasma versican and plasma exosomal versican expression in NSCLC patients was significantly upregulated and was significantly higher in T3 + T4 patients compared with T1 + T2 patients (P < 0.05); the levels of plasma versican and plasma exosomal versican were positively correlated with lymph node metastasis, distant metastases (e.g., brain, bone), and mutation(e.g., EGFR,ALK)in NSCLC patients (all P < 0.05). Furthermore, ROC curve analysis showed that plasma versican and plasma exosomal versican had higher AUC values than NSE, CYFRA21-1, and SCC, and better diagnostic performance in NSCLC patients. However, the AUC and diagnostic performances of plasma versican and plasma exosomal versican in advanced-stage NSCLC patients were not shown to be significantly better than CEA. The results of binary logistic regression analysis showed that high levels of plasma exosomal versican had higher predictive value for lung cancer incidence, while high levels of plasma versican had higher predictive value for lung cancer metastasis. CONCLUSION Our findings showed that plasma versican and plasma exosomal versican might be potential diagnostic markers for NSCLC. High plasma exosomal versican expression can be used as a predictor of NSCLC risk and high plasma versican expression can be used as a predictor of NSCLC metastasis risk.
Collapse
Grants
- 81902984, 81974314, 82072362, 82002223 National Natural Science Foundation of China
- 81902984, 81974314, 82072362, 82002223 National Natural Science Foundation of China
- 81902984, 81974314, 82072362, 82002223 National Natural Science Foundation of China
- 81902984, 81974314, 82072362, 82002223 National Natural Science Foundation of China
- GWV-10.1-XK04 Shanghai Public Health System Construction Three-Year Action Plan
- 20204Y0070 Shanghai Municipal Health and Family Planning Commission
Collapse
Affiliation(s)
- Wenjing Chang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jichao Zhu
- Department of Laboratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou Normal University, Huzhou, 313003, China
| | - Dianyu Yang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zujun Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wenqiang Quan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
7
|
Chen X, Ye Q, Zhao W, Chi X, Xie C, Wang X. RBCK1 promotes hepatocellular carcinoma metastasis and growth by stabilizing RNF31. Cell Death Discov 2022; 8:334. [PMID: 35869046 PMCID: PMC9307510 DOI: 10.1038/s41420-022-01126-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractRNF31 (HOIP), RBCK1 (HOIL-1L), and SHARPIN are subunits of the linear ubiquitin chain assembly complex. Their function and specific molecular mechanisms in hepatocellular carcinoma (HCC) have not been reported previously. Here, we investigated the role of RNF31 and RBCK1 in HCC. We showed that RNF31 and RBCK1 were overexpressed in HCC and that upregulation of RNF31 and RBCK1 indicated poor clinical outcomes in patients with HCC. RNF31 overexpression was significantly associated with more satellite foci and vascular invasion in patients with HCC. Additionally, RBCK1 expression correlated positively with RNF31 expression in HCC tissues. Functionally, RBCK1 and RNF31 promote the metastasis and growth of HCC cells. Moreover, the RNF31 inhibitor gliotoxin inhibited the malignant behavior of HCC cells. Mechanistically, RBCK1 interacted with RNF31 and repressed its ubiquitination and proteasomal degradation. In summary, the present study revealed an oncogenic role and regulatory relationship between RBCK1 and RNF31 in facilitating proliferation and metastasis in HCC, suggesting that they are potential prognostic markers and therapeutic targets for HCC.
Collapse
|
8
|
Sparić R, Andjić M, Babović I, Nejković L, Mitrović M, Štulić J, Pupovac M, Tinelli A. Molecular Insights in Uterine Leiomyosarcoma: A Systematic Review. Int J Mol Sci 2022; 23:ijms23179728. [PMID: 36077127 PMCID: PMC9456512 DOI: 10.3390/ijms23179728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of female genital diseases, unlike uterine leiomyosarcoma (LMS), a rare and aggressive uterine cancer. This narrative review aims to discuss the biology and diagnosis of LMS and, at the same time, their differential diagnosis, in order to distinguish the biological and molecular origins. The authors performed a Medline and PubMed search for the years 1990–2022 using a combination of keywords on the topics to highlight the many genes and proteins involved in the pathogenesis of LMS. The mutation of these genes, in addition to the altered expression and functions of their enzymes, are potentially biomarkers of uterine LMS. Thus, the use of this molecular and protein information could favor differential diagnosis and personalized therapy based on the molecular characteristics of LMS tissue, leading to timely diagnoses and potential better outcomes for patients.
Collapse
Affiliation(s)
- Radmila Sparić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Correspondence: (M.A.); (A.T.)
| | - Ivana Babović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Nejković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Milena Mitrović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Štulić
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Miljan Pupovac
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, and CERICSAL (CEntro di Ricerca Clinico SALentino), “Verisdelli Ponti Hospital”, Via Giuseppina Delli Ponti, 73020 Scorrano, LE, Italy
- Correspondence: (M.A.); (A.T.)
| |
Collapse
|
9
|
Zeng C, Lin J, Zhang K, Ou H, Ke S, Liu Q, Wei Z, Dong X, Zeng X, Zeng L, Wang W, Yao J. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci 2022; 113:3766-3775. [PMID: 35968603 DOI: 10.1111/cas.15531] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022] Open
Abstract
SHARPIN is a tumor-associated gene involved in the growth and proliferation of many tumor types. A function of SHARPIN in cholangiocarcinoma (CCA) is so far unclear. Here, we studied the role and function of SHARPIN in CCA and revealed its relevant molecular mechanism. The expression of SHARPIN was analyzed in cholangiocarcinoma tissues from patients by immunohistochemistry, quantitative polymerase chain reaction (qPCR), and Western blot analysis. Expression of SHARPIN was suppressed/overexpressed by siRNA silencing or lentiviral overexpression vector and the effect on cell proliferation was determined by the CCK-8 assay and flow cytometry. Accumulation of reactive oxygen species (ROS) was measured with MitoTracker and JC-1 staining showed mitochondrial fission/fusion and mitochondrial membrane potential changes as a result of the silencing or overexpression. The ferroptosis marker solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and the anti-oxidant enzymes superoxide dismutase 1 (SOD-1) and SOD-2 were analyzed by Western blot. The results showed that SHARPIN expression was increased in CCA tissue and this was involved in cell proliferation. SHARPIN silencing resulted in accumulated ROS, reduced mitochondrial fission and a reduced mitochondrial membrane potential. Silencing of SHARPIN inhibited the ubiquitination and degradation of p53, and down-regulated levels of SLC7A11, GPX4, SOD-1, and SOD-2, all of which contributed to excessive oxidative stress that leads to ferroptosis. While overexpression of SHARPIN would reverse above process. The collected data suggest that in CCA SHARPIN-mediated cell ferroptosis via the p53/SLC7A11/GPX4 signaling pathway is inhibited. Targeting SHARPIN might be a promising approach for the treatment of CCA.
Collapse
Affiliation(s)
- Chong Zeng
- Department of Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jie Lin
- Department of Hepatobiliary Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong Province, PR China
| | - Ketao Zhang
- Department of Hepatobiliary Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong Province, PR China
| | - Huohui Ou
- Department of Hepatobiliary Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong Province, PR China
| | - Shen Ke
- Department of Pathology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Qingbo Liu
- Department of Hepatobiliary Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong Province, PR China
| | - Zibo Wei
- Department of Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Xinhuai Dong
- Department of Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Xiaokang Zeng
- Department of Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Liming Zeng
- Department of Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong Province, PR China
| | - Jie Yao
- Department of Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| |
Collapse
|
10
|
Wang G, Zhuang Z, Cheng J, Yang F, Zhu D, Jiang Z, Du W, Shen S, Huang J, Hua L, Chen Y. Overexpression of SHARPIN promotes tumor progression in ovarian cancer. Exp Mol Pathol 2022:104806. [PMID: 35798064 DOI: 10.1016/j.yexmp.2022.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
SHARPIN (Shank-associated RH domain interacting protein) plays an important role in tumorigenesis. However, its role in ovarian cancer remains largely unknown. To investigate this issue, we systematically analyzed the amplification and expression of the SHARPIN in the TCGA database. From the database, we found that SHARPIN was amplified in ovarian cancer compared to normal ovarian tissue, and the mRNA level of SHARPIN was significantly elevated in ovarian cancer compared to non-tumorigenic ovarian tissue. In addition, we observed similar results from ovarian cancer cell lines and clinical samples from ovarian cancer patients, which indicated that increased SHARPIN expression is associated with tumorigenesis in ovarian cancer. SHARPIN knockdown inhibited the migration and invasion of ovarian cancer cells, also inhibited cell cycle and promoted apoptosis, thereby suppressing cell proliferation. RNA-seq results showed that SHARPIN significantly increased the expression of P53 and P21 and decreased the expression of Cyclin D1 and c-Myc, all of which are involved in the regulation of cell proliferation. Subsequent mechanistic exploration revealed that SHARPIN knockdown increased the expression of caspases 3 and 9, leading to apoptosis of ovarian cancer cells. We also found that high expression of SHARPIN was associated with poor prognosis of ovarian cancer patients. Collectively, we demonstrated a positive correlation between SHARPIN and ovarian cancer progression and provide a basis for combined targeted therapy strategies for future ovarian cancer treatment.
Collapse
Affiliation(s)
- Guanghui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi Zhuang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianxiang Cheng
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fan Yang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dachun Zhu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyuan Jiang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wensheng Du
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Siyuan Shen
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ju Huang
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Hua
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
11
|
The E3 ubiquitin ligase SOCS-7 reverses immunosuppression via Shc1 signaling in hepatocellular carcinoma. J Transl Med 2022; 102:613-620. [PMID: 35042950 DOI: 10.1038/s41374-022-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancies and is the third leading cause of tumor-related mortality worldwide. Despite advances in HCC treatment, diagnosis at the later stages, and the complex mechanisms relating to the cause and pathogenesis, results in less than 40% of HCC patients being eligible for potential therapy. Prolonged inflammation and resulting immunosuppression are major hallmarks of HCC; however, the mechanisms responsible for these processes have not been clearly elucidated. In this study, we identified SOCS-7, an inhibitor of cytokine signaling, as a novel regulator of immunosuppression in HCC. We found that SOCS-7 mediated E3 ubiquitin ligase activity on a signaling adaptor molecule, Shc1, in Huh-7 cells. Overexpression of SOCS-7 reduced the induction of immunosuppressive factors, TGF-β, Versican, and Arginase-1, and further reduced STAT3 activation. Furthermore, using an in vivo tumor model, we confirmed that SOCS-7 negatively regulates immunosuppression and inhibits tumor growth by targeting Shc1 degradation. Together, our study identified SOCS-7 as a possible therapeutic target to reverse immunosuppression in HCC.
Collapse
|
12
|
Asanomi Y, Shigemizu D, Akiyama S, Miyashita A, Mitsumori R, Hara N, Ikeuchi T, Niida S, Ozaki K. A functional variant of SHARPIN confers increased risk of late-onset Alzheimer's disease. J Hum Genet 2022; 67:203-208. [PMID: 34737388 PMCID: PMC8948087 DOI: 10.1038/s10038-021-00987-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of dementia, and its pathogenesis is multifactorial. We previously reported a rare functional variant of SHARPIN (rs572750141, NP_112236.3:p.Gly186Arg) that was significantly associated with LOAD. In addition, several recent studies have suggested the potential role of SHARPIN in AD pathogenesis. In this study, we sought to identify additional functional variants of SHARPIN in Japanese population. Six highly deleterious variants of SHARPIN, comprising four missense variants, one frameshift variant, and one stop-gain variant were detected from whole-genome sequencing data for 180 patients with LOAD and 184 with mild cognitive impairment. One of these candidate variants (rs77359862, NP_112236.3:p.Arg274Trp) was significantly associated with an increased risk of LOAD in 5043 LOAD cases and 11984 controls (P = 0.0016, odds ratio = 1.43). Furthermore, this variant SHARPIN showed aberrant cellular localization and reduced the activation of NF-κB, a central mediator of inflammatory and immune responses. Further investigation of the physiologic role of SHARPIN may reveal the mechanism of onset of LOAD.
Collapse
Affiliation(s)
- Yuya Asanomi
- grid.419257.c0000 0004 1791 9005Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi Japan
| | - Daichi Shigemizu
- grid.419257.c0000 0004 1791 9005Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi Japan ,grid.265073.50000 0001 1014 9130Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan ,grid.509459.40000 0004 0472 0267RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shintaro Akiyama
- grid.419257.c0000 0004 1791 9005Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi Japan
| | - Akinori Miyashita
- grid.260975.f0000 0001 0671 5144Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Risa Mitsumori
- grid.419257.c0000 0004 1791 9005Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi Japan
| | - Norikazu Hara
- grid.260975.f0000 0001 0671 5144Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- grid.260975.f0000 0001 0671 5144Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shumpei Niida
- grid.419257.c0000 0004 1791 9005Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan. .,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
13
|
Chen L, Li J, Wu X, Zheng Z. Identification of Somatic Genetic Alterations Using Whole-Exome Sequencing of Uterine Leiomyosarcoma Tumors. Front Oncol 2021; 11:687899. [PMID: 34178683 PMCID: PMC8226214 DOI: 10.3389/fonc.2021.687899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
Abstract
Background The genomic abnormalities associated with uterine leiomyosarcoma (uLMS) have not been fully elucidated to date. Objective To understand the pathogenesis of uLMS and to identify driver mutations and potential therapeutic targets in uLMS. Methods Three matched tumor-constitutional DNA pairs from patients with recurrent uLMS were subjected to whole-exome capture and next-generation sequencing. The role of the selected gene SHARPIN in uLMS was analyzed by the CCK-8 assay and colony formation assay after specific siRNA knockdown. Results We identified four genes with somatic SNVs, namely, SLC39A7, GPR19, ZNF717, and TP53, that could be driver mutations. We observed that 30.7% (4/13) of patients with uLMS had TP53 mutations as analyzed by direct sequencing. Analysis of somatic copy number variants (CNVs) showed regions of chromosomal gain at 1q21-23, 19p13, 17q21, and 17q25, whereas regions of chromosomal loss were observed at 2q35, 2q37, 1p36, 10q26, 6p22, 8q24, 11p15, 11q12, and 9p21. The SHARPIN gene was amplified in two patients and mutated in another (SHARPIN: NM_030974: exon2: c.G264C, p.E88D). Amplification of the SHARPIN gene was associated with shorter PFS and OS in soft tissue sarcoma, as shown by TCGA database analysis. Knockdown of SHARPIN expression was observed to decrease cell growth and colony formation in uterine sarcoma cell lines. Conclusions Exome sequencing revealed mutational heterogeneity of uLMS. The SHARPIN gene was amplified in uLMS and could be a candidate oncogene.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Zheng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Zhang L, Liu Q, Liu KW, Qin ZY, Zhu GX, Shen LT, Zhang N, Liu BY, Che LR, Li JY, Wang T, Wen LZ, Liu KJ, Guo Y, Yin XR, Wang XW, Zhou ZH, Xiao HL, Cui YH, Bian XW, Lan CH, Chen D, Wang B. SHARPIN stabilizes β-catenin through a linear ubiquitination-independent manner to support gastric tumorigenesis. Gastric Cancer 2021; 24:402-416. [PMID: 33159601 DOI: 10.1007/s10120-020-01138-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aberrant activation of Wnt/β-catenin signaling by dysregulated post-translational protein modifications, especially ubiquitination is causally linked to cancer development and progression. Although Lys48-linked ubiquitination is known to regulate Wnt/β-catenin signaling, it remains largely obscure how other types of ubiquitination, such as linear ubiquitination governs its signaling activity. METHODS The expression and regulatory mechanism of linear ubiquitin chain assembly complex (LUBAC) on Wnt/β-catenin signaling was examined by immunoprecipitation, western blot and immunohistochemical staining. The ubiquitination status of β-catenin was detected by ubiquitination assay. The impacts of SHARPIN, a core component of LUBAC on malignant behaviors of gastric cancer cells were determined by various functional assays in vitro and in vivo. RESULTS Unlike a canonical role in promoting linear ubiquitination, SHARPIN specifically interacts with β-catenin to maintain its protein stability. Mechanistically, SHARPIN competes with the E3 ubiquitin ligase β-Trcp1 for β-catenin binding, thereby decreasing β-catenin ubiquitination levels to abolish its proteasomal degradation. Importantly, SHARPIN is required for invasiveness and malignant growth of gastric cancer cells in vitro and in vivo, a function that is largely dependent on its binding partner β-catenin. In line with these findings, elevated expression of SHARPIN in gastric cancer tissues is associated with disease malignancy and correlates with β-catenin expression levels. CONCLUSIONS Our findings reveal a novel molecular link connecting linear ubiquitination machinery and Wnt/β-catenin signaling via SHARPIN-mediated stabilization of β-catenin. Targeting the linear ubiquitination-independent function of SHARPIN could be exploited to inhibit the hyperactive β-catenin signaling in a subset of human gastric cancers.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Ke-Wei Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Zhong-Yi Qin
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Guang-Xi Zhu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Li-Ting Shen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Ni Zhang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Bi-Ying Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Lin-Rong Che
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Jin-Yang Li
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Tao Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Liang-Zhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Kai-Jun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Yan Guo
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Xin-Ru Yin
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Xing-Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Zhi-Hua Zhou
- Department of Pathology, The 904 Hospital of People Liberation Army, Wuxi, People's Republic of China
| | - Hua-Liang Xiao
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Chun-Hui Lan
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China. .,Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
15
|
Krishnan D, Menon RN, Gopala S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer's Disease? Cell Mol Neurobiol 2021; 42:1267-1281. [PMID: 33400084 DOI: 10.1007/s10571-020-01023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
SHANK- associated RH domain-interacting protein (SHARPIN) is a multifunctional protein associated with numerous physiological functions and many diseases. The primary role of the protein as a LUBAC-dependent component in regulating the activation of the transcription factor NF-κB accounts to its role in inflammation and antiapoptosis. Hence, an alteration of SHARPIN expression or genetic mutations or polymorphisms leads to the alteration of the above-mentioned primary physiological functions contributing to inflammation-associated diseases and cancer, respectively. However, there are complications of targeting SHARPIN as a therapeutic approach, which arises from the wide-range of LUBAC-independent functions and yet unknown roles of SHARPIN including neuronal functions. The identification of SHARPIN as a postsynaptic protein and the emerging studies indicating its role in several neurodegenerative diseases including Alzheimer's disease suggests a strong role of SHARPIN in neuronal functioning. This review summarizes the functional roles of SHARPIN in normal physiology and disease pathogenesis and strongly suggests a need for concentrating more studies on identifying the unknown neuronal functions of SHARPIN and hence its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
16
|
Papadas A, Arauz G, Cicala A, Wiesner J, Asimakopoulos F. Versican and Versican-matrikines in Cancer Progression, Inflammation, and Immunity. J Histochem Cytochem 2020; 68:871-885. [PMID: 32623942 PMCID: PMC7711242 DOI: 10.1369/0022155420937098] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Versican is an extracellular matrix proteoglycan with key roles in multiple facets of cancer development, ranging from proliferative signaling, evasion of growth-suppressor pathways, regulation of cell death, promotion of neoangiogenesis, and tissue invasion and metastasis. Multiple lines of evidence implicate versican and its bioactive proteolytic fragments (matrikines) in the regulation of cancer inflammation and antitumor immune responses. The understanding of the dynamics of versican deposition/accumulation and its proteolytic turnover holds potential for the development of novel immune biomarkers as well as approaches to reset the immune thermostat of tumors, thus promoting efficacy of modern immunotherapies. This article summarizes work from several laboratories, including ours, on the role of this central matrix proteoglycan in tumor progression as well as tumor-immune cell cross-talk.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
- Cellular & Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Garrett Arauz
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Joshua Wiesner
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
17
|
Sundberg JP, Pratt CH, Goodwin LP, Silva KA, Kennedy VE, Potter CS, Dunham A, Sundberg BA, HogenEsch H. Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice. PLoS One 2020; 15:e0235295. [PMID: 32687504 PMCID: PMC7371178 DOI: 10.1371/journal.pone.0235295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Spontaneous mutations in the SHANK-associated RH domain interacting protein (Sharpin) resulted in a severe autoinflammatory type of chronic proliferative dermatitis, inflammation in other organs, and lymphoid organ defects. To determine whether cell-type restricted loss of Sharpin causes similar lesions, a conditional null mutant was created. Ubiquitously expressing cre-recombinase recapitulated the phenotype seen in spontaneous mutant mice. Limiting expression to keratinocytes (using a Krt14-cre) induced a chronic eosinophilic dermatitis, but no inflammation in other organs or lymphoid organ defects. The dermatitis was associated with a markedly increased concentration of serum IgE and IL18. Crosses with S100a4-cre resulted in milder skin lesions and moderate to severe arthritis. This conditional null mutant will enable more detailed studies on the role of SHARPIN in regulating NFkB and inflammation, while the Krt14-Sharpin-/- provides a new model to study atopic dermatitis.
Collapse
Affiliation(s)
- John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - C. Herbert Pratt
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | | | | | | | - Anisa Dunham
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | - Beth A. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Harm HogenEsch
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
18
|
Papadas A, Asimakopoulos F. Versican in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:55-72. [PMID: 32845502 DOI: 10.1007/978-3-030-48457-6_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Versican is an extracellular matrix proteoglycan with nonredundant roles in diverse biological and cellular processes, ranging from embryonic development to adult inflammation and cancer. Versican is essential for cardiovascular morphogenesis, neural crest migration, and skeletal development during embryogenesis. In the adult, versican acts as an inflammation "amplifier" and regulator of immune cell activation and cytokine production. Increased versican expression has been observed in a wide range of malignant tumors and has been associated with poor patient outcomes. The main sources of versican production in the tumor microenvironment include accessory cells (myeloid cells and stromal components) and, in some contexts, the tumor cells themselves. Versican has been implicated in several classical hallmarks of cancer such as proliferative signaling, evasion of growth suppressor signaling, resistance to cell death, angiogenesis, and tissue invasion and metastasis. More recently, versican has been implicated in escape from tumor immune surveillance, e.g., through dendritic cell dysfunction. Versican's multiple contributions to benign and malignant biological processes are further diversified through the generation of versican-derived bioactive proteolytic fragments (matrikines), with versikine being the most studied to date. Versican and versican-derived matrikines hold promise as targets in the management of inflammatory and malignant conditions as well as in the development of novel predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Athanasios Papadas
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA. .,University of Wisconsin-Madison, Cellular and Molecular Pathology Program, Madison, WI, USA.
| | - Fotis Asimakopoulos
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
19
|
Zhang A, Wang W, Chen Z, Pang D, Zhou X, Lu K, Hou J, Wang S, Gao C, Lv B, Yan Z, Chen Z, Zhu J, Wang L, Zhuang T, Li X. SHARPIN Inhibits Esophageal Squamous Cell Carcinoma Progression by Modulating Hippo Signaling. Neoplasia 2019; 22:76-85. [PMID: 31884247 PMCID: PMC6939053 DOI: 10.1016/j.neo.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 01/25/2023] Open
Abstract
Esophageal cancer is one of the leading malignancies worldwide, while around sixty percent of newly diagnosed cases are in China. In recent years, genome-wide sequencing studies and cancer biology studies show that Hippo signaling functions a critical role in esophageal squamous cell carcinoma (ESCC) progression, which could be a promising therapeutic targets in ESCC treatment. However, the detailed mechanisms of Hippo signaling dys-regulation in ESCC remain not clear. Here we identify SHARPIN protein as an endogenous inhibitor for YAP protein. SHARPIN depletion significantly decreases cell migration and invasion capacity in ESCC, which effects could be rescued by further YAP depletion. Depletion SHARPIN increases YAP protein level and YAP/TEAD target genes, such as CTGF and CYR61 in ESCC. Immuno-precipitation assay shows that SHARPIN associates with YAP, promoting YAP degradation possibly via inducing YAP K48-dependent poly-ubiquitination. Our study reveals a novel post-translational mechanism in modulating Hippo signaling in ESCC. Overexpression or activation of SHARPIN could be a promising strategy to target Hippo signaling for ESCC patients.
Collapse
Affiliation(s)
- Aijia Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Weilong Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Zhijun Chen
- Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Dan Pang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Xiaofeng Zhou
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Kui Lu
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Jinghan Hou
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Sujie Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Can Gao
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Benjie Lv
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Ziyi Yan
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Zhen Chen
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Lidong Wang
- Henan Key Laboratory for Esophageal Cancer Research and State Key Laboratory for Esophageal Cancer Prevention & Treatment of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Xiumin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| |
Collapse
|
20
|
Tian Z, Tang J, Yang Q, Li X, Zhu J, Wu G. Atypical ubiquitin-binding protein SHARPIN promotes breast cancer progression. Biomed Pharmacother 2019; 119:109414. [DOI: 10.1016/j.biopha.2019.109414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023] Open
|
21
|
Li Y, Chen G, Yan Y, Fan Q. CASC15 promotes epithelial to mesenchymal transition and facilitates malignancy of hepatocellular carcinoma cells by increasing TWIST1 gene expression via miR-33a-5p sponging. Eur J Pharmacol 2019; 860:172589. [DOI: 10.1016/j.ejphar.2019.172589] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
|
22
|
Chen B, Zheng Y, Zhu J, Liang Y. SHARPIN overexpression promotes TAK1 expression and activates JNKs and NF-κB pathway in Mycosis Fungoides. Exp Dermatol 2019; 28:1279-1288. [PMID: 31461795 DOI: 10.1111/exd.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Mycosis Fungoides (MF) is the most common subtype of cutaneous T-cell lymphomas (CTCL). Shank-associated RH domain-interacting protein (SHARPIN) participates in the initiation and development of multiple tumors. However, the clinical significance of SHARPIN in MF hasn't been investigated. The c-Jun N-terminal kinases (JNKs) pathway is a member of mitogen-activated protein kinases (MAPKs). Its dysregulation is observed in various tumors including CTCL, whereas the roles of JNKs pathway in MF remain largely unknown, the relationship between SHARPIN and JNKs pathway remains elusive. Herein, we showed that upregulated expression of SHARPIN was related to poor prognosis of MF patients. In vitro experiments found increased SHARPIN expression and activation of JNKs pathway in MF cell line MyLa2059. SHARPIN induced transforming growth factor β activated kinase-1 (TAK1) transcription, which is an upstream kinase of JNKs, NF-κB and p38 pathway, leading to activation of JNKs and NF-κB pathway. SHARPIN also promoted p38 signalling independent of TAK1 expression, by which overexpression of SHARPIN induced cell proliferation, inhibited apoptosis, enhanced migration and invasion of MyLa2059. Our work provided direct evidences for effects of SHARPIN on JNKs and NF-κB pathway, and the contributing roles of JNKs, NF-κB and p38 pathway regulated by SHARPIN in the development of MF.
Collapse
Affiliation(s)
- Biao Chen
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingna Zhu
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yanhua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
23
|
Zhou S, Liang Y, Zhang X, Liao L, Yang Y, Ouyang W, Xu H. SHARPIN Promotes Melanoma Progression via Rap1 Signaling Pathway. J Invest Dermatol 2019; 140:395-403.e6. [PMID: 31401046 DOI: 10.1016/j.jid.2019.07.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023]
Abstract
SHARPIN, as a tumor-associated gene, is involved in the metastatic process of many kinds of tumors. Herein, we studied the function of Shank-associated RH domain interacting protein (SHARPIN) in melanoma metastasis and the relevant molecular mechanisms. We found that SHARPIN expression was increased in melanoma tissues and activated the process of proliferation, migration, and invasion in vitro and in vivo, resulting in a poor prognosis of the disease. Functional analysis demonstrated that SHARPIN promoted melanoma migration and invasion by regulating Ras-associated protein-1(Rap1) and its downstream pathways, including p38 and JNK/c-Jun. Rap1 activator (8-pCPT-2'-O-Me-cAMP) and inhibitor (ESI-09 and farnesylthiosalicylic acid-amide) treatments could partially rescue invasion and migration of tumor cells. Additionally, SHARPIN expression in cell lines and public datasets also indicated that molecules other than BRAF and N-RAS may contribute to SHARPIN activation. In conclusion, our broad-in-depth work suggests that SHARPIN promotes melanoma development via p38 and JNK/c-Jun pathways through upregulation of Rap1 expression.
Collapse
Affiliation(s)
- Sitong Zhou
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yanhua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Xi Zhang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lexi Liao
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yao Yang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wen Ouyang
- The Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huaiyuan Xu
- Department of Bone and Soft Tissue Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Blocking CXCLs-CXCR2 axis in tumor-stromal interactions contributes to survival in a mouse model of pancreatic ductal adenocarcinoma through reduced cell invasion/migration and a shift of immune-inflammatory microenvironment. Oncogenesis 2019; 8:8. [PMID: 30659170 PMCID: PMC6338726 DOI: 10.1038/s41389-018-0117-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by dense stromal reaction (desmoplasia). We have previously reported that mice with conditional KrasG12D mutation and knockout of TGF-β receptor type II (Tgfbr2), PKF mice, develop PDAC with desmoplasia modulated by CXC chemokines that are produced by PDAC cells through tumor–stromal interaction. In this study, we further discovered that PDAC and cancer-associated fibroblast (CAF) accelerated each other’s invasion and migration through the CXC chemokines-receptor (CXCLs–CXCR2) axis. Heterozygous knockout of Cxcr2 in PKF mice (PKF2h mice) prolonged survival and inhibited both tumor angiogenesis and PDAC microinvasion. Infiltration of neutrophils, myeloid-derived suppressor cells (MDSCs), and arginase-1+ M2-like tumor-associated macrophages (TAMs) significantly decreased in the tumors of PKF2h mice, whereas inducible nitric oxide synthase (iNOS)+ M1-like TAMs and apoptotic tumor cells markedly increased, which indicated that blockade of the CXCLs–CXCR2 axis resulted in a shift of immune-inflammatory microenvironment. These results suggest that blocking of the CXCLs–CXCR2 axis in tumor–stromal interactions could be a therapeutic approach against PDAC progression.
Collapse
|
25
|
Tanaka Y, Tateishi R, Koike K. Proteoglycans Are Attractive Biomarkers and Therapeutic Targets in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19103070. [PMID: 30297672 PMCID: PMC6213444 DOI: 10.3390/ijms19103070] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Proteoglycans, which consist of a protein core and glycosaminoglycan chains, are major components of the extracellular matrix and play physiological roles in maintaining tissue homeostasis. In the carcinogenic tissue microenvironment, proteoglycan expression changes dramatically. Altered proteoglycan expression on tumor and stromal cells affects cancer cell signaling pathways, which alters growth, migration, and angiogenesis and could facilitate tumorigenesis. This dysregulation of proteoglycans has been implicated in the pathogenesis of diseases such as hepatocellular carcinoma (HCC) and the underlying mechanism has been studied extensively. This review summarizes the current knowledge of the roles of proteoglycans in the genesis and progression of HCC. It focuses on well-investigated proteoglycans such as serglycin, syndecan-1, glypican 3, agrin, collagen XVIII/endostatin, versican, and decorin, with particular emphasis on the potential of these factors as biomarkers and therapeutic targets in HCC regarding the future perspective of precision medicine toward the "cure of HCC".
Collapse
Affiliation(s)
- Yasuo Tanaka
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Ryosuke Tateishi
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
26
|
Ojo D, Seliman M, Tang D. Signatures derived from increase in SHARPIN gene copy number are associated with poor prognosis in patients with breast cancer. BBA CLINICAL 2017; 8:56-65. [PMID: 28879097 PMCID: PMC5582379 DOI: 10.1016/j.bbacli.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 11/18/2022]
Abstract
We report three signatures produced from SHARPIN gene copy number increase (GCN-Increase) and their effects on patients with breast cancer (BC). In the Metabric dataset (n = 2059, cBioPortal), SHARPIN GCN-Increase occurs preferentially or mutual exclusively with mutations in TP53, PIK3CA, and CDH1. These genomic alterations constitute a signature (SigMut) that significantly correlates with reductions in overall survival (OS) in BC patients (n = 1980; p = 1.081e − 6). Additionally, SHARPIN GCN-Increase is associated with 4220 differentially expressed genes (DEGs). These DEGs are enriched in activation of the pathways regulating cell cycle progression, RNA transport, ribosome biosynthesis, DNA replication, and in downregulation of the pathways related to extracellular matrix. These DEGs are thus likely to facilitate the proliferation and metastasis of BC cells. Additionally, through forward (FWD) and backward (BWD) stepwise variate selections among the top 160 downregulated and top 200 upregulated DEGs using the Cox regression model, a 6-gene (SigFWD) and a 50-gene (SigBWD) signature were derived. Both signatures robustly associate with decreases in OS in BC patients within the Curtis (n = 1980; p = 6.16e − 11 for SigFWD; p = 1.06e − 10, for SigBWD) and TCGA cohort (n = 817; p = 4.53e − 4 for SigFWD and p = 0.00525 for SigBWD). After adjusting for known clinical factors, SigMut (HR 1.21, p = 0.0297), SigBWD (HR 1.25, p = 0.0263), and likely SigFWD (HR 1.17, p = 0.062) remain independent risk factors of BC deaths. Furthermore, the proportion of patients positive for these signatures is significantly increased in ER −, Her2-enriched, basal-like, and claudin-low BCs compared to ER + and luminal BCs. Collectively, these SHARPIN GCN-Increase-derived signatures may have clinical applications in management of patients with BC. SHARPIN genomic increase correlates with poor prognosis in breast cancer patients SHARPIN genomic increase associates with enrichment of mutations in TP53 and others SHARPIN genomic increases occur along with many differentially expressed genes (DEGs) These DEGs enhance breast cancer cell proliferation and reduces extracellular matrix Enriched mutations and DEGs strongly associate with reductions in overall survival
Collapse
Affiliation(s)
- Diane Ojo
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Maryam Seliman
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Corresponding author at: St. Joseph's Hospital, T3310, 50 Charlton Ave East, Hamilton, Ontario L8N 4A6, Canada.St. Joseph's HospitalT3310, 50 Charlton Ave EastHamiltonOntarioL8N 4A6Canada
| |
Collapse
|
27
|
A novel SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell invasion. Oncotarget 2017; 8:54809-54820. [PMID: 28903384 PMCID: PMC5589623 DOI: 10.18632/oncotarget.18957] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
SHARPIN (Shank-associated RH domain interacting protein) is the main component of the linear ubiquitin chain activation complex (LUBAC). SHARPIN is involved in regulating inflammation and cancer progression. However, whether SHARPIN plays an important role in lung cancer metastasis and the potential underlying mechanism are still unknown. Here, for the first time, we reported that SHARPIN expression is closely related to lung cancer progression. Moreover, SHARPIN plays a central role in controlling lung cancer cell metastasis. Mechanistic studies further revealed that PRMT5 (Protein arginine methyltransferase 5), responsible for catalyzing arginine methylation on histones, is a novel cofactor of SHARPIN. This finding provides the basis for further study of the crosstalk between protein ubiquitination and histone methylation. We further found that SHARPIN-PRMT5 is essential for the monomethylation of histones of chromatins at key metastasis-related genes, defining a new mechanism regulating cancer invasion. A novel MLL complex (ASH2 and WDR5) was implied in the link between histone arginine2 monomethylation (H3R2me1) and histone lysine4 trimethylation (H3K4me3) for the activation of metastasis-related genes. These novel findings establish a new epigenetic paradigm in which SHARPIN-PRMT5 has distinct roles in orchestrating chromatin environments for cancer-related genes via integrating signaling between H3R2me1 and H3K4me3.
Collapse
|